
Predictor Factory: Learning from Relational Data

by

Jan Motl

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics
Department of Applied Mathematics

Prague, August 2021

Supervisor:
doc. Ing. Pavel Kordík, Ph. D.
Department of Applied Mathematics
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Co-Supervisor:
Prof. Ing. Filip Železný, Ph. D.
Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám. 13
121 35 Prague 2
Czech Republic

Copyright © 2021 Jan Motl

ii

Abstract and Contributions

Propositionalization algorithms transform relational data into a single table with features,
which can be used for classification or regression with conventional machine learning
tools. However, the contemporary propositionalization algorithms were not designed
to work on changing data and suffered from the production of many irrelevant and
redundant features. We altered the propositionalization to work on temporal data and
introduced meta-learning, which predicts, which features will be relevant and unique.
To test Predictor Factory, our implementation of propositionalization, we have created
a repository of relational datasets and implemented a scalable algorithm for relationship
discovery between tables in the dataset. The implementations were open-sourced and
applied to real-world banking, government, marketing, medicine, and telecommunication
problems.

In particular, the main contributions of the dissertation thesis are as follows:

1. Relational dataset repository for benchmarking relational algorithms (83 datasets).
2. Algorithm for discovering relationships between tables in a database (scales inde-

pendently of the row count in the tables).
3. Optimal algorithm for stratified partitioning based on multiple columns for cross-

validation (with exact solution).
4. Predictor Factory for automatic feature extraction from relational data for classi-

fication and regression.
5. Approach for removing trend and seasonal variation from relational data (improves

accuracy, P=.0005).
6. Generalization of common aggregate functions to temporal data (improves accur-

acy, P=.016).
7. Meta-learning for faster feature extraction (reduces runtime by 90%).
8. Classifiers for learning on a stream of features (up to 10 000 times faster than

scikit-learn).

iii

Keywords:
relational learning, propositionalization, feature extraction, data preprocessing.

iv

Acknowledgements

First of all, I would like to express my gratitude to my dissertation thesis supervisor,
Pavel Kordík.

I would like to thank to Jaroslav Bendl, Adéla Blažková, Adéla Chodounská, Aleš
Fišer, Karel Klouda, Jan Kukačka, Jiří Kukačka, Manuel Muñoz, Wei Nie, Václav Os-
trožlík, Oliver Schulte, Batal Thibaut, Filip Trojan, and Filip Železný for their help and
support.

Special thanks go to the staff of the Department of Applied Mathematics, who main-
tained a pleasant and flexible environment for my research. I would like to express special
thanks to the department management for providing the funding for my research. My
research has also been partially supported by the Czech Science Foundation as projects
No. 13-17187S, and 18-18080S; by the Grant Agency of the Czech Technical Univer-
sity in Prague, grants No. SGS15/117/OHK3/1T/18, SGS16/119/OHK3/1T/18, and
SGS17/210/OHK3/3T/18; and by Deloitte Advisory s.r.o.

v

Dedication

To my parents and the curious mind that decided to read this thesis

vi

Contents

1 Introduction 1
1.1 Background . 1
1.2 History and Significance . 1
1.3 Terminology . 1

1.3.1 Relational Databases . 1
1.3.2 Relational Supervised Learning 2
1.3.3 Time Series . 2

1.4 Problem Statement . 2
1.5 Structure of the Dissertation Thesis . 4

2 Background and State-of-the-Art 7
2.1 Theoretical Background . 7

2.1.1 Data Representation . 7
2.1.2 Information Propagation . 9
2.1.3 Feature Function . 12
2.1.4 Feature Refinement . 16
2.1.5 Feature Selection . 17
2.1.6 Feature Collection . 18
2.1.7 Feature Representation . 19
2.1.8 Evaluation . 20
2.1.9 Conclusions . 20

2.2 Empirical Comparison . 22
2.2.1 Introduction . 22
2.2.2 Related Work . 23
2.2.3 Method Description . 24
2.2.4 Evaluation . 26
2.2.5 Application . 27

3 Predictor Factory 35

vii

CONTENTS

3.1 Data Representation . 35
3.1.1 Processing in a Database or in an Application 35
3.1.2 Typology . 36
3.1.3 Automatic Data Type Detection 37

3.2 Information Propagation . 38
3.2.1 Training, Testing & Scoring Data in a Single Relation 38
3.2.2 Do we need Target Identifier? . 39
3.2.3 Identifiers . 41
3.2.4 Are Lookup Tables Useful? . 42
3.2.5 Relationship Detection . 43
3.2.6 Time Constraints . 43

3.3 Feature Function . 46
3.3.1 Naming Convention . 47
3.3.2 Supervised Features . 48
3.3.3 Text Attributes . 49
3.3.4 Dirty Text Attributes . 49

3.4 Feature Selection . 50
3.4.1 Adjusted Chi2 . 50
3.4.2 Concept Drift . 51
3.4.3 Downsampling . 52
3.4.4 Duplicate Feature Detection . 54
3.4.5 Feature Selection Ahead of Feature Collection 56

4 Implementation 59
4.1 Technology . 59
4.2 Vendor-Agnostic . 59
4.3 Architecture . 61

4.3.1 Network . 62
4.3.2 Configuration Files . 63
4.3.3 Metadata . 63
4.3.4 SQL . 63
4.3.5 Main . 63

4.4 Testing and Validation . 64
4.4.1 Connection Leaks . 64
4.4.2 User Testing . 64

5 Relational Repository 69
5.1 Goals . 69
5.2 Design . 69
5.3 Content . 70
5.4 Access and Contributions . 71
5.5 The Meta-Database . 71
5.6 Conclusions . 75

viii

Contents

6 Empirical Evaluation 77
6.1 Algorithms . 77
6.2 Datasets . 77
6.3 Protocol . 77
6.4 Results . 78
6.5 Discussion . 79

7 Foreign Key Constraint Identification 81
7.1 Introduction . 81
7.2 Related Work . 82
7.3 Method . 83
7.4 Results . 87
7.5 Discussion . 89
7.6 Conclusions . 90

8 Stratified Cross-Validation by Multiple Columns 93
8.1 Introduction . 93
8.2 Definitions . 94
8.3 Related Work . 94
8.4 Solution . 95
8.5 Experiments . 98
8.6 Results . 100
8.7 Discussion . 103
8.8 Conclusions . 104

9 Trend and Seasonality Elimination 105
9.1 Introduction . 105
9.2 Propositionalization . 106
9.3 Detrending and Deseasoning . 106
9.4 Method . 107
9.5 Experiments . 107
9.6 Results . 109
9.7 Discussion . 110
9.8 Conclusions . 111

10 Generalized Aggregates 113
10.1 Introduction . 113
10.2 Related Work . 114
10.3 Method . 115
10.4 Experiments . 116
10.5 Results . 118
10.6 Discussion . 119
10.7 Conclusions . 119

ix

CONTENTS

11 Meta-learning 121
11.1 Introduction . 121
11.2 Related Work . 122
11.3 Method . 123
11.4 Experiment . 124
11.5 Results . 128
11.6 Discussion . 131
11.7 Conclusions . 134

12 Learning on Stream of Features 135
12.1 Online Random Forest . 135

12.1.1 Implementation . 137
12.1.2 Experiments . 139
12.1.3 Discussion . 141
12.1.4 Conclusions . 141

12.2 Online Discriminant Analysis . 141
12.2.1 Introduction . 142
12.2.2 Related work . 143
12.2.3 QDA Algorithm . 144
12.2.4 Experiments . 148
12.2.5 Discussion . 155
12.2.6 Conclusions . 157

13 Discussion 159

14 Conclusions 161
14.1 Contributions . 163
14.2 Future Work . 164

Bibliography 165

Reviewed Publications of the Author Relevant to the Thesis 185

Remaining Publications of the Author Relevant to the Thesis 187

Relevant Theses Supervised by the Author 191

Remaining Publications of the Author 193

A Appendix 203
A.1 Feature Functions . 203
A.2 Leaking Features . 206
A.3 Computational Complexity . 206
A.4 User Manual . 208

x

List of Figures

1.1 Relation, tuple and attribute represented as table, row and column respectively. 2
1.2 Segmentation of data based on time. 3

2.1 Decomposition of relational learning algorithms into 7 blocks. Each block
contains a non-exhaustive list of applicable options. 8

2.2 An example of a star schema. 10
2.3 An example of a snowflake schema. 10
2.4 Four types of feature functions. From left to right, then top to bottom:

scalar, horizontal aggregate, vertical aggregate, cross. 13
2.5 Projection of algorithms from Table 2.3 into a two-dimensional space with

Multiple Correspondence Analysis. 21
2.6 Graph with count of wins. 24
2.7 Directed acyclic graph. 25
2.8 Network visualization. 25
2.9 Nodes with ranking. 25
2.10 Accuracy of ranking methods based on their ability to cope with missing

values. 27
2.11 Network of the relational algorithms. Algorithms with more accurate pre-

dictions are on the right. Superior algorithms are in red nodes. 30
2.12 Plot with expected ranking of relational classifiers and propositionalization

tools. The higher value is better. 34

3.1 Variable types. 36
3.2 Automatic data type detection for CSV files. 38
3.3 Diagram illustrating the selection of time constraint. 46
3.4 Data split. Filled circles represent training data and hollow circles represent

testing data. Grey circles represent ignored data. The image is adapted from
[240]. 51

4.1 Component diagram of Predictor Factory. 62

xi

LIST OF FIGURES

4.2 Class diagram of Predictor Factory. 67

7.1 The algorithm decomposition. 84
7.2 Example entity diagram with a hierarchy of subclasses. 91

8.1 Example of data preprocessing for ILP. 95
8.2 When we care only about positive samples (A in the first row), we may split

the data into two folds following way: [A] and [B,B], because each fold has
approximately the same count of positive samples A. When we switch the
definition of the positive class (B in the second row), we end up with a better
split [A,B] and [B] – the quality of A distribution remained unchanged while
the quality of B distribution improved. When we one-hot encode the input
data into n binary columns (the third row) instead of n− 1 binary columns
(the first two rows), we end up with the better split without the need to define
the positive class. Note that the encoding into n binary columns generalizes
well to multi-class problems, where it can be unclear which class(es) should
be treated as the positive. 96

8.3 No matter how do we attempt to assign these three rows into two folds, there
is going to be a column with the difference of the value appearance equal to
two. 97

8.4 Ranking of the cross-validation algorithms based on the unsupervised meas-
ures. Smaller area is better. 102

8.5 Ranking of the cross-validation algorithms based on the average of supervised
measures. Smaller area is better. 102

8.6 Ranking of the cross-validation algorithms based on the variance of super-
vised measures. Smaller area is better. 103

10.1 Example sigmoids, which can be used to approximate aggregates. Red: sum.
Green: max. Blue: min complement. The midpoints and slopes of max and
min complement sigmoids are less extreme than in Table 10.1 to improve
legibility of the graph. We assume o = x. 117

11.1 An example of a feature generative function min applied on attribute att1,
which converts the multi-instance problem into a single-instance problem
solvable with a common attribute value classifier. In this trivial example,
the feature space contains only a single feature vector but it may generally
contain thousands of feature vectors. 122

11.2 Flowchart of meta-learning on features. 123
11.3 Performance profile. The shaded area represents the 95% prediction interval

for a random curve. 128
11.4 Area under misclassification error. Smaller is better. 132

xii

List of Figures

12.1 The difference between learning from a stream of samples (top) and a stream
of features (bottom). In both cases, we have n samples and d features at
time t. But at time t+1, we either have one more sample (top) or one more
feature (bottom). 136

12.2 Difference between learning from a stream of samples (left) and a stream of
features (right). In both cases, we have n samples and d features at time t.
However, at time t + 1, we either have one more sample (left) or one more
feature (right). 142

12.3 Updating the system of equations by appending a single column into trian-
gular matrix R. 146

12.4 Comparison of the classifiers based on ROC-AUC. Groups of classifiers that
are not significantly different (at p=0.01) are connected. 152

12.5 Classifier ROC-AUC and cross-validation runtime tradeoff. Regularized dis-
criminant analysis (RDA) and linear discriminant analysis (LDA) are on the
knee-point. The runtime is for the offline use case (all features are available
at once). If we evaluated the classifiers on a stream of features, the average
runtime of some of the offline classifiers would be in days. 153

12.6 Inserting a new feature into QDA is faster and scales better than the calcu-
lation of QDA from scratch. 155

xiii

List of Tables

2.1 Information propagation algorithms can be categorized into 3 categories
based on the direction of propagation. 9

2.2 The result of application Snowball algorithm on data from Figure 2.3. The
sum of rows over all tables is 93.000. 11

2.3 Anatomy of propositionalization algorithms. 20
2.4 In a complete block design, every treatment is run for every block exactly

once. 22
2.5 Hypothetical example of a situation, where imputation of missing values res-

ults in misleading conclusions. The values represent classification accuracy
(tied rank). Missing values are represented with a question mark. 23

2.6 List of datasets used in the meta-analysis. 31
2.7 List of algorithms used in the meta-analysis. 32

3.1 Illustration of different naming conventions. 48
3.2 Examples of dirty text in relational repository. 49

5.1 List of databases in the repository. 73

6.1 List of the used relational datasets. The size is in MB including indexes.
Type describes the origin of the dataset. 78

6.2 The 10-fold cross-validation estimate for the accuracy with a decision tree. A
hyphen means that the propositionalization algorithm crashed on the data-
set. The best results for each dataset are highlighted. 79

7.1 Feature importance for primary key identification for different feature sets.
Higher weight means higher importance. 88

7.2 Feature importance for foreign key constraint identification. Higher weight
means higher importance. 89

xiv

List of Tables

7.3 Literature review of different approaches to foreign key constraint identifica-
tion on TPC-H 1GB database. “D” stands for data, “M” stands for metadata.
Unknown values are represented with a question mark. 89

7.4 Empirical evaluation of metadata-based approaches to foreign key constraint
identification on 72 databases together. 90

8.1 Unsupervised measures categorized by the level of label interactions. n rep-
resents the count of all the labels in the data set. 100

8.2 List of the used multi-label data sets. 101

9.1 List of the used relational datasets from relational repository [A.12]. Regres-
sion and polynomial classification problems were converted to binary prob-
lems with the logic described in Classes column. Threshold column defines
the split to training and testing set. 108

9.2 The effect of temporal normalization and inclusion of slope as a feature on
AUC-ROC. D&D stands for detrended and deseasoned. Bold font indicates
the best result for a dataset. 109

10.1 List of parameters to approximate common aggregate functions. 116
10.2 List of the used relational datasets from relational repository [A.12]. Re-

gression and polynomial classification problems were converted to binary
problems with the logic described in Classes column. 117

10.3 AUC-ROC for different aggregation methods. Bold font indicates the best
result for a dataset. 119

11.1 Used databases. The range of relevant features is estimated with forward
& backward selection with a decision tree (the percentage of features when
meta-learning feature selection reaches accuracy corresponding to accuracy
obtained on all the features). 125

11.2 Taxonomy of feature functions (data type they work on: c-character, n-
numeric, t-temporal). The horizontal axis differentiates between feature
functions working on a single attribute and multiple attributes. The ver-
tical axis differentiate between feature functions working on a single tuple
and multiple tuples. 126

11.3 Expected standardized relevance (bigger is better), runtime (smaller is bet-
ter) and redundancy (smaller is better) of feature functions (sorted by the
feature utility). 127

11.4 Leave-one-out accuracy of individual models. 129
11.5 Meta-features for relevance prediction. 129
11.6 Meta-features for redundancy prediction. 129
11.7 Meta-features for runtime prediction. 130
11.8 POPs for all databases based on the used individual models. PI column

contains the upper 95% prediction interval of POPs for random ordering of
the features. The best values are in bold. 130

xv

LIST OF TABLES

11.9 Contribution of models to POP. Adjusted R2: 0.564. 131
11.10Contribution of models to reduction of the area under misclassification error

curve. Adjusted R2: 0.486. 132
11.11Contribution of meta-feature categories to the reduction of the count of en-

gineered features needed to reach or surpass model accuracy obtained on a
complete set of features. Adjusted R2: 0.308. 133

12.1 List of used data sets. 140
12.2 Training and scoring times in seconds for scikit-learn QDA and the proposed

updatable QDA, when we insert the last feature. Dataset metadata: count
of samples, features, classes, and the maximal absolute Pearson’s correlation
coefficient between two different features in the dataset. Predictions from
scikit-learn and the proposed QDA are identical. The datasets are ordered
by the obtained speed up. 150

12.3 The used classifier hyperparameters. The classifiers are described in Sec-
tion 12.2.4.2. 151

12.4 Testing ROC-AUC from cross-validation. 154
12.5 Model size per class for scoring (the top 3 lines) and model update (the

bottom 3 lines). The offline implementation is in Equation (12.6), and the
online version is in Equation (12.15). 156

A.1 List of implemented feature functions. 206

xvi

Glossary

attribute is a column in a table. In this text, the difference between an attribute and
a feature is that an attribute is a column in an input table, while a feature is a
column in an output table produced with propositionalization 1

feature function produces features from attributes 12
join table , also “associative table” or “junction table”, is used in relational databases to

represented many-to-many relationships between tables 2
non-target table , also “background table”, is any table in a database that is not the

target table 2
table is a data structure that consists of a heading and an unordered set of tuples, which

share the same type 1
target is an attribute with the classes (in case of classification) or continuous values (in

case of regression) that we wish to predict 2
target id is a unique identifier that identifies entities, for which we aim to perform the

prediction 2
target table is a single table that contains the target, the target id, and optionally the

target timestamp 2
target timestamp determines the moment when we wish to make the prediction 2

xvii

Acronyms

AV Attribute-Value 7
CFS Correlation Feature Selection 17
CSV Comma-Separated Values 37
FFT Fast Fourier Transformation 12
GUI Graphical User Interface 61
IG Information Gain 50
ILP Inductive Logic Programming 14
JDBC Java Database Connectivity 43
JRE Java Runtime Environment 209
JSON JavaScript Object Notation 36
MI Multiple-Instance 19
MV Multi-View 17
ODBC Open Database Connectivity 59
RL Relational Learning 19
SQL Structured Query Language 1
SVM Support Vector Machine 17
XML Extensible Markup Language 36
XSD XML Schema Definition 59

xviii

CHAPTER 1
Introduction

1.1 Background
Whenever we want to make a descriptive, predictive or prescriptive model based on
relational data stored in a Structured Query Language (SQL) database, we are confronted
with a problem – the source data are in the form of many tables, but many modeling
algorithms require data in the form of a single table. There are two common approaches
how to tackle this incompatibility: Convert the data into a single table. Or adapt a
propositional algorithm (an algorithm working with a single table) to work with the
multiple tables [211, p. 346].

1.2 History and Significance
Based on the research of Getoor [86], relational classifiers existed already in 1976 – the
same year when SQL was released into industry [33]. Nevertheless, it is still common in
industry that relational classification problems are solved with propositional classifiers
and the data transformation is done manually.

1.3 Terminology
The thesis is about temporal relational learning from relational databases. Hence, we
borrow terminology from three domains: relational databases, relational learning, and
time series analysis.

1.3.1 Relational Databases
A relational database is a collection of tables called relations, each of which is assigned
a unique name. Each relation (see Figure 1.1) consists of a set of attributes and stores a
large set of tuples.

1

1. INTRODUCTION

Attribute

Tuple

Relation

Figure 1.1: Relation, tuple and attribute represented as table, row and column respect-
ively.

Relationships are a logical connection between two different tables. A relationship can
be either one-to-one (1:1) or one-to-many (1:n). Many-to-many (n:n) relationships are
modeled as a pair of one-to-many relationships with a join table (also called a junction
table).

1.3.2 Relational Supervised Learning
In relational supervised learning, a relational database is composed of a single target
table and n non-target tables, where n ∈ Z≥0. The target table contains m targets,
where m ∈ Z>0, a single target id, an optional single target timestamp and l attributes,
where l ∈ Z≥0. Non-target tables (also called background tables [95]) contain additional
information about the target ids. Non-target tables are either directly connected to the
target table with relationships or over other non-target tables.

1.3.3 Time Series
A time series is a series of numerical data points taken over time. A time series can be
taken at fixed constant time steps or varying time steps. If varying steps are used, the
size of the steps can be either ignored (as in “sequence learning”) or accounted for.

1.4 Problem Statement
This thesis focuses on automatic conversion of relational data into a single table in
a process called propositionalization [228, p. 812]. Propositionalization is a research
topic at least from 1991 [157]. However, some of the propositionalization algorithms are
designed to deal only with static data [190] and when they are applied to temporal data
(with a time dimension), they suffer from data leakage from the future. For example,

2

1.4. Problem Statement

if a bank wants to predict propensity to default (the probability that a customer is not
going to pay off his/her loan), the bank may want to know the propensity to default
before the bank accepts the customer’s loan application. Algorithms designed for static
datasets calculate the estimates for the time of the last record in the data. In the case
of a Financial dataset [12], a popular benchmark dataset for relational classification, it
means that propensity to default is estimated, when some of the outcomes are already
known and written in the data.

History The problem with data leaking from the future was already recognized by
Frank et al. [77] and the applied remedy was to manually remove customer’s records
after the date of the loan application. An algorithmic remedy was proposed by Neto et
al. in CoMoVi [190].

The solution in CoMoVi defines an observation point – the time when we wish to have
the prediction. All data before the observation point are used for model training. And
all data after the observation point are used for model evaluation. Predictor Factory
preserves the notion of observation point, but enhances it with a notion of black out and
training window (see Figure 1.2).

time

Available data window

Training window

Target valueObservation point

Black out

Start data End data

Figure 1.2: Segmentation of data based on time.

Black out Sometimes it may take time until data from all data sources are processed
and loaded into a database. For example, a current industry standard for the maximum
length of the delay in the bank industry for data-warehouses is 24 hours. In praxis, it
means that whenever we make a prediction based on the data in the data-warehouse,
the data from the last 24 hours may not be present. To simulate this delay in data
availability, the newest data before the observation point are ignored. The length of this
filter is given by black out parameter and can be set to zero to turn of the feature.

History length A model may use data from an operational database to be able to
use the newest data. However, operational databases do not necessarily have to store
complete transaction history. For example, the current standard in the banking industry
is to preserve only the last one or two years in the operation databases. To simulate the

3

1. INTRODUCTION

limited history length, all data older than history length from the observation point are
ignored. To ignore this feature, history length can be set to infinity.

1.5 Structure of the Dissertation Thesis
The thesis is organized into 14 chapters as follows:

1. Introduction: Describes the topic and contributions of this dissertation thesis.

2. Background and State-of-the-Art: Provides the decomposition of propositionaliza-
tion algorithms into 8 building blogs and identifies the state-of-the-art in relational
learning.

3. Predictor Factory: Describes the design of our propositionalization tool, Predictor
Factory.

4. Implementation: Describes the architecture of Predictor Factory and justifies the
chosen technologies.

5. Relational Repository: Introduces relational datasets, which were collected for Pre-
dictor Factory evaluation.

6. Empirical Evaluation: Provides comparison of Predictor Factory to other proposi-
tionalization tools.

7. Foreign Key Constraint Identification: Because relational datasets sometimes miss
the information about the relationships between the tables in the database, we
describe an algorithm for foreign key constraint discovery. Only once we know the
relationships between the tables, we can use data stored in non-target tables to
predict a targets in the target table.

8. Stratified Cross-Validation by Multiple Columns: Describes how to handle multiple
targets in the target table.

9. Trend and Seasonality Elimination: Describes how to detrend and deseason rela-
tional data.

10. Generalized Aggregates: Common aggregate function like like min, max, or count
ignore the order of the values. We provide a generalization of these aggregates,
which is suitable for both, static and temporal data.

11. Meta-learning: Achilles heel of propositionalization is that it produces a wast quant-
ity of irrelevant and/or redundant features. However, since the features are gen-
erated sequentially and not all at once, we can build a meta model to predict the
features’ univariate relevancy, redundancy and runtime. Based on the empirical
results, meta learning reduces propositionalization runtime to one-tenth of the ori-
ginal runtime without loss of accuracy of the downstream model.

4

1.5. Structure of the Dissertation Thesis

12. Learning on Stream of Features: The disadvantage of the implemented meta learn-
ing is that it is unaware of the used downstream model. To remedy that, we mod-
ified two classifiers, random forest and discriminant analysis, to work efficiently on
a stream of features, making it practical to train and use a meta model, which
predicts improvement of the accuracy of the chosen downstream model, when we
calculate another feature.

13. Discussion: Describes the experience with Predictor Factory.
14. Conclusions: Summarizes the results of our research, suggests possible topics for

further research, and concludes the thesis.

5

CHAPTER 2
Background and State-of-the-Art

Those who don’t know history
are doomed to repeat it.

Edmund Burke

2.1 Theoretical Background
A propositionalization algorithm can be decomposed into 7 building blocks, depicted in
Figure 2.1. Each block is discussed in a separate section. The sections are ordered from
top to bottom.

2.1.1 Data Representation
The most common machine learning task is supervised attribute-value (AV) learning
[16]. In supervised AV learning, each instance has a label and instances are represented
by a fixed set of variables (also called attributes). However, it is not always possible to
represent an instance with a fixed set of attributes. In these situations, relational learning
often provides a solution. Different formalisms have been used in machine learning to
describe instances with a variable set of attributes. The most important ones are graph,
relational, and logic.

Graph Graphs consist of vertices (also called nodes or points) and edges (also called
links or lines). Generally, vertices describe one type of entity (e.g., people) and edges
describe the relationships between the vertices (e.g., friendship). Nevertheless, it is pos-
sible mix up different types of entities in a single graph (e.g., legal and natural people)
and differentiate between them with labels. Common graph databases (e.g., Neo4j,

7

2. BACKGROUND AND STATE-OF-THE-ART

Data Representation
Graph
Logic
Relational

Information Propaga-
tion
Implicit
T →NT
NT →T

Feature Function
Aggregate
Distance

Feature Refinement
Absent
Aggregate
ILP
Item set

Feature Selection
Filter
Wrapper
Embedded

Feature Collection
Attribute-value
Multi-view
Attribute grouping
Individual feature

Feature Representation
Attribute-value
Multiple instance
Relational

Figure 2.1: Decomposition of
relational learning algorithms
into 7 blocks. Each block con-
tains a non-exhaustive list of
applicable options.

Apache Giraph, or GraphDB) are all schema-less and
represent attributes (also called properties) of the ver-
tices and edges with name-value pairs. The learning from
graphs is called graph mining [17]. The typical super-
vised learning tasks in graph mining are vertex attribute
value prediction (e.g., what is the age of the person?),
edge attribute value prediction (e.g., how long will the
friendship last?), and edge prediction (e.g., are these two
people friends?).

Relational In comparison to graphs, relational model
represents both, vertices and edges, with a single data
structure: tables. Historically, this simplified the im-
plementation of the databases. Also, relational data-
bases do not enforce that entity tables are linked to
other entity tables only over relationship tables. Nev-
ertheless, in comparison to typical graph databases, re-
lational databases (e.g., Oracle, Microsoft SQL Server, or
PostgreSQL) require a strict schema, making secondary
processing (reporting, predictive modeling...) generally
easier, as we are guaranteed, that each record in the table
has the same set of attributes. The learning from rela-
tional databases is commonly referred as relational data
mining or multi-relational data mining [17].

Logic Logic formalism is attractive because it can de-
scribe not only facts, but also rules (e.g., concept defin-
itions, inference rules, or background knowledge about
the domain). The disadvantage of logic-based represent-
ations is that many types of reasoning, including learn-
ing, can be computationally expensive or even intractable
[17]. An example of a logic database is Datomic [130],
which is a variant of Datalog. From the point of tem-
poral relational learning, the nice property of Datomic
is that each attribute in the database is, without ex-
ception, timestamped and that the database is append
only (changed or deleted attribute values are marked as
invalid but left in the database). This combination of
properties allows reliable “time-traveling”, or in our case,
it allows us to reliably prevent data leakage from the
future in predictive modeling.

8

2.1. Theoretical Background

Summary All these representations are, at least in theory, equally capable to represent
relational data, as we can convert data from one representation into another and back,
without loss of information. In the praxis, the conversion from one representation to
another might be troublesome due to practical data storage limitations. For example,
Datomic has a hard limit of 220 attributes per entity (a little over 1 million)[4, p. 214],
while Oracle has a hard limit of 1 000 attributes per table.

2.1.2 Information Propagation
During information propagation, the content of non-target tables is matched up with the
content of the target table. This matching ensures that evidence in the tables is matched
with the right entity (target id) in the target table.

Each data representation formalism has its own mechanism how to perform matching.
However, the implicit mechanisms are, particularly in the relational and in less extent in
logic formalism, the bottlenecks in the processing. Hence, multiple alternative approaches
have been developed.

Besides the implicit approaches, all the information propagation algorithms can be
divided into two types: you either bring the evidence from the non-target tables to the
target table (NT → T) or you bring the target table to the non-target tables (T → NT)
– see Table 2.1.

Name Approach

Logic Implicit
Graph Implicit
Universal join Implicit
Snowball T → NT
Selection Graph [136] T → NT
Tuple Id propagation [266] T → NT
Target to non-target [88] T → NT
Non-target to target [88] NT → T
RollUp [137] NT → T

Table 2.1: Information propagation algorithms can be categorized into 3 categories based
on the direction of propagation.

Universal join Universal join is the implicit approach how to match evidence with the
target entities in a relational database. In universal join, all non-target tables are left
joined to the target table1. When all the relationships between the target table and the
non-target tables are 1:1 or n:1, the resulting table has as many rows as the target table

1Left join is used instead of generally faster inner join to avoid the disappearance of entities in the
presence of 1:0..n relationships between the target table and the non-target table.

9

2. BACKGROUND AND STATE-OF-THE-ART

and everything works nicely. However, if the relationships are of type 1:n, the resulting
table grows in the count of rows.

Example 2.1.1. Let’s imagine a star schema with a target table as the fact table and
3 non-target tables (Figure 2.2) as the dimensions. If the target table has 100 rows and
each dimension table has exactly 10 rows associated with each row in the target table,
then the resulting table will have 100 · 103 = 100.000 rows. With a snowflake schema,
where each dimension has 3 sub-dimensions and each sub-dimension has exactly 10 rows
associated with each row in the dimension (Figure 2.3), the situation is getting even
worse – we get 100 · (103)3 = 100.000.000.000 rows in the resulting table.

Figure 2.2: An example of a star schema.

Figure 2.3: An example of a snowflake schema.

10

2.1. Theoretical Background

While universal join approach is attractive for its simplicity, due to possible difficulties
with making, storing and processing the resulting table, universal join approach is not
universally applicable [151].

Snowball The problem with the big resulting table can be somehow reduced by using
independent joins – instead of making a single resulting table, which contains all the
non-target tables, we can join the target table with each non-target table individually.

Example 2.1.2. Let’s consider the snowflake schema from Figure 2.3. With independent
joins, we get tables listed in Table 2.2.

Join function #Rows in the resulting table

t1 = join(targetTable, dimension1) 1.000
t2 = join(targetTable, dimension2) 1.000
t3 = join(targetTable, dimension3) 1.000
t1.1 = join(t1, dimension1.1) 10.000
t1.2 = join(t1, dimension1.2) 10.000
t1.3 = join(t1, dimension1.3) 10.000
t2.1 = join(t2, dimension1.1) 10.000
t2.2 = join(t2, dimension1.2) 10.000
t2.3 = join(t2, dimension1.3) 10.000
t3.1 = join(t3, dimension1.1) 10.000
t3.2 = join(t3, dimension1.2) 10.000
t3.3 = join(t3, dimension1.3) 10.000

Table 2.2: The result of application Snowball algorithm on data from Figure 2.3. The
sum of rows over all tables is 93.000.

Since this method propagates data from the target table into non-target tables in an
incremental matter, this method is further referenced as Snowball method.

Tuple ID Tuple ID propagation method [266] is one of the most efficient methods in the
regard of the used space – tuple ID propagation does not create new tables. It just adds a
vector type column into the non-target tables. And this new column contains references
to the entities in the target table. The only complication is that not all databases support
arrays, the most natural data type for storing the vector of references.

Performance comparison of snowball and Tuple ID propagation was done by Ghionna
et al. [88].

RollUp The last discussed method how to propagate information is called RollUp [137].
This method is the only representative of the approach “data to the target table”. With
this method, the furthest non-target tables from the target table are joined with the less

11

2. BACKGROUND AND STATE-OF-THE-ART

distant tables. And this process is repeated until all the non-target tables are joined
to the target table. What makes this method unique is that feature functions (which
are discussed in Section 2.1.3, but for illustration, imagine aggregate functions like min,
max, sum, etc.) are applied to relationships 1:n before the tables are joined, while with
other methods, feature functions are, if at all, applied after information propagation.
Consequently, the product of a join always has as many rows as the table closer to the
target table. Hence, from the point of the row count, RollUp method is as efficient as
Tuple ID propagation.

A slight disadvantage of RollUp method is that it is not always evident which fea-
ture function to use until the non-target table is propagated to the target table, which
contains the target needed for feature relevancy evaluation. Knobbe [137] simply applies
all possible feature functions. Hence, the count of the calculated features grows expo-
nentially with the count of relationships in the path of propagation [120]. This problem
was addressed by Gjorgjioski and Džeroski in PRORED [89] by the introduction of the
stochastic sampling of the feature functions.

A theorized solution of the problem could be to use a greedy algorithm. First, the
target would be propagated from the target table into all non-target tables, permitting
application of feature relevance evaluation. Second, only the most relevant (predictive)
features would be rolled up to the target table with RollUp method. Of course, greedy
algorithm may not find the best combination of the feature functions. Also, for non-
target tables that are in the closest proximity (as given by the length of the propagation
path) and that are not further used for the target propagation, it can be reasonable to
directly apply RollUp method, since the speed gain provided by the greedy algorithm
can be smaller than the cost associated with the target propagation.

Summary An important consideration related to each information propagation al-
gorithm is whether we want to be able to calculate multivariate features (feature calcu-
lated from several attributes – they are further discussed in Section 2.1.3). This exten-
sion is perfectly natural for RollUp algorithm since all the attributes, though possibly
aggregated multiple times, in the end end up in the target table. However, all analyzed
algorithms that are using RollUp (Polka [137], PRORED and DFS [120]) are exclusively
using univariate feature functions that are using just one attribute as an argument. An
example of a propositionalization algorithm that calculates feature functions on attrib-
utes spanning several tables is CLAMF [77].

2.1.3 Feature Function
Feature functions are applied on data in the hope that the transformed data will be
easier to work with. An example of such transformation in image processing is fast
Fourier transformation (FFT). After application of FFT, convolution is simpler, making
it attractive to transform the image with FFT and back with inverse FFT just to perform
the convolution.

12

2.1. Theoretical Background

2.1.3.1 Categorization

There are multiple categories of feature functions:

1. Relational (like min, max, correlation...)

2. Distance and similarity measures (like Euclidean, cosine, Jaccard index...)

3. Kernel functions (like Gaussian, centrality, random walk...)

Relational feature functions can be divided into 4 categories [77, 120] based on the
count of parameters and dimensionality of the parameters that the function accepts. The
horizontal dimension in Figure 2.4 says whether the feature function works on a single
attribute or on multiple attributes. The vertical dimension says whether the feature
function works on a single tuple or multiple tuples.

Univariate Multivariate

1:1

1:n

Figure 2.4: Four types of feature functions. From left to right, then top to bottom:
scalar, horizontal aggregate, vertical aggregate, cross.

1:n Whenever we have a 1:n relationship between an entity in the target table and a
non-target table, there are two approaches how to deal with that. Either we can use a
generalized multiple instance classifier [75], like in the experiment done by Reutemann
[218] and later on by Schulte [235]. Or we can transform the data into 1:1 relationship
with feature functions. In the Schulte’s empirical evaluation, the classification employing
feature functions was both, more accurate and faster than classification employing a
multiple instance classifier. However, it is noteworthy that Schulte used very simple
multiple instance classifiers.

13

2. BACKGROUND AND STATE-OF-THE-ART

Univariate With univariate features we assume that all interactions between the at-
tributes are modeled with a classifier. An example of a univariate feature function are
sum or count.

Multivariate With multivariate feature functions, interactions between attributes can
be captured. An example of a multivariate feature function is calculation of BMI (Body
Mass Index), which is calculated as:

BMI =
weight

height2
. (2.1)

There are two reasons why to use multivariate features. First, many metrics in
physics or econometrics can be described with a combination of a small set of variables
(e.g., the metric system is based on 7 base units, which include mass and length). And
if physicists and economists found the ability to combine attributes explicitly useful,
maybe we should be able to do that as well. A non-exhaustive list of approaches how
to construct multivariate features include: Inductive Logic Programming (ILP) based,
decision tree related [159], genetic programming related [57] and annotation based [241].
Second, multivariate features can help to decrease bias of models (particularly linear).

Scalar An example of a scalar feature function is a conversion of customer’s date of
birth into the age of the customer. The idea behind this transformation is, that a model
learned on the date of birth is likely going to get obsolete faster, than a model based
on the age. This assumption can be particularly true if we predict propensity to buy
(the probability that a customer is going to buy a product) of a legislatively restricted
product like alcohol or social insurance, where restrictions on the customers’ age apply.

Cross Cross function works with multiple attributes and multiple tuples. An example
of such function is average monthly spending, calculated from a transaction table with
date and amount attributes.

2.1.3.2 Aggregates

In the realm of ILP, the most common aggregate is an existential quantifier [187]. In
the realm of relational databases, one of the most common aggregates are mean, max,
min, sum, standard deviation and count [144, 137]. Nevertheless, there is infinitely
many possible aggregates2. For example, Frank proposed multivariate aggregates like
correlation [77]. Perlich proposed how to aggregate ids [200]. It is also possible to use
graph features, like different measures of centrality [135]. However, note that differently
named feature functions may actually represent the same function. For example, count
aggregate in a relational database and degree in an undirected graph are the same feature
function.

2For a trivial illustration of the argument, imagine a percentile function with a continuous percentile.

14

2.1. Theoretical Background

Existential quantifier The existential quantifier expresses that the statements within
its scope are true for at least one instance of something. For example, RSD [143] al-
gorithm is using only existential quantifier for classification.

Count The advantage of the count feature function, in comparison to the existential
quantifier, is that it has a higher resolution. However, on small datasets, the existential
quantifier is commonly preferred. Nevertheless, Perovšek showed that Wordification
algorithm, which is exclusively using count features, delivers higher accuracy on train
dataset than RSD [201], even though the dataset contains only 20 instances.

Continuous variables There are two common approaches how to get features from
continuous attributes – discretization and aggregation. After discretization, we can use
existential quantifier or count. Or we can approximate the bag of numbers with descript-
ive statistics like avg or standard deviation.

