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Abstract. In this paper, we address the energy eigenvalues of two-dimensional Dirac oscillator
perturbed by a dynamical noncommutative space. We derived the relativistic Hamiltonian of Dirac
oscillator in the dynamical noncommutative space, in which the space-space Heisenberg-like commutation
relations and noncommutative parameter are position-dependent. Then, we used this Hamiltonian
to calculate the first-order correction to the eigenvalues and eigenvectors, based on the language of
creation and annihilation operators and using the perturbation theory. It is shown that the energy shift
depends on the dynamical noncommutative parameter τ . Knowing that, with a set of two-dimensional
Bopp-shift transformation, we mapped the noncommutative problem to the standard commutative one.

Keywords: Dynamical noncommutative space, τ -space, noncommutative Dirac oscillator, perturbation
theory.

1. Introduction
In the last few decades, physicists and mathematicians have developed a mathematical theory called noncommu-
tative geometry, which has quickly become a topic of great interest and has been finding applications in many
areas of modern physics, such as high energy [1], cosmology [2, 3], gravity [4], quantum physics [5–7] and field
theory [8, 9]. Substantially, the study on noncommutative (NC) spaces is very important for understanding
phenomena at a tiny scale of physical theories. The idea behind the extension of noncommutativity to the
coordinates was first suggested by Heisenberg in 1930 as a solution to remove the infinite quantities of field
theories. The NC space-time structures were first mentioned by Snyder in 1947 [10, 11], in which he introduced
noncommutativity in the hope of regularizing the divergencies that plagued quantum field theory.

Motivated by the attempts to understand the string theory, the quantum gravitation and black holes through
NC spaces and by seeking to highlight more phenomenological implications, we consider the Dirac oscillator
(DO) within a two-dimensional dynamical noncommutative (DNC) space (also known as a position-dependent
NC space).

Unlike the simplest possible type of NC spaces, in which the NC parameter is constant, here we talk
about a different type of NC spaces, where the deformation parameter will no longer be constant. However,
there are many other possibilities that cannot be excluded. In fact, in the first paper by Snyder himself [10],
the noncommutativity parameter was taken to depend on the coordinates and the momenta. Considerable
different possibilities have been explored since then, especially in the Lie-algebraic approaches [12], κ-Poincaré
noncommutativity [13], other fuzzy spaces [14]. Besides, more recently in position-dependent approach [15–17],
the authors considered Θµν to be a function of the position coordinates, i.e., Θ→Θ(X,Y ).

The relativistic DO has a great potential both for the theoretical and practical applications. The potential
term is introduced linearly, by substitution −→p → −→p − imβω−→r in free Dirac Hamiltonian, this was considered
for the first time by Ito et al. [18], with −→r being the position vector and m, β, ω > 0 being the rest mass
of the particle, Dirac matrix and constant oscillator frequency, respectively. It was named Dirac oscillator
by Moshinsky and Szczepaniak [19] because it is a relativistic generalization of the non-relativistic harmonic
oscillator and, exactly in a non-relativistic limit, it reduces to a standard harmonic oscillator with a strong
spin-orbit coupling term.

Physically, DO has attracted a lot of attention because of its considerable physical applications, it is widely
studied and illustrated. It can be shown that it is a physical system, which can be interpreted as an interaction
of the anomalous magnetic moment with a linear electric field [20]. In addition, it can be associated with
the electromagnetic potential [21]. As an exactly solvable model, DO in the background of a perpendicular
uniform magnetic field has been widely studied. However, we mention, for instance, the following: In ref. [19],
the spectra of (3+1)-dimensional DO are solved and the non-relativistic limit is discussed, as well, in ref. [22],
the symmetrical properties of the DO are studied. The operators of shift for symmetries are constructed
explicitly [23]. Interestingly, the DO may offer a new approach to study quantum optics, where it was found
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that there is an exact map from (2+1)-dimensional DO to Jaynes-Cummings (JC) model [24], which describes
the atomic transitions in a two level system. Subsequently, it was found that this model can be mapped either
to JC or anti-JC models, depending on the magnitude of the magnetic field [25].

Basically, DO became more and more important since the experimental observations. For instance, we
mention that Franco-Villafañe et al. [26] came with the proposal of a first-experimental microwave realisation of
the one-dimensional DO. The experiment depends on a relation of the DO to a corresponding tight-binding
system. The experimental results obtained show that the spectrum of the one-dimensional DO is in good
agreement with that of the theory. Quimbay et al. [27, 28] show that the DO may describe a naturally occurring
physical system. More precisely, that case of a two-dimensional DO can be used to describe the dynamics of the
charge carriers in graphene, and hence its electronic properties [29].