Distance and similarity We may measure distance or similarity of a bag of tuples
to a bag of training tuples belonging to the positive class and use the resulting value as
a feature. This idea was exploited in ACORA [200]. For a review of distances, see [215]
and [50].

Kernel It is also possible to use kernels as features. Either we may use fixed kernels
or we may learn the kernels. Kernels are used in kFOIL [155] and kLog [78].

Summary Relational data do not have to consist only of nominal and continuous
attributes but might also include text, images, sounds, and other types of data. However,
feature extraction from these domains (with the exception of the text) is out of the scope
of this thesis due to the sheer size of the problem.

2.1.3.3 Desirable Properties

The main properties of a well-behaved feature function are:

Discrimination Features should have high predictive power.

Reusability It should be possible to reuse features in different models and applications.

Transformability Besides directly reusing a feature f , it should be easy to use a trans-
formation of it (e.g., log(f), max(f),

∑
ft over a time window...).

Interpretability It should be easy to understand the meaning of features and interpret
their values. This property is particularly useful for prescriptive analysis.

Reliability It should be easy to identify issues with the features.

15

2. BACKGROUND AND STATE-OF-THE-ART

2.1.4 Feature Refinement
The idea behind feature refinement is an incremental improvement of a preliminary fea-
ture into a better feature [27]. An example of such refinement can be optimization of a
feature parameter (e.g., the used quantile), generalization or specialization.

ILP An Inductive Logic Programming (ILP) algorithm starts from an initial hypothesis
and applies pre-defined operators called refinement operators (e.g., generalization or spe-
cialization) to create new hypotheses. The aim is to find such hypothesis that covers
many positive examples and minimum of the negative ones [27]. For detail overview of
ILP methods see [211].

Frequent item set An example of a frequent item set algorithm is Apriori [3]. Apriori
algorithm proceeds by identifying the frequent individual items in the database and
extending them to larger and larger item sets as long as those item sets appear sufficiently
often in the database. The discovered frequent item sets are then treated as features to
the classifier.

Aggregate Even simple aggregate feature functions like minimum or maximum can
be optimized. In FICO Data Spiders [69], the time frame over which to calculate the
aggregate can be optimized. For example, if it holds that the recent data are more
predictive of the target than the old data, the aggregate calculated over the last month
can be more predictive than the same aggregate calculated over the last year.

However, sometimes it is the older data that are more predictive of the target value.
For example, we would expect that loss given default (the amount of funds that is lost by
a financial institution when a borrower defaults on a loan) is more sensitive to the ability
of the borrower to pay back his/her first installment than his/her second installment.

But even if the dataset does not contain time dimension, we may want to optimize the
aggregate functions to better deal with noise in the data. For example, in the presence of
noise, it may turn out that the 94th percentile is more predictive of the target value than
the plain maximum. Or that the n-th biggest value, where n is a constant that does not
change based on the count of samples, is a better predictor of the target value than the
plain maximum.

2.1.4.1 Summary

The refinement procedures can be computationally demanding. ILP and frequent item
set methods often use mechanisms to prune unpromising settings quickly. It is also
possible to perform pruning, when aggregates are used [256]. Nevertheless, some authors
prefer to use heuristics like genetic algorithms [69].

16

2.1. Theoretical Background

2.1.5 Feature Selection
Although the choice of a feature selection algorithm should depend not only on the
data but also on the used model [100], some propositionalization algorithm contain an
embedded feature selection, either because the design greatly benefits from it, as is the
case of NT →T propagation [137] or multi-view (MV) classification [94], or because the
propositionalization algorithm requires an optimization criterium as it performs feature
refinement.

Feature selection methods can be divided into filters, wrappers and embedded meth-
ods [101]. Filters select subsets of variables as a pre-processing step, independently of
the chosen model. Wrappers use the model as a black box to score subsets of variable
according to their predictive power. Embedded methods perform variable selection in
the process of training and are usually specific to given learning machines.

The individual methods can be further divided. For example, filter methods can be
divided based on the knowledge whether they treat features individually (univariate) or
together (multivariate). Following paragraphs give a non-exhaustive list of methods used
in relational classifiers.

Univariate filter Propositionalization algorithms are critiqued by de Raedt for the
production of many irrelevant features [209]. The simplest posthumous treatment of
the issue is to apply a univariate filter. For example, a specific problem of NT →T
propagation is that the count of the produced features grows exponentially with the
count of 1:n relationships in the path between the non-target table and the target table
[120]. To combat this exponential growth of the features, Gjorgjioski successfully used
stochastic sampling of the feature functions [89].

Multivariate filter Another critique of propositionalization algorithms by de Raedt
is the creation of the many highly correlated features [209]. Correlated features can cause
troubles in algorithms like Linear Discriminant Analysis or Naive Bayes. To combat this
problem, Guo [30] opts for Correlation Feature Selection (CFS) method, which is based
on the following hypothesis: “Good feature subsets contain features highly correlated
with the classification, yet uncorrelated with each other” [102]3.

Wrapper Wrapper approach is taken by kFOIL [155], which evaluates the quality of
a feature refinement with Support Vector Machine (SVM).

Embedded Dataconda [229] is using Lasso regression to select the top 20 features.

3Note that “correlation does not imply redundancy” [25].

17

2. BACKGROUND AND STATE-OF-THE-ART

Summary A feature selection should generally optimize following criteria: Maximize
relevancy, minimize redundancy, maximize stability4, and minimize time consumption
[34].

2.1.6 Feature Collection
When features are calculated, they can be either collected into a single table, multiple
tables or each feature can be left alone.

Attribute-value Propositional tools traditionally generate a single “feature table” that
contains all generated features [144]. The advantage of the attribute-value (AV) approach
is that the produced table can be directly processed with common propositional tools.
The disadvantage of this approach is that the output table may have to store more
features than is it the limit of the database on the maximal count of columns in a single
table (e.g., 1 000 in Oracle).

Multi-view In a multi-view (MV) approach, an algorithm produces a feature table for
each table in the database. A learner is then executed on each individual feature table.
And the predictions of the learners are then ensembled together with another learner
[96].

There are two significant advantages of such approach. First, if the information
present in each feature table is independent of the information in other feature tables,
the learning is greatly simplified without loss of accuracy. Hence, the MV approach is
efficient in term of running time. Second, the MV approach partially alleviates the AV’s
limit on the maximal count of columns in a single table because the generated features
are spread over multiple tables. Still, if the count of the generated features is bigger than
the count of attributes, they may not fit into the limit. The disadvantage of the MV
approach is that if the assumption of the table independence does not hold, the accuracy
is hampered.

Attribute grouping The MV approach can be taken a level further – instead of
joining features belonging to a single table together, features from the same attribute
can be joined together. To our best knowledge, this approach has not been discussed in
the literature.

The advantage of attribute grouping is that it allows easy parallelization in the case
that each attribute is stored in a different computation node – the attributes do not have
to be transmitted between the nodes.

Individual feature In the end, it is also possible to train a model on each feature
individually and merge the produced estimates with another model. This approach was
taken by Schulte in [235].

4If we want to perform ensembling, we may want to, on the other hand, promote diversity.

18

2.1. Theoretical Background

2.1.6.1 Hierarchy

It holds that what can be learned from the individual features, can be learned with the
attribute grouping. What can be learned with the attribute grouping, can also be learned
with the MV approach. And what can be learned with the MV approach can be learned
with the AV approach:

AV ⊂ MV ⊂ Attribute grouping ⊂ Individual features (2.2)

2.1.7 Feature Representation
We can partition learning algorithms based on the data structure that is used for super-
vised learning.

Attribute-value learning In attribute-value (AV) learning all the data resides in a
single table and each record has its own label.

Multiple-instance learning In multiple-instance (MI) learning, each input object or
event is represented by a set of instances, named a bag, and it is the bag that carries a
label.

In early MI research, a strong assumption was made regarding the relationship between
instances inside the bags and the label of the bag. This assumption is called the stand-
ard MI assumption. Under this assumption, each instance has a hidden class label which
identifies it as either a positive or a negative instance, and a bag is considered to be
positive if and only if it contains at least one positive instance. This is generally believed
to be true for the musk drug activity prediction problem, where a molecule will have the
desired drug effect if and only if one or more of its conformations binds to the target
binding site [54]. However, in other problem domains, this assumption may not apply.
Consequently, different or more general assumptions were developed. For a review of MI
learning assumptions see Foulds’s and Frank’s work [75].

Relational learning In relational learning (RL), the data can be spread over multiple
tables. And one of the tables, which is called target table, contains the target.

2.1.7.1 Hierarchy

It holds that problems solvable with an AV learner can be learned with a MI learner
because AV learning is just a subset of MI learning, where each bag contains only one
instance.

It also holds that problems solvable with a MI learner can be learned with a relational
learner, because a MI problem can be represented in the form of two tables, where target

19

2. BACKGROUND AND STATE-OF-THE-ART

table contains labels of bags and the second table contains instances with a foreign key
to the target table:

AV L ⊂ MIL ⊂ RL (2.3)
De Raedt suggested that the MI paradigm could be the sweet spot between the AV

and relational representations, being more expressive than the former, and much more
easy to learn than the latter [209].

2.1.8 Evaluation
The proposed decomposition of the problem was tested on propositionalization algorithms
listed in Table 2.3.

Algorithm Representation Propagation Function Refinement Collection Learning Selection

ACORA [200] Relational T→N Distance No 1 table AV –
Aggregated Predictions [235] Relational Implicit – No 1 table MI –
CLAMF [77] Relational T→N Aggregate, ILP Yes 1 table AV –
CrossMine [266] Logic N→T ILP Yes 1 table AV –
Dataconda [229] Relational T→N Aggregate Yes 1 table AV Lasso
Deep Feature Synthesis [120] Relational N→T Aggregate No 1 table AV –
FICO Data Spiders [69] Relational T→N Aggregate Yes 1 table AV –
KXEN Event Log [232] Relational T→N Aggregate No 1 table AV –
LBP [55] Logic Implicit Aggregate No 1 table AV –
Linus [157] Logic Implicit ILP Yes 1 table AV –
Lynx-RSM [173] Logic Implicit ILP Yes 1 table AV SLS
MAFIA [122] Graph Implicit Item set Yes 1 table AV –
MILK [218] Relational, Logic Implicit – No 1 table MI –
MRC [98] Relational T→N Aggregate No n tables AV CFS
RELAGGS [144] Relational T→N Aggregate No 1 table AV –
Polka [137] Relational N→T Aggregate No 1 table AV –
PRORED [89] Relational N→T Aggregate No 1 table AV Stochastic
REPART [279] Relational Implicit ILP Yes 1 table MI –
RSD [271] Logic Implicit ILP Yes 1 table AV –
SMFI [123] Graph Implicit Item set Yes 1 table AV –
Wordification [201] Relational T→N Aggregate No 1 table AV TF-IDF

Table 2.3: Anatomy of propositionalization algorithms.

If Multiple Correspondence Analysis is applied to the data in Table 2.3, we get a
two-dimensional projection depicted in Figure 2.5. The grouping of the algorithms into
5 clusters was done manually. The labels of the clusters were determined by the shared
properties of algorithms in a cluster. Note that some of the algorithms overlap in the
projection, like MAFIA [122] and SMFI [123], because they have identical functional
decomposition.

2.1.9 Conclusions
This section followed “divide and conquer” strategy, in which a propositionalization al-
gorithm was decomposed into individual building blocks.

20

2.1. Theoretical Background

DatacondaCLAMF

FICO Data Spiders

Wordification
KXEN

ACORA

PRORED
DFS

Polka

MRC

SMFI

REPART

MILK Aggregated Predictions

Multiple-instance

Item set

ILP

Multi-view

Aggregate & Distance

LBP
CrossMine

REPART

MAFIA

Lynx-RSM

RSD Linus

RELAGGS

Figure 2.5: Projection of algorithms from Table 2.3 into a two-dimensional space with
Multiple Correspondence Analysis.

Framework The described decomposition of a propositionalization algorithm allows
construction of a framework in which many current and new relational algorithms can
be implemented. Such framework would allow easy empirical comparison of algorithms,
development of meta-learning in relational learning, and it would provide a testbed for
algorithms that improve just a part of a relational learner.

Model The described decomposition also provides a conceptual model of how to look
at propositionalization.

This is an important thing as there is not a literature dedicated to propositional-
ization algorithms – there are only publications about individual implementations of
propositionalization algorithms5.

New instances New instances of building blocks were identified. Namely, new ways
of feature collection (attribute grouping and individual feature) were identified. Further-
more, it was identified that the MI classifiers tested in the literature on relational data
were subpar. Hence, it is desirable to do new experiments in this field.

5There are great books about relational learning. However, their scope is much wider than mere
propositionalization.

21

2. BACKGROUND AND STATE-OF-THE-ART

New combinations The decomposition of the problem allows a creation of new com-
binations, giving rise to new algorithms.

2.2 Empirical Comparison
This section contains a meta-study of different approaches to supervised relational learn-
ing. The comparison of the algorithms was done with an algorithm described in the
following paragraphs.

2.2.1 Introduction
Sometimes, we may want to compare different treatments on different blocks (see Table 2.4).
For example, we may want to compare a set of algorithms on a set of datasets and eval-
uate algorithms’ performance. If we can do all the measurements, the evaluation is quite
easy – we can just follow the recommendation of Demšar [48], apply an omni-bus test
like Friedman test followed with a post-hoc analysis, like Bergmann–Hommel’s or Li’s
procedures [250], and we are done.

Block 1 Block 2 · · · Block b

Treatment 1 X11 X12 · · · X1b

Treatment 2 X21 X22 · · · X2b
...
Treatment t Xt1 Xt2 · · · Xtb

Table 2.4: In a complete block design, every treatment is run for every block exactly
once.

But sometimes, we may have difficulties to collect measures for all combinations
of treatments and blocks. For example, when two or more features are collinear, the
covariance matrix of the entire dataset is singular, and inevitably, invertible, which causes
problems in algorithms like Fisher’s LDA [68]. Or the algorithms may not terminate on
the dataset in a reasonable time [14]. In such scenarios, we may be inclined to perform
missing value imputation [68]; however, such imputation does not only result in overly
optimistic confidence intervals [110], but may also result in misleading conclusions as
illustrated in Table 2.5.

The hypothetical scenario in Table 2.5 depicts evaluation of 4 algorithms A-D on
1001 datasets based on classification accuracy. However, all 4 algorithms are measured
on the same dataset just once. In the rest of the cases, only two algorithms, C and D,
are compared. If we apply a method based on arithmetic mean, average ranking (like in
Friedman’s test) or count of wins (like in sign test) on the complete dataset, we get that
algorithm C is the best (the best values in the table are shown in bold), even thought

22

2.2. Empirical Comparison

Dataset Alg A Alg B Alg C Alg D

#0 0.9 (1) 0.8 (2) 0.1 (3) 0 (4)
#1 ? (2.5) ? (2.5) 1 (1) 0 (4)
#2 ? (2.5) ? (2.5) 1 (1) 0 (4)
#3 ? (2.5) ? (2.5) 1 (1) 0 (4)
...
#999 ? (2.5) ? (2.5) 1 (1) 0 (4)
#1000 ? (2.5) ? (2.5) 1 (1) 0 (4)

Nan-avg acc 0.9 0.8 ≈ 1 0
Imp-avg acc ≈ 0.5 ≈ 0.5 ≈ 1 1
Avg ranking ≈ 2.5 ≈ 2.5 ≈ 1 4
Wins 1 0 1000 0
Proposed 1 2 3 4

Table 2.5: Hypothetical example of a situation, where imputation of missing values
results in misleading conclusions. The values represent classification accuracy (tied rank).
Missing values are represented with a question mark.

the first record, the only one that is complete, suggests that algorithm A is superior to
algorithm C.

The remedy in the scenario depicted in Table 2.5 is easy – we can delete all incomplete
records and apply a test of our choice on the rest of the records. However, if neither record
is complete, we have to either perform an imputation (and in the case of imputation with
an average become susceptible to the described attack) or use an algorithm that can deal
with missing values.

2.2.2 Related Work
Friedman’s test [82] was developed to analyze data with one response per cell and no
missingness. Subsequent modifications of Friedman’s test generally relax one of the two
requirements, although some permit both. The first relaxation permits missing data with
one response per cell at most. The second relaxation permits multiple responses per cell
[110].

Missingness Durbin proposed a Friedman-type test for a balanced incomplete block
design [59], which permits missing data by design. Skillings and Mack [239] proposed
a more general Friedman-type test for an unbalanced incomplete block design, which
permits missing data that are missing by design or missing completely at random.

Missingnes &Multiple response Bernard and van Elteren [13] then adapted Durbin’s
model for scenarios with an arbitrary number of responses per cell. Nevertheless, data

23

2. BACKGROUND AND STATE-OF-THE-ART

Figure 2.6: Graph with count of wins.

still have to be missing by design.

Network meta-analysis Network meta-learning algorithms [191] are better suited for
a meta-analysis than Friedman-test-based algorithms as they permit multiple responses
per cell and missing data do not have to be missing by design.

Still, application of network meta-learning algorithms can be troublesome because
they require confidence intervals (or other parameters from which confidence intervals
can be calculated) for each response. However, only around one-third (14/45) of the
studied articles about relational classifiers contained information about the accuracy of
reported values (the data are further discussed in Section 2.2.5.1).

Proposed Compared to methods described above, the proposed method can deal with
multiple responses per cell, missing values do not have to be missing be design and
confidence intervals are not required.

2.2.3 Method Description
The proposed method (called GraphRank) is motivated by graph theory.Figure 2.6 de-
picts an example network of 6 treatments A-F . The weights of the directed edges repres-
ent count of wins of the ancestor over the successor/of the ancestor over the successor,
where the direction of the edge is from the weaker treatment to the stronger treatment.

From these partial orderings, we can estimate the complete ordering with object
ranking [118] – a special application of learning to rank algorithms. However, object
ranking in the most general form is NP-hard.

If we had a directed acyclic graph, we could enumerate all topological orderings that
satisfy all partial constraints [255] and take the average rank of a treatment over all
plausible orderings as the estimated rank [259, 260].

However, cycles in meta-analyses do appear [191]. The cycles in a graph can be
identified [172] and broke at their weakest point as estimated with a sign test [48]. If
the weakest point in a cycle is not unique, multiple treatments are estimated and aver-
aged. The result of the application of the algorithm on the network fromFigure 2.6 is in
Figure 2.7.

24

2.2. Empirical Comparison

Figure 2.7: Directed acyclic graph.

Figure 2.8: Network visualization.

Figure 2.9: Nodes with ranking.

A BPMN layout algorithm, an alternative to hierarchical layout algorithms that pro-
duces easier to read graphs [134], is used to place the treatments from left to right based
on their order. To depict the confidence in the ordering of two treatments connected with
an edge, a sign test can be used. The width of the edge is then inversely proportional
to the calculated p-value. Additionally, the size of a node (treatment) can be propor-
tional to the count of trials, in which the treatment is present. The resulting graph is in
Figure 2.8.

A graph with the ranking in place of the treatment labels is in Figure 2.9.

2.2.3.1 Assumptions

GraphRank assumes that the partial orderings are transitive, i.e., that (A ≺ B) ∧ (B ≺
C) → (A ≺ C), and that the responses are independent. GraphRank does not assume
any commensurability of responses or differences nor does it assume normal distributions.

25

2. BACKGROUND AND STATE-OF-THE-ART

2.2.4 Evaluation
The ability of GraphRank to rank treatments was compared to the ranking method used
in Friedman’s and Wittkowski’s tests [259]. Wittkowski’s test is a Friedman-type test
that can deal with missing values. A nice property of Wittkowski’s test, in comparison to
Skillings’s test, is that on a complete dataset it returns the same conclusion as Friedman’s
test.

2.2.4.1 Data

The algorithms were tested on a recent empirical evaluation of 179 classifiers on 121
datasets by Fernández-Delgado[68]. This dataset was selected because it is thematically
close to the desired application of the developed algorithm – evaluation of relational
classifiers.

2.2.4.2 Data Preprocessing

Since some classifiers in Fernández-Delgado’s evaluation were not able to cope with each
dataset, only a subset of 109 classifiers without any missing value was used.

2.2.4.3 Evaluation Criterium

The performance of the treatment ordering is evaluated with Spearman’s correlation
coefficient. The ideal ordering is obtained on the complete dataset of 109 classifiers
with Friedman’s algorithm and compared with the ordering obtained on a dataset with
missing values, introduced into the dataset with uniform distribution. Since Friedman’s
algorithm does not work with missing values, the missing values were imputed with
dataset’s average accuracy. This treatment of missing values was chosen because it was
used in the Fernández-Delgado’s work.

2.2.4.4 Result

Figure 2.10 depicts the average results after 100 repeats.
GraphRank algorithm provides comparable accuracy with Wittkowski’s approach.

The difference between the rank by Friedman’s algorithm and GraphRank on the com-
plete dataset is caused by the different ranking of boosting and bagging. More often
than not, boosting gives better accuracy than bagging. Also, boosting on average gives
better results than bagging. However, by Friedman’s algorithm, bagging is better than
boosting.

The reason for Friedman’s conclusion is the fact that a boosted weak classifier some-
times performs worse than the weak classifier by itself (a detail discussion of the problem
is in [53]). In these instances, the rank of boosting is much worse than the rank of
bagging, which reliably provides good accuracy. On the other hand, when boosting out-
performs bagging (frequently and substantially), the rank of boosting is just a bit better

26

2.2. Empirical Comparison

Ratio of missing values
0 0.2 0.4 0.6 0.8 1

S
pe

ar
m

an
's

 c
or

re
la

tio
n

0.4

0.5

0.6

0.7

0.8

0.9

1

Friedman
Wittkowski
GraphRank

Figure 2.10: Accuracy of ranking methods based on their ability to cope with missing
values.

than the rank of bagging because both these algorithms are already at the top of the
rank.

This example illustrates the fact that the decision about which treatment of two is
better is in Friedman’s algorithm influenced by presence or absence of other treatments
– if boosting and bagging are compared alone with Friedman’s test, boosting comes out
as the winner! Note that the simple average on a dataset with exactly one response per
cell is not influenceable by the presence or absence of other treatments.

2.2.5 Application
The developed algorithm is applied on a meta-analysis of algorithms for relational clas-
sification, which aims to compare algorithms based on their discriminatory ability. In
the following paragraphs, it is explained why an experimental evaluation of relational
classifiers is a difficult task and what are the challenges in a meta-analysis of relational
classifiers.

A direct comparison of relational classifiers is a demanding task, because different
relational classifiers demand data in different formats. The data formats for relational
classifiers can be divided into three categories [85]:

◦ Logical based
◦ Graph based
◦ Relational

Nevertheless, even formats in the same category may not be compatible. For example,
in logical based representation, Alchemy requires a combination of predicates and C++

27

2. BACKGROUND AND STATE-OF-THE-ART

code [140], TreeLiker uses “pseudo Prolog” format6 and FOIL uses a (space separated)
binary valued data set7. Consequently, the observed count of experimentally evaluated
relational classifiers in a single study ranges from 1 to 8 with the average of 3 algorithms
(the data are further described in Section 2.2.5.1). These numbers are in stark contrast
with Fernández-Delgado’s 179 propositional classifiers in a single study [68].

Neither a direct comparison of results from literature is easy, because of the different
variants of the benchmarking datasets and different protocols (data preprocessing steps).
The possibly most popular relational benchmark dataset, Mutagenesis dataset, can be
accompanied with 4 types of background knowledge [164] and is available in two versions
– a regression friendly version with 188 samples and a regression unfriendly version with
42 samples [47]. Alternatively, both versions can be merged into a single dataset with
230 samples [73]. This makes for 5× 3 = 15 versions of Mutagenesis dataset.

In Alzheimer dataset, at least 6 different target columns can be predicted: acetyl,
amine, memory, toxic, choline and scopolamine [14, 76]. In Financial dataset, some
authors apply time based filters [190], while other do not [143]. Unless all these details
(and likely many other we are not aware of) are known and accounted for, a direct
comparison of algorithms on these datasets is troublesome, because the values are not
commensurable [48].

2.2.5.1 Data

To collect the data, Google Scholar was searched for keyword:
relational classification accuracy OR precision OR recall OR f-

measure OR f1 OR auc OR roc OR gini OR lift

Out of 315 000 returned results, only the first 100 results were processed. Out of the
100 articles, only experimental studies were preserved, because surveys do not generally
guarantee that each measure in the survey was obtained with the exactly some protocol
(with the same data preprocessing steps and parameter setting). Consequently, the
measured values in the surveys may not be always commensurable. To avoid an easy
mistake, all surveys were preventively excluded from the meta-analysis. After exclusion
of irrelevant and survey articles, 45 were left and examined.

Following data were collected from the articles:

Algorithm name Common abbreviated name, if available.
Dataset name Common abbreviated name, if available.
Target name The attribute in the target table.
Measure name Like accuracy, F-measure, AUC-ROC or AUC-PR.
Measure value A decimal value in range 0..1.
Publication name The title of the publication.

6See http://ida.felk.cvut.cz/treeliker/Data.html
7See http://cgi.csc.liv.ac.uk/~frans/KDD/Software/FOIL_PRM_CPAR/foil.html

28

http://ida.felk.cvut.cz/treeliker/Data.html
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/FOIL_PRM_CPAR/foil.html

2.2. Empirical Comparison

Publication url The link to the publication.

Target name was collected, because some datasets, like Alzheimer [133] or CORA
[174], have multiple target attributes. Measure name was collected, because algorithms
can be evaluated based on different criteria. If multiple protocols were evaluated in a
single publication, only the results from the protocol with the highest average measure
values were recorded. The collected data were checked for duplicities and eventual duplic-
ates were removed. The collected data contains 575 records about 48 relational classifiers
(see Table 2.7) on 17 datasets (see Table 2.6). The data are available for download at
http://motl.us/benchmarking/.

2.2.5.2 Study Design

Treatment, block and response were defined following way:

Treatment Algorithm name.
Block Concatenate(Dataset, Target, Measure, Publication name).
Response Measure value.

The used design blocks for differences between the datasets, targets, measures and
protocols. The design assumes that a higher measure value is always better. This
assumption holds for all the used measures (classification accuracy, F-measure, AUC-
ROC and AUC-PR).

Furthermore, to maximize the amount of information passed to the proposed method,
the used design deliberately uses responses from all targets of the datasets, although there
is not a reason to believe that the responses are independent.

2.2.5.3 Result

The network of algorithm comparisons is depicted in Figure 2.11. If algorithm A is
compared with algorithm B in a literature, there is an edge between algorithm A and
algorithm B. If algorithm A has more wins over algorithm B than algorithm B has wins
over algorithm A, the edge is directed from algorithm B to algorithm A.

29

http://motl.us/benchmarking/

30 2. Background and State-of-the-Art

Figure 2.11: Network of the relational algorithms. Algorithms with more accurate pre-
dictions are on the right. Superior algorithms are in red nodes.

2.2. Empirical Comparison 31

Database Domain Reference

Alzheimer Medicine [133]
Biodegradability Medicine [18]
CAD Industry [149]
Carcinogenesis Medicine [244]
CiteSeer Education [235]
CompuScience Education [205]
CORA Education [174]
CPM Medicine [149]
Diterpenes Medicine [61]
Drug-pyrimidines Medicine [107]
DSSTox Medicine [220]
ECML Finance [146]
Epinions Retail [64]
Financial Finance [12]
Fingerprints Medicine [84]
Genes Medicine [38]
Hepatitis Medicine [234]
IMDb Entertainment [234]
IPO Finance [200]
KRK Entertainment [186]
LIMAS Language [261]
Mesh Industry [56]
Mondial Geography [234]
MovieLens Entertainment [234]
Musk Medicine [54]
Mutagenesis Medicine [47]
NCI786 Medicine [246]
NWE Geography [29]
OMOP Medicine [189]
PremiereLeague Sport [234]
PTC Medicine [106]
Thrombosis Medicine [42]
Trains Logistic [178]
University Education [234]
UW-CSE Education [234]

Table 2.6: List of datasets used in the meta-analysis.

32 2. Background and State-of-the-Art

Algorithm Type Ref

ACORA Distance [200]
Aleph ILP [201]
Aleph++ Probabilistic [114]
Ant-FOIL ILP [264]
CrossMine ILP [266]
E-NB Probabilistic [233]
EPRN Probabilistic [205]
FOIL ILP [155]
FORF-NA Decision Tree [257]
FORS ILP [121]
Graph-NB Probabilistic [162]
HNBC Probabilistic [233]
IB Distance [84]
ICL ILP [212]
kFOIL Kernel [155]
LBP Propositional [55]
Lynx-RSM Propositional [173]
mFOIL ILP [156]
MLN Probabilistic [221]
MRC Multi-View [98]
MRDTL Decision Tree [6]
MRNBC Probabilistic [233]
MVC Multi-View [95]
MVC vote Multi-View [180]
MVC-IM Multi-View [97]
nFOIL Probabilistic [153]
nRelF ILP [150]
PIC Probabilistic [233]
Poly ILP [150]
PRMs-IM Probabilistic [87]
PRN Probabilistic [208]
PROGOL ILP [185]
PRORED Propositional [89]
RBC Probabilistic [194]
RDN Probabilistic [192]
RELAGGS Propositional [144]
RelF ILP [149]
RIBL Distance [63]
RNPC Distance [84]
RollUp Propositional [137]
RPT Probabilistic [193]
RSD Propositional [143]
RUMBLE Kernel [226]
SDF Decision Tree [14]
SimFlat Propositional [97]
tFOIL Probabilistic [154]
TILDE Decision Tree [233]
Wordification Propositional [201]

Table 2.7: List of algorithms used in the meta-analysis.

2.2. Empirical Comparison

Plot in Figure 2.12 depicts estimated ranking of relational classifiers after 1 000 boot-
straps. The sampling in the bootstrapping was done at the level of individual articles,
not at the level of individual measurements, to assess the impact of literature selection.

2.2.5.4 Limitation

In the following paragraphs, different sources of bias in the conducted meta-analysis are
discussed.

Publication bias Authors of the methods may prefer to exclude the datasets, where
their algorithms do not perform well. The risk of bias is higher if an algorithm is evaluated
only by the algorithm authors on a small set of datasets.

Parameter tuning Authors of the algorithms may also spend a disproportionally more
time on parameter tuning of their own algorithm than of the others. Hence, algorithms
that require careful setting, data pre-processing or post-processing may perform signific-
antly better, if they are set by their authors [A.9].

Protocol setting Also, a protocol may systematically favor specific algorithms. For
example, if an author proposes an algorithm for imbalanced datasets, it is natural that
the proposed algorithm is tested on imbalanced datasets and that the proposed algorithm
fares favorably against algorithms that were not designed to work on imbalanced datasets.
But such comparison does not give any evidence about the performance of the proposed
algorithm on balanced datasets, where the proposed algorithm may fare miserably.

33

34 2. Background and State-of-the-Art

Rank
0 0.2 0.4 0.6 0.8 1

FOIL
Aleph

ICL
mFOIL
TILDE
nFOIL

MLN
PROGOL

MRDTL
FORF-NA

CrossMine
kFOIL

RDN
RIBL

RELAGGS
Poly

MRNBC
MRC

tFOIL
nRelF

RPT
RNPC

PRORED
Graph-NB

E-NB
SimFlat
ACORA

FORS
RSD

RUMBLE
MVC-IM

RBC
PRN

IB
Lynx-RSM

Ant-FOIL
RollUp
HNBC

MVC
RelF

PRMs-IM
Aleph++

EPRN
PIC

MVC vote
SDF
LBP

Wordification

Figure 2.12: Plot with expected ranking of relational classifiers and propositionalization
tools. The higher value is better.

CHAPTER 3
Predictor Factory

All data is suffering

Andreas Kollegger

Based on the problem decomposition in Section 2.1, Predictor Factory is an algorithm
for propositionalization of relational data stored in an SQL database. The information
in the database is propagated from the target table to other tables in the database with
joins. In total, over 50 SQL patterns defining a feature function were tested (the list
is in Appendix A.1). Predictor Factory does not refine features. For feature selection,
Predictor Factory is using Chi2 [111]. Any advanced feature selection is left to other
tools. The created features are then returned to the user in a single table for attribute-
value supervised learning. The following sections, which follow the same order used in
Chapter 2, describe algorithm properties beyond this baseline.

3.1 Data Representation
This section justifies the data processing in the database and describes the used statistical
and data types.

3.1.1 Processing in a Database or in an Application
The world of relation classifiers can be divided into two groups based on where the
classifier is implemented. The classification can be either implemented in a database or
in a standalone application.

The advantage of in-database processing is that the data are not transferred. This
saves transmission cost and encoding/decoding cost [67]. The disadvantage is the fact,
that coding of complex feature functions in Java, R, or another language of choice can
be faster than in plain SQL. Another thing to consider is the fact, that a database takes

35

3. PREDICTOR FACTORY

care of parallelization or distributed computation. However, a person pays a toll in the
form of lost control over the implementation details.

Predictor Factory performs calculations in the database.

3.1.2 Typology
Variables can be classified based on different criteria. For example, psychologist Stanley
Smith Stevens developed a classification with four levels (also called “scales”) of meas-
urement: nominal, ordinal, interval, and ratio [245]. Other classifications include those
by Chrisman [39] and by Mosteller & Tukey [184].

In statistics, groups of individual data points may be classified as belonging to any of
various statistical data types, e.g., categorical (“red”, “blue”, “green”), real number (1.68,
-5, 1.7e+6), etc. The data type is a fundamental component of the semantic content of
the variable, and controls which sorts of probability distributions can logically be used to
describe the variable, the permissible operations on the variable, the type of regression
analysis used to predict the variable, etc. The concept of data type is similar to the
concept of level of measurement but more specific: For example, count data require a
different distribution (e.g., a Poisson distribution or binomial distribution) than non-
negative real-valued data require, but both fall under the same level of measurement (a
ratio scale).

In Predictor Factory, five data types, that are mutually exclusive and exhaustive, are
recognized: time, numerical, character, boolean and other. The other category includes
all data types that Predictor Factory does not know how to process. Examples of data
types, that Predictor Factory does not know how to process are binary data (like im-
ages), Extensible Markup Language (XML)/JavaScript Object Notation (JSON) data,
geometric data (like points or polygons), objects, arrays, and user-defined data types.
The statistical type layer further differentiates between numerical values and nominal
values that are just stored as numbers (see Figure 3.1).

Statistical	type:	 time numerical nominal boolean --
Data	type:	 time boolean other

character
characternumerical

Figure 3.1: Variable types.

Sometimes, nominal values are stored as numbers, for example, to save data storage
or as a kind of obfuscation in the published database. This causes problems, because,
for example, the arithmetic mean of a nominal attribute is not generally considered
meaningful [245], although exceptions exist [167].

The assignment of appropriate statistical types to the attributes in the data source
is time-consuming and error-prone because of the user’s fatigue. This problem can be

36

3.1. Data Representation

alleviated by automatic detection of the statistical types. However, this detection may
not be reliable1.

Hence, Predictor Factory ignores statistical types and instead produces the most
discriminative features. An example, where aggregates like median and mode are not
discriminative on an ordinal attribute while arithmetic mean is:

A : [1, 1, 1, 1, 5]

B : [1, 1, 1, 5, 5]
(3.1)

Median and mode are the same for both instances. But averages differ. Another incon-
venience is that ordinality is a property of a relationship of the attribute and the target,
not just of the attribute alone. Hence, the statistical types would have to be set for each
combination of attributes and targets.

3.1.3 Automatic Data Type Detection
One of the less joyful tasks of data mining is the import of data into a SQL database from
comma-separated values (CSV) files. CSV files do not preserve data type information. If
metadata about the files are not available, the data types have to be estimated directly
from the data. The suggested activity diagram for loading and staging CSV files into a
SQL database for analytical purposes2 is in Figure 3.2.

Load In the first phase, all attributes are loaded into the database with text data
type. The text data type is used because it preserves all information present in the CSV
files, which by itself contain text. The advantage of the text datatype, in comparison to
varchar, is that they generally provide a generous limit on both, the attribute size and
row size3.

Numeric In the second phase, each attribute is individually cast in place to the numeric
data type with a big enough precision limit. If the conversion fails, the attribute is not
likely numeric and is preserved as text. Note that numeric data type is used instead of
double to avoid possible rounding errors and overflows/underflows.

Integer Numeric type is often overkill, particularly for keys. Hence, it can be practical
to cast numeric attributes to integers in place. Unfortunately, not all databases emit
a warning when loss of precision happens. Hence, it is necessary to check that neither

1In the author’s experiments, the best reached accuracy in classification of attributes into Steven’s
typology was 87%.

2We assume that all the data are available at the moment of loading. This assumption commonly does
not hold in primary systems.

3Text attributes are, in comparison to varchar attributes, generally stored outside of the table and the
table merely contains links to the content. Nevertheless, the implementation details are not mandated by
the SQL standards and may differ from vendor to vendor.

37

3. PREDICTOR FACTORY

record in the attribute contains decimal values and that the attribute’s maximum and
the minimum are going to fit into the range of the integer before the cast to integer data
type.

Load as text

Try to cast to numeric

Cast numeric without any
decimal part as integer

Cast text of constant
length to char

Cast numeric to smaller
size

Cast short text to varchar

Figure 3.2: Automatic data
type detection for CSV files.

Numeric trimming The initial numeric data type is
commonly impractically big. Hence, it is practical to
cast the numeric attributes to numeric types with smaller
precision. Once again, it is necessary to first identify
the minimum necessary size that preserves all original
information before the cast.

Char Text attributes that contain records of constant
length can be cast to char data type with a constant
length.

Varchar Text attributes that are short enough can be
cast to varchar to make processing of the table faster.

Other data types The rest of the data types, like
timestamp, date, or time are left up to the user to set
them manually, even though there are libraries in Python
that promise automatic detection of different formats of
temporal attributes4.

3.1.3.1 Third-Party Solution

Another possibility how to import troublesome datasets
is to import them with RapidMiner5 or another tool and
once imported into the third-party tool, they can be
pushed into the database.

3.2 Information Propagation
This section justifies the used structure of the target table and the decision to use all
available tables and attributes in the database.

3.2.1 Training, Testing & Scoring Data in a Single Relation
In challenges like kaggle or KDD Cup, it is customary that the target table is split into
two files – one file is with labeled data, which are intended for model training, another

4See: http://pythonhosted.org/feedparser or http://dateparser.readthedocs.io.
5See: http://rapidminer.com.

38

http://pythonhosted.org/feedparser
http://dateparser.readthedocs.io
http://rapidminer.com

3.2. Information Propagation

file is with unlabeled data that have to be scored. There are at least two ways how to
process the target table that is split into several tables. Either we can process each table
separately, or we can append the tables into a single table.

Separate tables The advantage of having separate tables is that it is less likely that
testing or scoring data inadvertently leak and influence the model6.

A single table The disadvantage of keeping the tables separate is that the tables
may not be fully compatible. We are not guaranteed anymore that the tables are set
identically across all the target tables (e.g., the charset encoding), that the attributes
are typed identically across the tables, that the attributes are named identically across
the tables, that some attributes are not missing, or that the effectively same constraints
(foreign, unique...) are applied across the target tables.

Conclusion Since it is difficult to enforce compatibility between the target tables
without enforcing total identity between the definition of the tables (including unim-
portant details like order of attributes) while still covering all the edge scenarios (specific
to the database vendor, database version, type, and setting of the hosting OS, setting of
the database and possibly other variables) that can make the tables incompatible, the
responsibility of providing compatible tables would have to be left to the user. On the
other end, it is solely a responsibility of a developer to make sure that training, testing
& scoring data do not get unintentionally mixed during the propositionalization. Thus,
if we want to decrease the count of user errors, a single target table approach is favor-
able. If we want to decrease developer errors, a multiple target table approach is better.
Predictor Factory implements the single table approach.

3.2.2 Do we need Target Identifier?
The target id is an attribute in the target table, which together with the optional target
timestamp uniquely identifies tuples in the target table. While some algorithms, like
Aleph [243], do not require the existence of the target identifier, other algorithms, like
Deep Feature Synthesis [119], require the existence of the target identifier.

Predictor Factory requires the existence of the target identifier, which can be either
a single attribute or a set of attributes. Following paragraphs enlist reasons behind this
requirement.

3.2.2.1 Cross-validation

Let us imagine a database with two tables, TargetTable(IdTransaction, BuysMilk)
and CustomerOrder(IdCustomer, IdTransaction). Then if we want to predict BuysMilk
for a new customer (without any transaction in TargetTable), we have a problem. It

6In semi-supervised learning, “leaks” from the scoring data set are intentional.

39

3. PREDICTOR FACTORY

is natural to perform splitting to training and testing samples at TargetTable, but if
we do it randomly, we assign some of the customer’s transactions into the training split
and some of the transactions (of the same customer) into the testing split. The problem
is, that a very plastic classification algorithm (like k-NN) may very well learn how to
assign the CustomerIDs to the likelihood of buying milk (hence making reliable predic-
tions for the current customers), but perform miserably on prediction on new customers
with unseen CustomerID. And if we perform random (or even stratified) splitting at
TransactionID level, we get an overly optimistic estimate of prediction accuracy on new
customers.

Of course, it could be argued that we should remove ids (like IdCustomer) from the
prediction table. But that is not going to solve the issue completely. Let’s consider
CustomOrder with thousands of binary columns describing the customers. The dimen-
sionality is so high that regardless of minor changes of customer’s vector between the
transactions we can uniquely identify the customers (for a proof of concept, see finger-
printing on the internet without cookies).

Hence, the only thorough way how to avoid overly positive estimates is to perform
the split for validation at IdCustomer level. And that’s the reason why we want to have
target identifier (in this case IdCustomer) in TargetTable.

3.2.2.2 Sets

Predictor Factory reads data from SQL databases. SQL databases are inspired by rela-
tional algebra. Relational algebra itself is based on set theory. And sets do not preserve
order. Consequently, not all data stores, which Predictor Factory supports, preserve the
order of tuples in relations. And if the tuples in the target table are not uniquely identi-
fiable and the database does not preserve the order of tuples, we are not able to match
the predictions to the subjects, even if we internally assign unique ids to the records,
since we are not guaranteed that the created ids will be assigned in any specific order.

Explanatory analysis Of course, it is not always necessary to be able to match up
predictions with real-world entities. For example, if we were performing an explanatory
analysis, it could be sufficient, if we “just” created a well-performing model. And we
are actually able to measure the performance of a model even if we are not able to
exactly match predictions with the samples. For example, if we were performing binary
classification, we could store positive samples in one relation and negative samples in
another relation. And with this setting, we may learn that x positive and y negative
samples were misclassified, giving us information about the quality of the model. A
similar approach is taken by Aleph [243]. Nevertheless, Predictor Factory was developed
with predictions in mind. Prediction is even in the name of Predictor Factory. Hence, it
is required that tuples in the target table are uniquely identifiable. And one way how to
enforce the uniqueness is to require target id.

40

3.2. Information Propagation

3.2.2.3 Duplicate Detection

Sometimes, duplicate records get into a target table. This is, for example, a case of PTE
or Lahman dataset in Relational Repository [A.12]. Duplications of a record increase the
weight of the record in the model, resulting in biased predictions. An efficient, although
not sufficient7 way, how to detect duplicates, is to validate the uniqueness of target id
and target timestamp tuples in the target table.

3.2.2.4 Conclusion

The target identifier in the target table is a convenient way how to control what a model
should learn and how to evaluate the model’s performance.

3.2.3 Identifiers
Should we extract features from identifiers (ids)? It depends. If artificial ids are used
thoroughly in the database, it is best to not apply feature functions on the ids, because
they, in theory, do not contain any information that would not be present in other
columns. This approach is used, for example, in MVC [95].

Natural keys However, if natural keys are used in the database, we had better include
the natural keys in feature extraction because in the worst-case scenario all the columns
in the database are part of some natural key. An example of an algorithm, where ids are
used for predictions, is ACORA [200].

Degenerate dimensions In key-value databases or logic databases, it is common to
observe degenerate dimensions. A degenerate dimension is a table, which contains at
most one non-key attribute. Degenerate dimensions have some nice properties. For
example, the database does not have to have a null value to represent the concept of a
missing value, because if some value is not known, the record for the value is not simply
written into the database [103, p. 290]8.

On the other end, if the closed-world assumption [187] holds and the non-key attribute
is binary, the degenerate table does not have to contain the non-key attribute, because
the mere presence (or absence) of the key in the dimension table provides all the necessary
information. An example of such degenerate dimension without any non-key attribute
is in zmatecne table in geneea dataset. If we were ignoring ids, we would miss the
information present in zmatecne table.

7Duplicate records can still appear in the non-target tables.
8Another advantage of degenerate dimensions is their natural ability to model temporal databases

in relational databases since each record in the database can have metadata about its validity in time
in the key. The application of degenerate dimensions to model changing data is further discussed at
http://www.anchormodeling.com.

41

http://www.anchormodeling.com

3. PREDICTOR FACTORY

Leaking data Another point of view is, that identifiers can be a source of leaking
data (the common sources of leaks in relational data are summarized in Appendix A.2).
Hence, in the deployment, we may want to play it safe and completely avoid identifiers in
the models. On the other end, in challenges, it can be necessary to exploit such leakages
to score well in a challenge9.

Ordinal id If an artificial id is set to auto-increment, the artificial id gives us informa-
tion about the succession of records. If feature functions were not applied on ordinal ids,
the tuples did not contain any other attribute that would determine the sequence of the
records, and the database not preserve record ordering, potentially useful information
about the succession of the records would be lost.

Discussion The advantage of not processing ids is that we avoid the generation of
potentially non-informative features. On the other end, the advantage of processing the
ids is that we do not have to make any assumption about the nature of the ids or the
design of the schema.

Because of the mentioned reasons, Predictor Factory by default uses identifiers in
feature extraction. Nevertheless, usage of identifiers can be optionally turned off. Fur-
thermore, all predictors that are calculated from identifiers are marked as potentially
leaking and it is left up to the user to decide, whether their inclusion in the models is
desirable.

Summary There are three theoretical justifications for processing ids: composite for-
eign keys, degenerate dimensions, and ordinality of ids. And there is one practical con-
sideration: exploitation of leaking data in challenges.

3.2.4 Are Lookup Tables Useful?
Based on entity-relationship (ER) model [171], a table either models an entity or a
relationship. However, lookup tables model an attribute. Lookup tables, as used in
databases, can serve multiple purposes: they may contain pre-computed values, they
may contain a textual description of an identifier, or they may constrain values in the
main table via a foreign key. The following paragraphs discuss their utility for modeling.

Statistical type inference The presence of a foreign key constraint in the lookup
table tells us that we may treat the foreign key (possibly an integer attribute) as a
nominal attribute. This knowledge itself helps with the selection of appropriate feature
functions.

9See: http://blog.kaggle.com/2015/09/22/caterpillar-winners-interview-1st-place-
gilberto-josef-leustagos-mario/.

42

http://blog.kaggle.com/2015/09/22/caterpillar-winners-interview-1st-place-gilberto-josef-leustagos-mario/
http://blog.kaggle.com/2015/09/22/caterpillar-winners-interview-1st-place-gilberto-josef-leustagos-mario/

3.2. Information Propagation

Cardinality & interestingness The presence of a lookup table informs us that the
nominal attribute has a finite cardinality. And nominal attributes with a finite (and pos-
sibly moderate) cardinality are more suitable for feature functions likeWeight of Evidence
than nominal attributes with extremely high cardinality (like row_id). Admittedly, we
can calculate the cardinality of any attribute even without the lookup tables. However,
the presence of the lookup table suggests that the database architect considered the
attribute to be important and small enough to create the lookup table.

Connection between attributes The biggest benefit of a lookup table is that it may
create a loop. For example, a lookup table with the airport names can be used twice in
a flight table – once as the departure airport and once as the destination airport. These
multiple uses of the same lookup table create the loop. The presence of a loop informs
us that it could be interesting to calculate the statistics of the airports. In our example,
we could calculate the average count of flights from the airports and use these averages
as features (once for the departure and once for the destination airport). While we can
calculate these statistics without the lookup tables, since we have airport ids in the flight
table, the presence of the loop allows us to assign an average count of departing flights
and an average count of arriving flights10 for both, the departure and the destination
airports of each flight record. While this information is still computable even without
the lookup table, it would be computationally expensive to test each combination of
nominal attributes for a match (and usefulness).

Conclusion Predictor Factory, by default, uses all available tables.

3.2.5 Relationship Detection
An independent application, described in Chapter 7, is used to reconstruct the foreign
key constraints from the database. The result is provided in a XML file with the structure
compatible with information_schema.key_column_usage and getImportedKeys from
Java Database Connectivity (JDBC). The exported file can be then used to either guide
Predictor Factory or to set the foreign key constraints directly in the database. Of course,
the XML can be also generated manually or generated automatically and reviewed by a
person.

3.2.6 Time Constraints
Time constraint is a temporal attribute in a table that defines, whether the row is in the
time frame applicable for a prediction, or not. A row in a table is suitable for feature
calculation iff:

timeConstrainti ≤ (observationPointi − blackout) (3.2)
10We may expect these two numbers to be close to each other. Nevertheless, information about the

“creation” and the “death” of airplanes can be of interest.

43

3. PREDICTOR FACTORY

and
timeConstrainti ≥ (observationPointi − historyLength), (3.3)

where timeConstraint is the value of the time constraint attribute at row i. observationPointi
is the time when we wish to have the prediction. And blackout and historyLength are
parameters as depicted in Figure 1.2.

3.2.6.1 Identification of Time Constraints

A practical problem with the time constraints is their identification. For example, if
we have a table with ten temporal attributes, which attribute should we use as the time
constraint? If we had to select the time constraint for a single table, it would be perfectly
feasible to do it manually. However, databases commonly contain multiple tables and
setting the time constraint for each table can soon become not only tiring but also error-
prone.

3.2.6.2 Temporal Databases

The identification of a time constraint attribute would be easy if the data were stored in
degenerate tables that have exactly one key, one attribute, and one temporal attribute
(informing us about the time of record entry) and it was known, which attribute is which
(for example, because of defined order of attributes in the tables). This paradigm is
further extended in some of the implementations of temporal databases [60].

Why exactly one attribute? One attribute in a table is desirable because if there is
an update of a record, it is immediately evident, which attribute was changed. Further
apologetic of these degenerate tables is given by authors of LogicBlox, an implementation
of Datalog [5].

Reality Unfortunately, in the realm of relational databases, metadata about the data
are traditionally stored together with the data in a form of additional attributes11. And
these metadata are not constrained to follow any single standard exactly12. Some of the
more common archetypes of how to model changing data in a database are discussed by
Kimball [132, Chapter Slowly Changing Dimension].

3.2.6.3 Algorithm

A time constraint must fulfill the following conditions:

◦ Is of a date/datetime/timestamp datatype.
◦ Does not contain bigger values than the current time.

11This follows the relational philosophy that everything is a relation.
12SQL:2011 defines temporal support. Nevertheless, not all datasets follow the standard [126].

44

3.2. Information Propagation

◦ Does not contain any missing value.
◦ Some records must remain after application of the time constraint.

The actual algorithm that selects up to one temporal attribute in a table as a time
constraint is depicted in Figure 3.3. The logic of individual blocks in the figure is de-
scribed in the following paragraphs.

Data type A natural choice of a data type for a time of record entry is timestamp,
because it generally provides finer granularity than year, date or datetime data type and
it defines a point in time uniquely, not like time data type.

Note that temporal attributes that are stored as characters (e.g., common in SQLite)
or numbers (e.g., as Unix time) are ignored as detection of attribute’s real data type is
another nontrivial task. Also, temporal attributes that are decomposed into several at-
tributes in a database (e.g., into six attributes named as year, month, day, hour, minute,
and second) are not correctly treated as a fully autonomous and robust reconstruction
of the complete timestamp is non-trivial.

Because of the listed limitations, only attributes with date, datetime or timestamp
data type are considered for a role of a time constraint.

Future value Attributes marking a data entry should never point to future13. Hence,
if an attribute contains values that are in the future, the attribute cannot be considered
as a valid time constraint.

Null It is hard to think of a good reason why a date of record entry would be missing.
Hence, a time constraint is required not to contain any null record.

If out of all candidates for a time constraint exactly one temporal attribute has a
not-null constraint in the database and is set as “always generated”, the attribute is
immediately selected as the time constraint.

3.2.6.4 When the Time Constraint is Ignored

Time constraints are ignored/not detected in the following scenarios:

1. The relationship between the target table and a non-target table is n:1.
2. The relationship between the target table and a non-target table is 1:1.
3. Target time is not set up.

13To make sure that a record is not entered with a wrong timestamp, it is possible to set the timestamp
attribute as “generated always”. This setting means that the value is automatically generated by the
database and that the value cannot be overwritten by a user. See temporal features in SQL:2011 [148] for
details.

45

3. PREDICTOR FACTORY

Figure 3.3: Diagram illustrating the
selection of time constraint.

n:1 relationship When there is n:1 relationship
between the target table and a non-target table,
the non-target table is commonly just a lookup
table (a table with a description of codes that is
used to constrain possible values in an attribute in
another table via a foreign key constraint). Lookup
tables do not generally contain temporary attrib-
utes. Consequently, time constraints are not set
for n:1 tables.

1:1 relationship Whenever there is 1:1 relation-
ship between the target table and a non-target
table, the non-target table commonly contains
static content. For example, it is customary to di-
vide information about customers into two tables –
a static table, which contains hardly ever-changing
information like date of birth, and a dynamic table,
which contains information about the customer’s
surname, count of dependents (children), and so
on. Since the content of static tables is not ver-
sioned, time constraints cannot be applied.

Target time is not set up If target timestamp
is not set up, it is assumed that the problem is
static. In that case, time constraints are not used.

3.2.6.5 Manual Setting

Since automatic detection of time constraints may
fail, Predictor Factory can read an XML file with
externally defined time constraints.

3.3 Feature Function
This section describes the naming convention and
less common feature functions.

46

3.3. Feature Function

3.3.1 Naming Convention

There are only two hard things
in Computer Science: cache
invalidation and naming things.

Phil Karlton

The created features are named with the follow-
ing naming convention, which was adapted from
Wordification [201]:

table__column__featureFunction__featureParameter,

where table is a table name, column is a column name, featureFunction is a feature
function name in camelCase notation14.

3.3.1.1 Feature Naming

The following paragraphs discuss two questions. First, if the feature name consists of
the feature function name and attribute name, should the feature function be a prefix or
suffix of the attribute name? Second, should the feature function name be of a constant
length or a variable length?

Aesthetics Prefix convention is aesthetically pleasing if the prefix is always of the
same length because the root of the name always starts at the same position. On the
other hand, if the feature function name is of a variable length, suffix convention is more
aesthetically pleasing because it at least preserves visual grouping of the features by
attribute names (see Table 3.1 for the illustration).

Debugging The prefix notation is more convenient, if an error in a feature is more
likely related to the feature function than to the input attributes because if the features
are sorted by the name, the features coming from the same flawed feature function are
grouped together. Reversely, if an error in a feature is more likely related to an error in
the input attributes than in the feature functions, suffix convention is more practical.

Standard ISO-11179 data element-naming conventions defines <attribute>_<property>
format. If applied to names of features, it corresponds to suffix notation with the variable
feature function name length.

14Generally, it is advisable to avoid a mixture of cases in named entities in relational databases because
it may lead to the necessity to quote the name entities. However, camelCase notation is shorter than snake
case notation. And that is particularly important in legacy databases with strict limits on the length of
named entities. For example, the limit on attribute names in SAS is just 32 chars. This limitation of
legacy databases is also the reason why we do not adhere to ISO/IEC 11179-5:2005, an industry standard
for naming conventions for meta-data, since it promotes overly long names.

47

3. PREDICTOR FACTORY

Prefix Suffix

Constant
feature function
name length

avg_amount
avg_balance
avg_type
min_amount
min_balance
min_type
std_amount
std_balance
std_type

amount_avg
amount_min
amount_std
balance_avg
balance_min
balance_std
type_avg
type_min
type_std

Variable
feature function
name length

average_amount
average_balance
average_type
min_amount
min_balance
min_type
stddev_amount
stddev_balance
stddev_type

amount_average
amount_min
amount_stddev
balance_average
balance_min
balance_stddev
type_average
type_min
type_stddev

Table 3.1: Illustration of different naming conventions.

Conclusion Since it is difficult to come out with meaningful and helpful names of the
same length for many feature functions, Predictor Factory demeans itself to the conven-
tion of giving names to feature functions of variable lengths. Since users of Predictor
Factory were frequently obtaining leaking features in the output table with the features,
Predictor Factory is using suffix notation to make dealing with the leaking features easier.

3.3.2 Supervised Features
Supervised features [177, 276, 183, 70, 115, 265] are features that utilize target column.
These features are particularly useful for encoding high-cardinality nominal features into
numbers. Examples of high-cardinality features include IP-addresses, product ids, and
phone numbers.

An example of a supervised feature is Weight of Evidence (WoE) [181], which is
defined as:

WoE = ln
p(ai|c+)
p(ai|c−)

, (3.4)

where p(ai|c+) is a likelihood of observing nominal attribute a with value i given positive
class c+. WoE is particularly interesting, if used together with logistic regression, because

48

3.3. Feature Function

a sum of logarithms is the same as a product or the ratios. And the ratios in WoE are
merely a normalized count of positive classes divided by the count of negative classes.

When the target is in a 1:1 relationship to the attribute, we directly return WoE.
When the target is in a 1:n relationship to the attribute, we return the average of WoE.

3.3.3 Text Attributes
Text attributes are internally converted to bag-of-words representation and further pro-
cessed with supervised features defined in Section 3.3.2. The implementation uses Apache
Lucene15 library for text processing (e.g., tokenization, lowercase conversion, language-
specific stemming, and N-grams).

3.3.4 Dirty Text Attributes
One of the practical issues in relational learning is how to handle low-quality text at-
tributes. For example, FNHK database violates the first normal form (1.NF) by stor-
ing all case’s secondary diagnoses in a varchar attribute (instead of storing case_id-
diagnose_id pairs in a separate table). In this specific case, the secondary diagnoses
are separated with a space. Unfortunately, possibly due to copy-pasting, individual dia-
gnoses sometimes got concatenated (or separated with multiple spaces, as illustrated in
Table 3.2). Hence, if we wanted to properly model the data as relational, not only that
we would have to normalize the data, but we would also have to fix the typographical
errors.

Database Complication Example

FNHK special characters, typos I480 Z921 M5422I252 E780
Grants abbreviations Partnrshp vs. PARTNRSHIPS
Stats typos zero-inflated vs. zero-inflation
TalkingData special characters, hierarchy game-Action, game-Puzzle
Walmart special characters SN FG BR

Table 3.2: Examples of dirty text in relational repository.

Both these steps, normalization, and typographical error correction, can generally
require human intervention and be time-consuming. And they are not the only issue
that we might encounter in a database. Based on Kim [131], dirty text data can arise
from a variety of mechanisms:

1. Typographical errors (e.g., proffesor instead of professor)
2. Extraneous data (e.g., name and title, instead of just the name)
15See: https://lucene.apache.org/.

49

https://lucene.apache.org/.

3. PREDICTOR FACTORY

3. Abbreviations (e.g., Dr. for doctor)
4. Aliases (e.g., Ringo Starr instead Richard Starkey)
5. Encoding formats (e.g., ASCII, EBCDIC, etc.)
6. Uses of special characters (space, colon, dash, parenthesis, etc.)
7. Concatenated hierarchical data (e.g., state-county-city vs. state-city)

3.3.4.1 Conclusion

Inspired by [201, 31], we extract character trigrams from text and varchar attributes and
use them as features. The detail data flow is following: lower-case transformation, bag
of character trigrams per target id, and TF-IDF normalization.

We lower-case the strings, because it generally improves the accuracy of the down-
stream models16. The character trigrams are used, because they were the most predictive
based on empirical evaluations [31]. TF-IDF normalization is used as it is known to work
well not only on text data but even on relational data [201]. Other unsupervised [251]
and supervised [152] normalization methods were not tested.

3.4 Feature Selection
This section describes how feature relevancy and redundancy is calculated.

3.4.1 Adjusted Chi2

Chi2 shares the same disadvantage with Information Gain (IG) – it prefers attributes
with high cardinality, like ids. This bias is not desirable because models trained on
attributes with high cardinality do not generalize well on unseen data and are prone to
overfitting.

An example, where an attribute with high cardinality has high Chi2 on training data
but zero Chi2 on testing data is a categorical id attribute. The id perfectly classifies the
training data. But when a model has to classify a new instance with a new id, the best
that the model can do is to return the majority class (i.e., the model will always predict
the majority class).

To fix the undesirable bias of Chi2, we can use the same remedy that was used to fix
Information Gain in Information Gain Ratio – penalize the value by the cardinality of
the attribute.

The used implementation assumes uniform distribution of the observed counts and is
calculated with the following equation:

Chi2adj =
Chi2

n
, (3.5)

16The case information is extracted with dedicated feature generative functions like title case.

50

3.4. Feature Selection

where n is the cardinality of the attribute.

3.4.2 Concept Drift
To evaluate, how Chi2 generalizes to new samples, training data are split by time and
universe (target id) into training and testing part, as depicted in Figure 3.4.

Out of sample
Out of time
Out of universe

A

A

A

A

B B

Out of sample Out of sample
Out of time

Out of sample
Out of universe

Ac
ro
ss

U
ni
ve
rs
e

Across Time
NO YES

NO

YES

Figure 3.4: Data split. Filled circles represent training data and hollow circles represent
testing data. Grey circles represent ignored data. The image is adapted from [240].

The training data are used to calculate Chi2. And the difference in distributions
between p(~y|~x) in the training and testing data are used to evaluate a real concept drift.
The real concept drift refers to changes in the conditional distribution of target variable
given the feature(s), while the distribution of the feature(s) may stay unchanged [83]17.

Since out-of-universe split splits the data to n folds, the estimated concept drift is an
average over all folds. There are multiple options how to measure differences between two
distributions/histograms, to name a few, Moving Earth Distance and KL-divergence [32],
[225]. Nevertheless, generalized Jaccard similarity (in literature also known as Ružička
index), which is a generalization of Jaccard index to vectors of real non-negative variables,
is utilized to compare histograms of the training and testing histograms18. Generalized
Jaccard similarity is given by:

J(~x, ~y) =

∑
i min(xi, yi)∑
i max(xi, yi)

(3.6)
17While concept drift in the features (a subset of virtual drift) may not necessarily influence the accuracy

of the trained model, it can still be beneficiary to detect concept drift of the used features in the deployment
as the format, in which the data are produced or stored, can change in time. And we want to be informed
about such changes.

18Ružička index has also the advantage, in comparison to Jaccard index, that we do not have to evaluate
union all clause, which is rather expensive in SQL, but only min, max and sum [214, p. 77].

51

3. PREDICTOR FACTORY

where ~x is a nominal attribute, ~y is the target and i is an instance (tuple).
Generalized Jaccard similarity was used because of the following properties:

◦ Is easy to calculate in SQL-92 (as it does not require iterative calculation as Moving
Earth Distance)

◦ Does not have a problem with zero probabilities (as KL divergence)
◦ Is a similarity (no need to convert distance to similarity)
◦ Returns values in the range from 0–1 (no need to normalize)
◦ Works with both, discretized numerical attributes and nominal attributes (does not

assume ordinality as Moving Earth Distance)

The adjusted Chi2 is then calculated as: Chi2adj = Chi2 ·sim, where sim is the average
of the similarity on the testing sets (there are two testing sets because we split the data by
the universe into two approximately equally big sets). We may look at Chi2 as training
relevance and to Chi2adj as testing relevance.

3.4.3 Downsampling
To accelerate the evaluation of features, the features can be calculated and evaluated only
on a sample of the available data. If the feature appears to be promising, the feature
can be calculated and evaluated on additional data. If the feature does not appear to be
promising, further evaluation of the feature can be postponed.

The search for the top n most predictive features can be directed with branch and
bound (B&B) algorithm. B&B algorithm requires an optimistic (“admissible”) heuristic.
This heuristic can be based on Chi2 statistic. To obtain a monotone (“consistent”) heur-
istic from Chi2, we can calculate:

Chi2(x1, y1) +max
x2

(Chi2(x2, y2)), (3.7)

where x1 is the calculated part of the feature, y1 is the corresponding target and maxx2()
is the maximal Chi2 that we can obtain on the rest of the predictor.

The maximum possible Chi2 is given by:

max
x

(Chi2(x, y)) = (|class| − 1)
∑

i∈class

|xi|, (3.8)

where class is a class in the target, |class| is the count of unique classes and |Xi| is the
count of samples in class i.

Random Sampling The essential idea is that a small uniform random sample of
tuples t of the relation r often well represents the entire relation [45]. However, not all
samples have to provide the same value for model learning, as discussed in the following
paragraphs.

52

3.4. Feature Selection

Unbalanced data Sometimes, the class labels are unbalanced. And arguably, in-
stances belonging to the rare class are more valuable than instances of the majority
class. Hence, we may first evaluate features on a downsampled subset with the equal
class ratio, and only once the promising features are identified, finish the calculation of
the promising features on the rest of the data.

But is it the best to downsample to 1:1 ratio? Based on the empirical evidence it is
better to have slightly more rare classes than of majority classes [207].

Unlabeled data Arguably, labeled data are more valuable for supervised feature se-
lection than unlabeled data. Hence, we may prefer to start the search for the best
features with labeled data. And only once the promising features are identified, finish
their calculation on the unlabeled data.

Practical considerations In conventional databases, is faster to execute a single large
query instead of executing many small queries on mutually exclusive and exhaustive
subsamples [45, p. 8].

There are different reasons for this behavior. Among others, it can be caused by
memory locality [49] and query processing overhead.

Hence, if we want to deploy branch and bound algorithm to conventional databases,
the steps performed by branch and bound algorithm should be as big as possible. In the
simplest case, we can divide the data into just two groups. The first group may contain
only labeled downsampled instances. The second group would then contain the rest of
the instances. The initial screening for the best features can be done on the first group of
instances. And only the most promising features would be then calculated on the second
group of instances.

3.4.3.1 Sample Size

Propositionalization can produce a high number of irrelevant and redundant features. To
reduce the time spent on generating these “useless” features, we can first propositionalize
a subset of target ids, evaluate the features, and continue with the propositionalization
of the remaining target ids only with the features, that were evaluated to be relevant and
unique.

But intuitively, there is an overhead associated with the sampling. Hence, there might
be situations when sampling increases the runtime, instead of decreasing the runtime.
The following paragraph analyses this dilemma.

Let’s consider a naive model describing the runtime of Predictor Factory:

t = m · f + n · v ·m, (3.9)

where m is the count of generated features, n is the count of data samples (tuples) in
the target table, f is the fixed time associated with the calculation of a single feature
(e.g., the network lag between the client with Predictor Factory and the server) and v is

53

3. PREDICTOR FACTORY

a variable time associated with the calculation of a single feature value for a single data
sample (e.g., the processing time of the database).

Now, let’s modify the equation for a situation where we first calculate the features
for p samples (“probes”) with the subsequent calculation of the rest of the features for
top s features (“subset”):

t = m · f + p · v ·m+ s · f + (n− p)v · s; p < n, s < m. (3.10)

If we combine equations Equations (3.9) and (3.10) together an assume following
constants:

p = 2000 (commonly in range from 102 to 104),
s = 20 (commonly in range from 10 to 102),
m = 2000 (commonly in range from 102 to 105),
f = 0.1 (commonly in range from 10−2 to 10−1) seconds,
v = 10−5 (commonly in range from 10−4 to 10−6) seconds,

(3.11)

we get that if the target table contains more than n=2101 samples, we save time by
employing the sampling. If we vary the variables between the extremes, we get estimates
in the range from 2 001 to 53 000.

Implementation The default setting of the probe count p in Predictor Factory is 2 000
samples per class, in the case of a classification problem, respectively 4 000 samples in
the case of a regression problem. These numbers were selected to be able to get decently
reliable estimates of the features’ relevancy [92, 138, 26].

The default setting in Predictor Factory is to use the sampling if:

1. the target table contains more than 10 000 samples,
2. and the sample count n is at least twice the size of the probe count p.

Discussion Branch and bound (B&B) algorithm can be used to prune away unprom-
ising features. B&B is attractive as it guarantees that the returned top n features are
optimal in respect to the used feature weighting (in our case Chi2). However, experi-
ments with naive bounds on Chi2, where the lower bound is 0 and the upper bound is
equal to the count of samples, showed that B&B does not provide any acceleration in
comparison to complete evaluation of all features on real-world datasets.

3.4.4 Duplicate Feature Detection

Entities should not be
multiplied beyond necessity.

William Ockham

54

3.4. Feature Selection

Propositionalization produces a high number of irrelevant and redundant features.
But is the generation of redundant features inevitable? Yes, it is:

Example 3.4.1. If the database contains product costs in multiple currencies, then
these costs are likely highly positively correlated. Hence, unless we test input attributes
for the correlation, the generated features will be positively correlated and potentially
redundant19

Duplicate features can also be generated from categorical attributes if bijection between
two categorical attributes can be defined:

Example 3.4.2. When we apply distinct count feature function on product identifier
and product description, we might get the same results.

Problem description Duplicate features are inconvenient. They increase runtime,
take space, and sometimes even result in failure of an algorithm (e.g., in a textbook
implementation of Linear Discriminant Analysis).

Detection before feature construction It can be tempting to detect bijections dir-
ectly on the attributes in the database and work only on a unique set of attributes to save
runtime and to get a unique set of features. However, if we stick with the example on the
product identifier and product description, while distinct count may not find any
difference between these two attributes, text length feature function may find differences.
For example, we may find out that products with long descriptions are sold more fre-
quently than products with short descriptions. But we may not be able to identify this
from the product identifier, because they can be of a constant length. On the other
end, product identifier may contain information about the order, in which products
were added into the database, and this order may not be recoverable from the product
description. Hence, we may safely remove duplicate attributes in the database without
any loss of information only if the attributes are exact duplicates (copies).

Detection after feature construction We may either detect hard-duplicates or soft-
duplicates. The difference is that hard-duplicates are identical attributes, while soft-
duplicates are attributes that may not be identical but provide similar information as
measured, for example, with correlation coefficient.

CFS An example of an algorithm for feature selection with soft-duplicate penalization
is Correlation Feature Selection (CFS) [102]. The disadvantage of CFS is that we have to
calculate the correlation of each attribute with another attribute. Although the runtime
of the calculation of the correlation matrix is greatly reduced by the initial binning of the
continuous features, the algorithm still has O(n2) time complexity, where n is the count
of the attributes.

19High absolute correlation does not imply redundancy. For an illustration, see [99, page 10, figure 2
(e)].

55

3. PREDICTOR FACTORY

FCBF The complexity of CFS was improved, for example, in Fast Correlation-Based
Filter (FCBF), which has O(n logn) complexity [270]. The speedup in FCBF was ob-
tained by using heuristics.

3.4.4.1 Monotonic Transformation Invariant Hashing

For detection of hard-duplicates, we can hash each feature and store the hashes in a hash
map, where the key is the hash and the value is the feature id for a potential duplicity
confirmation. If a new feature happens to have a hash that is already in the hash map,
the new feature is a potential duplicate.

For the hashing, we want a monotonic transformation invariant hash. Why? Because
decision trees are invariant to the monotonic transformation of features – if we apply a
monotonic transformation on the features, the decision thresholds will change, but the
structure of the learned tree and the accuracy of the learned model remains the same (bar
the changes due to approximations in the practical implementations of decision trees,
rounding errors...). And the current state-of-the-art classifier [258], extreme gradient
boosting, is based on decision trees.

A monotonic transformation invariant hash can be obtained from a monotonic trans-
formation varying hash h with the following algorithm:

1. Bin continuous attributes with the equal-height algorithm.

2. Calculate hash h from the vector of counts of samples in each bin.

Experiment Coincidentally, Chi2 is similar to the described algorithm and we already
calculate Chi2 for each feature. Couldn’t we use Chi2 as the hash? When tested on
relational repository, Chi2 had 0 false positives on 19 320 features.

Computational complexity Chi2 of the calculated features can be stored in a hash
map for O(1) search and insert on average.

3.4.5 Feature Selection Ahead of Feature Collection
Since we propagate the target and the target id into all relations, we have all the necessary
information to perform univariate feature selection locally. Thus, we do not have to put
all features into a single relation to evaluate them [238]. The advantage of pushing feature
selection ahead of feature collection is two-fold – it saves computation time and storage.

Computation time For example, if millions of features are constructed and only one
thousand of features, which are considered to be the most desirable, are required at the
output, only the selected thousand features have to be joined together.

56

3.4. Feature Selection

Storage The calculated features may contain null values, even though the dataset does
not contain any missing value. An example of a category that generates null values are
aggregate features, which return null, when they are passed an empty vector (e.g., min,
max, std...). Since relational databases do not have to have support for sparse storage,
a null value may take the same amount of space as a non-null. To alleviate this issue,
Predictor Factory stores only non-null values in the generated features. The nulls are
then added into the feature only once it is clear that the feature is going to be returned.
The nulls are added into the features during the collection phase with left join.

57

CHAPTER 4
Implementation

4.1 Technology
Predictor Factory is an ensemble of SQL, XML, and Java. The justification of the
individual technologies follows.

SQL justification. Based on O’Reilly survey [169] 71% of data scientists use SQL,
making SQL the most commonly used tool by data scientists.

XML justification. While not everyone likes XML, XML is well known and provides
XML Schema Definition (XSD) for XML validation. And validation is important because
users are allowed to define their own feature functions.

Java justification. If we want to be able to process data in different databases, then it
is useful to use a unified interface. The two most common database interfaces are Open
Database Connectivity (ODBC) and JDBC. Since JDBC is slightly more modern than
ODBC, it was decided to use JDBC. Since JDBC is an interface developed for Java, the
code is also written in Java1.

4.2 Vendor-Agnostic
Predictor Factory requires all the (input) data to be stored in a single database. But
this database can be one of: Microsoft SQL Server, MySQL, Oracle, PostgreSQL, or
SAS. Each of these databases is using a different dialect of SQL and SAS is not even
relational (SAS predates Codd’s concept of a relational database by 4 years). To bridge

1An alternative to Java could have been Groovy, which is compatible with Java but provides features
that make work with relational databases more comfortable. Namely, Groovy provides multi-line strings
and named parameters in prepared statements. Nevertheless, at the time, Groovy did not provide statical
typing, which is desirable in large projects.

59

4. IMPLEMENTATION

the differences, JDBC, which provides a unified interface to databases from Java, was
utilized. The following paragraphs list functionality of JDBC, which while not essential
for building a vendor-agnostic application, makes it easier.

Metadata During the initial phase, Predictor Factory has to collect metadata about
tables, attributes, and foreign key constraints. These metadata can be obtained at least
three ways:

1. by using vendor’s specific query;
2. by utilizing information_schema;
3. by using DatabaseMetaData interface of JDBC.

Out of these choices, the most versatile method is JDBC’s DatabaseMetaData interface.
Note, however, that JDBC merely defines an interface, which is implemented in a data-
base driver. And not all drivers are bug-free and feature complete. To deal with the
deficiencies in the individual drivers, a bridge design pattern was employed.

SQL-JAVA type conversion Predictor Factory should know which feature functions
are applicable to each data type in a database. But each database can support a different
set of data types. There are at least three ways how to obtain a mapping between the
database data types and the application’s data types:

1. by hand-curated mapping for each database vendor;
2. by querying information_schema;
3. by mapping JDBC’s DATA_TYPE to application’s data types.

Out of these options, the utilization of JDBC’s mapping of SQL’s data types to JDBC’s
DATA_TYPE may look like an unnecessary additional step. However, there is just
a single set of JDBC’s DATA_TYPE (for a given version of JDBC) that have to be
mapped, making this choice more scalable than a hand-curated mapping of database
data types to application’s data types. Note, however, that the mapping is implemented
in the database drivers and is not, once again, always trouble-free.

Escape syntax While JDBC provides a uniform connection interface to databases,
the SQL queries broadcasted over the JDBC interface may differ from vendor to vendor.
And they do. For example, each database may name functions differently (even essential
functions like log or sqrt), making it difficult to write vendor-agnostic queries. There are
at least five ways how to deal with these differences:

1. use a common subset of functions;
2. have a set of “personalized” queries for each database vendor;
3. use a library which transcribes the queries to the appropriate dialect;

60

4.3. Architecture

4. write your own transcription library;

5. use JDBC escape sequences.

Utilization of a ready-to-use library like LINQ (for C#) or JOOQ (for Java) is the
most attractive approach. Unfortunately, many libraries support only common OLTP
databases. But the first two deployments of Predictor Factory were for SAS and Netezza.
Furthermore, not many libraries have support for both, data manipulation and data
creation language, which is a requirement for calculation and storage of features directly
in the database.

Fortunately, ODBC introduced so-called “escape sequences”, which provide fixed names
to elementary functions that are not in the SQL standard. These escape sequences are
then transparently transcribed to the vendor’s dialect in the database driver2. Since
JDBC inherited these escape sequences from ODBC, the escape sequences are a safe
choice for vendor-agnostic queries.

4.3 Architecture
Programming is breaking of one
big impossible task into several
very small possible tasks.

Jazzwant

The architecture of Predictor Factory was inspired with Relational Classification –
Tree Approach [7], Proper [218], JOOQ3 and SQuirelL SQL Client4.