This paper is organized as follows. In section 2, the DNC geometry is briefly reviewed. In section 3, the
two-dimensional DNC DO is investigated, where in sub-section 3.2, the energy spectrum in NC space is obtained.
In sub-section 3.3, based on the perturbation theory and Fock basis, the energy spectrum including the dynamical
noncommutativity effect is obtained, therefore, we summarize the results and discussions. Section 4, is then
devoted to the conclusions.

2. Review of dynamical noncommutativity
Let us present the essential formulas of the DNC space algebra we need in this study. As is known, at the
tiny scale (string scale), the position coordinates do not commute with each other, thus the canonical variables
satisfy the following deformed Heisenberg commutation relation

[
xnc

µ , xnc
ν

]
= iΘµν , (1)

with Θµν being an anti-symmetric tensor. In simplest way, the deformation parameter is considered a real
constant. But, in general, Θµν can be a function of coordinates. Fring et al. [16] made a generalization of an
NC space to a position-dependent space by introducing a set of new variables X, Y , Px, Py and converting
the constant Θ into a function of coordinates θ(X,Y ) = Θ

(
1 + τY 2). As another example of θ(X,Y ), we also

mention that Gomes et al. [17] chose in their study θ(X,Y ) = Θ/[1 + Θα
(
1 + Y 2)].

However, as a deformation of this NC parameter form will almost inevitably lead to non-Hermitian coordinates,
it was pointed out [30] that these types of structures are related directly to non-Hermitian Hamiltonian systems.
Later, it is explained how this problem was solved.

In the new type of the two-dimensional NC space, which is known as the DNC space or τ−space, the
commutation relations are [16]

[X,Y ] = iΘ
(
1 + τY 2) , [Y, Py] = iℏ

(
1 + τY 2) ,

[X,Px] = iℏ
(
1 + τY 2) , [Y, Px] = 0,

[X,Py] = 2iτY (ΘPy + ℏX) , [Px, Py] = 0.
(2)

It is interesting to note that
√

Θ and
√
τ have dimensions of L and L−1, respectively.

In the limit τ → 0, we obtain the following non-dynamical NC commutation relations

[xnc, ync] = iΘ,
[
ync, pnc

y

]
= iℏ,

[xnc, pnc
x ] = iℏ, [ync, pnc

x ] = 0,[
xnc, pnc

y

]
= 0,

[
pnc

x , pnc
y

]
= 0.

(3)

The coordinate X and the momentum Py are not Hermitian, which makes the Hamiltonian that includes
these variables non-Hermitian. We represent algebra (2) in terms of the standard Hermitian NC variable
operators xnc, ync, pnc

x , pnc
y as

X =
(

1 + τ (ync)2
)
xnc, Y = ync,

Py =
(

1 + τ (ync)2
)
pnc

y , Px = pnc
x .

(4)

From this representation, we can see that some of the operators involved above are no longer Hermitian.
However, to convert the non-Hermitian variables into a Hermitian one, we use a similarity transformation as
a Dyson map ηOη−1 = o = O† with η = (1+τY 2)− 1

2 , as stated in [16]. Therefore, we express the new Hermitian
variables x, y, px and py in terms of NC variables as follows
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x = ηXη−1 = (1 + τY 2)− 1
2X(1 + τY 2) 1

2 = (1 + τ (ync)2) 1
2xnc(1 + τ (ync)2) 1

2 ,

y = ηY η−1 = (1 + τ (ync)2)− 1
2 ync(1 + τ (ync)2) 1

2 = ync,

px = ηPxη
−1 = (1 + τ (ync)2)− 1

2 pnc
x (1 + τ (ync)2) 1

2 = pnc
x ,

py = ηPyη
−1 = (1 + τ (ync)2)− 1

2Py(1 + τ (ync)2) 1
2 = (1 + τ (ync)2) 1

2 pnc
y (1 + τ (ync)2) 1

2 .

(5)

These new Hermitian DNC variables satisfy the following commutation relations

[x, y] = iΘ
(
1 + τy2) , [y, py] = iℏ

(
1 + τy2) ,

[x, px] = iℏ
(
1 + τy2) , [y, px] = 0,

[x, py] = 2iτy (Θpy + ℏx) , [px, py] = 0.
(6)

Now, using Bopp-shift transformation [31], one can express the NC variables in terms of the standard
commutative variables [5]

xnc = xs − Θ
2ℏp

s
y, pnc

x = ps
x,

ync = ys + Θ
2ℏp

s
y, pnc

y = ps
y,

(7)

where the index s refers to the standard commutative space. The interesting point is that in the DNC space,
there is a minimum length for X in a simultaneous X, Y measurement [16]:

△Xmin = Θ
√
τ
√

1 + τ ⟨Y ⟩2
ρ, (8)

as well, in a simultaneous Y , Py measurement, we find a minimal momentum as

△ (Py)min = ℏ
√
τ
√

1 + τ ⟨Y ⟩2
ρ. (9)

The motivation and interesting physical consequence for position-dependent noncommutativity is that objects
in two-dimensional spaces are string-like [16]. However, investigating the DO in DNC geometry gives rise to
some phenomenological consequences that may be very important and useful.

3. Two-dimensional Dirac oscillator in dynamical noncommutative space
3.1. Extension to dynamical noncommutative space
The dynamics of the DO in the presence of a uniform external magnetic field is governed by the following
Hamiltonian

HD = c−→α .
(−→p s − e

c

−→
A s − imcωβ−→r s

)
+ βmc2, (10)

where −→
A s
(
As

x, A
s
y, A

s
z

)
is the vector potential produced by the external magnetic field and e is the charge

of the DO (the electron charge). The α⃗ matrices, in two dimensions, are represented by the following Pauli
matrices

α1 = σx =
(

0 1
1 0

)
, α2 = σy =

(
0 −i
i 0

)
, β = σz =

(
1 0
0 −1

)
, (11)

which satisfy the following relations

α2
i = β2 = 1,

αiαj + αjαi = 0,
αiβ + βαi = 0.

i = 1, 2, 3 (12)

In two dimensions, equation (10) becomes
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HD = c
(
α1p

s
x + α2p

s
y

)
− e

(
α1A

s
x + α2A

s
y

)
− imcω (α1βx

s + α2βy
s) + βmc2. (13)

Let us consider −→
B to be along the z axis, thus the vector potential A⃗s is given in the Landau gauge by

−→
A = B

2 (−ys, xs, 0) , (14)

therefore, we have

HD (xs
i , p

s
i ) = c

(
α1p

s
x + α2p

s
y

)
+ e

B

2 (α1y
s − α2x

s) − imcω (α1βx
s + α2βy

s) + βmc2. (15)

The above Hamiltonian in DNC space turns to

HD (xi, pi) = c (α1px + α2py) + e
B

2 (α1y − α2x) − imcω (α1βx+ α2βy) + βmc2. (16)

Now, using equation (5), we express the Hamiltonian above in terms of NC variables

HD (xnc
i , pnc

i ) = βmc2 + c[α1p
nc
x + α2

(
1 + τ (ync)2

) 1
2
pnc

y

(
1 + τ (ync)2

) 1
2 ]

+ e
B

2 [α1y
nc − α2

(
1 + τ (ync)2

) 1
2
xnc

(
1 + τ (ync)2

) 1
2 ]

− imcω[α1β
(

1 + τ (ync)2
) 1

2
xnc

(
1 + τ (ync)2

) 1
2 + α2βy

nc]. (17)

Since τ is very small, the parentheses can be expanded to the first-order through

(
1 + τ (ync)2

) 1
2 = 1 + 1

2τ (ync)2
, (18)

so that equation (17) turns to

HD (xnc
i , pnc

i ) = c

[
α1p

nc
x + α2

{
pnc

y + 1
2τ (ync)2

pnc
y + 1

2τp
nc
y (ync)2

}]
+ βmc2 + e

B

2

[
α1y

nc − α2

{
xnc + 1

2τ (ync)2
xnc + 1

2τx
nc (ync)2

}]
− imcω

[
α2βy

nc + α1β

{
xnc + 1

2τ (ync)2
xnc + 1

2τx
nc (ync)2

}]
. (19)

Using the Bopp-shift transformation (7), Hamiltonian (19) can be expressed in terms of the standard
commutative variables

HD (xs
i , ps

i ) = cα1ps
x + βmc2 + cα2ps

y + cα2

{
1
2τ
(

ys + Θ
2ℏps

x

)2
ps

y + 1
2τps

y

(
ys + Θ

2ℏps
x

)2
}

+ eB

2

[
α1

(
ys + Θ

2ℏps
x

)
− α2

{
τ

2

(
ys + Θ

2ℏps
x

)2 (
xs − Θ

2ℏps
y

)
+xs − Θ

2ℏps
y + 1

2τ
(

xs − Θ
2ℏps

y

)(
ys + Θ

2ℏps
x

)2
}]

− imcω
[
α2β

(
ys + Θ

2ℏps
x

)
+ α1β

{
xs − Θ

2ℏps
y +τ

2

(
ys + Θ

2ℏps
x

)2 (
xs − Θ

2ℏps
y

)
+ τ

2

(
xs − Θ

2ℏps
y

)(
ys + Θ

2ℏps
x

)2
}]

.