Component diagram Predictor Factory has 4 interfaces: a connection to a data-
base via JDBC, a Graphical User Interface (GUI) defined in FXML, a setting passed in
an XML file, and SQL definitions of feature functions wrapped in XML together with
metadata like feature function description or author name (see: Figure 4.1).

A class diagram of Predictor Factory, depicted in Figure 4.2, copies the functional
decomposition of a propositionalization diagram in Figure 2.1. Namely, Data represent-
ation, Propagation, Feature creation, and Feature collection are each implemented in a
separate package. The connection to a database is realized in two layers: a SQL layer,
which converts ANSI SQL to vendor’s dialect of SQL, and Network layer, which relays
the SQL to the database. The setting and feature functions, that are in XML, are read
and written in XML package. GUI is implemented in a separate package as well.

2In some databases, like SAS, the transcription is performed in the database rather than in the driver.
3See http://www.jooq.org.
4See http://squirrel-sql.sourceforge.net.

61

http://www.jooq.org
http://squirrel-sql.sourceforge.net

4. IMPLEMENTATION

DatabasePredictor Factory

Pattern

GUI

Setting

XML

FXML

JDBC

XML

Figure 4.1: Component diagram of Predictor Factory.

4.3.1 Network
Network package provides a connection to a database.

Pooling Connection pooling is not strictly required as Predictor Factory never uses
more than one connection in a single moment. However, Predictor Factory may run for
hours, if not days, and with increasing runtime, the likelihood of a connection failure
increases. To facilitate recovery from such dropped connections, a pool of connections is
maintained. When a command has to be executed on the database, a working connection
is retrieved from the pool and after finishing the command, the connection is immedi-
ately returned to the pool for reuse. If a connection is dropped during the execution of
the command, the results of the command are lost to Predictor Factory. Nevertheless,
subsequent commands will automatically use a new connection instead of attempting to
use the dropped connection.

Database class Database class defines properties of the connection. The properties
can be either defined as a set of server name, port number, database name or with a
URL string, which permits the setting of advanced connection parameters.

Driver class Driver class contains information about the JDBC driver like className,
URL prefix, and database separator. The Driver class is separate from Database or
Dialect class because multiple drivers for a single database may exist. And reversely, a
single driver may work with multiple databases.

Network class Parameters are passed to the driver as URL, which is either construc-
ted from Driver template and individual properties of the Database or directly relayed

62

4.3. Architecture

from the Database. Username and password are always passed to the driver as separate
parameters.

4.3.2 Configuration Files
In Java world, there are two common ways how to implement configuration files – XML
files or property files5. Both approaches are perfectly suitable. The advantage of XML
files is that they support tree structure and lists. However, this advantage was utilized
only to represent a list of individual settings. Arguably, the same outcome could have
been achieved by having a directory with n property files. The advantage of such an
approach is that it would be easier to migrate individual configuration files from one
computer to another.

The XML files are read immediately at the start of Predictor Factory and checked
for validity with XSD to fail fast in the case of user’s error.

4.3.3 Metadata
Metadata about the database are collected with JDBC DatabaseMetaData interface. If a
driver does not implement the interface, the functionality is implemented in the database
vendor’s dialect of SQL.

4.3.4 SQL
All SQL/DatabaseMetaData queries to the database go thru Dialect class, which as-
sembles queries in the appropriate dialect for the given database. Dialect class also takes
care of converting the database responses into the expected format (e.g., SAS Database-
MetaData class in JDBC driver pads all entity names with spaces to a constant length.
If these additional spaces were not removed, queries using quoted entity names could fail
because quoted entity names are looked up including the spaces).

4.3.5 Main
The main function can be described with the following pseudocode:

connectionPool = getConnectionPool;
meta = getMetaData(connectionPool);
meta = propagate(connectionPool, meta);
features = featurify(connectionPool, meta);
collect(connectionPool, features);

5Other methods include preference and JNDI API.

63

4. IMPLEMENTATION

4.4 Testing and Validation

4.4.1 Connection Leaks
Many databases have a limit on the count of open connections at a single moment.
These limits are by default quite small (e.g., 100 in MySQL) and cannot be stretched too
much (e.g., Oracle has a hard limit of 2048 open connections). Hence, it is important
to properly close all open connections to the database, once the connections are needed.
Otherwise, the database, sooner or later, starts to reject new connections.

Stress testing To detect unclosed connections, Predictor Factory was executed in a
loop many times against a database. If at least one connection was left open after the
application’s termination, the loop would prematurely end on connection rejection. All
supported databases (Microsoft SQL Server, MySQL, Oracle, PostgreSQL, SAS) were
stress-tested on the connection leaks because each JDBC driver may behave slightly
differently (e.g., Oracle driver is sensitive to closing JDBC resources in proper order
while MySQL driver is forgiving in this respect). No connection leaks were observed.

Driver Some JDBC drivers, like pgjdbc-ng – an alternative driver for PostgreSQL, also
provide a setting for the detection of unclosed connections. Unfortunately, pgjdbc-ng was
sometimes reporting false positives (some of the queries were taking more time than was
the setup connection timeout).

Proxy Communication between Predictor Factory and a MySQL database was also
observed with Neor Profile SQL proxy6. Predictor Factory always opened two connections
at the beginning and used one of these two connections until the end. This observation
is in the agreement with the configuration of the pooling library in Predictor Factory –
Predictor Factory processes all queries to the database serially. And the pooling library
is set to open two connections at the beginning.

4.4.2 User Testing
The usability of Predictor Factory was tested on 9 international students. The following
paragraphs describe the population of the testers, the measured objective, the outcome,
found issues, taken remedies, and the limitations of the performed user testing.

Population Predictor Factory was tested on international students in age 21–25 that
attended a one-hour-long presentation about relational learning during Summer vacation
2016. Nine students attended the presentation. Eight of them found the topic interesting
enough to spend another hour testing Predictor Factory. A more detailed demographic
is not available as these data were not collected.

6See http://www.profilesql.com.

64

http://www.profilesql.com

4.4. Testing and Validation

Metric The measured metric was whether the tested subjects can build a predictive
model on financial dataset. This objective required propositionalization of relational
data with Predictor Factory. The data itself were already loaded into a relational data-
base. For success, a subject had to generate a decision tree in RapidMiner with 10-fold
cross-validation AUC higher 0.9 in less than 60 minutes.

Outcome Out of 9 subjects, 7 subjects successfully delivered a predictive model. One
of the subjects dropped out before the start of the testing because of a lack of interest.
Another subject was not able to install Java Runtime Machine on his laptop.

Java Out of all issues, the biggest issue was with Java prerequisite, as Predictor Factory
is written in Java. Out of 8 subjects, 5 subjects were not able to immediately run
Predictor Factory. It was found out that many Linux distributions by default install
OpenJDK (and not Oracle JDK). And OpenJDK does not include support for JavaFX,
in which the GUI is written. Another common issue was outdated versions of Java. One
subject was not able to install Java within the 60-minute limit at all. We were not able
to identify the root cause of the failure.

Users It was found out that users are able to select a continuous attribute as the
target for classification. Or that they are able to pick a nominal attribute as the target
timestamp. Misconfiguration of Predictor Factory appeared in 3 cases.

Remedies As a remedy to Java problem, documentation for Predictor Factory was
updated with the requirement for Oracle JDK 1.8 or higher. Alternatively, OpenJDK
1.8 is permissible, if it is accompanied with an additional OpenFX package. To deal
with the evident misconfiguration of Predictor Factory, user inputs are now checked for
plausibility. If the user input is invalid, an error message with the problem description
and a recommended action is returned.

Limitations The performed user testing suffers from two significant problems. First,
the target audience for Predictor Factory are data mining practitioners in financial in-
stitutions and retail. But Predictor Factory was tested on students. Second, if a subject
got stuck for more than 5 minutes, the subject was told how to get over the obstacle. If
subjects were left to solve the task individually and unaided, the success rate would be
most likely lower than the measured. The interventions can be justified with two aims:
to not let the subjects leave with bitterness about relational learning in their hearts. And
to identify more troublesome spots in Predictor Factory beyond the issues with Java.

Conclusion The performed user testing identified deficiencies in Predictor Factory,
that would be otherwise difficult to identify. Namely, Predictor Factory was tested on
a diverse set of operating systems. This facilitated a realization that OpenJDK lacks

65

4. IMPLEMENTATION

JavaFX support, which can be, nevertheless, installed with a separate package. Addi-
tionally, users tried scenarios in Predictor Factory, that were vastly different from the
scenarios taken by the developer. That helped to identify deficiencies in the user input
checks.

66

4.4. Testing and Validation 67

MainXMLSQL

FeatureCreation

Network

Meta

Database

- database: String
- inputSchema: String
- name: String
- outputSchema: String
- password: String
- port: int
- url: String
- username: String

Driver

- className: String
- name: String
- urlDatabaseSeparator: String
- urlPrefix: String

Dialect

- name: String
- number: String
- timestamp: String
- varchar: String

FeatureFunction

- author: String
- name: String
- sql: String

Feature

- featureFunction: FeatureFunction
- name: String
- relevance: int
- rowCount: int
- runtime: int
- sql: String
- table: Table

Table

- name: String
- nominal: LinkedSet<String>
- numerical: LinkedSet<String>
- propagationPath: List<Table>
- temporal: LinkedSet<String>
- temporalConstraint: TemporalConstraint

ForeignConstraint

- fkColumn: LinkedSet<String>
- fkTable: String
- name: String
- pkColumn: LinkedSet<String>
- pkTable: String

Network

- database: Database
- dataSource: DataSource
- driver: Driver
- url: String

+ closePool(): void
+ execute(String): Object
+ openPool(Driver, Database): Boolean
+ update(String): Boolean

Setting

- blackOut: int
- featureFunction: Set<FeatureFunction>
- history: int
- network: Network
- temporalUnit: int

TemporalConstraint

- hasFutureRecords: Boolean
- hasNull: Boolean
- name: String
- rowCount: int
- rowCountOptimistic: int

Meta

- table: LinkedSet<Table>

+ getTable(): void

Propagation

Propagation

+ propagate(Meta): Meta

FeatureCreation

+ createFeature(Meta, Set<FeatureFunction>): void

SQL

+ createFeature(): int
+ propagate(): int
+ tidyUp(): int

XML

+ marshall(Object, String, String): Boolean
+ unmarshall(String, Class): Object
+ unmarshallAll(String, Class): LinkedSet<Object>

FeatureCollection

FeatureCollection

+ addFeature(): void
+ makeOutputTable(): void
+ predictNextBestFeature(): Feature

Figure 4.2: Class diagram of Predictor Factory.

CHAPTER 5
Relational Repository

The aim of Relational Repository is to support machine learning research with multi-
relational data. The repository currently contains 83 SQL databases hosted on a public
MySQL server located at relational.fit.cvut.cz. A searchable meta-database provides
metadata (e.g., the number of tables in the database, the number of rows and columns
in the tables, the number of self-relationships).

5.1 Goals
Many organizations maintain their data in relational databases, which support complex
structured data. Extending machine learning from traditional single-table methods to
multi-relational data is an important direction for practical applications. The statistical
and algorithmic challenges that arise from multi-relational data have been addressed
in a number of research communities, such as Statistical-Relational Learning, Multi-
Relational Data Mining, and Inductive Logic Programming. Experience with the UCI
Machine Learning Repository1 has shown that a shared repository of benchmark datasets
facilitates research progress [9]. The UCI Machine Learning Repository contains mainly
datasets stored in a single data table. Our goal is to provide a similar service for the
relational learning community for relational datasets that contain multiple interrelated
tables.

5.2 Design
The repository is maintained in a public MySQL server hosted by Czech Technical Uni-
versity in Prague. Each dataset is stored as a MySQL database on the server. Different
formats have been introduced for storing multi-relational data. The advantages of using
the SQL (SQL stands for “Structured Query Language”) format include the following.

1http://archive.ics.uci.edu/ml/

69

http://archive.ics.uci.edu/ml/

5. RELATIONAL REPOSITORY

◦ The SQL format is a based on a standard widely used in industry. Using SQL
databases in machine learning facilitates cross-community knowledge transfer and
collaborations between machine learning and database researchers.

◦ Because SQL is a common standard, many programming environments support
accessing and processing SQL data. This includes machine learning and statistical
platforms such as R, Clowdflows [141], RapidMiner, and Weka. All general applic-
ation languages provide SQL database connectivity, including Python, Java, and
C++.

◦ The data description facilities of SQL provide a standard for defining metadata
about the structure of the dataset. For example, information about the entities
linked by a relationship is specified using primary and foreign keys. This metadata
is recorded in the system catalog, and can be queried by machine learning applic-
ations.

To facilitate using tools developed for other relational data formats, we have provided
scripts for converting MySQL data to other common data formats used in relational learn-
ing http://www2.cs.sfu.ca/~oschulte/jbn/DataConversion/MLN.html. This includes
the Wisconsin Logic Learning format (WILL) and the .db format used in the Alchemy
system. The ClowdFlows system also provides data format conversion, for example from
MySQL to the Aleph Inductive Logic Programming Format2.

5.3 Content
The repository currently contains 83 databases. This includes common benchmark data-
sets used in relational learning, like eastbound/westbound train dataset [178] or biode-
gradability dataset [18]. We have also aimed at providing a diversity of databases, for
instance in terms of the number of records and in terms of the complexity of the relational
schema. Hence, also synthetic datasets from different database vendors are included, as
they are designed to show off capabilities of their database software. An example of
such a synthetic dataset is Adventure Works, which is interesting not only because of its
complexity, but also because:

◦ it uses both, simple and composite keys;

◦ it contains a diverse set of data types, including datetime, blob (images) and geo-
metry;

◦ it contains missing values.

2http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

70

http://www2.cs.sfu.ca/~oschulte/jbn/DataConversion/MLN.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

5.4. Access and Contributions

5.4 Access and Contributions
Read-only access can be obtained via a database connection with the following paramet-
ers.

Hostname relational.fit.cvut.cz
Port 3306
Username guest
Password relational

To contribute a database, please contact the repository administrators; a web con-
tact form is available https://relational.fit.cvut.cz/contact. One possibility is to
provide us with a MySQL dump of your database. Another option is to provide us with
read access to your database on your server, so we can migrate the database to the pub-
lic server. A web form for contributing is available https://relational.fit.cvut.cz/
contribute.

5.5 The Meta-Database
Table 5.1 shows selected metadata from the meta-database. The meaning of the columns
is as follows.

#Relations The number of tables in the database.
#Instances Count of rows in the target table.
Size Size including indexes.
Type The dataset is either a measurement or synthetically generated.
Domain The original domain.
Task Classification or regression.

Database #Relations #Instances Size Type Domain Task

Accidents 3 503362 234.5 MB Real Government Class
AdventureWorks 71 31223 233.8 MB Synth Retail Regr
Airline 19 413046 455.5 MB Real Retail Class
Atherosclerosis 4 389 3.2 MB Real Medicine Class
BasketballMen 9 1536 18.3 MB Real Sport Regr
BasketballWomen 8 234 2.3 MB Real Sport Class
Biodegradability 5 328 3.3 MB Real Medicine Regr
Bupa 9 345 300 KB Real Medicine Class
CCS 6 1000 15.9 MB Real Financial Regr
CDESchools 3 2269 12.3 MB Real Government Regr

71

https://relational.fit.cvut.cz/contact
https://relational.fit.cvut.cz/contribute
https://relational.fit.cvut.cz/contribute

5. RELATIONAL REPOSITORY

CORA 3 2708 4.5 MB Real Education Class
CS 8 100 300 KB Synth Financial Class
Carcinogenesis 6 329 21 MB Real Medicine Class
Chess 2 295 300 KB Real Sport Class
CiteSeer 3 3312 5.9 MB Real Education Class
ClassicModels 8 273 500 KB Synth Retail Regr
ConsumerExp 3 2047961 337.6 MB Real Retail Class
Countries 4 247 9.8 MB Real Geography Regr
CraftBeer 2 558 300 KB Real Entertainment Class
Credit 9 9861 317.9 MB Synth Retail Class
DCG 2 1130 300 KB Synth Education Class
Dallas 3 219 400 KB Real Government Class
Dunur 17 276 800 KB Real Kinship Class
Elti 11 1081 600 KB Real Kinship Class
Employee 6 2838426 197.4 MB Synth Retail Regr
ErgastF1 14 31313 60.4 MB Real Sport Class
FNHK 3 41392 130.8 MB Real Medicine Regr
FTP 2 29555 7.5 MB Synth Retail Class
Facebook 2 511 2 MB Real Social Class
Financial 8 682 78.8 MB Real Financial Class
GOSales 5 1000 22.4 MB Synth Retail Regr
Geneea 19 3556 61.4 MB Real Government Class
Genes 3 862 1.8 MB Real Medicine Class
Grants 12 385882 890.8 MB Real Education Regr
Hepatitis 7 500 2.2 MB Real Medicine Class
Hockey 22 7579 15.6 MB Real Sport Class
IMDb 7 738576 477.1 MB Real Entertainment Class
KRK 1 1000 100 KB Synth Sport Class
Lahman 25 23111 74.1 MB Real Sport Regr
LegalActs 5 583672 240.2 MB Real Government Class
Mesh 29 223 1.1 MB Real Industry Regr
Mondial 40 204 3.2 MB Real Geography Class
MooneyFamily 68 92 3.2 MB Synth Kinship Class
MovieLens 7 6039 154.9 MB Real Entertainment Class
Musk 2 92 400 KB Real Medicine Class
Mutagenesis 3 188 900 KB Real Medicine Class
NBA 5 30 300 KB Real Sport Class
NCAA 9 268 35.8 MB Real Sport Class
Nations 3 14 1.2 MB Real Geography Class
Northwind 29 830 1.1 MB Synth Retail Regr
PTC 4 343 8.1 MB Real Medicine Class
PTE 38 299 4.4 MB Real Medicine Class
Pima 9 768 700 KB Real Medicine Class
PremiereLeague 4 380 11.3 MB Real Sport Class
PubMed_Diabetes 3 20055 44.1 MB Real Education Class

72

5.5. The Meta-Database

Pubs 11 18 400 KB Synth Retail Regr
Pyrimidine 2 74 1 KB Real Medicine Regr
Restbase 3 9524 3 MB Real Retail Regr
SAP 5 60024 246.9 MB Synth Retail Class
SAT 36 76 2.7 MB Real Industry Class
SFScores 3 23833 10.3 MB Real Government Regr
Sakila 16 15991 6.4 MB Synth Retail Regr
SalesDB 4 6698788 584.3 MB Synth Retail Regr
SameGen 4 1081 300 KB Real Kinship Class
Seznam 4 1458233 146.8 MB Real Retail Regr
Shakespeare 4 32980 8.8 MB Real Entertainment Class
Stats 8 41793 658.4 MB Real Education Regr
StudentLoan 10 1000 900 KB Real Education Class
TPCC 9 28600 165.8 MB Synth Retail Class
TPCD 8 147600 2.5 GB Synth Retail Class
TPCDS 24 97006 4.8 GB Synth Retail Class
TPCH 8 148534 2 GB Synth Retail Regr
Thrombosis 3 806 1.9 MB Real Medicine Class
Trains 2 20 100 KB Synth Education Class
Triazine 2 186 200 KB Real Medicine Regr
UTube 2 547 200 KB Real Industry Class
UW-CSE 4 278 200 KB Real Education Class
University 5 38 300 KB Synth Education Class
VOC 8 8073 2.7 MB Real Retail Class
VisualGenome 6 1350342 322.4 MB Real Education Class
Walmart 4 4607680 167.3 MB Real Retail Regr
WebKP 3 877 12.8 MB Real Education Class
World 3 239 700 KB Real Geography Class

Table 5.1: List of databases in the repository.

The name of the meta-database schema is meta. This schema contains a number
of tables with information about the databases, as well as the performance of different
learning algorithms on the databases. The name of the table that contains information
about the databases is meta.information. Some of this metadata is automatically ex-
ported in HTML format for display on the webpage relational.fit.cvut.cz. In the
following paragraphs, we list the names of the main column and their meaning. When
we refer to “all columns” or “all rows”, we mean all columns/rows of all tables in a data-
base. The metadata contain the following main groups of information: basic database
statistics, information about columns or fields, foreign key structure, and classification
information.

73

relational.fit.cvut.cz

5. RELATIONAL REPOSITORY

Basic Database Statistics Various basic properties, such as record count and missing
values.

row_count The total number of rows, or records.
row_max The maximum number of rows, or records, in a single table.
column_count The total number of columns, or fields.
download_url AURL containing further information about the dataset, such as proven-

ance.
null_count The number of table entries with null values; typically this is the number

of table entries with missing values.

Column Information These columns contain metainformation about the types of
columns/fields/attributes in the database tables. The list is mutually exclusive and col-
lectively exhaustive as it holds: column_count = geo_count+date_count+ lob_count+
string_count+ numeric_count.

geo_count The number of columns that represent spatial attributes. (These are called
“geographic” features in MySQL.)

date_count The number of columns that represent temporal attributes (date, time, or
year).

lob_count The number of columns that store large objects (e.g., images).
string_count The number of columns that store string values. This typically includes

discrete attributes.
numeric_count The number of numeric columns.

Foreign Key Structure A foreign key points from one table to another. Chen et al.
propose visualizing the foreign key relationships in a semantic relationship graph [35]:
The graph contains a directed edge from table T to table T ′ if table T references T ′ in a
foreign key constraint. These columns represent information about the structure of the
semantic relationship graph.

primary_key_count The number of primary keys.
composite_key_count The number of primary keys that comprise more than one

column.
foreign_key_count The number of foreign keys.
self_referencing_table_count The number of tables such that the table contains a

foreign key pointer to one of its own columns. This occurs for example when a
relational schema represents a class hierarchy or taxonomy.

74

5.6. Conclusions

has_loop Whether there exists a loop of foreign key pointers over several tables. An
example of a loop is when between a person table and a university table exists two
foreign keys – the first foreign key signifies that a person is studying at a university,
while the second foreign key signifies that the person is teaching at the university.

Classification Many of the databases in the repository have been used to study clas-
sification in relational data. There is often a standard class label for such studies; we
refer to this as the target attribute. These columns contain information relevant to the
target attribute where it exists.

target_column The target attribute most often used in relational classification studies.
target_table The table that contains the target column.
target_id The primary key field of the target table.
instance_count The number of rows in the target table.
class_count The number of class labels.
majority_class_ratio The proportion of the majority class label on instance count.

5.6 Conclusions
In this chapter, we presented Relational Repository (RR), an easily accessible collection of
datasets for relational learning. The RR was designed with supervised learning in mind.
To this end, the RR contains 83 ready to download datasets. One of the important
features of the RR is that it provides meta-data about the datasets. The RR meta-data
can be accessed at https://relational.fit.cvut.cz/.

75

https://relational.fit.cvut.cz/

CHAPTER 6
Empirical Evaluation

What gets measured gets
improved.

Peter Ferdinand Drucker

6.1 Algorithms
Predictor Factory is empirically compared to:

1. Aleph
2. RelF
3. RSD
4. Wordification

The listed algorithms were selected because their implementations are freely available
and work with relational formalism, mitigating the necessity of time-consuming and error-
prone conversion of the data from one formalism to another1.

6.2 Datasets
The algorithms were executed on 16 datasets from relational repository. The list of the
used datasets is in Table 6.1.

6.3 Protocol
Following paragraphs describe the experiment protocol.

1The used implementations are from ClowdFlow.

77

6. EMPIRICAL EVALUATION

Database #Relations #Instances Size Type Domain

Carcinogenesis 6 329 26.3 Real Medicine
CS 8 100 0.3 Synth Finance
Financial 8 682 94.1 Real Finance
Genes 3 862 1.9 Real Medicine
Hepatitis 7 500 2.2 Real Medicine
Mondial 33 454 3.3 Real Geography
MovieLens 19 3832 47.9 Real Entertainment
Mutagenesis 3 188 0.9 Real Medicine
NBA 4 30 0.3 Real Sport
NCAA 10 268 40.6 Real Sport
PremiereLeague 4 363 11.3 Real Sport
Trains 2 20 0.1 Synth Logistic
University 5 38 0.3 Synth Education
UW-CSE 4 278 0.2 Real Education

Table 6.1: List of the used relational datasets. The size is in MB including indexes. Type
describes the origin of the dataset.

Metrics The used metrics are 10-fold cross-validated: classification accuracy, ROC-
AUC and F-measure.

Propositionalization All propositionalization algorithms were executed with their
default setting.

Models The classification was performed with J48 decision tree with the default set-
ting. The decision tree was used because of its ability to handle nominal attributes,
missing values and collinear features.

Workflows Aleph, ReLF, RSD and Wordification were executed with ClowdFlows’
workflow available at http://clowdflows.com/workflow/4018/, which is using operators
from Weka. The results from Predictor Factory were evaluated in a standalone Weka
with a comparable workflow. Weka was chosen as the tool of choice because it permits
application of the identical implementation of the decision tree and identical evaluation
of the models [227].

6.4 Results
The measured classification accuracies are in Table 6.2. Notably, propositionalization
tools generally do not work with composite foreign keys, like in the original Mondial

78

http://clowdflows.com/workflow/4018/

6.5. Discussion

dataset. Sometimes the algorithms crash from unknown reasons. The results on other
measures were comparable to results obtained with classification accuracy.

Dataset Aleph Predictor Factory RelF RSD Wordification

Carcinogenesis 0.55 0.82±0.07 0.60 0.60 0.80
CS – 0.96±0.01 – – –
Financial 0.87 0.87±0.06 0.98 0.95 0.90
Genes – 0.62±0.02 – 0.84 –
Hepatitis 0.78 0.74±0.08 0.69 0.59 0.65
Mondial – 0.79±0.05 – – –
MovieLens – 0.78±0.03 0.61 – 0.83
Mutagenesis 0.81 0.93±0.08 0.87 0.90 0.82
NBA – 0.60±0.02 – – –
NCAA – 0.70±0.02 – – –
PremierLeague – 0.67±0.03 – – 0.35
Trains 0.70 0.95±0.15 0.75 0.80 0.95
University – 0.89±0.04 – 0.37 0.84
UW-CSE 0.85 0.88±0.15 0.81 0.89 0.89

Table 6.2: The 10-fold cross-validation estimate for the accuracy with a decision tree. A
hyphen means that the propositionalization algorithm crashed on the dataset. The best
results for each dataset are highlighted.

When it comes to the comparison of the accuracies, Predictor Factory is in par with
the other propositionalization algorithms. The bad accuracy on the Financial dataset is
caused by taking the time constraints in the account. If the time constraints are lifted,
Predictor Factory reaches the accuracy of 0.99±0.01.

6.5 Discussion
Possibly the biggest single limitation of Predictor Factory is the fact that you have to
assemble the target table by yourself. And if you make a mistake during the creation of
the target table, everything is wrong – you then optimize something different from what
do you want to optimize or/and you do it on a wrong population.

79

CHAPTER 7
Foreign Key Constraint Identification

For relational learning, it is important to know the relationships between the tables.
In relational databases, the relationships can be described with foreign key constraints.
However, the foreign keys may not be explicitly specified. In this chapter, we present how
to automatically and quickly identify primary & foreign key constraints from metadata
about the data. Our method was evaluated on 72 databases and has F-measure of 0.87
for foreign key constraint identification. The proposed method significantly outperforms
in runtime related methods reported in the literature and is database vendor agnostic.

7.1 Introduction
Whenever we want to build a predictive model on relational data, we have to be able to
connect individual tables together [37]. In Structured Query Language (SQL) databases,
the relationships (connections) between the tables can be defined with foreign key (FK)
constraints. However, FK constraints are not always available. This can happen, for
example, whenever we work with legacy databases or data sources, like comma separated
value (CSV) files.

Identification of relationships from database belongs to reverse engineering from data-
bases [198] and can be done manually or by means of handcrafted rules [10, 37, 147, 273].
Manual FK constraint discovery is very time-consuming for complex databases [176].
And handcrafted systems may overfit to small collections of databases, used for the
training. Therefore we use machine learning techniques for this task and evaluate them
on a collection of 72 databases.

Unfortunately, FK constraint identification is difficult. If we have n columns in a
database, then there can be n2 FK constraints, as each column can reference any column
in the database, including itself1. Hence, there is n2 candidate FK constraints.

1We have not observed any instance of a column referencing itself. Nevertheless, SQL standard does
not forbid it.

81

7. FOREIGN KEY CONSTRAINT IDENTIFICATION

Example 7.1.1. If we have a medium-sized database with 100 tables, each with 100
columns, then we have to consider 108 candidate FK constraints.

We can evaluate probability p that a single candidate FK constraint is a FK constraint
with a classifier (e.g., logistic regression) in a constant time. Hence, if we assumed that
the probability pi,j, which denotes a probability that a column i references column j, is
independent of all other candidate FK constraints in the database, the computational
complexity of FK constraint identification would be O(n2). However, the probabilities
do not appear to be independent.

Example 7.1.2. If we had two columns A,B and we had known that pA,B = 0.9 and
pB,A = 0.8 then under assumption of independence it would be reasonable to predict that
column A references column B and also that column B references column A. However,
directed cyclic references2 do not generally appear in the databases as it would make
updates inconveniently difficult [170]. Hence, our example database most likely contains
only one FK constraint with A referencing B.

If we accepted that the FK constraints are not independent of each other, we could
generate each possible combination of FK constraints and calculate the probability that
the candidate combination of FK constraints is the true combination of FK constraints.
The computational complexity of such algorithm is O(2n

2
). Clearly, a practical algorithm

must take simplifying assumptions to scale to complex databases.
The applications of the FK constraint discovery, besides relational learning, include

data quality assessment [2] and database refactoring [176].
The chapter is structured as follows: first, we describe related work, then we describe

our method, then we describe our experiments and their results, discuss the results and
provide a conclusion.

7.2 Related Work
Li et al. [161] formulated a related problem, attribute correspondence identification, as
a classification problem.

Rostin et al. [224] formulate FK constraint identification as a classification problem.
Meurice et al. [176] compared different data sources for the FK constraint identi-

fication: database schema, Hibernate XML files, JPA Java code and SQL code. Based
on their analysis, the database schema data source has four times higher recall than
any other data source. In this chapter, we focus solely on the database schema data
source. Furthermore, they introduce 4 rules for filtering the candidate FK constraints:
the “likeliness” of the candidate FK constraint must be above a threshold, the FK con-
straints cannot be bidirectional, the column(s) of the selected FK constraints can be used
only once and there can be only a single (undirected) path from FK constraints between
any two tables.

2However, undirected cyclic references are commonly used, for example, to model hierarchies.

82

7.3. Method

Chen et al. [37] describe how to significantly accelerate FK constraint identification
by pruning unpromising candidates at multiple levels. We inspire from them and use
multi-level architecture as well. Furthermore, they introduce 4 rules for filtering the
candidate FK constraints: explore FK constraints only between the tables selected by
the user, only a single FK constraint can exist between two tables, directed cycles from
FK constraints are forbidden and there can be only a single (undirected) path from FK
constraints between any two tables. We inspire from Meurice’s and Chen’s articles and
reformulate their rules as integer linear programming (ILP) problem.

7.3 Method
To make the relationship identification fast, a predictive model was trained only on the
metadata about the data, which are accessible with Java Database Connectivity (JDBC)
API. This approach has the following properties:

1. It is fast and scalable.

2. It is database vendor agnostic.

3. It is not affected by the data quality.

The problem of relationship identification was decomposed into two subproblems:
identification of primary keys (PKs) and identification of FK constraints (Figure 7.1).
The reasoning behind this decomposition is that identification of PKs is a relatively
easy task. And knowledge of PKs simplifies identification of FK constraints because FK
constraints frequently reference PKs3.

The identification of the PKs is performed in two stages: scoring and optimization.
During the scoring phase, a probability that an attribute is a part of a PK (a PK
can be compound – composed of multiple attributes) is predicted with a classifier. The
probability estimates are then passed into the optimization stage, which delivers a binary
prediction.

The same approach is taken for FK constraint identification. During the scoring
phase, a probability that a candidate FK constraint is a FK constraint is estimated with
a classifier. The probabilities are then passed into an optimizer, which returns the most
likely FK constraints.

Primary Key Scoring All metadata that are exposed by JDBC4 about attributes
(as obtained with getColumns method) and tables (as obtained with getTables) were
collected and considered as features for classification. For brevity, we describe and justify
only features used by the final model.

3A FK may reference any attribute that is unique, not only PKs. Nevertheless, all FKs in the analyzed
databases reference PKs.

4See docs.oracle.com for the documentation.

83

https://docs.oracle.com/javase/8/docs/api/java/sql/DatabaseMetaData.html

7. FOREIGN KEY CONSTRAINT IDENTIFICATION

Primary key
scoring

Primary key
optimization

Relationship
scoring

Relationship
optimization

List of all the columns
in the database

Gradient boosted trees

Integer linear programming

Gradient boosted trees

Integer linear programming

Probabilities that the columns
are in some PK

List of PKs,
List of candidate FK constraints

Probabilities that the candidates
are FK constraints

List of foreign key constraints

Figure 7.1: The algorithm decomposition.

Data types like integer or char are generally more likely to be PKs than, for example,
double or text. To promote portability of the trained model, we do not use database data
types but JDBC data types, which have the advantage that they are the same regardless
of the database vendor.

Since some databases offer only a single data type for numerical attributes, we also
note whether numerical attributes can contain decimals, as PKs are unlikely to contain
decimal numbers.

Doppelgänger is an attribute, which has a name similar to another attribute in
the same table. For example, atom_id1 is a doppelgänger to atom_id2. Doppelgängers
frequently share properties, i.e., either both of them are in the PK or neither of them is
in the PK.

Ordinal position defines the position of the attribute in the table. PKs are fre-
quently at the beginning of the tables.

String distance between the column and table names are helpful for identification
of PKs and FKs. Opinions on the best measure for PK and FK constraint identification
vary. For example, [224] uses exact match while [37] uses Jaro-Winkler distance. After
testing all string measures available in stringdist package [165], we found that Levenshtein
distance delivers the best discriminative power on the tested databases.

Keywords like id or pk frequently mark PKs. The presence of the keywords is
analyzed after the attribute/table name tokenization, which works with camel case and
snake case notation.

JDBC also provides attributes that leak information about the presence of the PK,

84

7.3. Method

like isNullable, isAutoIncrement and isGeneratedColumn. Since it is unreasonable to
assume that these metadata would be set correctly after importing data from CSV files,
they were excluded from the model.

For comparison to features extracted from the data (and not metadata), two addi-
tional features were extracted: whether the attribute contains nulls (containsNull) and
whether the attribute contains unique values (isUnique). These features are generally ex-
pensive to calculate [37]. Nevertheless, some databases, like PostgreSQL, automatically
generate these statistics for each attribute in the database and provide a vendor-specific
access to these statistics.

Primary Key Optimization Since each table in a well-designed database should
contain a PK, a single most likely PK is identified for each table in the database. If the
single most likely PK attribute in a table is a doppelgänger, all its doppelgängers in the
table are declared to be part of the PK as well, creating a compound key. The described
optimization can be solved with an ILP solver, which we use mostly because foreign key
optimization (subsection 7.3) is using ILP formulation as well.

Foreign Key Scoring Features for FK constraints are a combination of features calcu-
lated for individual attributes from subsection 7.3 (prefixed with fk and pk respectively)
with features unique for the FK constraints. The description of the unique features
follows.

Data types between FK and PK attributes should match. Nevertheless, SQL permits
FK constraints between char and varchar data types.

Data lengths between FK and PK attributes should match. Nevertheless, SQL
explicitly permits FK constraints between attributes of different character lengths as
defined in the SQL-92 specification, subsection 8.2.

String distance between FK column name and PK table name should be small
because FK column names frequently embed a part of the PK table name. Similarly,
FK column name should be similar to PK column name because FK column names
frequently embed a part of the PK column name. On the other end, FK column name
should generally differ from FK table name as they are not directly related.

Furthermore, to be able to compare metadata-based features to data-based features,
we tested whether all non-null values in the FK are present in the PK (satisfiesFKCon-
straint). This is generally an expensive feature to calculate [37]. Nevertheless, some
databases, like PostgreSQL, automatically calculate histograms for each attribute in the
background and offer a vendor specific interface to access the histograms. And based
on the range of the histograms many candidate FK constraints can be pruned. More
advanced data-based features (e.g., similarity of the FK and PK distributions) were not
explored as the focus of the chapter is on the metadata-based features.

Foreign Key Optimization The optimization can be formulated as an integer linear
optimization problem on a directed graph G = (V,E), where V is the set of attributes

85

7. FOREIGN KEY CONSTRAINT IDENTIFICATION

in the database and E is the set of candidate FK constraints. The pij is the estimated
probability that the candidate FK constraint referencing FK i to PK j is a FK constraint.
The probabilities are estimated with a classification model trained on features described
in subsection 7.3. Compound FKs are modeled as multiple FK constraints (one FK
constraint for each attribute). We define variable xij:

xij =

{
1 if the candidate FK constraint is a FK constraint
0 otherwise

(7.1)

The optimization problem is then:

max
x

∑
[i,j]∈E

xij − 2
∑

[i,j]∈E

xij(1− pij) (7.2a)

s.t. ∑
j∈V

xij ≤ 1, ∀i, (7.2b)∑
i∈S,j∈S,[i,j]∈E

xij ≤ |S| − 1, ∀S ⊆ V, |S| ≥ 1, (7.2c)

xi1j1 − xi2j2 = 0, ∀P, F ⊆ V, i ∈ F, j ∈ P, |P | ≥ 2, (7.2d)
xi1j − xi2j = 0, ∀D ⊆ V, i ∈ D, j ∈ V, (7.2e)

xij ∈ {0, 1}, ∀i ∈ V, j ∈ V. (7.2f)

The objective function defines all FK constraint candidates xij with pij > 0.5 as FK
constraints if it does not violate any of the following constraints.

Unity constraint 7.2b enforces that a FK can reference only a single PK. While a
single FK can in theory reference multiple different PKs, no such occurrence appeared
in the analyzed databases.

Acyclicity constraint 7.2c ensures that the graph is (directionally) acyclic. However,
this formulation of acyclicity requires an exponential number of constraints. To deal with
that, we generate acyclicity constraints lazily [203]. Acyclicity constraint is desirable
because if pij is high, pji is generally high as well (particularly for i = j). But directed
cycles (even over intermediate tables) do not appear in the analyzed databases.

Completeness constraint 7.2d says that if a PK is compound, then either all or
neither attribute of the PK P is referenced from the FK table by attributes F . Com-
pleteness constraint ensures that compound FKs are syntactically correct.

Doppelgänger constraint 7.2e says that if attributes are doppelgängers to each other,
then either all or neither attribute from the doppelgänger set D reference the (same) PK
attribute.

Constraint 7.2f defines the problem as an integer programming problem.
It should be noted that if constraints 7.2d and 7.2e are removed, we get an optimiz-

ation problem similar to the identification of minimum spanning tree in a graph [108].
Hence, the FKs can be efficiently optimized with Dijkstra algorithm with a modified

86

7.4. Results

termination condition (the algorithm terminates once the objective function starts to
increase).

7.4 Results
Following paragraphs describe an empirical comparison of 5 classifies on 3 different sets
of features from 72 databases.

Data We used 72 relational databases from relational repository [A.12]. The data-
bases range from classical relational benchmarking databases (like TPC-C or TPC-H)
to real-world databases used in challenges (e.g., from PKDD in 1999 or from Predictive
Toxicology Challenge in 2000). The collection of the databases contains in total 1343
PKs, 1283 FK constraints, 6129 attributes and 788 tables. That means that on average
approximately 1 of 5 attributes is part of a PK. The count of all possible relationships
is 1 232 392 (in theory, a FK can reference any attribute in the database, including it-
self). That means that on average approximately 1 of 960 tested relationships are FK
constraints.

Algorithm Following classification algorithms were tested on the problem: decision
tree, gradient boosted trees, naive Bayes, neural network and logistic regression as im-
plemented in RapidMiner 7.5. Since the best results were obtained with gradient boosted
trees, the reported results are for gradient boosted trees.

Measure For evaluation of the classification models, AUC and F-measure [66] were
used. Classification accuracy was omitted due to a significant class imbalance in FK
identification task. AUC evaluates the ability of the model to rank. Hence, AUC is
used to evaluate the quality of scoring. On the other end, F-measure is suitable for
the evaluation of the quality of thresholding. Hence, F-measure is used to evaluate the
quality of the optimization.

Validation To measure the generalization of the models to new unobserved databases,
batch cross-validation over databases [224, section 4.3] was performed. Since 72 databases
were analyzed, it means that each model was trained and evaluated 72 times. The batch
cross-validation has the advantage, in comparison to 10-fold cross-validation, that the
samples from a single database are either all in the training set or all in the testing
set. Hence, if the samples from a single database are more similar to each other than to
samples from other databases, we may expect that batch cross-validation will deliver a
less optimistically biased estimate of the model accuracy on new unobserved databases
than 10-fold cross-validation.

87

7. FOREIGN KEY CONSTRAINT IDENTIFICATION

Feature Importance Generally, it is desirable to minimize the count of utilized fea-
tures to make the model easier to understand and deploy. Table 7.1 depicts feature
importance for PK identification as reported by gradient boosted trees for features that
remained after backward selection.

Feature All Meta Ordinal Data

ordinalPosition 3279 1970 2581 -
isDoppelgänger 142 99 - -
isDecimal 80 81 - -
containsNull 18 - - 239
levenshteinToTable 15 124 - -
dataType 14 71 - -
isUnique 9 - - 780
containsKeyword 7 21 - -

AUC 0.985 0.970 0.934 0.784

Table 7.1: Feature importance for primary key identification for different feature sets.
Higher weight means higher importance.

The single most important feature for PK identification is the position of the attribute
in the table. This is not so surprising because all non-compound PKs in the analyzed
databases (with the exception of Hepatitis database) were the first attribute in the table.
Indeed, if we always predicted that the first attribute in a table is a PK, we get F-measure
equal to 0.934±0.007.

Table 7.2 lists feature importance for FK constraint identification. Interestingly, the
knowledge whether the FK constraint is satisfiable is the least important feature from
the selected features.

Optimization Contribution The PK optimization improves F-measure of PK iden-
tification from 0.845±0.069 to 0.875±0.057. While FK optimization improves F-measure
of FK constraint identification from 0.743±0.020 to 0.870±0.022.

Runtime & Scalability The time required to score all 72 databases is 55 seconds
in total, where 95% of the runtime is due to the fact that JDBC collects metadata
about the attributes for each table individually, causing many round trips between the
algorithm and the database server. When we replaced JDBC calls with a single query to
information_schema, which provides all the data at the database level, the total runtime
decreased to 5 seconds.

Furthermore, the algorithm was tested on our university database with 909 tables.
The runtime was 18 minutes, due to the quadratic growth of candidate FK constraints
with the count of attributes in the database [37]. To keep the memory requirements

88

7.5. Discussion

Feature All Meta Data

levenshteinFkColToPkTab 298.1 301.2 -
levenshteinFkColToFkTab 245.8 246.0 -
fk_isDoppelgänger 210.6 210.4 -
levenshteinFkColToPkCol 182.2 182.2 -
fk_containsKeyword 160.2 160.3 -
dataLengthAgree 92.2 92.2 -
pk_isDoppelgänger 60.3 60.3 -
fk_isPrimaryKey 57.8 57.8 -
fk_ordinalPosition 48.4 48.2 -
dataTypeAgree 10.3 10.2 -
satisfiesFKConstraint 1.6 - 382

AUC 0.990 0.988 0.934

Table 7.2: Feature importance for foreign key constraint identification. Higher weight
means higher importance.

manageable, FK candidates were scored on the fly and only the top n FK candidates
with the highest probability were kept in a heap for FK optimization.

7.5 Discussion
Table 7.3 depicts a comparison of our approach to different approaches in the literature.
Since the implementations of the referenced approaches are not available, we take and
report the measurements for the biggest common denominator of the evaluated databases
– the TPC-H database. The approaches differ in the utilized features (e.g., Kruse et al.
utilize SQL scripts, while our approach does not) and objectives (e.g., Chen et al. aim
to maximize precision at the expense of recall). The results of our method for all 72
databases are available for download at https://github.com/janmotl/linkifier.

Reference Features Precision Recall F-measure Runtime [s]

Zhang et al. [273] D 1.00 1.00 1.00 501
Chen et al. [37] D, M 1.00 1.00 1.00 14
Rostin et al. [224] D, M ? ? 0.95 450

Our M 0.77 0.77 0.77 1

Table 7.3: Literature review of different approaches to foreign key constraint identification
on TPC-H 1GB database. “D” stands for data, “M” stands for metadata. Unknown values
are represented with a question mark.

89

https://github.com/janmotl/linkifier

7. FOREIGN KEY CONSTRAINT IDENTIFICATION

Empirical comparison of our metadata-based approach to other metadata-based ap-
proaches is in Table 7.4. Oracle Data Modeler [196] estimates FK constraints based
on the knowledge of PKs (it is assumed that a FK must reference a PK), equality of
column names between the FK and the PK and equality of the data types between the
FK and the PK. SchemaCrawler [65] is using an extended version of these three filters.
SchemaCrawler assumes that a FK must reference either a PK or a column with a unique
constraint. The column names must equal but differences in the presence/absence of id
keyword and differences between singular and plural forms are ignored, improving the
recall. And datatypes must equal including their length (except of varchar datatype),
improving the precission.

Implementation F-measure Runtime [s]

Oracle Data Modeler 0.06 2.07
SchemaCrawler 0.17 4.65

Our 0.87 5.14

Table 7.4: Empirical evaluation of metadata-based approaches to foreign key constraint
identification on 72 databases together.

Limitations The metadata-based identification of PK and FK constraints is limited
by the quality of the metadata. For example, if all the columns in the database had non-
informative names and all the columns were typed as text, the accuracy of the predictions
would suffer.

But even if the metadata are of hight quality, our metadata-base approach is not able
to reliably reconstruct a hierarchy of subclasses. The problem is illustrated in Figure
7.2. Based on the table and PK names, we can correctly infer that Person and Vendor
are subclasses of BusinessEntity. However, our metadata-based method has no means
how to infer that Customer and Employee are subclasses of Person and not directly of
BusinessEntity.

Both these limitations can be addressed by extending the metadata-based approach
by appropriate data-based features. For example, whenever a subclass can reference
multiple superclasses, the superclass with the lowest row count, which still satisfies the
FK constraint, should be selected.

7.6 Conclusions
We described a method for foreign key constraint identification, which does not put any
assumptions on the schema normalization, data quality, availability of vendor specific
metadata or human interaction. The code for primary & foreign key constraint identi-
fication was designed to be database vendor agnostic and was successfully tested against

90

7.6. Conclusions

Figure 7.2: Example entity diagram with a hierarchy of subclasses.

Microsoft SQL Server, MySQL, PostgreSQL and Oracle. The code with a graphical user
interface is published at GitHub (https://github.com/janmotl/linkifier) under BSD
license. The runtime is dominated by the connection lag to the server and if the re-
quirement on the code portability is lifted, we are able to predict primary & foreign key
constraints for all 72 tested databases in 5 seconds.

91

https://github.com/janmotl/linkifier

CHAPTER 8
Stratified Cross-Validation by Multiple

Columns

Stratified cross-validation is one of the standard methods of how to evaluate classifier’s
generalization accuracy. However, conventional implementations of cross-validation can
stratify only by a single column. In this chapter, we propose to use Integer Linear
Programming for stratification by multiple columns. Our experiments using an extensive
set of multi-label data sets shows that the proposed method significantly outperforms
non-stratified cross-validation.

8.1 Introduction
It is difficult to improve things unless we can measure them. In machine learning, one
of the established methods of how to empirically evaluate supervised algorithms is cross-
validation (CV).

There are many variants of CV [222, 217], but one of the more common ones for the
evaluation of classifiers is a stratified CV, which assigns samples into folds such a way
that each fold has (an approximately) equal distribution of the classes.

However, common implementations of stratified CV support stratification only based
on a single column. But what if we want to stratify based on multiple columns, for
example, because we are doing multi-label classification?

Why stratification The traditional reason why to use stratified sampling is to reduce
the variance of the estimate in comparison to the variance obtained with random sampling
[41, Section 5.6].

Another reason why a person could be interested into stratified CV is to increase the
estimated testing accuracy in comparison to random CV [139, 93].

But most importantly, stratified CV helps us to avoid edge scenarios whenever we
are working with small data sets that include a rare class in the label. If we used a

93

8. STRATIFIED CROSS-VALIDATION BY MULTIPLE COLUMNS

non-stratified CV on such data set, it would be fairly probable [236, Section 2] that at
least one of the folds would be missing the rare class. And such absence may prevent us
from evaluating the model’s accuracy [74].

In extreme scenarios (e.g., when we are performing 2-fold CV), we may easily en-
counter a complementary nuisance: the absence of the rare class in the training set
(while in the previous case, we were dealing with the absence of the rare class in the test-
ing set). In such situations, a shelf implementation of the classifier may refuse to provide
a prediction for an unseen class label. And once the count of classes in the training set
decreases to one, the classifier may (rightfully) refuse to get trained because the problem
degenerated into a one-class classification problem. Once again, stratified CV helps us to
avoid such nuisance (till the count of the folds is equal of less than the count of samples
in the rarest class).

8.2 Definitions
Split-validation is a basic method of estimating the generalization accuracy of a model
on unseen data. It works by partitioning the data set into training and testing sets. The
model is then trained on the training set and evaluated on the testing set.

In k-fold cross-validation, the above partitioning is repeated k times with the con-
straint that each sample in the data set is used exactly once. The k estimates are then
averaged to provide a single estimate.

The partitioning can be random, but that can result in unequal prior probabilities
across the partitions (folds) and consequently negatively biased estimates. Stratified k-
fold cross-validation alleviates this issue by using the same distribution of the classes in
each fold.

8.3 Related Work
Diamantidis et al. [52] extended k-fold cross-validation method with clustering in order
to construct more representative folds. The key idea was that each fold should have an
approximately equal count of samples from each cluster. This procedure should help
to get folds with as equal distribution of the training samples as possible. Based on
their reported experimental results, the proposed method mainly reduces the bias of the
measure (i.e., it increases testing classification accuracy) on small data sets. What is
important about this reference is that they “stratify” based on the features of the data
set and not based on the label as it is done by conventional stratified CV. This suggests,
that our proposed CV, which works on multiple columns, can be useful not only on
multi-label data sets, but also on single-label or even completely unsupervised data sets.

Zeng and Martinez [272] introduced distribution-balanced stratified cross-validation
(DBSCV), which also aims to minimize the differences in the distribution of the folds.
Their algorithm is based on single-linkage from hierarchical clustering. On highly un-

94

8.4. Solution

balanced datasets, a slight modification of DBSCV called DOB-SCV improved testing
AUC on C4.5 on average by 2 percent point in comparison to stratified cross-validation
[182, 166] .

Contrary to the previously cited works, Sechidis et al. [236] did not focus on strat-
ification in feature space but on stratification on label space, where we have multiple
binary labels (multi-label classification data sets). They introduced a greedy algorithm,
which directly equalizes the distribution of positive samples of each label across the folds.
Szymański and Kajdanowicz [247] then modified this greedy algorithm to equalize the dis-
tribution of 2-way interactions between labels across the folds (i.e.: “1-way interactions”
were replaced with 2-way interactions). We combine 1-way and 2-way label interactions
in a single optimization formulation and complement it with n-way label interactions, a
competitive baseline stratification method from [236], where n is the count of columns,
over which we stratify. Furthermore, we guarantee that each fold has approximately the
same count of samples (the greedy algorithm did not guarantee that) and we replace the
greedy optimization with an exact optimization.

8.4 Solution
We solve the problem with Integer Linear Programming (ILP) on grouped and one-hot
encoded data (see an example in Figure 8.1).

2

66664

1 1
2 2
2 3
1 1
1 2

3

77775

Data

!

2

664

1 1
2 2
2 3
1 2

3

775

Grouped 2

664

Count
2
1
1
1

3

775 !

2

664

0 1 0 0 1
1 0 0 1 0
1 0 1 0 0
0 1 0 1 0

3

775

Dummies 2

664

Count
2
1
1
1

3

775

Figure 1: Example of data preprocessing for ILP.

1

Figure 8.1: Example of data preprocessing for ILP.

Whenever the cardinalities (the counts of the unique values) of the columns are low
and the row count is high, the grouping reduces the size of the ILP problem. One-hot
encoding into dummies (where a column with cardinality n is encoded into n binary
columns) then simplifies the formulation of the ILP problem. We encode labels with n
unique values into n binary columns instead of more space-saving n− 1 binary columns,
because contrary to the previous works ([236, 247]), we support multi-class labels (labels
with more than 2 unique values) and we want to avoid the need to define the reference
class (the contrast) to exclude from the n − 1 encoding. For the illustration of how the
split can change based on the definition of which class is the “positive”, see Figure 8.2.

Integer Linear Programming Ideally, we would like the stratified sampling to satisfy
following requirements:

95

8. STRATIFIED CROSS-VALIDATION BY MULTIPLE COLUMNS

Input

⎡

⎣

Data
A
B
B

⎤

⎦ →
[Dn−1

1
0

][Count

1
2

]
→

[Fold1
1
0

]
,

[Fold2
0
2

]
→

[
Fold1

A
]
,

[Fold2
B
B

]

⎡

⎣

Data
A
B
B

⎤

⎦ →
[Dn−1

0
1

][Count

1
2

]
→

[Fold1
1
1

]
,

[Fold2
0
1

]
→

[Fold1
A
B

]
,
[
Fold2

B
]

⎡

⎣

Data
A
B
B

⎤

⎦ →
[
1 0
0 1

]Dn [Count
1
2

]
→

[Fold1
1
1

]
,

[Fold2
0
1

]
→

[Fold1
A
B

]
,
[
Fold2

B
]

1

Internal representatio n Output

1)

2)

3)

Figure 8.2: When we care only about positive samples (A in the first row), we may split
the data into two folds following way: [A] and [B,B], because each fold has approximately
the same count of positive samples A. When we switch the definition of the positive class
(B in the second row), we end up with a better split [A,B] and [B] – the quality of A
distribution remained unchanged while the quality of B distribution improved. When
we one-hot encode the input data into n binary columns (the third row) instead of n− 1
binary columns (the first two rows), we end up with the better split without the need to
define the positive class. Note that the encoding into n binary columns generalizes well
to multi-class problems, where it can be unclear which class(es) should be treated as the
positive.

1. Each sample is assigned to exactly one fold.
2. The count of each 1-way interaction is the same in each fold.
3. The count of each 2-way interaction is the same in each fold.
4. The count of each n-way interaction is the same in each fold.
5. The count of samples is the same in each fold.

Unfortunately, requirements 2–5 are not always fulfillable since we can only assign
whole samples to folds (and not fractions of the samples). For example, when we have
3 samples and 2 folds, we end up with the unequal size of the folds. Hence, we have to
relax the constraints to the nearest whole numbers of the ideal continuous value. For
example, when we have 3 samples and 2 folds, we constraint fold size to be ≥ 1 and ≤ 2
because the ideal fold size is 1.5.

But we can still find examples that evade these relaxed constraints (see Figure 8.3).
We could have further relaxed the constraints, but then we could have got a subop-

timal result when an optimal solution exists. For example, we could have got one fold

96

8.4. Solution

 0 1 1
1 0 1
1 1 0

Dummies

Count
1
1
1

Figure 8.3: No matter how do we attempt to assign these three rows into two folds, there
is going to be a column with the difference of the value appearance equal to two.

with 2 samples and another fold with 4 samples, when a perfect solution with 3 samples
in each fold exists.

Hence, what do we really want to do is to minimize the error from the ideal (but
potentially continuous) state. In ILP, we can solve it by introducing slack variables. The
whole ILP formulation of multi-column stratified cross-validation is in Section 8.4, where
vector S are the slack variables, matrix D and vector C are the dummies, respectively
the counts from Figure 8.1 and matrix X represents the assignment of the dummies into
the folds (the output of the optimization). The formulation minimizes the sum of the
slack variables 8.4a subject to constraints 8.4b-l.

min
Sr

X

r

Sr (1a)

s.t.
X

f

Xr,f = Cr, 8r, (1b)

Xr,f
⇠

Cr

folds

⇡
, 8r, (1c)

Xr,f �
�

Cr

folds

⌫
, 8r, (1d)

X

r

Dr,cXr,f
⇠P

r Dr,cCr

folds

⇡
, 8c, 8f, (1e)

X

r

Dr,cXr,f �
�P

r Dr,cCr

folds

⌫
, 8c, 8f, (1f)

X

r

Dr,c1Dr,c2Xr,f
⇠P

r Dr,c1Dr,c2Cr

folds

⇡
,8c, c1 < c2, 8f, (1g)

X

r

Dr,c1Dr,c2Xr,f �
�P

r Dr,c1Dr,c2Cr

folds

⌫
,8c, c1 < c2, 8f, (1h)

X

r

(Xr,f � Sr)
⇠P

r Xr,f

folds

⇡
, 8f, (1i)

X

r

(Xr,f + Sr) �
�P

r Xr,f

folds

⌫
, 8f, (1j)

Xr,f 2 N, (1k)

Sr 2 {0, 1}. (1l)

1

97

8. STRATIFIED CROSS-VALIDATION BY MULTIPLE COLUMNS

Constraint set 8.4b ensures that each unique row r is assigned exactly Cr times
(requirement 1). Constraint sets 8.4c and 8.4d ensure that unique rows r are assigned
to folds f approximately equally (n-way interaction requirement 4). Constraint sets 8.4e
and 8.4f ensure that column values (as represented by matrix D and vector C) in each
column c are assigned to folds approximately equally (1-way interaction requirement
2). Constraint sets 8.4g and 8.4h ensure that 2-way interactions are assigned to folds
approximately equally (requirement 3). Constraint sets 8.4i, 8.4j and objective 8.4a
ensure that folds are of equal size as far as it is possible (requirement 5). Constraint set
8.4k ensures that only whole rows are assigned (and not only fractions). Also, it forbids
solutions with negative counts. Constraint set 8.4l defines a sufficient domain of the slack
variables S.

Solution extraction If we assume that the samples within the same label set are
i.i.d., we can just randomly assign the whole data rows from the data set following the
assignment of the strata groups into the folds as given by matrix X. On the other end,
if we have a reason to believe that the data within the same label set are not i.i.d., we
may follow up a stratification in feature space per label set.

If we need to generate multiple different CV assignments (e.g., for nested CV), there
are two sources of randomness. First, we can instruct the ILP solver to return the top
n solutions1. Second, we can change the seed in the pseudorandom number generator
before randomly assigning the whole data set rows into the folds based on the matrix X.

If we need to stratify by a continuous column, we can discretize the column (for the
purpose of stratification, for all other purposes, we may still use the continuous values)
and continue as if the column was discrete from the beginning.

8.5 Experiments
In this section, we present an experimental evaluation for stratified cross-validation pro-
posed in this chapter. The goal of our experiments is to answer the following questions:

Q1. Do the generated folds have the desired properties?
Q2. Does it decrease the variance of the classification measures?
Q3. Does it increase the mean of the classification measures?

Algorithms We compare our proposed algorithm for sample-fold assignment to two
other algorithms: one baseline and one state-of-the-art implementation of stratified cross-
validation for multi-label classification.

As a simple baseline, we use random (unstratified) cross-validation. As the state-of-
the-art reference for multi-label stratification, we use greedy iterative algorithm from
[247], which takes into account second-order relationships between labels2. We refer our

1In Gurobi solver 9.0, the argument is called PoolSolutions
2We used iterative_stratification 0.2.0 implementation from http://scikit.ml

98

http://scikit.ml

8.5. Experiments

algorithm as ILP, because it uses Integer Linear Programming solver.

Measures Following the convention established in [236, 247], we use the following
unsupervised measures to describe the quality of the generated folds:

Examples Distribution (ED) describes how much the actual size of the folds Sj de-
viate from the desired size of the folds cj:

ED =
1

k

k∑
j=1

||Sj| − cj|k. (8.1)

In our case, we desire 10 folds of the same size. Hence, k = 10 and cj = |D|
10

,
where |D| is the count of samples in the whole data set. This measure evaluates
conformance with the requirement 5.

Label Distribution (LD) describes how the proportion of positive evidence for a label
to the negative evidence for a label deviates from the same proportion in the entire
data set, averaged over all folds and labels:

LD =
1

|L|

|L|∑
i=1

(
1

k

k∑
j=1

∣∣∣∣ |Si
j|

|Sj| − |Si
j|
− |Di|

|D| − |Di|

∣∣∣∣
)
. (8.2)

This measure evaluates relaxed conformance with the requirement 2 (requirement 2
applies to each class while this measure, as defined in [236], applies only on positive
class).

Fold Zeros (FZ) is the count of folds that contain at least one label without any positive
example.

Fold-Label Zeros (FLZ) is the count of fold-label pairs without any positive example.

Each of these measures should be minimized. Furthermore, we use extensions of
the LD, FZ, and FLPZ measures [247] that work at the level of 2-way an n-way label
interaction. To keep the count of the abbreviations low, we denote the order of the
interaction with a subscript (see Table 8.1).

From supervised measures, we use Hamming loss, subset accuracy score, coverage
error, label ranking loss, macro-averaged precision, and micro-averaged ROC-AUC, once
again, following the convention established by [236, 247]. For the definition and discussion
of these measures, we refer the keen reader to [263].

Classifiers Since we optimize the folds at the three levels of label interaction (1-way,
2-way, and n-way), we use three different classifiers. Classifier-Chains (CC), which
should be mostly sensitive to the one-way interactions but fairly insensitive to the two and

99

8. STRATIFIED CROSS-VALIDATION BY MULTIPLE COLUMNS

Interaction
Measure 1-way 2-way n-way

LD LD1 LD2 LDn

FZ FZ1 FZ2 FZn

FLZ FLZ1 FLZ2 FLZn

Table 8.1: Unsupervised measures categorized by the level of label interactions. n rep-
resents the count of all the labels in the data set.

n-way interactions. Fast-Greedy (FG), which in comparison to CC explicitly models
two-way interactions (do not confuse the greedy classifier with the greedy stratification
algorithm). And Label Powerset (LP), which explicitly models the n-way interactions.
As a base classifier, we use random forest with 30 trees.

Data We used 29 multi-label data sets from Multi-Label Classification Dataset Repos-
itory3.

Data sets, which differ only in the feature-space, were included only once, to be able
to assume sample independence in the statistical tests discussed in Section 8.5 (E.g., we
include only GpositiveGO and exclude GpositivePseAAC because they are identical in
the label-space).

Furthermore, we excluded data sets, where ILP was not able to prove the optimality
of the found solution in less than 8 hours4.

The list of the used data sets and their properties are in Table 8.2.

Statistical tests We evaluated the measurements with two-tailed Nemenyi test follow-
ing Demšar’s recommendations [48]. For the Critical Difference (CD) in the presented
text and plots, we use significance level α = 0.05.

8.6 Results
The following paragraphs depict ranking of the cross-validation algorithms, averaged over
all the data sets. Rank 1 is always the best and rank 3 is always the worst.

Figure 8.4 shows the ranking for unsupervised measures defined in Section 8.5. The
proposed algorithm delivers folds that are on average equal or better than the folds
obtained with other algorithms. Noteworthy, ILP delivers folds of equal size (when
possible). Hence, it matches random solution (which is not concerned with anything else
but the fold sizes) and beats iterative solution (which is not concerned with the fold
sizes).

3http://www.uco.es/kdis/mllresources/
4We used Gurobi 9.0 solver on a 10-core computer with 64GB RAM

100

http://www.uco.es/kdis/mllresources/

8.6. Results

Data set Domain Instances Attributes Labels Labelsets

Arts Text 7 484 23 150 26 599
BBC1000 Text 352 1 000 6 15
Birds Audio 645 260 19 133
Business Text 11 210 21 920 30 233
CHD49 Medicine 555 49 6 34
Computers Text 12 440 34 100 33 428
Education Text 12 030 27 530 33 511
Emotions Music 593 72 6 27
Entertainment Text 12 730 32 000 21 337
EukaryoteGO Biology 7 766 12 690 22 112
Flags Image 194 19 7 54
GnegativeGO Biology 1 392 1 717 8 19
GpositiveGO Biology 519 912 4 7
Guardian1000 Text 302 1 000 6 14
Health Text 9 205 30 610 32 335
Image Image 2 000 294 5 20
Inter3000 Text 169 3 000 6 11
Recreation Text 12 830 30 320 22 530
Reference Text 8 027 39 680 33 275
Reuters1000 Text 294 1 000 6 14
Scene Image 2 407 294 6 15
Science Text 6 428 37 190 40 457
Slashdot Text 3 782 1 079 22 156
Social Text 12 110 52 350 39 361
Society Text 14 510 31 800 27 1 054
TMC2007-500 Text 28 600 500 22 1 172
VirusGO Biology 207 749 6 17
Yeast Biology 2 417 103 14 198
Yelp Text 10 810 671 5 32

Table 8.2: List of the used multi-label data sets.

Figure 8.5 shows ranking for the average of supervised measures as obtained from
cross-validation with 3 different classifiers. ILP gives statistically significantly higher
micro-averaged ROC-AUC than iterative algorithm when evaluated with fast greedy clas-
sifier, but it also statistically non-significantly losses to iterative algorithm on example-
based evaluation metrics [248] (subset accuracy and Hamming loss) when evaluated with
fast greedy classifier.

Figure 8.5 shows ranking for the variance of supervised measures as obtained from
cross-validation with 3 different classifiers. Both stratified approaches seem to statistic-
ally significantly decrease the variance of all measures except of macro-averaged precision

101

8. STRATIFIED CROSS-VALIDATION BY MULTIPLE COLUMNS

1

2

3

ED

FLZn

FLZ2

FLZ1

FZn

FZ2

FZ1

LDn

LD2

LD1

●

●

●

●

●

●

●

●

●

●

● ILP
Iterative
Random

Figure 8.4: Ranking of the cross-validation algorithms based on the unsupervised meas-
ures. Smaller area is better.

Classifier Chain

1

2

3

accuracy

micro
AUC

macro
precision

label ranking loss

Hamming
loss

coverage
error

●

●

●

●

●

●

Fast Greedy

1

2

3

accuracy

micro
AUC

macro
precision

label ranking loss

Hamming
loss

coverage
error

●

●

●

●

●

●

Powerset

1

2

3

accuracy

micro
AUC

macro
precision

label ranking loss

Hamming
loss

coverage
error

●

●

●

●

●

●

● ILP
Iterative
Random

Figure 8.5: Ranking of the cross-validation algorithms based on the average of supervised
measures. Smaller area is better.

and accuracy subset.

Answers The following lines answer questions formulated at the beginning of the ex-
perimental subsection.

Q1 Do the generated folds have the desired properties? On average, ILP folds have
by 45% fewer folds that contain at least one label without any positive example (the FZ
measure) than random folds and by 9% fewer folds than iterative folds. Hence, the prob-
ability that you will not be able to estimate the classifier’s performance is substantially
lower with ILP folds than with random or iterative folds.

Q2 Does it decrease the variance of the classification measures? On average, ILP
folds have by 1.2% lower variance than random folds and by 0.1% lower variance than
iterative folds.

102

8.7. Discussion

Classifier Chain

1

2

3

accuracy

micro
AUC

macro
precision

label ranking loss

Hamming
loss

coverage
error

●

●

●

●

●

●

Fast Greedy

1

2

3

accuracy

micro
AUC

macro
precision

label ranking loss

Hamming
loss

coverage
error●

●

●

●

●

●

Powerset

1

2

3

accuracy

micro
AUC

macro
precision

label ranking loss

Hamming
loss

coverage
error●

●

●

●

●

●

● ILP
Iterative
Random

Figure 8.6: Ranking of the cross-validation algorithms based on the variance of supervised
measures. Smaller area is better.

Q3 Does it improve the mean of the classification measures? On average, ILP folds
have by 1.1% higher accuracy/lower loss than random folds and by 0.4% higher accur-
acy/lower loss than iterative folds.

The raw measurements and the code necessary for the replication of the experiment
is available from https://github.com/janmotl/cv.

8.7 Discussion
Solver There are many ways how the problem could have been solved. To name just a
few alternatives, we could have used Constraint Programming, SAT solver, or plain old
exhaustive search with backtracking. We choose ILP because of our familiarity with the
method.

I.I.D. Real-world data are frequently non-i.i.d. [240, 11] and we may desire to assign
all related samples (e.g., purchases from the same customer) into the same fold. But this
requirement can interfere with our constraints. E.g., the maximal count of the purchases
from a single customer can be bigger than the desired fold size. An elegant way of how
to avoid the clash of the constraints is to directly minimize the error from the ideal state
as defined in Section 8.4 instead of defining the hard constraints 8.4c-h. However, this
proposal would require weighting of the individual error terms or usage of multi-objective
optimization.

Interactions Whenever we stratify by n columns with the proposed algorithm, we
look only at 1-way, 2-way, and n-way interactions between the labels while ignoring
all the interactions between the 2-way and n-way interactions. Hence, whenever we
stratify by more than two labels, our solution does not guarantee the “optimality” of the
fold assignment as it does when we stratify by one or two labels. While we could add
constraints for any i-way interaction, i ∈ {1, 2, ..., n}, into the ILP formulation, the count
of the constraints grows following Pascal’s triangle. I.e.: To model all the interactions

103

https://github.com/janmotl/cv

8. STRATIFIED CROSS-VALIDATION BY MULTIPLE COLUMNS

between n labels, we would need about c(2n) constraints, where c is a constant dependent
on the count of folds and the exact ILP formulation. Hence, we model only three types of
interactions, that we encountered in the literature about multi-label classification: 1-way,
2-way, and n-way interactions.

8.8 Conclusions
In this chapter, we introduced an algorithm for exact stratified cross-validation, when
we want to stratify by multiple columns (targets). The proposed algorithm replaces a
greedy solution of the former algorithms [236, 247] with the exact solution, adds balanced
distribution in the feature space and adds support for polynomial and continuous targets.
The proposed algorithm statistically significantly matches or surpasses non-stratified and
greedily optimized solutions in all evaluated metrics. Among others, the created folds
increase testing accuracy of the trained models and decrease the incidence rate of the edge
situations, when the evaluation is not possible at all. The created folds were published
at http://www.uco.es/kdis/mllresources.

104

http://www.uco.es/kdis/mllresources

CHAPTER 9
Trend and Seasonality Elimination

Detrending and deseasoning is a common preprocessing step in time-series analysis. We
argue, that the same preprocessing step should be considered on relational data, whenever
the observations are time-dependent. We applied Hierarchical Generalized Additive Mod-
els (HGAMs) to detrend and deseason (D&D) 18 real-world relational datasets. The ob-
served positive effect of D&D on the predictive accuracy is statistically significant. The
proposed method of D&D might be used to improve the predictive accuracy of churn,
default, or propensity models, among others.

9.1 Introduction
This chapter is concerned with feature extraction from relational data for supervised
learning, like classification or regression. The studied problem is not new and is called
propositionalization [137]. But one aspect of propositionalization was frequently ignored
in the early propositionalization literature: the data are frequently not just relational,
but also temporal. The ignorance of the temporal parts in relational data is quite under-
standable – neither processing of relational or temporal data is trivial when we want to
do it right. This chapter attempts to slightly narrow the gap between these two worlds
by introducing one basic concept from time-series modeling to the realm of proposition-
alization: the trend and season removal from relational data.

To illustrate the importance of detrending, consider a predictive model built on fin-
ancial data. If the model was built on raw data, the accuracy of the model would likely
degrade faster than if we build the model on inflation adjusted (“deflated”) data.

To illustrate the importance of deseasoning, consider observing a person for a month.
If the person went swimming in a river once during that month, we might want to make
different conclusions about the person when that month is June than if the month was
January.

To describe the proposed temporal normalization, we have to introduce the basics
of propositionalization in Section 9.2 and the relevant parts from time-series analysis in
Section 9.3. We then follow with the description of the proposed temporal decomposition

105

9. TREND AND SEASONALITY ELIMINATION

on relational data in Section 9.4, performed empirical evaluation in Section 9.5, and
the results in Section 9.6. The results are discussed in Section 9.7 and concluded in
Section 9.8.

9.2 Propositionalization
Propositionalization is a process of conversion of relational data into attribute-value
format, which can be understood by conventional machine-learning algorithms (see [137]).

There are many propositionalization methods. In this chapter we use PredictorFact-
ory1. But there are many other, which differ in the direction of data propagation (in
[144], the target, which we wish to predict, is propagated to the data, while in [137] the
data are propagated toward the target) or the count of the used models (in [144] and
[137], only one model is used, while Guo [98] uses as many models, as there are tables in
the database).

In this chapter, when we are talking about propositionalization, we assume that the
target, which we wish to predict, resides in target table. The moment, when we wish
to make the prediction, is defined by target timestamp. And the entity, for which we
wish to make the prediction, is defined by target id.

To predict the target from other tables than the target table, we have to link the
tables together. This is done with joins over foreign key constraints [144]. The end state
of this target propagation is that each table in the database contains the target column,
timestamp, and id from the target table.

The relationship between the target table and other tables does not always have to
be 1:1. When the relationship is 1:n, the content of the tables is aggregated to the level
of the data in the target table. Examples of common aggregate functions for numerical
attributes include min, max, avg, count, and stddev.

The final step then consists of joining all the features from the propagated and po-
tentially aggregated tables into a single table in attribute-value format.

9.3 Detrending and Deseasoning
The trend and seasonality can be removed with one of the classical methods from time-
series analysis like Seasonal and Trend decomposition using Loess (STL) [40], Holt-
Winters [109] or SARIMA [21].

However, these methods are not directly applicable to our data, because common
implementations of these methods cannot deal with:

1. missing values (e.g., caused by holidays),

2. multiple values per sample period (e.g., multiple transactions per day),
1www.predictorfactory.com

106

www.predictorfactory.com

9.4. Method

3. hierarchical dependencies between the data (e.g., multiple transactions from mul-
tiple different customers).

The listed deficiencies can be handled by Hierarchical Generalized Additive Models
(HGAMs) [197]. HGAMs are a combination of Generalized Additive Models (GAMs)
[104] and Hierarchical Generalized Linear Models (HGLMs) [24]. GAM part takes care
of modeling seasonality with cyclic cubic regression splines, while HGLM part takes
care of non-independence in the data that arises from hierarchical structures. Note that
HGAMs, just like GAMs or HGLMs, can handle non-uniformly spaced samples and
multiple values per sample period.

9.4 Method
Assuming additive decomposition, a time-series y at time t can be written as yt = St +
Tt + Rt, where St is the seasonal component, Tt is the trend component, and Rt is the
remainder component.

However, in this chapter, we assume that the data have a two-level hierarchical struc-
ture. The first level of data clustering is defined by target id. The second level is the
whole population. This hierarchical structure is used, because it allows us to model both,
1:1 and 1:n relationships between target id and data in a relational dataset.

A two-level hierarchical time-series can be written as yt,i = St+Tt+Tt,i+Bi+Rt,i, where
i is a specific target id, St is the population seasonal component, Tt is the population
trend component, Tt,i is the trend of i (random slope in HGLM literature), Bi is the bias
of i (random intercept in HGLM literature), and Rt,i is the remainder component.

Furthermore, we want to support exogenous variables in the decomposition, be-
cause the data in the tables do not have to be always commensurable. For example,
transaction table in Financial dataset [12] contains all possible types of transactions,
differentiated by columns type and operation (the used datasets are discussed in Sec-
tion 9.5). To block the effect of the exogenous variables, we write the decomposition as:

yt,i = βXt,i + St + Tt + Tt,i +Bi +Rt,i, (9.1)

where Xt,i is a vector of exogenous variables (fixed effects in HGLM literature) and β is
a vector of regression coefficients.

9.5 Experiments
In the introduction, we argued that the trend and seasonality of data is important. But
does it really impact the quality of the prediction? And if yes, how much?

To answer these questions, we empirically compare accuracies of models build on raw
data vs. temporarily normalized data on 18 real (non-artificial) temporal datasets from
relational repository [A.12] (see the list in Table 9.1).

107

9. TREND AND SEASONALITY ELIMINATION

Dataset Target table Target column Target id Target timestamp Classes Threshold

Accidents nesreca klas_nesreca id_nesreca cas_nesreca B, not B 2001-06-30
Airline On_Time ArrDel15 rownum FlightDate 0, 1 2016-01-16
BasketballMen teams rank tmID, year year ≤ 4, >4 1974
BasketballWomen teams playoff tmID, year year N, Y 2003
CCS transactions_1k Price TransactionID Date ≤ 500, >500 2012-08-24
Financial loan status account_id date A, B 1997-02-05
FNHK pripady Delka_hospitalizace Identifikace_pripadu Datum_prijeti ≤ 7, >7 2014-06-16
Geneea hl_hlasovani vysledek id_hlasovani datum A, R 2014-12-02
Lahman salaries salary teamID, playerID, lgID yearID ≤ 500000, >500000 1998
LegalActs legalacts ActKind id update Решение, not Решение 2012-07-24
NBA Game ResultOfTeam1 GameId Date -1, 1 2014-04-02
NCAA target team_id1_wins id season 0, 1 2012
PremierLeague Matches ResultOfTeamHome MatchID MatchDate -1, 1 2014-01-01
Seznam probehnuto kc_proklikano client_id, sluzba datum ≤ 1000, >1000 2014-08-01
Stats users Reputation Id LastAccessDate ≤ 10, >10 2014-03-29
VOC voyages arrival_harbour number, number_sup arrival_date Batavia, not Batavia 1723-07-20
Walmart train units store_nbr, item_nbr date ≤ 10, >10 2013-04-15
Yelp Reviews stars review_id review_date ≤ 3, >3 2011-04-25

Table 9.1: List of the used relational datasets from relational repository [A.12]. Regres-
sion and polynomial classification problems were converted to binary problems with the
logic described in Classes column. Threshold column defines the split to training and
testing set.