(20)

Therefore, to the first-order in Θ and τ , we have (noting that terms containing Θτ are neglected too)
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HD (xs
i , p

s
i ) = c

[
α1p

s
x + α2

{
ps

y + τ

2 (ys)2
ps

y + 1
2τp

s
y (ys)2

}]
+ βmc2 + e

B

2

[
α1

(
ys + Θ

2ℏp
s
x

)
− α2

{
xs − Θ

2ℏp
s
y + τxs (ys)2

}]
− imcω

[
α2β

(
ys + Θ

2ℏp
s
x

)
+ α1β

{
xs − Θ

2ℏp
s
y + τxs (ys)2

}]
, (21)

which can be written as

HD = H0 +HΘ +Hτ , (22)

with

H0 = cα1p
s
x + cα2p

s
y + eB

2 (α1y
s − α2x

s) − imcω (α1βx
s + α2βy

s) + βmc2, (23)

HΘ = Θ
2ℏ

[
eB

2
(
α1p

s
x + α2p

s
y

)
− imcω

(
α2βp

s
x − α1βp

s
y

)]
, (24)

Hτ = 1
2τ
[
cα2 (ys)2

ps
y + cα2p

s
y (ys)2 − (eBα2x

s (ys)2 − i2mcωα1βx
s (ys)2

]
= τ

2 [α2V1 + α2V2 − (eBα2 + i2mcωα1β) V3] , (25)

where

V1 = (ys)2
ps

y, V2 = ps
y (ys)2

, and V3 = xs (ys)2
. (26)

Knowing that Hτ is the perturbation Hamiltonian in which it reflects the effects of dynamical noncommuta-
tivity of space on the DO Hamiltonian. We can also treat the term proportional to Θ, given in equation (24) as
a perturbation term. But here, and in a different way, we will accurately calculate the energy of the deformed
system H0 +HΘ and employ it to test the effect of the DNC space on the DO. Thus, we consider the following
unperturbed system

HUNP = H0 +HΘ. (27)

While the noncommutativity parameter τ is non-zero and very small, one can use the perturbation theory to
find the spectrum of the systems in question.

The two-dimensional DO equation in the DNC space is written as follows

HD |ψD⟩ = (HUNP +Hτ ) |ψD⟩ = EΘ,τ |ψD⟩ , (28)

with

|ψD⟩ = (|ψ1⟩ , |ψ2⟩)T
, (29)

being the wave function of the system in question.
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3.2. Unperturbed eigenvalues and eigenvectors
We introduce the following complex coordinates

zs = xs + iys, zs = xs − iys, (30)

ps
z = −iℏ d

dzs = 1
2
(
ps

x − ips
y

)
,

ps
z = −iℏ d

dzs = 1
2
(
ps

x + ips
y

)
,

(31)

where

[zs, ps
z] = [z̄s, ps

z] = iℏ, [zs, ps
z] = [z̄s, ps

z] = 0. (32)

Using equation (11), our unperturbed system (24), in the complex formalism, merely becomes

HUNP =
[

mc2 2cΩps
z + imczsω̃

2cΩps
z − imcωzsω̃ −mc2

]
, (33)

where

Ω = 1 +m
Θω̃
2ℏ with ω̃ = ω − ωc

2 , (34)

knowing that ωc = |e|B
mc is the cyclotron frequency.

Now, let us introduce the following creation and annihilation operators

a = i

(
Ω√
mωℏ

ps
z − i

2Ω

√
mω

ℏ
zs

)
, (35)

a† = −i

(
Ω√
mωℏ

ps
z + i

2Ω

√
mω

ℏ
zs

)
, (36)

that satisfy the following commutations relations

[
a, a†] = 1, [a, a] =

[
a†, a†] = 0. (37)

Thus, in terms of the creation and annihilation operators, the Hamiltonian (33) takes the following form

HΘ =
[

mc2 i2c
√
mωℏa†

−i2c
√
mωℏa −mc2

]
=
[
mc2 iga†

−iga −mc2

]
, (38)

with g = 2c
√
mℏω being a parameter that describes the coupling between different states in NC space,

and ω = Ωω̃ being the correction of the frequency ω̃ of the commutative space. In addition, the parameter
g = 2c

√
mω̃ℏ describes the coupling between different states in the commutative space.

Now, we solve the following equation

HUNP

∣∣ψD

〉
= EΘ

∣∣ψD

〉
, (39)

where EΘ,
∣∣ψD

〉
are the eigenenergy and wave function of the Dirac equation above, respectively.

By inserting equation (29) in (39), we obtain the following system of equations

(
mc2 iga†

−iga −mc2

)(
| ψ1 >

| ψ2 >

)
= EΘ

(
| ψ1 >

| ψ2 >

)
, (40)
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where

(
mc2 − EΘ

)
| ψ1 > +iga† | ψ2 >= 0, (41)

−iga | ψ1 > −
(
mc2 + EΘ

)
| ψ2 >= 0. (42)

From the equations (41) and (42), we have

| ψ2 >= −iga
EΘ +mc2 | ψ1 >, (43)

subsequently

[
g2a†a+m2c4 − (EΘ)2

]
| ψ1 >= 0. (44)

On the basis of the second quantization, of which | ψ1 >≡| n >, we have

[
g2n+m2c4 − (EΘ)2

]
| n >= 0, a†a | n >= n | n > . (45)

Thus, the energy spectrum is given by

E±
Θ,n = ±

√
m2c4 + g2n, (46)

which can be rewritten as

E±
Θ,n = ±mc2

√
1 + 4ℏω̃

mc2

(
1 +m

Θω̃
2ℏ

)
n, n = 0, 1, 2, ... (47)

Furthermore, we have the reduced energy spectrum

E±
n

E0
= ±

√
1 + 4w

(
1 + 1

2qw
)
n, (48)

where the non-relativistic limit feature is reduced in w = ℏω̃
mc2 , which is a parameter that controls the non-

relativistic limit within the NC space (as well as in commutative case, if Θ = 0), and E0 = mc2 is a background
energy, which corresponds to n = 0. And q = Θ

Θ0
with Θ0 =

( ℏ
mc

)2of the dimension
[ ℏ

mc

]2 = L2 ≡ m2 .

The corresponding wave function is written as a function of the basis | n >= (a†)n

√
n! | 0 >, and it is given by

the following formula

| ψ±
n >= c±

n | n; 1
2 > +id±

n | n− 1; −1
2 >, (49)

where the coefficients c±
n and d±

n are determined from the normalization condition. We thus obtain [24]

c±
n =

√
E+

n ±mc2

2E+
n

, d±
n = ∓

√
E+

n ∓mc2

2E+
n

. (50)

In the limit Θ → 0, the NC energy spectrum becomes commutative one, i.e., equation (47) turns to equation
(10) of ref. [32], which confirms that we are in good agreement. As well, in ref. [33] Boumali et al. made a study
of a DO in an NC phase-space, where, if Θ → 0, the energy eigenvalues (eq:50) will be similar as ours in equation
(47).
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We plot the reduced energy spectrum in terms of quantum number n, for the cases w = 1, q = 1; w = 1,
q = 2 and the commutative case with w = 1.

The E±
n

E0
, as a function of quantum number n of equation (48) in both commutative (Θ = q = 0) and NC

(q = 1; q = 2) spaces, is illustrated in Fig. 1. Knowing that Fig. 1 discloses that the influence of the NC
parameter on the energy spectrum is considerable and significant.

Figure 1. A reduced energy versus quantum number in both cases of NC and commutative spaces.

The following figure shows the coupling parameters g and ḡ, between different levels for the two cases in the
NC space.

Figure 2. The coupling parameter between different levels: (a) in the case of commutative space, (b) in the case of
NC space.

While n are non-negative integers, we explicitly observe that our eigenvalues are non-degenerated (the
spectrum has no degeneracy), this case can be explained by the fact that the particle is restricted to moving in
two dimensions, and the third dimension does not contribute in the form of energy. Knowing that, it will be an
infinite degeneracy when there is a contribution of an element related to the third dimension, such as kz or pz.