Each of the datasets was processed independently from the other datasets with the
following data flow:

1. Split the dataset to training and testing set with the median of target timestamp
(e.g.: median(loan.date) in Financial dataset. The used thresholds are in Table 9.1.
The older set is the training set, while the newer set is the testing set. This schema
allows us to model a common scenario, where a model is trained on all historical
data and then used for an extended period of time without any retraining.

2. Perform target propagation, as described in Section 9.2.

3. Fork the flow into the challenger and the baseline group. In the challenger group,
we perform temporal normalization. In the baseline group, we keep data as they
are. Temporal normalization consists of:

a) HGAM training on the training data.
b) Global trend and seasonality removal from both, training and testing data.

To see, whether it is actually beneficial to perform both, detrending and deseason-
ing, we also evaluate flows, where we only perform detrending, respectively de-
seasoning.

4. Propositionalize numerical attributes with the following aggregate functions: min,
max, avg, count, sum, and stddev as described in Section 9.2. We also test adding
of trend Tt,i from Equation (9.1) to the set of aggregates in separate flows.

108

9.6. Results

5. Train Random Forest[23] on the propositionalized training data. We could have
chosen any other algorithm, but we chose Random Forest, because it delivers good
results even without meta-parameter tuning[68].

6. Evaluate area under receiver operating characteristics curve (AUC-ROC) on the
testing set. Once again, we could have chosen any other measure, but we chose
AUC-ROC because it is generally more sensitive to the changes in the prediction
than thresholding measures as AUC-ROC takes into account all possible thresholds
while thresholding measures just one.

9.6 Results
Empirical results in Table 9.2 suggest that detrending, deseasoning, and inclusion of
slope among the set of the utilized aggregates is better than the baseline, which works
on raw data and does not use slope aggregate.

Dataset Baseline Detrended Deseasoned D&D D&D with slope

Accidents 0.73 0.73 0.74 0.74 0.74
Airline 0.80 0.81 0.85 0.85 0.85
BasketballMen 0.65 0.64 0.65 0.65 0.66
BasketballWomen 0.63 0.63 0.63 0.63 0.64
CCS 0.69 0.70 0.70 0.70 0.70
Financial 0.87 0.89 0.89 0.90 0.90
FNHK 0.70 0.72 0.74 0.73 0.73
Geneea 0.77 0.77 0.78 0.78 0.78
Lahman 0.58 0.58 0.58 0.58 0.58
LegalActs 0.93 0.93 0.94 0.93 0.93
NBA 0.60 0.62 0.60 0.62 0.62
NCAA 0.70 0.70 0.69 0.70 0.70
PremierLeague 0.67 0.67 0.67 0.67 0.67
Seznam 0.85 0.87 0.87 0.87 0.87
Stats 0.75 0.75 0.75 0.75 0.76
VOC 0.93 0.93 0.93 0.93 0.94
Walmart 0.56 0.59 0.57 0.59 0.59
Yelp 0.84 0.85 0.84 0.85 0.85
Average 0.74 0.74 0.75 0.75 0.75
Wins 3 8 9 12 16

Table 9.2: The effect of temporal normalization and inclusion of slope as a feature on
AUC-ROC. D&D stands for detrended and deseasoned. Bold font indicates the best
result for a dataset.

109

9. TREND AND SEASONALITY ELIMINATION

A one-tailed Wilcoxon signed-rank test indicated that AUC-ROC of propositionaliz-
ation on detrended and deseasoned data with slope as an additional feature generative
function was statistically significantly higher than AUC-ROC of baseline propositional-
ization with p < 0.00048.

9.7 Discussion
The empirical results suggest that all the tested enhancements: detrending, deseasoning,
and slope feature generative function are overall improving the accuracy of the classific-
ation models. This improvement is statistically significant, although when averaged over
all the tested datasets, the improvement is modest (1 percent point). In the following
paragraphs, we explain the observation and list the limitations of the performed study
and the implemented method.

When the method works A good candidate dataset for temporal normalization has
the following properties:

1. The dataset is affected by a linear trend and the dataset contains data for long
enough to observe the effect of the trend.

2. The training set captures at least 2 full seasonal cycles, from which the seasonal
pattern could be estimated.

3. Each target id contains at least 10 observations, from which the slope could be
estimated.

When the method fails While sport is affected by the seasons (e.g.: Winter sports
are generally more popular during the cold seasons than during the hot seasons), the
tasks associated with the sports datasets in the relational repository (BasketballMen,
BasketballWomen, Lahman, NBA, NCAA, PremierLeague) is the prediction of which of
the teams wins the match. And we did not observe strong seasonality associated with
this task.

Limitations of the study We have only evaluated the impact of detrending and de-
seasoning on numerical attributes while ignoring categorical attributes. But in principle,
a categorical attribute can always be converted to a set of numerical attributes with the
existential quantifier or count aggregates[201].

Another limitation is that we do not model a mixture of seasonal patterns. E.g., we
can identify two groups of clients in Financial dataset based on their income: clients that
are getting the 13. and the 14. paycheck (they have almost twice as big incomes in June
and December than in any other month) and clients that are not getting the 13. and
the 14. paycheck (they have the same paycheck each month). We are currently treating
these two groups as a single group. Hence, when we deseason the data, the transactions

110

9.8. Conclusions

of clients with the 13. and the 14. paycheck get currently undercorrected, while the
transactions in the second group of the clients get overcorrected. In principle, the two
groups can be identified with clustering based on dynamic time warping distance. And
each cluster can then have its seasonal pattern. But fixing these deficiencies is future
work.

9.8 Conclusions
We removed trend and seasonality from relational data with Hierarchical Generalized
Additive Models and found that it improves the predictive accuracy of classifiers built
on top of the data.

111

CHAPTER 10
Generalized Aggregates

In this chapter, we define an approximate generalization of aggregate functions for rela-
tional data with temporal attributes. This generalization is parametrized, to allow sim-
ulation of a range of common aggregate functions and optionally take into account time.
The parameters are not optimized but we rather rely on repeated stochastic sampling of
the parameters. We then apply a common regularized linear model to train a model on
this high-dimensional space. Experimental results on 11 datasets suggest that there are
datasets, where incorporating time dimension into the model leads to an improvement
in the predictive accuracy of the trained models.

10.1 Introduction
In this chapter, we approximate aggregate functions commonly used in propositionaliz-
ation like min, max, avg, count, sum, and var with a weighted sum, where each sample
instance in a set is assigned a weight.

What is propositionalization Propositionalization is a process of converting rela-
tional data, which consist of multiple tables, into a propositional (a single table) form,
which can be analyzed with conventional machine learning algorithms. The key problem
that propositionalization solves is how to deal with data that are in n : 1 relationship
(e.g., for each customer we have a log of n their own past transactions). Propositional-
ization algorithms solve this n : 1 problem with aggregate functions, which take a vector
and return a scalar (e.g., min function returns the smallest value in the vector).

Why the generalization Because it allows us to put more weight on recent samples
(e.g., weight with exponential weighting) or model temporal dependencies (e.g., model
an event that happens with a two-week delay).

113

10. GENERALIZED AGGREGATES

Why it might work Instance weighting is the low-level mechanism of a whole class of
supervised models: boosting algorithms (e.g., AdaBoost [79] or Extreme Gradient Boost-
ing [36]) and bagging algorithms (e.g., sampling with replacement, as used in Random
Forest [23], can be seen as a binarized form of instance weighting). If instance weighing
works so well for propositional data, why it should not work well also for relational data?

What is the complication A slight inconvenience to the idea of aggregation thru
instance weighting is that we have to support aggregation of vectors of variable length.
E.g., when we find a weight w to work well on daily data from January, we would like
to see weight w work well even on daily data from February, even though February has
fewer days than January. We solve the issue by using a parametric definition of the
weights (i.e., the count of the parameters is independent of the vector’s length). In this
chapter, we parametrize the weights with logistic sigmoids.

Why the sigmoid It was shown that a neural network with a sigmoidal activation
function is a universal approximator [43, 112]. Hence, if some aggregate function can be
expressed with a vector of weights w, we can approximate the weight vector w with a
set of sigmoids to approximate the aggregate function.

How do we optimize it The weights can be either optimized as in boosting algorithms
or assigned randomly, as in bagging algorithms. In this chapter, we opt for random as-
signment of the weights.

The remainder of this chapter is organized as follows: In Section 10.2, we review
related literature about relational learning, and particularly relational neural learning.
In Section 10.3, we derive the generalized aggregate function. In Section 10.4, we describe
the setup of the experiments we conduct to evaluate the generalized aggregate function.
Section 10.5 presents the empirical results. In Section 10.6 and Section 10.7, we discuss
extensions of our work and summarize the results.

10.2 Related Work
Representation One of the key issues in relational learning is feature extraction from
sets. In traditional Inductive Logic Programming (ILP), like in PROGOL [185], we
use existential quantifier, while in traditional propositionalization algorithms, like in
RELAGGS [144], we use aggregates like min, max, avg, count, sum, and var. Many
other “set descriptors” were described in the literature (see e.g., [149, 257, 252, 201]). Of
particular interest for us is [194], where Neville et al. applied a model directly on the
instances in the sets, giving each instance in the set unit weight. Schulte and Routley
[235] then extended this approach by giving each instance in the set weight 1/n, where n
is the count of instances in the set. The idea was that samples at the target level should

114

10.3. Method

by default have unit weight regardless of the set size. We take the idea of weighting the
instances in a set a step further and allow each instance in the set to have its own weight.

Optimization Another key issue in relational learning is how to optimize the para-
meters. In the traditional ILP, we would use A*-like search, while in the traditional
propositionalization, we would use brutal-force enumeration. From related alternatives,
we have to mention work from Gjorgjioski and Džeroski [89], where they used stochastic
sampling to reduce the search space. From propositional algorithms, we have to mention
Extreme Learning Machine (ELM) [112], which randomly and non-linearly transforms
the features into a high-dimensional space to train a regularized linear model on top of
the high-dimensional space, exploiting the “blessing of the dimensionality” [91]. Since
ELM was reported to have good accuracy to runtime tradeoff [68], we take a similar
approach by randomly generating non-linear combinations of instances in a set followed
by a regularized linear model.

Neural networks Since we use a sigmoid function, which is a traditional activation
function in neural networks, we would expect sigmoidal aggregate functions, like our pro-
posal, to be used in relational neural networks. However, the two dominant approaches
how to adapt a neural network to relational data is to either first extract features in a
propositional form, be it with a relational rule learner [242] or a relation random walk
[127], or to use recurrent neural networks [19, 253, 231].

10.3 Method
We denote vectors with bold lower-case (e.g., x), matrices with bold upper-case (e.g.,
X), and scalars with italic lower-case (e.g., k) letters. We write dot product as w · x,
and length of vector x as |x|. In the following text, X is the table with attributes to
aggregate and x is a numerical attribute in X.

We can approximate aggregate functions of attribute x with a weighted sum:

f(x,w) = w · x, (10.1)

where w is a vector of the weights, w ∈ [0, 1], ∀x ∈ w. With this equation, we can express
aggregate functions like min, max, or sum. However, to be able to approximate aggregate
functions, like count, avg, or var, we introduce optional normalization with variable
n, n ∈ {1, |x|}, power p, p ∈ {0, 1, 2} and power q, q ∈ {1, 2}:

f(x,w, n, p, q) =

(
1

n
w · xp

)q

. (10.2)

To be able to use the same weight w regardless of x length, we parametrize the weight
w with logistic sigmoid:

sigmoid(r, k, r0) =
1

1 + e−k(r−r0)
, (10.3)

115

10. GENERALIZED AGGREGATES

where r is a rank (rankdata with ordinal argument in SciPy) of the ordering attribute
o linearly normalized into the range [0, 1], k defines the steepness of the curve and r0 is
the r value of the sigmoid’s midpoint. E.g.:

o = (5, 12, 10, 10) → r = (0, 1, 1/3, 2/3). (10.4)

When we work with static datasets, the ordering attribute o is traditionally equivalent
to the attribute x, while in temporal datasets, the ordering attribute o is traditionally
the time of the sample measurement t. But in theory, o can be any attribute in data X.

The final approximate aggregate function is a combination of the weighted sum Equa-
tion (10.2) the sigmoid Equation (10.3):

f(x,o, k, r0, n, p, q) =
(
1

n
sigmoid(rank(o), k, r0) · xpT

)q

. (10.5)

An example list of parameters to use to approximate common aggregate functions is
in Table 10.1.

Function k r0 n p q

sum 1 -100 1 1 1
count 1 -100 1 0 1
avg 1 -100 |x| 1 1
max 10000 0.9999 1 1 1
min complement 10000 0.0001 1 1 1
avg of squares 1 -100 |x| 2 1
square of avg 1 -100 |x| 1 2

Table 10.1: List of parameters to approximate common aggregate functions.

Vector w for sum should ideally be all-ones vector but we approximate it with a
sigmoid, where the sigmoid’s midpoint ro is a negative number (e.g., -100). Since we use
the sigmoid only in the interval [0,1], we use only the upper part of the sigmoid, which
is approximately flat (see Figure 10.1). We approximate min aggregate with sum − min
complement aggregates. And we approximate var with avg of squares − square of
avg, following the textbook var(x) = E [x2]− E[x]2.

10.4 Experiments
We performed experiments to answer the following questions:

1. Can we approximate common aggregate functions (min, max, avg, count, sum, and
var) without loss of predictive accuracy?

116

10.4. Experiments

0 0.2 0.4 0.6 0.8 1

Rank

0

0.5

1

W
ei

gh
t

Sigmoids

Figure 10.1: Example sigmoids, which can be used to approximate aggregates. Red:
sum. Green: max. Blue: min complement. The midpoints and slopes of max and min
complement sigmoids are less extreme than in Table 10.1 to improve legibility of the
graph. We assume o = x.

2. Does the random sampling of the parameters in the approximate aggregates deliver
better features than the set of predefined parameters, which simulate the common
aggregate functions?

3. Does the attribute ordering by time add something new that a downstream model
can utilize to improve predictive accuracy?

To answer these questions, we empirically compared accuracies of models build on
11 real (non-artificial) temporal datasets from relational repository [A.12]. From each
dataset, we selected two tables. One table with the target to predict. And another table,
which is in n:1 relationship to the target table and which contains numerical attributes
to aggregate to the level of targets in the target table (see Table 10.2 for the setup).

Dataset Target table Target column Target id Target timestamp Aggregate table Classes

Accidents nesreca klas_nesreca id_nesreca cas_nesreca oseba B, not B
BasketballMen teams rank tmID, year year players_teams ≤ 4, >4
BasketballWomen teams playoff tmID, year year players_teams N, Y
Financial loan status account_id date trans A, B
FNHK pripady Delka_hospitalizace Identifikace_pripadu Datum_prijeti vykony ≤ 7, >7
Geneea hl_hlasovani vysledek id_hlasovani datum hl_poslanec A, R
Lahman salaries salary teamID, playerID, lgID yearID fielding ≤ 500000, >500000
NBA Game ResultOfTeam1 GameId Date Actions -1, 1
NCAA target team_id1_wins id season results 0, 1
PremierLeague Matches ResultOfTeamHome MatchID MatchDate Actions -1, 1
Stats users Reputation Id LastAccessDate posts ≤ 10, >10

Table 10.2: List of the used relational datasets from relational repository [A.12]. Regres-
sion and polynomial classification problems were converted to binary problems with the
logic described in Classes column.

As a baseline, we aggregate the numerical attributes with the common set of aggreg-
ates. The first alternative uses approximate aggregates with a fixed set of parameters
listed in Table 10.1. The purpose of this experiment is to validate the hypothesis that we
can approximate the common aggregates good enough that it does not hurt the predictive
accuracy of the downstream models.

117

10. GENERALIZED AGGREGATES

The second alternative uses approximate aggregates with random parameters. We
use uniform sampling for k, k ∈ [0, 10000], r0, r0 ∈ [−100, 1], n, n ∈ {1, |x|}, power p, p ∈
{0, 1, 2}, and power q, q ∈ {1, 2}. Since we do not optimize the parameters, we substitute
the quality with quantity and generate 100 aggregates per attribute rather than 6 like in
the first alternative. The purpose of this experiment is to validate the hypothesis that
stochastic sampling of the parameters is good enough that it does not hurt the predictive
accuracy of the downstream models.

The third alternative is the same as the second alternative, but orders the attributes
based on sampling time t (i.e., o = t), rather than the attribute x itself. The purpose
of this experiment is to validate the hypothesis that ordering by time t generates useful
features.

The final alternative combines 50 approximate aggregates ordered by x and 50 ap-
proximate aggregates ordered by t. The purpose of this experiment is to validate the
hypothesis features generated with o = x are different from features generated with
o = t.

We evaluate the quality of the generated features with 10-fold cross-validated regu-
larized logistic regression [278] and AUC-ROC. We have chosen logistic regression be-
cause it is an additive model, which allows us to simulate min aggregate with sum and
min complement aggregates without the need to explicitly calculate the min. We chose
AUC-ROC because it is generally more sensitive to the changes in the prediction than
thresholding measures, like classification accuracy, because AUC-ROC takes into account
all possible thresholds while thresholding measures take into account only one threshold.

10.5 Results
Empirical results in Table 10.3 suggest that approximate functions can approximate the
common set of aggregate functions. However, random parametrization of the weights
is not a sufficient replacement for the baseline set of the aggregate functions. But once
we combine o = x features with o = t features, we get better or equal results than the
baseline on 7 datasets from 11 datasets. The remaining 4 datasets, where we did not
observe an improvement (BasketballWomen, Lahman, NBA, PremiereLeague), share one
common characteristic: they are all sport-related. And while we may expect temporal
dependencies in sport (e.g., Autumn-born children are better at sport [230]), in all these
datasets we are asked to estimate the winning team and not the performance of the
players.

Statistical test A one-tailed Wilcoxon signed-rank test indicated that the models
built on generalized aggregates ordered by t and x had statistically significantly higher
AUC-ROC than the models built on the common aggregates with P = 0.015625.

118

10.6. Discussion

Aggregates Common Proposed Proposed Proposed Proposed
Parameters – Fixed Random Random Random
Ordering – x x t t,x
Accidents 0.55 0.55 0.52 0.52 0.55
BasketballMen 0.63 0.63 0.61 0.52 0.64
BasketballWomen 0.61 0.61 0.58 0.52 0.61
Financial 0.75 0.74 0.77 0.58 0.78
FNHK 0.65 0.65 0.64 0.66 0.67
Geneea 0.71 0.71 0.68 0.56 0.71
Lahman 0.53 0.53 0.52 0.50 0.53
NBA 0.55 0.55 0.56 0.51 0.56
NCAA 0.63 0.63 0.62 0.52 0.63
PremierLeague 0.61 0.61 0.58 0.52 0.61
Stats 0.58 0.58 0.60 0.62 0.67
Average ↑ 0.618 0.617 0.607 0.548 0.633
#Wins and ties ↑ 6 6 1 0 11

Table 10.3: AUC-ROC for different aggregation methods. Bold font indicates the best
result for a dataset.

10.6 Discussion
In this section, we discuss how to deal with the deficiencies of our approach, namely
handling of categorical attributes and missing values.

Categorical attributes can be aggregated with a sigmoid, as described by Kazemi et
al. in [128].

Missing or invalid values can be replaced with safe valid values, and further indic-
ated by additional dummy variables [280] before the aggregation.

10.7 Conclusions
In this chapter, we generalized aggregate functions commonly used in propositionalization
(min, max, avg, count, sum, and var). While the generalization by itself did not turn out
to improve AUC-ROC of the downstream models, it allowed us to incorporate temporal
attributes in the generated features. Based on the performed experiments on 11 tem-
poral relational datasets, the incorporation of these time-dependent features improved
the average AUC-ROC. Since many relational databases include temporal attributes and
many relational learners utilize the mentioned aggregate functions, the described gener-
alization of the aggregate functions might provide the means to upgrade a time-unaware

119

10. GENERALIZED AGGREGATES

relational learner to a time-aware relational learner. In the future, we plan to take the
idea of the generalized aggregate functions and directly optimize the parameters of the
generalized aggregate functions.

120

CHAPTER 11
Meta-learning

Many feature selection methods were developed in the past, but in the core, they all
work the same way – you pass a set of features to the algorithm and get a reduced
set of the features. But can we perform a non-trivial feature selection without first
observing the features? This is an important question because if we were actually able to
predict feature importance before observing the features, we would reduce computation
requirements of all stages of machine learning process beginning with feature engineering.
In this chapter, we argue that it is possible to predict feature importance before feature
vector observation. The trick is that we use meta-features about the features to perform
the feature selection. We evaluate the concept on 15 relational databases. On average,
it was enough to generate the top decile of all features to get the same model accuracy
as if we generated all features and passed them to the model.

11.1 Introduction
Data in relational databases are in the form of many tables, but common classification
algorithms require input data in the form of a single table. Propositionalization solves
this discrepancy by converting data from the form of many tables into a single table.

But there are two significant problems with the propositionalization [210]. It produces
a lot of features. And many of them are redundant. These two issues result in high
computational requirements during both, propositionalization and classification.

Contrary to the common approach (e.g., [145], [120], [129]), we deal with these two
issues by performing feature selection before the propositionalization and not after the
propositionalization. The key idea is that we collect meta-data about the attributes in
the database (e.g., attribute data type), meta-data about the feature generative functions
(e.g., id of the feature function), calculate landmarking features on a small subset of all
features and pass their performance to a meta-learner, which predicts the optimal order,
in which the remaining features should be calculated.

121

11. META-LEARNING

11.2 Related Work
The presented work is at the border between feature engineering and feature selection.
Hence, we review related work from both these disciplines.

11.2.0.1 Meta-learning for Feature Engineering

Meta-learning was originally concerned with algorithm selection[219]. Nevertheless, Nargesian
[188] trained a neural network to predict, which feature transformations are going to im-
prove the accuracy of a classifier based on the feature histograms.

We extend the idea of using the data-based meta-features (in Nargesian’s case a
histogram) for feature engineering with landmarking.

11.2.0.2 Meta-learning for Feature Selection

Reif [216] applies meta-learning to accelerate forward selection. The key concept is that
the performance of all candidate feature subsets in each forward step is first estimated
with a meta-learner. And only the top x percent of the candidates get evaluated on the
data to get the true subset performance. Based on the reported results, it is sufficient to
evaluate only the top 10% of all candidate subsets on the data to get results comparable
to classical forward selection.

The difference between our approach and Reif’s approach is that Reif calculates meta-
features from the features, while we calculate meta-features directly from the attributes
that are used to calculate the features (in Figure 11.1 we use only the left table, while
Reif uses the right table). Consequently, in Reif’s case, we have to calculate the features
first, to perform feature selection. While in our case, we can perform the feature selection
before feature calculation.

id class att1 att2 ... attn

1 + 10 apple ... 12:03
1 + 12 cinnamon ... 7:53
2 - 4 banana ... 19:21
3 - 3 cherry ... 12:20
3 - 6 banana ... 8:21

feature function

attribute space

() id class feature

1 + 10
2 - 4
3 - 3

feature space

Figure 11.1: An example of a feature generative function min applied on attribute att1,
which converts the multi-instance problem into a single-instance problem solvable with
a common attribute value classifier. In this trivial example, the feature space contains
only a single feature vector but it may generally contain thousands of feature vectors.

122

11.3. Method

11.3 Method
A high-level schema of our approach is in Figure 11.2. The whole process is divided
into two phases. During the offline phase, meta-features and feature performance are
collected on many databases and passed to a meta-learner as training data. During the
online phase, the trained meta-learner is used to rank candidate features in the descending
order of their estimated utility. Following paragraphs define the feature utility.

Figure 11.2: Flowchart of meta-learning on features.

There are many properties that a feature should posses [175], but we focus on pre-
dicting properties measurable directly from the data: relevance to the task, redundancy
to other features and runtime of the feature calculation.

Relevance Without loss of generality, we assume that we want to utilize the calculated
features for classification. We use Chi2statistics [58, Section A.6.1] between the feature
and the label as the measure of the relevance (if the feature is continuous, we first
discretize the feature with equal-width binning). But in theory, any other measure can
be used.

Runtime The runtime is defined as the time needed to calculate a particular feature
vector. If two feature vectors are otherwise identical, we prefer the one that has a smaller
runtime.

Redundancy In the analyzed databases (discussed further in chapter 11.4.0.1), 38% of
all calculated features are redundant. We define that nominal feature f1 is redundant to
nominal feature f2 iff a bijection exists between values in f1 and f2. A numerical feature

123

11. META-LEARNING

f1 is redundant to numerical feature f2 if a linear transformation from f1 to f2 and back
exists.

We use this (weaker) definition of redundancy instead of the identity of the features
because it corresponds better with the notion of redundancy in many models (e.g., in
logistic regression with one shot encoding of categorical features). To speed up the
identification of redundant features, we use Chi2 as a hash function to identify potential
redundant features [204, Section 2.1].

11.3.0.1 Feature Utility

We calculate features1 in descending order of the estimated relevance/runtime ratio
[1] since we prefer to calculate highly relevant and fast features first. Furthermore, we
penalize the feature i proportionally to the estimated probability that the feature is
redundant p̂i. Because each dataset has a different proportion of redundant features
(see Table 11.1) and the tested meta-learning models had difficulties to model these
differences, we employ median thresholding instead of a fixed threshold:

utilityi = (p̂i > median(p̂) ? 1− p̂i : 1)
relevancei
runtimei

, (11.1)

where redundancy is a vector of estimated redundancy probabilities for a database.

11.4 Experiment
11.4.0.1 Data

We used 15 databases listed in Table 11.1 from relational repository [A.12].

11.4.0.2 Features

For propositionalization, we used Relaggs [144], which was modified to work with 31
different feature (generative) functions, listed in Figure 11.2. The detail description of
the employed feature functions is at http://predictorfactory.com.

11.4.0.3 Meta-features

We employ three sources of meta-features: landmarking features, database meta-data
and feature function meta-data.

1In the production, we would calculate only the top n features that we would use to build a production
classifier. But to demonstrate the meaningfulness of such approach, we calculate all features.

124

http://predictorfactory.com

11.4. Experiment

Table 11.1: Used databases. The range of relevant features is estimated with forward &
backward selection with a decision tree (the percentage of features when meta-learning
feature selection reaches accuracy corresponding to accuracy obtained on all the features).

Database Domain Attributes Features Redundant [%] Relevant [%]

Accidents Government 43 305 39 2–12 (7)
AustralianFootball Sport 77 794 45 1–6 (1)
BasketballMen Sport 195 865 41 1–49 (1)
Biodegradability Medicine 17 71 25 6–66 (4)
Chess Sport 45 127 16 65–72 (91)
Financial Financial 55 493 32 1–59 (7)
Hepatitis Medicine 26 152 42 4–42 (5)
Mondial Geography 167 1524 45 1–9 (1)
Mutagenesis Medicine 14 65 40 6–46 (6)
Nations Geography 118 191 76 2–21 (3)
PremierLeague Sport 217 667 23 2–27 (7)
PTE Medicine 76 691 58 1–33 (1)
StudentLoan Education 15 41 7 15–66 (21)
VisualGenome Education 20 42 64 10–10 (14)
Walmart Retail 27 545 19 1–22 (4)

average 74 438 38 8–36 (11)

Landmarking features Just like the accuracy of a few classifiers can be used as meta-
features for the recommendation of the best classifier on the data (e.g., [202]), we define
a subset of feature functions as landmarking feature functions for the recommendation
of the best features.

Without loss of generality, we used following set of landmarking features: Direct
field (a simple copy of the value), Aggregate (e.g., min, max,...), WOE (Weight of Evid-
ence), Count (of tuples), Aggregate WOE, Time aggregate since. These feature functions
were selected for their low runtime (see Table 11.3) and good coverage of different data
types (numerical/character/temporal) and relationships between the label and the data
(1:1/1:n). Note that we do not use multivariate feature functions for landmarking due
to the potential combinatorial explosion.

Database meta-data Basic descriptive and statistical meta-features are frequently
employed in meta-learning (e.g., [160]) and we do not differ in this respect. A noteworthy
difference is that we do not calculate statistics of the attributes but rather reuse statistics
maintained by the relational database for query plan optimization [A.8]. This slight
deviation allows us to collect estimates of the statistics in time independent on the count
of tuples (records) in the database.

125

11. META-LEARNING

Univariate Multivariate

1:1

Direct field (any) Time diff (t+t)
Text length (c)
Time day part (t)
Time is weekend (t)
Time part (t)
Time since (t)
WOE (c)

1:n

Aggregate (n) Existential count (any) Aggregate frame (n+t)
Aggregate distinct (n) Log product (n) Correlation (n+t)
Aggregate range (n) Null ratio (any) Intercept (n+t)
Aggregate text length (c) Time aggregate (t) Slope (n+t)
Aggregate WOE (c) Time aggregate since (t) Time aggregate diff (t+t)
Coefficient of variation (n) Time aggregate since event (t)
Count (any) Time frequency (t)
Distinct count (any) Time range (t)
Duplicate ratio (any) Time WOE (t)

Table 11.2: Taxonomy of feature functions (data type they work on: c-character, n-
numeric, t-temporal). The horizontal axis differentiates between feature functions work-
ing on a single attribute and multiple attributes. The vertical axis differentiate between
feature functions working on a single tuple and multiple tuples.

Feature function meta-data Feature function meta-data consists of feature function
name (e.g., Aggregate) and feature function parameters (e.g., min).

11.4.0.4 Measures

Anytime algorithm We formulate feature engineering as anytime algorithm [277],
which aims to deliver the best subset of calculated features in any time. The quality
of anytime algorithm can be expressed with a performance profile, where we measure
quality of the solution at the given time (see example in Figure 11.3). To assign a single
number to the performance profile, we calculate the area between the archived curve a(t)
and the expected random curve r(t) (which we obtain from averaging the curve from
many random permutations), divided by the area between the perfect curve p(t) and the
expected random curve r(t):

POP =

∫
a(t)dt−

∫
r(t)dt∫

p(t)dt−
∫
r(t)dt

, (11.2)

where t is time. The obtained ratio then represents the “percentage of perfect” solution
[22]. In our case, a(t), r(t) and p(t) are the Chi2 of the feature calculated at time t.
The only difference between these functions is then the order, in which the features are
calculated. The perfect feature ordering is based on a complete knowledge of relevance,
redundancy and runtime of all the features. While archived ordering is based only on

126

11.4. Experiment

Feature function Relevance Runtime Redundancy Utility

Aggregate frame −2.11 −0.17 0.49 −2.19
Time aggregate diff −1.53 0.05 0.54 −1.95
Time diff −0.92 −0.01 0.48 −1.34
Time day part −1.33 0.02 0.02 −1.31
Time since −0.89 −0.04 0.45 −1.22
Null ratio −0.99 −0.02 0.18 −1.06
Time frequency −0.17 0.35 −0.10 −0.71
Existential count −0.67 −0.06 0.06 −0.47
Slope −0.49 0.03 0.03 −0.47
Time WOE 0.51 0.38 0.07 −0.42
Time is weekend −1.03 −0.12 −0.21 −0.40
Time part −0.45 0.00 0.05 −0.40
Text length −0.76 −0.07 −0.09 −0.37
Intercept 1.42 0.36 0.37 −0.21
Correlation 1.32 0.26 0.37 −0.05
Time aggregate 0.57 0.05 0.21 0.19
Aggregate text length −0.24 −0.05 −0.15 0.29
Aggregate range 0.34 −0.02 0.15 0.34
Duplicate ratio 0.32 0.17 −0.26 0.39
Aggregate distinct 0.56 0.03 0.11 0.44
Time range 0.06 0.06 −0.26 0.45
Coefficient of variation 0.36 0.01 −0.07 0.62
Time aggregate since event 0.19 0.01 −0.24 0.75
Direct field 0.26 −0.05 −0.09 0.79
Distinct count 0.21 −0.04 −0.16 0.82
Aggregate 0.49 0.04 −0.16 0.82
Log product 0.62 −0.02 0.02 0.87
Time aggregate since 1.25 0.27 −0.24 0.95
Count 0.30 −0.08 −0.18 1.13
WOE 1.27 −0.03 −0.01 1.69
Aggregate WOE 1.04 0.01 −0.39 2.05

Table 11.3: Expected standardized relevance (bigger is better), runtime (smaller is better)
and redundancy (smaller is better) of feature functions (sorted by the feature utility).

the estimates of these feature properties (the only exception are landmarking features,
which are calculated in a pseudorandom order).

Individual models To assess the ability of relevance and runtime prediction models
to rank, we use Spearman correlation (ρ). The quality of redundancy estimation (a

127

11. META-LEARNING

Runtime [s]
0 10 20 30 40

R
el

ev
an

ce

0

20

40

60

80

100
Mutagenesis, POP=0.595

Perfect
Archived
Random
95% PI
Diagonal

Figure 11.3: Performance profile. The shaded area represents the 95% prediction interval
for a random curve.

classification task) is evaluated with area under receiver operating characteristic curve
(AUROC).

11.4.0.5 Methodology

Algorithms were evaluated with leave-one-out validation, where all but the tested data-
base was used for the training of the models. Obtained accuracies are reported for three
different algorithms: generalized linear model (GLM), gradient boosting machine (GBM)
and deep learning (DL), all from H2O.

Permutation testing To assess, whether the obtained performance profiles are sig-
nificantly better than random, we generate 1 000 random orderings of the features to
estimate 95% prediction intervals.

11.5 Results
First, we report the accuracy of the individual models. Second, we comment on the
meta-feature importance as reported by L1 & L2 regularized GLM. Third, we report the
obtained POPs.

11.5.0.1 Accuracy

The obtained accuracies are depicted in Table 11.4. Since the difference between the
models is not significant, we use GLM for all following experiments.

128

11.5. Results

Algorithm Relevance [ρ] Runtime [ρ] Redundancy [AUROC]

DL 0.558± 0.255 0.302± 0.186 0.798± 0.097
GBT 0.556± 0.252 0.206± 0.259 0.787± 0.106
GLM 0.551± 0.276 0.369± 0.267 0.810± 0.102

Table 11.4: Leave-one-out accuracy of individual models.

11.5.0.2 Feature Importance

Relevance The most important meta-features for feature relevance prediction is the
average relevance of the landmarking features on individual attributes and the type of
the employed feature function (see Table 11.5).

Meta-feature Comment Weight

landmark_relevance average on the attribute 9.81
feature_function e.g., null_ratio is inferior to direct field 5.58
feature_parameters e.g., aggregate=min is inferior to aggregate=avg 1.90
data_type e.g., enums are superior to datetimes 0.34
avg_length extremely long attributes like text are subpar 0.25
is_primary_key surrogate primary keys make inferior features 0.10

Table 11.5: Meta-features for relevance prediction.

Redundancy There are two main sources of redundant features [145]: redundancy in
the input data and redundancy introduced by the feature functions. The redundancy in
the input data is covered by landmarking landmark_is_redundant and data_type. While
the introduced redundancy is explained with feature_function and feature_parameters
(see Table 11.6).

Meta-feature Comment Weight

landmark_redundancy average on the attribute 16.70
feature_parameters e.g., aggregate=min is inferior to aggregate=avg 13.65
feature_function e.g., null_ratio is inferior to count 2.61
data_type e.g., integers are inferior to doubles 0.02

Table 11.6: Meta-features for redundancy prediction.

129

11. META-LEARNING

Runtime The runtime of a feature function calculation is a function of two factors:
the type of the feature function and data property. Nevertheless, these two factors are
dominated by the landmarking landmark_runtime (see Table 11.7).

Meta-feature Comment Weight

landmark_runtime average on the attribute 5.00
feature_function complicated features take more time 3.34
table_rows more data means higher runtime 0.10

Table 11.7: Meta-features for runtime prediction.

11.5.0.3 Percentage of Perfect

The quality of anytime learning for all 15 datasets is reported in Table 11.8 in the
penultimate column.

redundance 0 1 0 0 1 1 0 1
relevance 0 0 1 0 1 0 1 1
runtime 0 0 0 1 0 1 1 1 PI

Accidents 0.11 0.45 0.61−0.18 0.68 0.44 0.60 0.67 0.33
AustralianFootball 0.03 0.33 0.35−0.09 0.40 0.33 0.35 0.40 0.36
BasketballMen 0.08 0.53−0.52 0.28 0.62 0.56 −0.37 0.62 0.11
Biodegradability −0.18 0.31−0.44 0.24 0.34 −0.21 −0.32 0.32 0.31
Chess 0.05 0.46 0.72 0.31 0.71 0.80 0.90 0.87 0.29
Financial −0.01 0.24−0.02−0.01 0.30 0.29 0.02 0.35 0.32
Hepatitis 0.07 0.37−0.01 0.03 0.34 0.48 0.04 0.37 0.28
Mondial −0.00 0.19 0.30−0.09 0.32 0.27 0.26 0.32 0.11
Mutagenesis 0.05 0.14 0.09 0.20 0.24 0.63 0.62 0.59 0.22
Nations 0.16 0.59 0.87 0.18 0.75 0.79 0.88 0.76 0.34
PremierLeague −0.07 0.12 0.27 0.08 0.17 0.35 0.35 0.34 0.17
PTE 0.01 0.39 0.32−0.43 0.54 0.31 0.24 0.53 0.20
StudentLoan 0.25 0.17 0.62 0.14 0.61 0.53 0.65 0.61 0.39
VisualGenome −0.11 0.44 0.95−0.03 0.95 0.74 0.96 0.94 0.82
Walmart −0.18 0.20 0.77−0.06 0.49 0.17 0.81 0.52 0.42

average 0.02 0.33 0.32 0.04 0.50 0.43 0.40 0.55 0.31
win count 0 0 0 0 2 2 6 5 0

Table 11.8: POPs for all databases based on the used individual models. PI column
contains the upper 95% prediction interval of POPs for random ordering of the features.
The best values are in bold.

130

11.6. Discussion

11.6 Discussion
11.6.0.1 What is the contribution of the individual models to POP?

To evaluate the contribution of the individual models to POP, we performed an experi-
ment with a 2-level full factorial design for presence/absence of runtime, relevance and
redundancy models (8 combinations in total) on all databases. To deal with the vari-
ability across databases (some are easier than others), we treat the database name as a
random factor.
Conclusion: The result of the factor analysis is in Table 11.9. As expected, the

intercept is not significantly different from zero, since POP measure should on average
be 0 when we randomly rank the features. The biggest contributions to the accuracy
are from redundancy and relevance prediction. The interaction between redundancy and
relevance has a negative estimate because we do not reward calculation of redundant
features even if they are highly relevant. Hence, prediction of the relevance helps only
on the subset of unique features from the set of all candidate features.