In more detail and indirectly (in other sense), the energy spectrum is degenerated. As is known, this is
related to the Landau problem, and it is known that there is an infinite degeneracy. Nevertheless, we consider
the energy spectrum non-degenerated, because we do not rely on the states with different angular momentum,
which is not useful here. The reason is that when we use chiral creation and annihilation operators (al, a†

l and
ar, a†

r), we see that the number of particles nr created by right operators does not appear in the form of energy,
we see only number of particles nl generated by left operators. However, right operators create excitations with
a definite angular momentum in one or the other direction; thus, in this sense, we have the degeneracy.

This point is very important to clarify because our calculations in the perturbation theory depend on this
point. As many researchers have dealt with this sensitive point and considered that the spectrum has no
degeneracy such as [33]. Besides, differently, for instance, energy levels can appear explicitly degenerated, as
in a study [34] about the mesoscopic states in a relativistic Landau levels, the authors found that the energy
spectrum depends on p2

z (check eq. 13 in this cited reference), which is the underlying reason for an infinite
degeneracy of all levels.

3.3. Perturbed system
In this sub-section, we aim to determine the correction of first-order energy by using first-order energy shift
formulas. To explain the structure of our spectrum, we will use time-independent perturbation theory for
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small values of the parameter τ . In view that energies are non-degenerated, we use the non-degenerated
time-independent perturbation theory

∣∣ψn

〉
=
∣∣∣ψ(0)

n

〉
+ τ

∣∣∣ψ(1)
n

〉
+ τ2

∣∣∣ψ(2)
n

〉
+ ... (51)

En = E(0)
n + τE(1)

n + τ2E(2)
n + ... (52)

Here, the (0) superscript denotes the quantities that are associated with the unperturbed system.
The first-order correction to the eigenvalues and eigenvectors in perturbation theory are simply given by

E(1)
n = △En =< ψ

(0)
n | 1

τ
Hτ | ψ(0)

n >, (53)

∣∣∣ψ(1)
n

〉
=
∑
k ̸=n

< ψ
(0)
k | 1

τHτ | ψ(0)
n >

E
(0)
n − E

(0)
k

∣∣∣ψ(0)
k

〉
. (54)

Inserting equation (25) into the equation above, we find

E(1)
n =< ψ

(0)
n | 1

2{α2(V1 + V2) − (eBα2 + i2mcωα1β) V3} | ψ(0)
n >, (55)

the operator method can also be used to obtain the energy shift in Fock space. In our scenario, we require
adopting the notation of the state as follows

| ψ(0)
n >=| nx, ny > . (56)

The perturbation matrix is given by

M =< nx, ny | i2

(
0 −V1 − V2 + ΥV3

V1 + V2 − ΥV3 0

)
| n

′

x, n
′

y >, (57)

with Υ = eB + 2mcω. To calculate the influence of Vi (i = 1, .., 3) on the element of the Fock basis, we
conveniently use the following bj , b†

j (j = x, y) operators

bj =
√
mω

2ℏ

(
xs

j + i
ps

j

mω

)
and b†

j =
√
mω

2ℏ

(
xs

j − i
ps

j

mω

)
, (58)

where

[
bj , b

†
j

]
= 1, with b†

jbj = Nj . (59)

The above creation and annihilation operators are, in fact, extracted from the one in 3.2, when (a, a†) ={
i (ax + iay) ,−i

(
a†

x − ia†
y

)}
|Θ→0→ (b, b†) =

{
i (bx + iby) ,−i

(
b†

x − ib†
y

)}
(because in 3.3, we deal only with τ).

In fact, we have only one integer, which is n, but with the feature n = nx + ny. We deliberately use nx, ny

instead of n because in the perturbed Hamiltonian, we cannot use a complex formalism, thus we divide n into
nx and ny.

With the help of the following definitions of eigenkets and central properties of creation and annihilation
operators [35]

bj | nj > = √
nj | nj − 1 >,

b†
j | nj > =

√
nj + 1 | nj + 1 >,

b2
j | nj > =

√
nj (nj − 1) | nj − 2 >,

b†2
j | nj > =

√
(nj + 1) (nj + 2) | nj + 2 >,

b3
j | nj > =

√
nj (nj − 1) (nj − 2) | nj − 3 >,

b†3
j | nj > =

√
(nj + 1) (nj + 2) (nj + 3) | nj + 3 >,

...