Estimate Std. Error Pr(> |t|)

(Intercept) 0.020 0.058 6 0.687 7
relevance 0.292 0.014 9 4.052 7× 10−5 ***
redundance 0.318 0.014 9 2.909 5× 10−5 ***
runtime 0.053 0.012 2 0.012 4 *
rel:red −0.172 3 0.024 4 0.002 1 **

Table 11.9: Contribution of models to POP. Adjusted R2: 0.564.

11.6.0.2 What is the effect of meta-learning on model accuracy?

To evaluate the effectivity of the meta-learning, we iteratively train a classification model
on increasing percentage of the top features, as estimated with meta-learning. As the
classification model, we use a decision tree because it can model interactions between
the features, it is undemanding on data preprocessing and it is reasonably fast. As
the evaluation measure, we use misclassification error as all databases have reasonably
balanced classes in the label.

An example of the obtained curve is depicted in Figure 11.4, where we can observe
that the decision tree slightly overfits when we use all the features. Nevertheless, for-
ward selection still outperforms meta-learning feature selection, as it can observe all the
features (our approach does not) and it is a wrapper (our approach is a filter [101]).
Conclusion: The result of the factor analysis is in Table 11.10. Prediction of rel-

evance significantly reduces misclassification error. Prediction of runtime insignificantly
increases the misclassification error, because this evaluation does not reward fast features.
Redundancy prediction does not significantly decrease the classification error. Based on

131

11. META-LEARNING

Percentage of used features
0 20 40 60 80 100

M
is

cl
as

si
fic

at
io

n
er

ro
r

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Financial

Meta-learning (AUC=0.23)
Random (AUC=0.33)
All features
Forward selection

Figure 11.4: Area under misclassification error. Smaller is better.

our inspection of the results, this is because this evaluation rewards early discovery of a
few highly relevant features much higher (since the best possible decision tree may use
just a few features) than it penalizes redundancy (a redundant feature only pushes all
subsequent features one step later).

Estimate Std. Error Pr(> |t|)

(Intercept) 0.294 0.020 1.335 7× 10−5 ***
relevance −0.053 0.016 0.001 6 **
redundance −0.018 0.014 0.240 2
runtime 0.010 0.014 0.516 7

Table 11.10: Contribution of models to reduction of the area under misclassification error
curve. Adjusted R2: 0.486.

11.6.0.3 Which meta-features are important?

To analyze the importance of the three categories of the meta-features (landmarking,
database, feature-function), we design an experiment, in which we vary the set of the
used meta-features.
Conclusion: Based on the results reported in Table 11.11, only landmarking meta-

features help to significantly2 reduce the count of features that have to be engineered to
reach model accuracy obtained on all features. Table 11.11 also tells us that if all meta-

2The reported p-values do not incorporate correction for repeated evaluation of serially correlated
observations

132

11.6. Discussion

Estimate Std. Error Pr(> |t|)

(Intercept) 43.328 11.569 0.001 3 **
database −0.741 11.007 0.947 2
featureFunction −3.755 11.007 0.737 7
landmarking −30.586 11.007 0.014 0 *

Table 11.11: Contribution of meta-feature categories to the reduction of the count of
engineered features needed to reach or surpass model accuracy obtained on a complete
set of features. Adjusted R2: 0.308.

features are used, it is in average sufficient to engineer only the top 8.25% of the features
to match or surpass the classification accuracy of the model trained on all features.

11.6.0.4 Do we need so many feature functions?

We may wonder whether it is not enough to just engineer the 6 landmarking features and
do not continue with the engineering of the remaining 25 (e.g., multivariate) features.
We compared accuracies of the models trained only on the landmarking features with
accuracies obtained on all features. Based on Wilcoxon signed-rank test, we have to
reject the null hypothesis that the additional features do not improve accuracy (p-value
= 0.00048). The median improvement is 1.2 percent point in classification accuracy
(average improvement is 2.7 percent point).
Conclusion: The additional features improve the accuracy of the model over the

accuracy of the model build only on the landmarking features by a small but significant
amount.

11.6.0.5 Feature Selection vs. Feature Meta-learning

The described feature meta-learning bears similarity with filter-type feature selection
methods like Correlated Feature Selection (CFS)[102] and Minimum Redundancy Max-
imum Relevance (mRMR)[199]. Both these methods attempt to quickly select relevant
non-redundant features. And so does our method. But in comparison to these methods,
we perform feature selection before the feature engineering.

Difficulty It can be argued that feature meta-learning is at least as difficult problem as
feature selection since we can always convert feature selection problem to feature meta-
learning by throwing away the computed features (and recalculating them on request).

11.6.0.6 Limitations

We performed experiments only on relational data and features from propositionalization.
Propositionalization is known to produce a lot of duplicate features (38% on average on

133

11. META-LEARNING

the tested databases) and many of the features are irrelevant to the task (64% on average
on the tested databases based on backward selection). These properties make it possible
to obtain substantial gains from feature selection. However, the performed experiments
do not tell us how the described approach is going to generalize on non-relational data.

Another limitation of the reported work is that it ignores interactions between the fea-
ture vectors in the downstream model. This can reduce the accuracy of the downstream
model because a univariate oraculum meta-learner would not recommend calculation of
features that are useful only in the combination with other features (a trivial example
where this may happen is XOR problem [179]).

11.6.0.7 Applications

Feature meta-learning is desirable in domains, where a single universal approach to fea-
ture extraction does not exist or is not known ahead. An exemplary domain are relational
data, which may contain highly diverse content ranging from structured to unstructured
data.

Additionally, feature selection before feature engineering is applicable to complex or
large data, where it is not feasible or convenient to calculate and evaluate all possible
features due to limited resources.

11.7 Conclusions
In this chapter, we evaluated an idea of performing feature selection before feature en-
gineering. To guide the search, we exploited meta-learning. Nargesian [188] used meta-
features calculated from the original data. But we found out that landmarking meta-
features work better. When we evaluated the implementation on 15 databases, we con-
cluded that it is on average enough to engineer only the top decile of features to get accur-
acy comparable to accuracy obtained on all features. This finding is similar to Reif’s [216]
finding, who applied meta-learning to feature selection. However, Reif performs feature
selection after feature engineering while we perform feature selection before feature en-
gineering. The used code is published at https://github.com/janmotl/metalearning.

134

https://github.com/janmotl/metalearning

CHAPTER 12
Learning on Stream of Features

12.1 Online Random Forest
We study an interesting and challenging problem, supervised learning on a stream of
features, in which the size of the feature set is unknown, and not all features are available
for learning while leaving the number of observations constant. In this problem, the
features arrive one at a time, and the learner’s task is to train a model equivalent to a
model trained from “scratch”. When a new feature is inserted into the training set, a
new set of trees is trained and added into the current forest. However, it is desirable to
correct the selection bias: older features has more opportunities to get selected into trees
than the new features. We combat the selection bias by adjusting the feature selection
distribution. However, while this correction improves accuracy of the random forest, it
may require training of many new trees. In order to keep the count of the new trees
small, we furthermore put more weight on more recent trees than on the old trees.

Problem formulation One of the common issues in machine learning is changing
data and the need to keep the machine learning models up to date with the changing
data. One of the successful simplifications is to assume that over time we are getting new
samples. However, we concerned with the orthogonal problem – fast updates of models
when new features arrive (see Figure 12.1).

Motivation Our original need for learning on a stream of features was due to our in-
terest into propositionalization [142]. Propositionalization is a data preprocessing step,
which converts relational data into a single data. And one of the persistent problems of
propositionalization is that it generates a wast quantity of redundant and/or unpredictive
features (e.g.: [142, 124]). Would not it be interesting to intelligently guide the propos-
itionalization in order to avoid wasteful generation of these irrelevant features? Our
previous research [A.7] answered this question positively – based on univariate feature
selection on a stream of features, we obtained 10-fold acceleration of the propositionaliz-
ation (while maintaining the accuracy of the downstream model comparable to accuracy

135

12. LEARNING ON STREAM OF FEATURES

Figure 12.1: The difference between learning from a stream of samples (top) and a stream
of features (bottom). In both cases, we have n samples and d features at time t. But at
time t+ 1, we either have one more sample (top) or one more feature (bottom).

obtained on exhaustive propositionalization). However, our former research had evident
weakness: it neglected to take into account possible interactions between features. This
chapter attempts to address this weakness.

Why not a feature selection filter? Features that are currently unpredictive may
become predictive, as new features appear. For example, consider XOR problem, in which
the binary label is determined by two binary features f1 and f2: y = xor(f1, f2). Features
f1 and f2 are individually unpredictive. But together, they define the label. Univariate
feature selection filters (e.g.: based on information gain ratio) cannot correctly identify
the change or the first feature relevance as the second feature is added in XOR problem.
But models capable of modeling feature interactions (like random forests) can eventually
identify these features as important.

Application Beside propositionalization, learning on a stream of features has another
interesting use-case: Kaggle competitions. In these challenges, competitors are given a

136

12.1. Online Random Forest

dataset and the team with the best model wins1. Based on the analysis of solutions of the
past winners2, one of the common differentiating factors is extensive feature engineering.
However, competitive feature engineering is generally not a one-time task but rather an
iterative process:

1. formulate a hypothesis (e.g.: log transformation of features will improve the accur-
acy of the downstream model),

2. test the hypothesis (e.g.: evaluate the change of accuracy of the downstream
model),

where the choice of the next round of hypotheses is influenced based on the success
of the previously evaluated hypotheses. Traditionally, the evaluation of the hypothesis
required retraining of the model from scratch. Our solution is to update the current
model. The benefit is evident: the update of the current model takes less time than
retraining the model from scratch. And consequently, that gives us the freedom to test
more hypotheses.

Random forest We take random forest [23] as a starting model to expand into an
online implementation because it can deal with dirty data (e.g.: missing values, outliers,
mix of numerical and nominal attributes,...) and given an implementation of a decision
tree, it is easy to implement and reason about.

The key idea behind random forest classifier is that we make an ensemble of decision
trees. In order to create diversity between the trees, it employs two strategies: bagging
and random feature selection. Bagging is based on a random sampling of training in-
stances with repetition. While random feature selection is without repetition. The count
of features to select is one of the most tunable parameters of random forests [206] and
multiple heuristics for the optimal value were provided in the literature. For simplicity of
the following analysis, we assume that the count of the selected features is a fixed ratio
of the count of all the features. We call the ratio mtry.

12.1.1 Implementation
Bias Whenever a new feature xnew arrives, we may train n new trees. And add the
newly trained trees into the current random forest. Unfortunately, with this approach,
the new features would be underrepresented in the forest in comparison to old features
simply because the old features had multiple opportunities to get used in a tree while the
new feature had only one opportunity to get used in a tree.

Consequently, earlier features would have a bigger impact (weight) in the forest than
the newer features. This presents a bias, which is generally undesirable.

1See a list of all possible challenges at https://www.kaggle.com/competitions.
2See: http://blog.kaggle.com/category/winners-interviews/.

137

https://www.kaggle.com/competitions
http://blog.kaggle.com/category/winners-interviews/

12. LEARNING ON STREAM OF FEATURES

Variable count of trees The first intuitive improvement is to make sure that the new
feature is actually always passed to the new trees (instead of leaving it on the chance).
And instead of generating an arbitrary count of the trees, we can calculate the optimal
count n that minimizes the random feature selection bias.

First, we introduce the notation. Let c be the count of how many times a feature x
was passed to decision trees. And let old subscript describe some old feature and new
subscript to describe the new feature. If we want to avoid the random feature selection
bias, following should hold:

cnew = cold. (12.1)

Since
cnew = n (12.2)

because the new feature is always selected and

cold = mtry · dold +mtry · n, (12.3)

where dold is the count of the old features, we get:

n = mtry · dold +mtry · n. (12.4)

Hence, we get the optimal n with:

n =
mtry · dold
1−mtry

. (12.5)

The issue with this approach is that if we keep adding d features one-by-one, the total
count of the trees in the ensemble grows quadratically.

Tree weighting If we want to avoid the quadratic growth of the random forest, we may
weight the late trees more than the former trees. While we could have calculated the tree
weight analytically, we provide an algorithmic solution in Algorithm 1. In praxis, the ad-
vantage of the algorithmic solution is that it is self-correcting – if some of the assumptions
are not fully fulfilled (e.g.: When we have 11 features and the feature selection ratio is
0.5, we can either select 5 or 6 features but not 5.5.), the error is not ignored (as it would
be in a closed-form analytical solution) but is encoded in weightedFeatureUseCount.
And each call of Algorithm 1 directly minimizes the error.

When scoring new samples, we evaluate trees in the ensemble and calculate the
weighted average of the predictions (each generation of trees share the same treeWeight).

138

12.1. Online Random Forest

Algorithm 1: Random forest update, when a new feature arrives. Function
featureCnt() returns count of features to sample.
Input: X: training data, y: training label, col: index of the new feature,

treeCnt: cnt of trees to train, weightedFeatureUseCnt: bookkeeping
vector initialized to zeros, ensemble: collection of trees.

Output: ensemble, treeWeight, weightedFeatureUseCnt.
1 featureUseCnt = zeros (col);
2 for i=1:treeCnt do
3 oldFeatures = choice (1:col-1, featureCnt (col-1), replacement=False);
4 features = [oldFeatures, col];
5 samples = choice (nrow (x), nrow (x), replacement=True);
6 tree = fitTree (X[samples, features], y[samples]);
7 ensemble = [ensemble, tree];
8 featureUseCnt[features]++ ;
9 end

10 treeWeight = avg (weightedFeatureUseCnt[1:col-1]) / (featureUseCnt[col] -
avg (featureUseCnt[1:col-1]));

11 weightedFeatureUseCnt = weightedFeatureUseCnt +
treeWeight*featureUseCnt;

12.1.2 Experiments
We compare two online random forest implementations: baseline and challenger. In
baseline, features are selected with uniform probability (like in ordinary random forest).
In the challenger model, the new feature is always selected while the old features are
selected with uniform probability3. Furthermore, we train an offline random forest with
the same meta-parameters as the online random forest in order to depict the value of the
online learning.

Protocol For each data set, we performed the following procedure 10 times: We ran-
domly split the data set into training/testing subsets with stratified sampling with 2:1
ratio. Then we randomly permutate the feature order in the data set (because our pro-
posal should work regardless of the feature ordering). Finally, on online random forests
we perform incremental learning feature-by-feature (i.e.: first we train the random forest
on the first feature, then we add the second feature into the forest ... and continue until
the last feature is added into the forest). After adding the last feature, the final model
is evaluated on the testing set with AUC (Area Under the Receiver Operating Charac-
teristics). In the case of the offline random forest, we train the random forest just once
on all the features.

3This probability is smaller in the challenger model than in the baseline model in order to keep the
final count of features in challengers’ trees identical to the count of features in baselines’ trees.

139

12. LEARNING ON STREAM OF FEATURES

Meta-parameters At each generation (addition of a new feature), we train 30 new
trees. This value is recommended by Breiman [23] and we decided to go with it. For
feature selection ratio, we used 2⁄3.

Data sets We used all 232 data sets (see Table 12.1) from OpenML [254] that have
a binary label (because we evaluate the models with AUC), less than 200000 samples
(because of runtime) and less than 15 features (again, because of the runtime).

2dplanes biomed echoMonths house_8L rabe_166
abalone blogger ecoli houses rabe_176
acute-inflammations blood-transfusion electricity humandevel rabe_265
aids BNG(breast-w) elusage hungarian rabe_266
Amazon_employee_access BNG(tic-tac-toe) fertility hutsof99_logis rabe_97
analcatdata_apnea1 bolts fishcatch ilpd rmftsa_ctoarrivals
analcatdata_apnea2 boston fri_c0_100_10 iris rmftsa_ladata
analcatdata_apnea3 braziltourism fri_c0_100_5 irish rmftsa_sleepdata
analcatdata_asbestos breast-cancer fri_c0_1000_10 jEdit_4.0_4.2 Run_or_walk_information
analcatdata_bankruptcy breast-cancer-dropped fri_c0_1000_5 jEdit_4.2_4.3 sa-heart
analcatdata_birthday breast-w fri_c0_250_10 kdd_el_nino-small schlvote
analcatdata_bondrate breastTumor fri_c0_250_5 kidney sensory
analcatdata_boxing1 bridges fri_c0_500_10 kin8nm servo
analcatdata_boxing2 car fri_c0_500_5 lowbwt sleep
analcatdata_broadway cars fri_c1_100_10 lupus sleuth_case1102
analcatdata_broadwaymult chatfield_4 fri_c1_100_5 machine_cpu sleuth_case1201
analcatdata_challenger cholesterol fri_c1_1000_10 MagicTelescope sleuth_case1202
analcatdata_chlamydia chscase_adopt fri_c1_1000_5 mammography sleuth_case2002
analcatdata_creditscore chscase_census2 fri_c1_250_10 mbagrade sleuth_ex1221
analcatdata_cyyoung8092 chscase_census3 fri_c1_250_5 mfeat-morphological sleuth_ex1605
analcatdata_cyyoung9302 chscase_census4 fri_c1_500_10 mofn-3-7-10 sleuth_ex1714
analcatdata_dmft chscase_census5 fri_c1_500_5 monks-problems-1 sleuth_ex2015
analcatdata_draft chscase_census6 fri_c2_100_10 monks-problems-2 sleuth_ex2016
analcatdata_fraud chscase_funds fri_c2_100_5 monks-problems-3 socmob
analcatdata_germangss chscase_geyser1 fri_c2_1000_10 mozilla4 solar-flare
analcatdata_gsssexsurvey chscase_health fri_c2_1000_5 mu284 space_ga
analcatdata_gviolence chscase_vine1 fri_c2_250_10 mux6 stock
analcatdata_japansolvent chscase_vine2 fri_c2_250_5 mv strikes
analcatdata_lawsuit chscase_whale fri_c2_500_10 newton_hema tae
analcatdata_michiganacc cleve fri_c2_500_5 no2 threeOf9
analcatdata_neavote cleveland fri_c3_100_10 nursery tic-tac-toe
analcatdata_negotiation Click_prediction_small fri_c3_100_5 page-blocks Titanic
analcatdata_olympic2000 cloud fri_c3_1000_10 parity5 transplant
analcatdata_reviewer cm1_req fri_c3_1000_5 parity5_plus_5 vertebra-column
analcatdata_runshoes cmc fri_c3_250_10 pc1_req veteran
arsenic-female-bladder datatrieve fri_c4_250_10 pollen visualizing_hamster
arsenic-female-lung delta_ailerons fri_c4_500_10 postoperative-patient-data visualizing_livestock
arsenic-male-bladder delta_elevators fried prnn_crabs visualizing_slope
arsenic-male-lung diabetes fruitfly prnn_fglass visualizing_soil
autoMpg diabetes_numeric glass prnn_synth vowel
badges2 diggle_table_a1 grub-damage profb wholesale-customers
balance-scale diggle_table_a2 haberman puma8NH wilt
balloon disclosure_x_bias hayes-roth pwLinear wine
banana disclosure_x_noise heart-c quake witmer_census_1980
bank8FM disclosure_x_tampered heart-h qualitative-bankruptcy
banknote-authentication disclosure_z heart-statlog rabe_131
baskball dresses-sales hip rabe_148

Table 12.1: List of used data sets.

140

12.2. Online Discriminant Analysis

Results In 87% (201/232), the challenger model had higher average testing AUC than
the baseline. Sign test on this statistic gives one-tail P-value < 10−29. The average
difference of the testing AUC across all the data sets was 2.10 percent point. Furthermore,
in 71% (164/232), the challenger model had higher average testing AUC than the offline
model (P-value < 10−8). The table with the results and the code that generated the
table is available from https://github.com/janmotl/rf.

12.1.3 Discussion
Overhead Challenger model, in comparison to baseline model, uses 3 more variables:
featureUseCount, weightedFeatureUseCount and treeWeight. Each of these variables
is (or fill in) a vector of length d, the count of features. Ignoring the differences in the data
types, the total memory overhead is equivalent to 3 more training data samples. The
computational complexity of updating these 3 variables, when a new feature is added, is
O(d) since treeCount is a constant.

Limitation Our experiment suffers from one limitation: while we make sure that the
feature selection rate is uniform, we ignore interactions between the features. This could
be a topic of further research.

Extension One of possible extensions of our work, which we did not pursue further, is
pruning of the oldest trees from the ensemble. The idea is simple: the older generations
of the trees have so small weight, that they hardly influence the final prediction.

12.1.4 Conclusions
We have extended random forest to work on a stream of features. The idea was simple:
when a new feature arrives, extend the forest with a new set of trees. However, with this
strategy, older features end up used more frequently than the new features. When we fix
this feature selection bias, it improves the testing AUC on average by 2 percent points.
The proposed algorithm for feature selection bias correction is fast, easy to implement
and robust. The code was open-sourced at https://github.com/janmotl/rf.

12.2 Online Discriminant Analysis
Online learning is a well-established problem in machine learning. But while online
learning is commonly concerned with learning on a stream of samples, this chapter is
concerned with learning on a stream on features. We propose to modify quadratic dis-
criminant analysis (QDA) to work on a stream of features because it is fast, capable of
modeling feature interactions, and we can obtain an analytical solution. The proposed
updatable QDA was compared to scikit-learn QDA on standard benchmarking datasets,
and it showed a 1000-fold increase in speed than the scikit-learn QDA. When a new

141

https://github.com/janmotl/rf
https://github.com/janmotl/rf

12. LEARNING ON STREAM OF FEATURES

feature is inserted into a training set, our implementation of QDA has a lower computa-
tional complexity by a factor of d, the number of features, compared with retraining QDA
from scratch. Experimental results also show that an update with the online version is
three times faster than a complete recalculation of QDA from scratch. Fast learning on
a stream of features provides a data scientist with timely feedback about the importance
of new features during the feature engineering phase. In the production phase, it reduces
the cost of updating a model when a new source of potentially useful features appears.

12.2.1 Introduction
A common issue in machine learning is the need to update machine learning models
based on changing data. This issue can be simplified by assuming that new samples will
be available over time. However, we are concerned with the orthogonal problem – the
fast updating of models with the arrival of new features (see Figure 12.2).

Figure 12.2: Difference between learning from a stream of samples (left) and a stream of
features (right). In both cases, we have n samples and d features at time t. However, at
time t+ 1, we either have one more sample (left) or one more feature (right).

Interestingly, we did not find any publicly available implementation of a classifier,

142

12.2. Online Discriminant Analysis

which would satisfy following requirements:

1. it is faster to update the model with a new feature than to train the model from
scratch,

2. is more accurate than naive Bayes, which can be straightforwardly updated to
learning on a stream of features,

3. and is faster than logistic regression, random forest, and gradient boosted trees.

The proposed update of the quadratic discriminant analysis (QDA) to learning on a
stream of features satisfies all these requirements.

12.2.1.1 Application

When we have an important model in production, we obtain new features that could
improve the accuracy of the model. While we can always train a new model from scratch,
this can take a considerable amount of time. If we could retrain the current model in a
fraction of the time that it takes to build a model from scratch, it would allow us to:

1. test more hypotheses within the same time budget,
2. deploy the improved model quicker.

12.2.1.2 Quadratic Discriminant Analysis

We extend QDA because it is a simple (but nontrivial) model that can be solved analyt-
ically. Furthermore, QDA is capable of modeling interactions between features without
explicitly defining them in the data preprocessing step. This property differentiates
QDA from linear discriminant analysis (LDA). Nevertheless, it is easy to reduce QDA
into LDA by using the same covariance matrix estimate for each class. LDA is known to
have a good tradeoff between accuracy and runtime [249], is more efficient than logistic
regression [62], and can be used for semi-supervised learning (e.g., by shrinking the class
conditional covariance matrix estimates toward the shared covariance matrix).

This chapter is structured as follows. First, we discuss related literature in Sec-
tion 12.2.2. Then we describe the proposed online QDA in Section 12.2.3. Empirical
comparisons of the obtained accuracy and speed up are in Section 12.2.4. The paper
closes with a discussion of the alternatives to the taken implementation of QDA in Sec-
tion 12.2.5 and the conclusions in Section 12.2.6.

12.2.2 Related work
Feature stream processing was introduced by [274], where it was used for feature selection.
The current state-of-the-art algorithm in this field is online streaming feature selection
(OSFS) [262]. OSFS works as a feature-selection filter, which evaluates incoming features.
Only when a new feature is evaluated by OSFS to be relevant and non-redundant, the
feature is passed to a conventional downstream model, which is retrained from scratch.

143

12. LEARNING ON STREAM OF FEATURES

While OSFS dramatically decreases the number of features, the downstream model
retrains them; the time to retrain the downstream model remains an unsolved bottleneck
[268].

Examples of other feature selection methods that work on a stream of features are a
scalable and accurate online approach for feature selection (SAOLA) [269], online stream
feature selection method based on mutual information (OSFSMI) [213], online stream
feature selection method with self-adaptive sliding window (OSFSASW) [267], geometric
online adaption (GOA) [237], and streaming feature selection considering feature inter-
action (SFS-FI) [275].

Our approach is a departure from the feature selection mindset; it focuses on updating
an offline classifier into an online classifier.

This update approach was already successfully applied on a one-layer artificial neural
network by [20], where they solve the problem analytically, and by [163], where they use
dynamic programming on discretized features.

12.2.2.1 Unrelated work

Our implementation of QDA can be described as an incremental algorithm. However,
this term can have several meanings, and we feel the need to explicitly state what our
implementation is not, to avoid confusion.

A considerable amount of literature is associated with updating LDA when new
samples arrive (see references in [51, Table 1]). However, we deal with an orthogonal
problem when new features arrive. In addition, we do not calculate an approximate
solution of QDA (e.g., by iteratively approximating the first few eigenvectors [44]) but
calculate an exact solution.

12.2.3 QDA Algorithm
We denote by capital letters matrices, e.g., Z ∈ Rn×d, vectors by boldface characters,
e.g., z ∈ Rd, and scalars by lowercase characters, e.g., z ∈ R. n denotes the count of
rows and d denotes the count of columns. Unless stated otherwise, we assume vectors to
be column-vectors, i.e., we assume that zᵀz is a scalar. We index vectors and matrices
with square brackets, e.g., Z[i, j] for ith row and jth column, to be able to use the same
notion in mathematical equations and pseudocode. And we permit array broadcasting
along the vertical, e.g., Z − z = Z − 1nz

ᵀ, where 1n is a vector of ones.
A single data instance s can be scored with QDA using the following equation:

Zk(s) = −1

2
(s− µk)

ᵀΣ−1
k (s− µk)−

1

2
ln |Σk|+ ln pk. (12.6)

where µk is the estimated mean value of instances in class k, Σ−1
k is the inverse of the

covariance matrix for the class k, |Σk| is the determinant of the covariance matrix Σk,
and pk is the prior probability of the class k. Instance s is then classified into the class
with the highest Z value.

144

12.2. Online Discriminant Analysis

12.2.3.1 Covariance

The class-conditional sample covariance matrix Σt,k at time t is estimated from the class-
conditional data matrix Xt,k with

Σt,k =
1

nk − 1
(Xt,k − µt,k)(Xt,k − µt,k)

ᵀ, (12.7)

where µt,k is a class-conditional vector of the feature means, and nk is the class-conditional
sample count. When a new feature xt+1 is appended into the data matrix, Xt becomes
Xt+1. We then update the readily available Σt,k to Σt+1,k with:

x∗
t+1,k = xt+1,k − x̄t+1,k,

X∗
t+1,k = [X∗

t,k,x
∗
k],

Σt+1,k =
[
Σt,k,

1
nk−1

(X∗
t+1,k · x∗

t+1,k)
]
,

(12.8)

where we store the covariance matrices in a packed (triangular) format because covariance
matrices are always symmetric. For convenience, we use the ∗ superscript to mark the
centered matrices through the text. x̄t+1,k is the estimated mean value (a scalar) of
vector xt+1,k.

12.2.3.2 Inverse

Whenever we see an inverse of a matrix (as in Equation (12.6)), we should generally never
explicitly calculate the inverse because faster and more numerically stable methods exist
[46]. Suppose that we want to solve x = A−1y, where x is the unknown vector. Whenever
matrix A is symmetric and positive definite, we can efficiently obtain x via the Cholesky
decomposition chol [90, Section 4.2.3] followed by backward substitution backward [90,
Section 3.1.6]:

R = chol(A),
x = backward(R,y).

(12.9)

The Cholesky factorization decomposes matrix A into an upper triangular matrix R
such that the product of R and its transpose Rᵀ yields A:

A = RRᵀ. (12.10)

Backward substitution then solves the problem from bottom to top (hence, the name):

x[d] = y[d]/R[d, d],

x[i] =

(
y[i]−

d∑
j=i+1

R[i, j]x[j]

)
/R[i, i], i ∈ [1, d− 1].

(12.11)

145

12. LEARNING ON STREAM OF FEATURES

Herein, an important factor is that both the Cholesky decomposition and backward
substitution can be efficiently updated when a new column is added to matrix A. The
Cholesky decomposition can be updated with cholinsert, which is a built-in function
in Octave or Julia (a reference implementation is given in Algorithm 4 in the appendix).
The update of backward substitution is visually represented in Figure 12.3. Since the
sample covariance matrices are always symmetric and positive definite when the features
are linearly independent, we can use the Cholesky decomposition in QDA. Further dis-
cussions regarding the steps to be taken if this assumption is violated are detailed in
Section 12.2.3.6.

Figure 12.3: Updating the system of equations by appending a single column into trian-
gular matrix R.

12.2.3.3 Determinant

We can obtain the determinant of matrix A as the product of the squared diagonal
elements of chol(A):

|A| =
d∏

i=1

R[i, i]2, (12.12)

where d is the size of R.
Whenever we need the logarithm of the determinant, as in Equation (12.6), we can

avoid unnecessary overflows by summing the logarithms of the diagonal elements of
chol(A):

ln |A| = ln
d∏

i=1

R[i, i]2 = 2 ·
d∑

i=1

ln(R[i, i]). (12.13)

Because cholinsert does not change the values of the old Cholesky decomposition
Rt (it simply appends a new column), we can update the logarithm of the determinant
in real time:

ln |At+1| = ln |At|+ 2 · ln(Rt+1[t+ 1, t+ 1]), (12.14)

146

12.2. Online Discriminant Analysis

where Rt+1[t+ 1, t+ 1] is the bottom right number in triangular matrix Rt+1.

12.2.3.4 Vectorization

When scoring new samples, we may wish to score all the samples at once. However,
Equation (12.6) is given only for a single sample. To remedy this, first note that:

bᵀA−1b = bᵀ(RRᵀ)−1b

= bᵀ(R−1)ᵀR−1b

= (R−1b)ᵀ(R−1b),

where R is the Cholesky decomposition of A. From this, we obtain a scoring function for
matrix X:

Zk(x) = −1

2

∑
d

(R−1
k (X − µk)) ◦ (R−1

k (X − µk))−
1

2
ln |Σk|+ ln pk. (12.15)

where ◦ is element-wise multiplication, µk is the class-conditional mean of the training
data, Rk is the Cholesky decomposition of the Σk covariance matrix, and R−1

k X is solved
with backward substitution.

12.2.3.5 Online version

The QDA update process is described in Algorithm 2, where cholinsert is a built-
in function as implemented in Octave or Julia. In addition, solveinsert updates the
solution of the triangular system of equations with multiple right-hand sides using the
algorithm described in Algorithm 3 (backward substitution, but scaled to work with a
matrix X instead of vector x).

12.2.3.6 Regularization

One of the key problems of QDA is how to reliably estimate the covariance matrices. In
Equation (12.7), we presented an empirical estimate of the sample covariance matrices.
However, these sample covariance matrices suffer from a high variance of the parameter
estimates as the count of the parameters to estimate grows quadratically with the number
of features d and linearly with the number of the classes k.

When the count of the samples is small relative to d and k, it is frequently beneficial
to assume that the covariance matrices are identical and use a single shared covariance
matrix Σt everywhere we would use Σt,k:

Σt =
(n1 − 1)Σt,1 + (n2 − 1)Σt,2 + . . .+ (nk − 1)Σt,k

(n1 − 1) + (n2 − 1) + . . .+ (nk − 1)
, (12.16)

where n with the index is the number of samples in the class. This variant of QDA is
known as linear discriminant analysis (LDA).

147

12. LEARNING ON STREAM OF FEATURES

Algorithm 2: Updating QDA when a new feature is inserted.
Input: new feature, xt+1; label conditional sample count, m; label conditional

logarithm of prior probability, lp; label conditional feature means, µt;
label conditional centered features, X∗

t ; label conditional Cholesky
decomposition, Rt; and label conditional logarithm of determinant, ldt; t
is the count of features, k is the class

Output: µt+1, X
∗
t+1, Rt+1, ldt+1, Zt+1

1 foreach k ∈ K do
2 µt+1,k = [µt+1,k, x̄t+1,k] /* Mean vector */
3 X∗

t+1,k = [X∗
t,k,x

∗
t+1,k − x̄t+1] /* Centered matrix */

4 σk =
1

mk−1
· x∗

t+1,k ·X∗
t+1,k /* Covariance vector */

5 Rt+1,k = cholinsert(Rt,k,σk) /* Cholesky decomposition */
6 ldt+1,k = ldt,k + 2 · ln(Rt+1,k[t+ 1, t+ 1]) /* Log determinant */
7 At+1,k = solveinsert(At,k, Rt+1,k, X

∗
t+1) /* Solve equations */

8 Zt+1,k = lpk − 1
2

∑
(At+1,k ◦ At+1,k) + ldt+1,k /* Discrimination score */

9 end

Algorithm 3: Function solveinsert updates the solution of a triangular sys-
tem of equations with multiple right-hand side for A ·R = X.
Input: At, Rt+1, Xt+1, where t is the count of features
Output: At+1

1 At+1 = [At, (Xt+1[:, t+ 1]− At[:, 1 : t] ·Rt+1[1 : t, t+ 1])/Rt+1[t+ 1, t+ 1]]

Another common issue with QDA is the invertibility of the sample covariance matrices
[117]. This can be remedied with covariance shrinking toward the identity matrix [158]:

Σt,k = (1− λ)Σt,k + λI, (12.17)

where I is the identity matrix of the size Σt,k and λ is a shrinkage coefficient, λ ∈ (0, 1).
In regularized discriminant analysis (RDA) by [80], the covariance matrix is a linear

combination of the empirical shared covariance matrix, the empirical class conditional
covariance matrix, and the identity matrix:

Σt,k = (1− α− λ)Σt + αΣt,k + λI, (12.18)

where α is a tunable weight, α ∈ (0, 1− α).

12.2.4 Experiments
12.2.4.1 Datasets

We evaluated the proposed implementation of QDA on the OpenML-CC18 benchmark-
ing suite by [15]. This suite includes 72 datasets, from which we excluded datasets

148

12.2. Online Discriminant Analysis

that include nominal features or missing values, as the implementation does not directly
support them.

We compared two algorithms: QDA learning from scratch with scikit-learn 0.24.0
QDA as the reference versus the proposed QDA update by feature insert. For each of
these two scenarios, we recorded the training and scoring time in seconds on each of
the datasets. We also compared Brier scores (a calibration measure for classification)
between the implementations for each of the datasets to validate that the quality of
the predictions is equivalent. Since the Brier scores were indeed identical between the
implementations, we do not report them.

Because some datasets have collinear features, as indicated by the high correlation
coefficients in the last column in Table 12.2, we used regularized covariance matrices:
(1 − λ)

∑
k +λI, where λ = 0.02. A constant regularization was used, as the aim of the

experiment was not to find the best possible regularization coefficients but to compare
runtimes.

Median runtimes from 15 iterations are provided in Table 12.2.

149

150 12. Learning on Stream of Features

dataset scikit-learn proposed speed up samples features classes corr

mfeat-morphological 0.015 0.014 1.10 2 000 6 10 0.97
balance-scale 0.004 0.004 1.15 625 4 3 0
wilt 0.006 0.004 1.38 4 839 5 2 0.96
diabetes 0.005 0.003 1.71 768 8 2 0.54
vehicle 0.010 0.005 1.77 846 18 4 1.00
blood-transfusion 0.005 0.003 1.79 748 4 2 1
segment 0.022 0.010 2.21 2 310 19 7 1.00
banknote-authentication 0.007 0.003 2.44 1 372 4 2 0.79
climate-model 0.006 0.003 2.45 540 20 2 0.11
phoneme 0.010 0.004 2.45 5 404 5 2 0.32
kc2 0.008 0.003 2.94 522 21 2 1.00
wdbc 0.009 0.003 3.50 569 30 2 1.00
steel-plates-fault 0.042 0.012 3.61 1 941 27 7 1
letter 0.334 0.090 3.71 20 000 16 26 0.85
jungle_chess_2pcs 0.081 0.021 3.92 44 819 6 3 0.02
pendigits 0.097 0.023 4.18 10 992 16 10 0.86
pc1 0.013 0.003 5.00 1 109 21 2 1
kc1 0.019 0.003 6.30 2 109 21 2 1
qsar-biodeg 0.019 0.003 7.06 1 055 41 2 0.92
mfeat-zernike 0.090 0.013 7.08 2 000 47 10 1.00
wall-robot-navigation 0.049 0.007 7.31 5 456 24 4 0.63
pc3 0.025 0.003 8.02 1 563 37 2 1
texture 0.153 0.019 8.07 5 500 40 11 1
satimage 0.105 0.011 9.40 6 430 36 6 0.96
pc4 0.026 0.003 9.64 1 458 37 2 1
mfeat-karhunen 0.127 0.013 9.82 2 000 64 10 0.57
analcatdata_authorship 0.052 0.005 10.38 841 70 4 0.71
GesturePhaseSegmentation 0.136 0.012 11.17 9 873 32 5 0.94
mfeat-fourier 0.172 0.013 13.17 2 000 76 10 0.68
optdigits 0.243 0.017 14.42 5 620 64 10 0.93
first-order-theorem-proving 0.184 0.011 17.11 6 118 51 6 1
numerai28.6 0.765 0.033 23.32 96 320 21 2 0.86
spambase 0.091 0.004 23.62 4 601 57 2 1.00
ozone-level-8hr 0.085 0.003 29.33 2 534 72 2 1.00
semeion 0.624 0.012 50.07 1 593 256 10 0.81
mfeat-factors 0.686 0.014 50.67 2 000 216 10 1
mfeat-pixel 0.796 0.010 83.44 2 000 240 10 0.94
cnae-9 0.986 0.011 88.31 1 080 856 9 1
isolet 11.465 0.051 224.41 7 797 617 26 1.00
madelon 1.893 0.004 515.26 2 600 500 2 0.99
har 9.689 0.014 670.19 10 299 561 6 1
Fashion-MNIST 101.438 0.086 1 177.68 70 000 784 10 0.96
Devnagari-Script 731.853 0.484 1 511.97 92 000 1 024 46 0.97
mnist_784 145.914 0.091 1 600.96 70 000 784 10 1
Bioresponse 40.582 0.004 9 068.45 3 751 1 776 2 0.98
CIFAR_10 2 130.479 0.084 25 385.96 60 000 3 072 10 0.98

Table 12.2: Training and scoring times in seconds for scikit-learn QDA and the proposed
updatable QDA, when we insert the last feature. Dataset metadata: count of samples,
features, classes, and the maximal absolute Pearson’s correlation coefficient between two
different features in the dataset. Predictions from scikit-learn and the proposed QDA
are identical. The datasets are ordered by the obtained speed up.