(60)
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with < n
′

j | nj >= δn
′
j
,nj

and

[
b†b, b†] = b†bb† − b†2b = b† and

[
b†b, b

]
= b†b2 − bb†b = −b, (61)

b†bb† | n >= Nb† | n >= (n+ 1) b† | n >, (62)

b†bb | n >= Nb | n >= (n− 1) b | n >, (63)

[N, b] = −b and bN = Nb+ b, (64)

[
N, b†] = b† and b†N = Nb† − b†. (65)

Knowing that

xs
j =

√
ℏ

2mω

(
bj + b†

j

)
and ps

j = i

√
ℏmω

2

(
b†

j − bj

)
. (66)

The contributions of the different parts of the perturbed Hamiltonian are as follows

< nx, ny | V1 | n
′

x, n
′

y >=< nx, ny | (ys)2
ps

y | n
′

x, n
′

y >

= −iℏ
2

√
ℏ

2mωδnx,n′
x

{√
n′

y

(
n′

y − 1
) (
n′

y − 2
)
δny,n′

y−3

−
√(

n′
y + 1

) (
n′

y + 2
) (
n′

y + 3
)
δny,n′

y+3 +
(
n

′

y − 2
)√

n′
yδny,n′

y−1 −
(
n

′

y + 3
)√

n′
y + 1δny,n′

y+1

}
. (67)

< nx, ny | V2 | n
′

x, n
′

y >=< nx, ny | ps
y (ys)2 | n

′

x, n
′

y >

= −iℏ
2

√
ℏ

2mωδnx,n′
x

{√
n′

y

(
n′

y − 1
) (
n′

y − 2
)
δny,n′

y−3

−
√(

n′
y + 1

) (
n′

y + 2
) (
n′

y + 3
)
δny,n′

y+3 +
(
n

′

y + 2
)√

n′
yδny,n′

y−1 +
(

3 − n
′

y

)√
n′

y + 1δny,n′
y+1

}
. (68)

< nx, ny | V3 | n
′

x, n
′

y >=< nx, ny | xs (ys)2 | n
′

x, n
′

y >

=
(

ℏ
2mω

) 3
2
(√

n′
xδnx,n′

x−1 +
√
n′

x + 1δnx,n′
x+1

)
×
(√

n′
y

(
n′

y − 1
)
δny,n′

y−2 +
√(

n′
y + 1

) (
n′

y + 2
)
δny,n′

y+2 +
(

1 + 2n
′

y

)
δny,n′

y

)
. (69)

The relevant perturbation matrix is given by

M = i

(
0 W12

W21 0

)
, (70)

with

W12 = −W21 =< nx, ny | 1
2{ΥV3 − (V1 + V2)} | n

′

x, n
′

y > . (71)

698



vol. 61 no. 6/2021 Dirac oscillator in dynamical noncommutative space

The DO Hamiltonian HD = H0 +HΘ +Hτ may be represented by a square matrix as follows (we have used
the basis given by unperturbed energy eigenkets)

HD ≡

(
E

(0)
n,+ (Θ) iτW12

iτW21 E
(0)
n,− (Θ)

)
. (72)

The eigenvalues of the problem above are

(
E1
E2

)
=
E

(0)
− + E

(0)
+

2 ±

√√√√(E(0)
− − E

(0)
+

)2

4 + λ2 |W12|2. (73)

Here, we set λ = iτ . Supposing that λ |W12| is small as compared to relevant energy scale, so that the
difference of the energy eigenvalues of the unperturbed system equals

λ |W12| <
∣∣∣E(0)

− − E
(0)
+

∣∣∣ . (74)

To obtain the expansion of the energy eigenvalues in the presence of a perturbation, namely (a perturbation
expansion always exists for a sufficiently weak perturbation)

E1 = E
(0)
− + λ2|W12|2

E
(0)
− −E

(0)
+

+ . . .

E2 = E
(0)
+ + λ2|W12|2

E
(0)
+ −E

(0)
−

+ . . .
(75)

We terminate the calculation by the radius of convergence of series expansion (75), so while λ is a complex
variable, λ is increased from zero, branch points are encoutered at [34]

λ |W12| =
±i
(
E

(0)
− − E

(0)
+

)
2 , (76)

the condition for the convergence of (75) for the λ = 1 full strength case is

|W12| =

∣∣∣E(0)
− − E

(0)
+

∣∣∣
2 . (77)

If this condition is not met, the expansion (75) is meaningless.
It can be checked that all the results of the NC case can be obtained from the DNC case directly by taking

the limit of τ → 0, for instance, equations (51) and (52) give the same values as the eigenvalues and eigenvectors
in the NC space, i.e., equations (47) and (49), respectively.

It may be also useful to mention that the DO in deformed spaces (including NC spaces) has been investigated
in [36–43].

We can regard equation (75) as the eigenvalues of our system, where we restrict ourselves to the first-order
correction to the eigenvalues and eigenvectors, which leads the energy shift for the ground state. Besides, it is
easy to obtain the eigensolutions for excited states.

It is interesting to illustrate the DNC effect on DO energy levels. This effect is reduced in the energy shifts
obtained, hence we do the following sample, with

a1 = Υ
2

(
ℏ

2mω

) 3
2

, a2 = iℏ
2ω

(
ℏ

2mω

) 1
2

, a3 = iℏ
(

ℏ
mω

) 1
2

, a4 = iℏ
2

(
ℏ
mω

) 1
2

. (78)

In Table 1, all numerical values of the energy are in units of eV. It may be worth to underline that thanks to
the Kronecker’s delta, the elements of the perturbed Hamiltonian will seldom take many values.

Now, the DNC and non-DNC effects on the energy levels of the DO are illustrated in Fig. 3.
The upper bound on the value of the NC parameter Θ is

√
Θ ≤ 2 × 10−20 m [44], as well for τ is

√
τ ≤

10−17 eV [45]. The bound on
√
τ is consistent with the accuracy in the energy measurement 10−12 eV.
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(
nx, ny, n

′

x, n
′

y

)
W12 E1 E2 △E

(1, 1, 1, 1) 0 −5, 11.105 5, 11.105 0

(1, 0, 0, 0) a1 −5, 11.105 + a2
1τ2

10,22.105 5, 11.105 − a2
1τ2

10,22.105
a2

1τ2

10,22.105

(0, 0, 0, 1) a2 −5, 11.105 + a2
2τ2

10,22.105 5, 11.105 − a2
2τ2

10,22.105
a2

2τ2

10,22.105

(0, 1, 0, 2) a3 −5, 11.105 + a2
3τ2

10,22.105 5, 11.105 − a2
3τ2

10,22.105
a2

3τ2

10,22.105

(0, 2, 0, 1) -a4 −5, 11.105 + a2
4τ2

10,22.105 5, 11.105 − a2
4τ2

10,22.105
a2

4τ2

10,22.105

Table 1. Energy levels due to DNC space, where we suffice with eigenvalues corrections to the ground state, i.e.
E1,2 = ±mc2.

Figure 3. Diagram of splittings for energy levels due to DNC and non-DNC spaces.

It is important to clarify that the presence of τ2 in the eigenvalues is not due to the action of the second-order
correction, but rather due to the Dirac matrices in the perturbed Hamiltonian term.

In Fig. 3, we see the energy levels are splitting as the Θ and τ parameters turn on. Values of the eigenvalues
E1 and E2 are shown in Table 1. First, in Fig. 3, we show the effect of the NC space when the perturbation
parameter is off (τ = 0), where the effect of noncommutativity is very significative as explained in Fig. 1.
Thereafter, the effect of noncommutativity is more significative when the DNC perturbation term is present
(τ ̸= 0), the presence of this term exhibits the energy shifts. The last part of Fig. 3 shows the combined effect of
both the DNC and NC parameters, where the effect is very evident.

4. Conclusion
In conclusion, we have investigated the effects of a DNC space on the 2D DO in the presence of an external mag-
netic field in terms of creation and annihilation operator languages and through properly chosen canonical pairs of
coordinates and its corresponding momenta in a complex NC space. However, the dynamical noncommutativity
was treated as a perturbation. More precisely, we have solved the DO problem in a two-dimensional NC space to
find the exact energy spectrum and wave functions. Therefore, we have employed these obtained results to find
the first-order correction to the eigenvalues and eigenvectors. It is worth noting that we addressed the system in
the NC space as an unperturbed system instead of considering the fundamental system in a commutative space
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and noncommutativity as a perturbation. The first-order correction for the ground state of the DO due to the
noncommutativity of space is zero for the non-DNC case while it has a nonvanishing value in the DNC case.
Knowing that, the result reduces to that of a usual DO in the limits of τ→0, Θ→0.

As mentioned in section 2, some operators in the DNC space are non-Hermitian. This mixture of DNCS, the
non-Hermiticity theory and the string theory can lead to fundamental new insights in these three fields.

Distinctly, there are plenty of interesting problems arising from our investigation, such as the investigation of
further possibilities of consistent deformations, and studies of additional models in terms of the DNC variables.
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