12.2. Online Discriminant Analysis

12.2.4.2 Accuracy

Because we are generally not only interested in the runtime but also in the accuracy of
the classifiers, we compare the accuracy of QDA to a few selected classifiers. Due to
the lack of classifier implementations that work on a stream of features, we use offline
classifiers and evaluate them in offline use case.

Classifier selection Because of the focus on learning on a stream of features, we have
to include naive Bayes (NB) and k-nearest neighbors (kNN) as potential competitors.
As an approximation4 of the online one-layer neural network as described in [20] we use
logistic regression with L1 and L2 regularization (LR) [278]. Furthermore, we include
random forest (RF) by [23], and gradient boosted trees (GBT) by [81] as examples
of common offline classifiers. For all these algorithms, we use implementations from
scikit-learn 0.24.0. As variants of QDA, we also include LDA, which uses a shared
covariance matrix, and regularized discriminant analysis (RDA) by [80], which uses a
linear combination of the shared covariance matrix and the class conditional covariance
matrix. For an exhaustive comparison of QDA to other classifiers, we refer the keen
reader to Delgado’s empirical comparison of QDA to other 178 classifiers on 121 datasets
by [68].

Methodology We use the same dataset as in Section 12.2.4.1 and estimate the testing
ROC-AUC with 10-fold cross-validation. Because kNN (with Euclidean distance) requires
normalized features, we normalize the features with z-score normalization for all the
classifiers. The classifier hyperparameters were initialized to the recommended settings
by [195] and greedily optimized based on the average testing ROC-AUC over all datasets.
The used hyperparameters are listed in Table 12.3.

Table 12.3: The used classifier hyperparameters. The classifiers are described in Sec-
tion 12.2.4.2.

Classifier Parameters

GBT n_estimators=500, learning_rate=0.1, max_features=’log2’
kNN n_neighbors=29
LDA shrinkage=0.0001
LR C=1.5, penalty=’elasticnet’, l1_ratio=0.5
NB var_smoothing=10e-12
QDA shrinkage=0.02
RDA shrinkage=0.0001, alpha=0.2
RF n_estimators=300, max_features=0.25, criterion=’entropy’

4We contacted the authors but we were told that the implementation is not public.

151

12. LEARNING ON STREAM OF FEATURES

Results The results are in Table 12.4. However, the Devnagari-Script, Fashion-MNIST,
mnist_784, and numerai28.6 are absent in the comparison because too many algorithms
didn’t finish on these datasets in 3 hours. QDA underperforms on har, madelon, pc4,
phoneme, and wall-robot-navigation datasets as QDA is incapable of modeling XOR-like
problems because each class is represented by only a single prototype. To illustrate the
character of these datasets, we cite a part of wall-robot-navigation dataset description:
“The wall-following task and data gathering were designed to test the hypothesis that
this apparently simple navigation task is indeed a non-linearly separable classification
task”5. We just note that the problem is neither separable with a quadratic decision
border. On the other end, decision tree based algorithms (RF, GBT) are capable of
representing XOR-like problems and perform well on these datasets. A possible remedy
of this QDA deficiency is to use multiple prototypes per class as in mixture discriminant
analysis by [105] or map the data into a high-dimensional space as in generalized dis-
criminant analysis by [8]. However, evaluation of these alternatives is out of the scope of
this chapter.

On the other end, QDA performs well on mfeat-zernike and vehicle datasets, which
are both separable with quadratic decision boundaries.

Statistical significance Statistically significant differences between the classifiers are
depicted in Figure 12.4 following the procedure by [48]. NB is significantly worse than
any other evaluated classifier. RF is the best. QDA, kNN, LDA, RDA, LR, and GBT
are comparable.

Critical Distance=1.91

8 7 6 5 4 3 2 1

RF
GBT
LR
RDALDA

kNN
QDA

NB

Figure 12.4: Comparison of the classifiers based on ROC-AUC. Groups of classifiers that
are not significantly different (at p=0.01) are connected.

Pareto optimality The comparison of the average classifier ROC-AUC over datasets
in Table 12.4 versus the average classifier total runtime on the cross-validation (training
and scoring time) is depicted in Figure 12.5. LDA and RDA are not only Pareto optimal,
but are also on the knee-point of the Pareto frontier.

5https://www.openml.org/d/1497

152

https://www.openml.org/d/1497

12.2. Online Discriminant Analysis 153

0 200 400 600 800

Average runtime per dataset in offline use case [s]

0.87

0.88

0.89

0.9

0.91

0.92

0.93

R
O

C
-A

U
C

NB

kNN

LR

LDA
RDA

QDA

RF
GBT

Reference offline classifiers
Proposed online classifiers
Pareto optimal

Figure 12.5: Classifier ROC-AUC and cross-validation runtime tradeoff. Regularized
discriminant analysis (RDA) and linear discriminant analysis (LDA) are on the knee-
point. The runtime is for the offline use case (all features are available at once). If we
evaluated the classifiers on a stream of features, the average runtime of some of the offline
classifiers would be in days.

154 12. Learning on Stream of Features

Dataset NB kNN LR LDA RDA QDA RF GBT

Bioresponse 0.575 0.805 0.845 0.749 0.749 0.639 0.880 0.867
GesturePhaseSegmentation 0.670 0.706 0.743 0.735 0.684 0.674 0.763 0.747
analcatdata_authorship 0.994 1 1 1 1 0.997 0.999 1
balance-scale 0.889 0.916 0.964 0.951 0.955 0.971 0.714 0.872
banknote-authentication 0.938 1 1 1 1 1 1 1
blood-transfusion 0.801 0.733 0.947 0.932 0.927 0.877 0.548 0.610
climate-model 0.952 0.919 0.956 0.948 0.944 0.858 0.949 0.926
cnae-9 0.926 0.985 0.996 0.968 0.968 0.968 0.989 0.997
diabetes 0.816 0.813 0.830 0.830 0.831 0.812 0.833 0.809
first-order-theorem-proving 0.608 0.753 0.680 0.678 0.698 0.679 0.810 0.805
har 0.959 0.993 0.997 0.998 0.998 0.993 0.999 0.999
isolet 0.988 0.997 0.999 0.999 0.999 0.997 0.999 0.999
jungle_chess_2pcs 0.800 0.860 0.790 0.791 0.799 0.815 0.785 0.813
kc1 0.788 0.769 0.794 0.790 0.797 0.794 0.757 0.745
kc2 0.827 0.812 0.825 0.818 0.825 0.816 0.780 0.707
letter 0.957 0.998 0.980 0.967 0.982 0.996 1 1
madelon 0.644 0.622 0.585 0.587 0.587 0.527 0.913 0.703
mfeat-factors 0.993 0.998 0.998 0.999 0.999 0.997 0.999 0.999
mfeat-fourier 0.966 0.970 0.978 0.976 0.980 0.979 0.984 0.980
mfeat-karhunen 0.996 0.996 0.996 0.997 0.999 0.998 0.998 0.998
mfeat-morphological 0.946 0.959 0.966 0.965 0.964 0.963 0.956 0.958
mfeat-pixel 0.985 0.998 0.997 0.996 0.996 0.998 0.999 0.999
mfeat-zernike 0.960 0.978 0.982 0.979 0.981 0.980 0.969 0.968
optdigits 0.972 0.999 0.999 0.998 0.996 0.994 1 1
ozone-level-8hr 0.817 0.864 0.896 0.869 0.877 0.846 0.872 0.868
pc1 0.720 0.804 0.853 0.832 0.819 0.793 0.819 0.793
pc3 0.772 0.804 0.801 0.830 0.824 0.795 0.856 0.819
pc4 0.843 0.872 0.907 0.894 0.890 0.894 0.946 0.945
pendigits 0.979 0.999 0.997 0.990 0.997 0.999 1 1
phoneme 0.818 0.921 0.812 0.814 0.825 0.842 0.965 0.940
qsar-biodeg 0.822 0.905 0.919 0.904 0.912 0.908 0.917 0.920
satimage 0.956 0.986 0.977 0.972 0.976 0.975 0.991 0.991
segment 0.957 0.984 0.978 0.973 0.976 0.978 0.996 0.995
semeion 0.956 0.993 0.995 0.991 0.991 0.992 0.996 0.998
spambase 0.922 0.949 0.961 0.943 0.936 0.938 0.978 0.983
steel-plates-fault 0.884 0.884 0.893 0.895 0.899 0.894 0.907 0.902
texture 0.968 0.999 1 1 1 1 1 1
vehicle 0.776 0.903 0.945 0.943 0.944 0.956 0.934 0.938
wall-robot-navigation 0.820 0.918 0.890 0.847 0.868 0.870 0.999 0.999
wdbc 0.985 0.991 0.996 0.993 0.995 0.990 0.991 0.995
wilt 0.841 0.933 0.956 0.966 0.960 0.958 0.985 0.988

Avg (larger is better) 0.873 0.909 0.918 0.910 0.911 0.901 0.921 0.916
Rank (smaller is better) 7.110 4.951 3.707 4.671 4.049 5.085 3.110 3.317

Table 12.4: Testing ROC-AUC from cross-validation.

12.2. Online Discriminant Analysis

12.2.5 Discussion
12.2.5.1 Computational complexity

Inserting a new feature leads to computational complexity O(nd + d2), while the calcu-
lation of QDA from scratch leads to computational complexity O(nd2 + d3). A detailed
analysis of the computational complexity is given in Appendix A.3. The empirical res-
ults for randomly generated dense matrices are shown in Figure 12.6. The measurements
were taken in Octave 4.4. The empirical results for 46 standard benchmarking datasets,
where the proposed updatable QDA is compared to scikit-learn QDA6, are provided in
Section 12.2.4.1. In this comparison, the updatable QDA was always faster than scikit-
learn QDA. Notably, there was a 1000-fold increase in speed in five cases. When we
examined the scikit-learn implementation, we identified SVD decomposition as the bot-
tleneck. For the description of how to use SVD for discriminant analysis, see for example
[117]. The code for the resulting replication is available at github.com/janmotl/qda.

Features

0 1000 2000 3000 4000 5000

R
u

n
ti
m

e
 [

s
]

0

5

10

15

20

25

30

35
Training and scoring time for 10000 samples

From scratch

Insert

Samples
�10

4

0 1 2 3 4 5 6

R
u

n
ti
m

e
 [

s
]

0

2

4

6

8

10

12

14

16
Training and scoring time for 1000 features

From scratch
Insert

Samples (features is 1/3 of samples)
0 2000 4000 6000 8000 10000

S
p

e
e

d
 u

p

0

2

4

6

8

10

12
Speed up of QDA insert vs. QDA from scratch

Measured
Linear fit

Figure 12.6: Inserting a new feature into QDA is faster and scales better than the
calculation of QDA from scratch.

12.2.5.2 Feature selection

The ability to quickly insert new features can be used, for example, to speed up forward
variable selection with LDA, as implemented in greedy.wilks() [223].

12.2.5.3 Model size

The size of the trained incremental QDA does not differ from the textbook QDA Equa-
tion (12.6).

However, whenever we want to insert a new feature into the model, we need more
variables. All necessary variables can be calculated from the features directly. However,
the calculation of R−1

k X∗
k from scratch takes the O(nd2) with the TRSM subroutine from

LAPAC. Hence, if we did not store R−1
k X∗

k , it would increase the overall computational
complexity of the online QDA update from O(nd + d2) to O(nd2 + d2). Nevertheless,
based on the empirical experiments on 1000 samples and 3000 features, even if we do not

6Scikit-learn is a free software learning library for Python.

155

https://github.com/janmotl/qda

12. LEARNING ON STREAM OF FEATURES

store any variable beyond the first three in Table 12.5, an update with the online version
is still ∼ 3× faster than a complete recalculation of QDA from scratch.

Table 12.5: Model size per class for scoring (the top 3 lines) and model update (the
bottom 3 lines). The offline implementation is in Equation (12.6), and the online version
is in Equation (12.15).

Offline Online
Variable Size Variable Size

Σ−1
k d× d Rk d× d

ln pk − 1
2
ln |Σk| 1 ln pk − 1

2
ln |Σk| 1

µk d µk d

- - R−1
k X∗

k n× d
- - X∗

k n× d
- - mk 1

12.2.5.4 Limitations

The online version of QDA inherits all the disadvantages of offline QDA, namely high
sensitivity to outliers and difficulties with the accurate estimation of the covariance mat-
rix/matrices, which can be addressed by the use of robust statistical estimates [116] and
covariance shrinking [158], respectively. Missing values in the estimate of the covariance
matrix can be handled as described by [168]. And a mixture of numerical and nominal
features can be handled with one of the methods described by [113].

12.2.5.5 Feature tracking

To update the model with new features, we must remember all the past features to
be able to update the covariance matrix. This issue is shared with the offline version
QDA and even with streaming feature selection methods [274], such as OSFS, because
an irrelevant feature may become relevant once a new feature is inserted. A canonical
example of this is an XOR problem: y = XOR(x1,x2), where x1 and x2 are features.

If it is inconvenient to remember all observed features (e.g., because of their sheer
number and size), we can either recommend “upgrading” models that assume (conditional)
independence of the features, such as naive Bayes, or using distance-based models. The
advantage of naive Bayes is that for each feature, we have to only remember sufficient
statistics [72], for example, the mean and variance of each continuous feature. The
disadvantage of naive Bayes, in comparison to QDA, is that it does not model interactions
between the features.

A significant advantage of a distance-based approach is that the size of the Gram/sim-
ilarity/distance matrix does not grow with the number of features. This property is ex-
ploited, for example, in a support vector machine with an RBF kernel. The disadvantage

156

12.2. Online Discriminant Analysis

of the distance-based method is that the memory requirements grow quadratically with
the number of instances. There are notable exceptions, such as low-rank kernel approx-
imations [71] that were designed specifically to tackle this issue. QDA training, however,
can be implemented to have memory requirements oblivious to the number of samples.

12.2.6 Conclusions
The key to learning on a stream of features with QDA is to use the Cholesky decomposi-
tion and cholinsert function in place of the matrix inverse. This method, together with
an efficient update of the covariance matrices, reduced the computational complexity of
the QDA update when a new feature was added, from O(nd2 + d3) to O(nd+ d2). This
is equivalent to the reduction by d (the number of features). The proposed QDA returns
identical predictions to scikit-learn QDA while being 1000 times faster. In the accuracy
comparison, we identified the need to regularize the estimated covariance matrices. The
proposed regularized discriminant analysis on a stream of features is statistically signific-
antly more accurate than naive Bayes (at p=0.01) and comparable to regularized logistic
regression, k-nearest neighbors, and gradient boosted trees while in runtime it is much
closer to naive Bayes.

157

CHAPTER 13
Discussion

In this chapter, we describe the experience from deployment of Predictor Factory at
multiple clients.

One of the questions that a consultant working with data must decide is whether the
analysis will be performed on the client’s infrastructure or on own hardware. With Pre-
dictor Factory, both approaches are feasible. Following paragraphs describe advantages
and disadvantages of each approach.

Possibly the biggest advantage of working on a client’s infrastructure is that the client
does not give the data away. Hence, the client does not have to worry, whether the data
contains sensitive informative that must not leave a company. Nor the client has to worry
about data leaks.

Consequently, it is commonly easier to persuade a client to give you access to their
data, if the analysis is performed at the client’s infrastructure. Also, it commonly takes
less time to get access to the data, if the analysis is performed on the client’s infrastruc-
ture than if the analysis is performed out of the company, since “only” a terminal and
appropriate privileges must be set up and no lawyer has to check that the data may
actually leave the company. Consequently, if you work on the client’s infrastructure, you
may get your hands on a much wider range of data than you would get if you asked the
company for data export. Finally, a non-negligible advantage is that you do not have to
own a secure supercomputer for the analysis – all heavy lifting is done by the company’s
server.

However, the work at the client’s infrastructure has its own disadvantages. The first
complication is, that each client has a different infrastructure and it takes time to adapt
to the new environment. The second disadvantage is that the client may not be overly
happy if you consume too much computation resources.

Conclusion Overall, the biggest advantage of Predictor Factory is that it fits well into
the infrastructure and processes of companies that store their data in relational databases
and analyze their data with analytical tools like SAS. Predictor Factory changes a bare
minimum of processes in a data mining process – just feature extraction. And Predictor

159

13. DISCUSSION

factory utilizes present infrastructure for the feature creation. No application have to be
installed1. Hence, while Predictor Factory can be utilized on both, client’s and consult-
ant’s side, Predictor Factory shines particularly on the client’s side. The user manual
for Predictor Factory is in Appendix A.4. The website is http://predictorfactory.com
and the source code is at https://github.com/janmotl/PredictorFactory.

1Predictor Factory, nor Java Runtime Machine, have to be installed – they can be just copied.

160

http://predictorfactory.com
https://github.com/janmotl/PredictorFactory

CHAPTER 14
Conclusions

In Chapter 1, relational learning was introduced. And while relational learning is known
from 1976, it was pointed out that the time dimension is not commonly correctly treated
in relational learning.

Background and State-of-the-Art Propositionalization algorithms were decomposed
into 7 building blocks and empirically compared in Chapter 2. The identified state-of-
the-art algorithms in relational supervised learning were: Wordification [201], Link-Based
propositionalization [55], Simple decision Forest [14], MVC with weighted voting [180],
Path Independent Classifier (PIC) [233], and Ensemble of Probabilistic Relational Neigh-
bours (EPRN) [205].

Predictor Factory Description of Predictor Factory, an implementation of a propos-
itionalization algorithm, was given in Chapter 3. Predictor Factory was designed to do
just one thing (propositionalization) and do it right. Hence, many technical details were
discussed and addressed, like the naming convention or which data to process.

Implementation The architecture of Predictor Factory and the choice of the used
technologies were described and justified in Chapter 4. During the user testing, 7 subjects
out of 9 delivered a predictive model with Predictor Factory in less than an hour.

Relational repository With the help of Oliver Schulte, Václav Ostrožlík, and other
contributors, a public repository of relational datasets, described in Chapter 5, was cre-
ated to promote relational learning. The repository is used by scientist (there is over 70
citations at Google Scholar1), students (there is over 1 000 code results at GitHub2) as
well as corporates including IBM3 and Oracle.

1See: https://scholar.google.cz/scholar?q=relational.fit.cvut.cz.
2See: https://github.com/search?q=relational.fit.cvut.cz.
3See: https://github.com/chiragsahni/lale-gpl/blob/master/lalegpl/datasets/multitable/

fetch_datasets.py.

161

https://scholar.google.cz/scholar?q=relational.fit.cvut.cz
https://github.com/search?q=relational.fit.cvut.cz
https://github.com/chiragsahni/lale-gpl/blob/master/lalegpl/datasets/multitable/fetch_datasets.py
https://github.com/chiragsahni/lale-gpl/blob/master/lalegpl/datasets/multitable/fetch_datasets.py

14. CONCLUSIONS

Back in time, repositories like UCI Machine Learning Repository did not include
relational datasets and the commonly used relational datasets in ILP community, like
Train or Mutagenesis datasets, were not suitable for temporal relational learning as
they did not contain any attribute that would be changing in time. The existence of
the repository attracted contributors and there is now 22 non-synthetic (real) temporal
relational datasets, which makes it possible to produce statistically significant results.

Empirical Evaluation The empirical comparison of Predictor Factory to other pro-
positionalization tools in Chapter 6 chapter shows that Predictor Factory has classifica-
tion accuracy comparable to other implementations. Nevertheless, there is one aspect in
which Predictor Factory appears to be superior to the examined implementations – the
ability to process diverse datasets.

Foreign key constraint discovery In relational learning, it is common to predict
a target stored in one table based on the content of other tables. However, to use the
content of these tables, you have to know their relationship to the target. In nicely
designed relational datasets, it suffices to follow the foreign key constraints defined in
the database. In reality, foreign key constraints are frequently absent, be it because of
the limitations of the storage medium (e.g., CSV files) or simply because the constraints
were never defined.

Algorithms for the estimation of the foreign key constraints already existed. However,
they had O(n2) computational complexity with regard to the number of attributes in a
database. And that means that they did not scale well. What helps is to collect attribute
statistics in one pass over the database and then run the O(n2) algorithm just on these
statistics, instead of the actual and potentially large data. Can we do better? Another
step could be to collect sampled statistics instead of the exact statistics, reducing the
one pass over the database to a fraction of a single pass. However, the empirical results
in Chapter 7 suggest that we do not have to see even a single datum from the data to
make sound estimates. How is that possible? Modern databases already collect attribute
statistics for execution plan optimization. Hence, all that was necessary to do was to
check whether these statistics could be reused for foreign key constraint discovery. The
empirical results suggest that these statistics work equally well as statistics explicitly
developed for foreign key constraint discovery. Hence, we now have a fast open source
implementation for the detection of the relationships in the database.

Multi target stratified sampling Some of the features, which Predictor Factory
generates, are supervised – we need the target to calculate them. However, while these
supervised features can be highly predictive of the target, they are unlikely to be pre-
dictive of a different target. To make Predictor Factory practical in scenarios when we
need to predict multiple targets (e.g., propensities to buy different products), Predictor
Factory supports multiple targets in a single run. Unfortunately, the standard stratified
sampling, which is used to evaluate features’ relevancy, does not work with more than

162

14.1. Contributions

one target. An exact solution to stratified sampling based on multiple targets is provided
in Chapter 8.

Detrending and deseasoning Detrending and deseasoning are common techniques in
time series analysis. However, the common techniques from time series analysis are gen-
erally not directly applicable to relational data. A method how to detrend and deseason
relational data is described in Chapter 9.

Generalized aggregate While one of the biggest advantages of propositionalization
is that it is trivial to add new feature functions, it leads to the explosion of the number
of feature functions. A family of aggregates, which generalizes common aggregates like
sum, min or max was defined in Chapter 10.

Meta learning Achilles heel of propositionalization is that it produces a vast quantity
of irrelevant and redundant features. However, since the features are generated sequen-
tially and not all at once, we can build a meta model to predict the features’ univariate
relevancy, redundancy and runtime. Based on the empirical results Chapter 11, meta
learning reduces propositionalization runtime to one-tenth of the original runtime without
loss of accuracy of the downstream model.

Learning on stream of features The disadvantage of the implemented meta learning
is that it is unaware of the used downstream model. To remedy that, we modified two
classifiers, random forest Section 12.1 and discriminant analysis Section 12.2, to work
efficiently on a stream of features, making it practical to train and use a meta model,
which predicts improvement of the accuracy of the chosen downstream model, when we
calculate another feature.

Discussion The author’s experience with the application of Predictor Factory on cli-
ents’ data is provided in crefchap:discussion. One of the biggest practical advantages of
Predictor Factory is that all the heavy computation is happening directly in the client’s
(testing) database. And once Predictor Factory finishes, a SQL script which replicates the
run is produced. Hence, no new hardware or software has to be obtained for production.

14.1 Contributions

The main contributions of the dissertation thesis are as follows:

1. Relational dataset repository for benchmarking relational algorithms (83 datasets).
2. Algorithm for discovering relationships between tables in a database (scales inde-

pendently of the row count in the tables).

163

14. CONCLUSIONS

3. Optimal algorithm for stratified partitioning based on multiple columns for cross-
validation (with exact solution).

4. Predictor Factory for automatic feature extraction from relational data for classi-
fication and regression.

5. Approach for removing trend and seasonal variation from relational data (improves
accuracy, P=.0005).

6. Generalization of common aggregate functions to temporal data (improves accur-
acy, P=.016).

7. Meta-learning for faster feature extraction (reduces runtime by 90%).
8. Classifiers for learning on a stream of features (up to 10 000 times faster than

scikit-learn).

14.2 Future Work
The author of the dissertation thesis suggests designing a neural network, which exploits
the idea of generalized aggregates to temporal data. Traditionally, attributes in n:1
relationship to the target were handled with recurrent neural networks (RNN). However,
while RNNs are powerful, they also require a large training set. Generalized aggregates
use fewer parameters than RNNs, but are still at least as powerful as commonly used
aggregates in statistics and time-series analysis. Hence, they should outperform RNNs in
data-scarce situations. Research questions to answer: Are generalized aggregates suitable
for transfer learning like convolutional neural networks (CNN)? CNNs were found to
produce patterns similar to Gabor filter. Can we find a similar relationship between the
pre-trained generalized aggregates and the commonly used aggregates?

164

Bibliography

[1] S. M. Abdulrahman and P. Brazdil. Measures for combining accuracy and time for
meta-learning. CEUR Workshop Proc., 1201:49–50, 2014.

[2] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a survey. VLDB
J., 24(4):557–581, 2015.

[3] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc
Int. Conf. Very Large Databases, volume 1215, pages 487–499, Santiage, Chile,
1994. Morgan Kaufmann.

[4] J. Anderson, M. Gaare, J. Holguín, N. Bailey, and T. Pratley. Professional Clojure.
John Wiley and Sons, 2016.

[5] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L.
Veldhuizen, and G. Washburn. Design and Implementation of the LogicBlox Sys-
tem. In Proc. 2015 ACM SIGMOD Int. Conf. Manag. Data - SIGMOD ’15, pages
1371–1382, New York, New York, USA, 2015. ACM Press.

[6] A. Atramentov, H. A. H. Leiva, and V. Honavar. A Multi-relational Decision
Tree Learning Algorithm – Implementation and Experiments. In T. Horváth and
A. Yamamoto, editors, Inductive Log. Program., volume 2835 of LNAI, pages 38–56.
Springer Berlin Heidelberg, 2003.

[7] F. Bajersvej. Relational Classification - Decision Tree Approach. PhD thesis,
Aalborg University, 2005.

[8] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel ap-
proach. Neural Comput., 12(10):2385–2404, 2000.

[9] S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth. The UCI KDD archive of large
data sets for data mining research and experimentation. ACM SIGKDD Explor.
Newsl., 2(2):81–85, dec 2000.

165

BIBLIOGRAPHY

[10] J. G. Bennett, P. A. Gee, and C. E. Gayraud. System and Methods Including
Automatic Linking of Tables for Improved Relational Database Modeling with
Interface, 1997.

[11] C. Bergmeir, R. J. Hyndman, and B. Koo. A note on the validity of cross-validation
for evaluating autoregressive time series prediction. Comput. Stat. Data Anal.,
120(April):70–83, apr 2018.

[12] P. Berka. Workshop notes on Discovery Challenge PKDD’99. Technical report,
University of Economics, Prague, 1999.

[13] A. Bernard and P. van Elteren. A generalization of the method of m rankings. In
Proc. Int. Math. Congr., volume 2, pages 275–276, Amsterdam, sep 1954.

[14] B. Bina, O. Schulte, B. Crawford, Z. Qian, and Y. Xiong. Simple decision forests
for multi-relational classification. Decis. Support Syst., 54(3):1269–1279, 2013.

[15] B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N.
van Rijn, and J. Vanschoren. OpenML Benchmarking Suites. arXiv, pages 1–6,
2017.

[16] H. Blockeel. Learning, attribute-value. Technical report, Katholieke Universiteit
Leuven, 2010.

[17] H. Blockeel. Learning, relational. Technical report, KU Leuven, Leuven, 2013.

[18] H. Blockeel, S. Džeroski, B. Kompare, S. Kramer, B. Pfahringer, and W. V. Laer.
Experiments in Predicting Biodegradability. Appl. Artif. Intell., 18(2):157–181, feb
2004.

[19] H. Blockeel and W. Uwents. Using neural networks for relational learning. Work.
Notes ICML-2004 Work. Stat. Relational Learn. Connect. to Other Fields, pages
23–28, 2004.

[20] V. Bolon-Canedo, D. Fernández-Francos, D. Peteiro-Barral, A. Alonso-Betanzos,
B. Guijarro-Berdiñas, and N. Sánchez-Maroño. A unified pipeline for online feature
selection and classification. Expert Syst. Appl., 55:532–545, 2016.

[21] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time Series Analysis:
Forecasting and Control. Wiley, 2015.

[22] T. Brandenburger and A. Furth. Cumulative Gains Model Quality Metric. J. Appl.
Math. Decis. Sci., 2009:1–14, jun 2009.

[23] L. Breiman. Random forest. Mach. Learn., 45(5):1–35, 1999.

[24] N. E. Breslow and D. G. Clayton. Approximate Inference in Generalized Linear
Mixed Models. J. Am. Stat. Assoc., 88(421):9, 1993.

166

Bibliography

[25] G. Brown, A. Pocock, M.-J. Zhao, and M. Lujan. Conditional Likelihood Max-
imisation: A Unifying Framework for Mutual Information Feature Selection. J.
Mach. Learn. Res., 13:27–66, 2012.

[26] A. M. Bujang, N. Sa’at, M. T. A. B. Sidik, and L. C. Joo. Sample Size Guidelines for
Logistic Regression from Observational Studies with Large Population. Malaysian
J. Med. Sci., 25(4):122–130, 2018.

[27] P. Buryan. Refinement Action-Based Framework For Utilization Of Softcomputing
In Inductive Learning. PhD thesis, Czech Technical University, 2013.

[28] D. Cai, X. He, and J. Han. Training linear discriminant analysis in linear time.
Proc. - Int. Conf. Data Eng., 00:209–217, 2008.

[29] M. Ceci and A. Appice. Spatial associative classification: Propositional vs struc-
tural approach. J. Intell. Inf. Syst., 27(3):191–213, 2006.

[30] M. Ceci, A. Appice, H. L. Viktor, D. Malerba, E. Paquet, and H. Guo. Trans-
ductive relational classification in the co-training paradigm. Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 7376
LNAI:11–25, 2012.

[31] P. Cerda, G. Varoquaux, and B. Kégl. Similarity encoding for learning with dirty
categorical variables. Mach. Learn., 107(8-10):1477–1494, 2018.

[32] S. H. Cha and S. N. Srihari. On measuring the distance between histograms.
Pattern Recognit., 35(6):1355–1370, 2002.

[33] D. D. Chamberlin. Early history of SQL. IEEE Ann. Hist. Comput., 34(4):78–82,
2012.

[34] G. Chandrashekar and F. Sahin. A survey on feature selection methods. Comput.
Electr. Eng., 40(1):16–28, 2014.

[35] H. Chen, H. Liu, J. Han, and X. Yin. Exploring Optimization of Semantic Rela-
tionship Graph for Multi-relational Bayesian Classification. Decis. Support Syst.,
48(1):112–121, 2009.

[36] T. Chen, T. He, and M. Benesty. Extreme Gradient Boosting. arXiv, pages 1–4,
2016.

[37] Z. Chen, V. Narasayya, and S. Chaudhuri. Fast Foreign-Key Detection in Microsoft
SQL Server PowerPivot for Excel. VLDB Endow., 7(13):1417–1428, 2014.

[38] J. Cheng, C. Hatzis, H. Hayashi, M.-A. Krogel, S. Morishita, D. Page, and J. Sese.
KDD Cup 2001 report. ACM SIGKDD Explor. Newsl., 3(2):47, jan 2002.

167

BIBLIOGRAPHY

[39] N. R. Chrisman. Rethinking Levels of Measurement for Cartography. Cartogr.
Geogr. Inf. Sci., 25(4):231–242, mar 1998.

[40] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-
trend decomposition. J. Off. Stat., 6(1):3–73, 1990.

[41] W. G. Cochran. Sampling Techniques, 1977.

[42] I. Coursac and N. Duteil. PKDD 2001 Discovery Challenge - Medical Domain.
PKDD 2001 Discov. Chall. 2001, 3(2), 2002.

[43] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math.
Control. Signals, Syst., 2(4):303–314, 1989.

[44] I. Dagher. Incremental PCA-LDA algorithm. CIMSA, (4):97–101, 2010.

[45] G. Das. Sampling Methods in Approximate Query Answering Systems. In Encycl.
Data Warehous. Mining, Second Ed., pages 1702–1707. IGI Global, 2009.

[46] T. A. Davis. Algorithm 9xx: FACTORIZE: An object-oriented linear system solver
for MATLAB. ACM Trans. Math. Softw., 39(4):1–18, 2013.

[47] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and
C. Hansch. Structure-activity relationship of mutagenic aromatic and heteroaro-
matic nitro compounds. Correlation with molecular orbital energies and hydro-
phobicity. J. Med. Chem., 34(2):786–797, feb 1991.

[48] J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach.
Learn. Res., 7:1–30, 2006.

[49] P. J. Denning. The locality principle. Commun. ACM, 48(7):19–24, jul 2005.

[50] M. M. Deza and E. Deza. Encyclopedia of Distances. Encycl. Distances, pages
291–305, 2013.

[51] T. I. Dhamecha, R. Singh, and M. Vatsa. On incremental semi-supervised discrim-
inant analysis. Pattern Recognit., 52:135–147, 2016.

[52] N. A. Diamantidis, D. Karlis, and E. A. Giakoumakis. Unsupervised stratification
of cross-validation for accuracy estimation. Artif. Intell., 116(1-2):1–16, 2000.

[53] T. G. Dietterich. An Experimental Comparison of Three Methods for Constructing
Ensembles of Decision Trees : Bagging , Boosting , and Randomization. Mach.
Learn., 40(2):139–157, 2000.

[54] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell., 89(1-2):31–71, 1997.

168

Bibliography

[55] Q.-T. Dinh, M. Exbrayat, and C. Vrain. Link-Based Method for Propositionaliza-
tion. Inductive Log. Program., pages 2–7, 2012.

[56] B. Dolšak and S. Muggleton. The Application of Inductive Logic Programming to
Finite Element Mesh Design. In S. Muggleton, editor, Inductive Log. Program.,
pages 453–472, London, 1992. Academic Press.

[57] R. Dubčáková. Eureqa: Software review. Genet. Program. Evolvable Mach.,
12(2):173–178, 2011.

[58] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley Interscience,
2 edition, 2000.

[59] J. Durbin. Incomplete blocks in ranking experiments. Br. J. Stat. Psychol.,
4(2):85–90, jun 1951.

[60] Dušan Petković. Modern Temporal Data Models: Strengths and Weaknesses. Com-
mun. Comput. Inf. Sci., 521:136–146, 2015.

[61] S. Džeroski, S. Schulze-Kremer, K. R. Heidtke, K. Siems, and D. Wettschereck.
Applying ILP to Diterpene Structure Elucidation from 13C NMR Spectra. Appl.
Artif. Intell., 12:41–54, aug 1996.

[62] B. Efron. The efficiency of logistic regression compared to normal discriminant
analysis. J. Am. Stat. Assoc., 70(352):892–898, 1975.

[63] W. Emde and D. Wettschereck. Relational Instance-Based Learning. ICML, 1996.

[64] G. Farnadi. Statisticcal Relational Learning with Soft Quantifier. Technical report,
Universiteit Gent, 2015.

[65] S. Fatehi. SchemaCrawler, 2017.

[66] T. Fawcett. An introduction to ROC analysis. Pattern Recognit. Lett.,
27(8):861–874, jun 2006.

[67] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified architecture for
in-RDBMS analytics. In SIGMOD Conf., pages 325–336, 2012.

[68] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we Need
Hundreds of Classifiers to Solve Real World Classification Problems? J. Mach.
Learn. Res., 15:3133–3181, 2014.

[69] FICO. Leveraging Transactional Data with Genetic Algorithms. Technical Report
November, FICO, 2006.

[70] J. J. Filho and J. Wainer. HPB: A Model for Handling BN Nodes with High
Cardinality Parents. J. Mach. Learn. Res., 9:2141–2170, 2008.

169

BIBLIOGRAPHY

[71] S. Fine and K. Scheinberg. Efficient SVM Training Using Low-Rank Kernel Rep-
resentations. JMLR, 1:243–264, 2000.

[72] R. A. Fisher. On the Mathematical Foundations of Theoretical Statistics. Philos.
Trans. R. Soc. A Math. Phys. Eng. Sci., 222(594-604):309–368, 1922.

[73] P. A. Flach and N. Lachiche. Naive Bayesian Classification of Structured Data.
Mach. Learn., 57(3):233–269, 2004.

[74] G. Forman, G. Forman, M. Scholz, and M. Scholz. Apples-to-Apples in Cross-
Validation Studies: Pitfalls in Classifier Performance Measurement. HP labs,
12(1):49–57, 2009.

[75] J. Foulds and E. Frank. A review of multi-instance learning assumptions. Knowl.
Eng. Rev., 25(01):1, mar 2010.

[76] M. V. M. França, G. Zaverucha, and A. D’Avila Garcez. Fast relational learning
using bottom clause propositionalization with artificial neural networks. Mach.
Learn., 94(1):81–104, 2014.

[77] R. Frank, F. Moser, and M. Ester. A Method for Multi-relational Classification Us-
ing Single and Multi-feature Aggregation Functions. In Knowl. Discov. Databases
PKDD 2007, volume 4702 of LNAI, pages 430–437. Springer Berlin Heidelberg,
Berlin, 2007.

[78] P. Frasconi, F. Costa, L. De Raedt, and K. De Grave. kLog: A Language for Logical
and Relational Learning with Kernels. Artif. Intell., 7(2007):117–143, 2012.

[79] Y. Freund and R. E. Schapire. Experiments with a New Boosting Algorithm. Int.
Conf. Mach. Learn., pages 148–156, 1996.

[80] J. H. Friedman. Regularized discriminant analysis. J. Am. Stat. Assoc.,
84(405):165–175, 1989.

[81] J. H. Friedman. Greedy function approximation: A gradient boosting machine.
Ann. Stat., 29(5), oct 2001.

[82] M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in
the Analysis of Variance. J. Am. Stat. Assoc., 32(200):675–701, dec 1937.

[83] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on
concept drift adaptation. ACM Comput. Surv., 46(4):1–37, mar 2014.

[84] R. García-Durán, F. Fernández, and D. Borrajo. Prototypes Based Relational
Learning. In Artif. Intell., chapter 3, pages 130–143. Springer, Berlin, 2008.

170

Bibliography

[85] A. H. Gazala and W. Ahmad. Multi-Relational Data Mining A Comprehensive
Survey. In M. Usman, editor, Improv. Knowl. Discov. through Integr. Data Min.
Tech. IGI Global, jan 2015.

[86] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT
Press, 2007.

[87] A. S. Ghanem, S. Venkatesh, and G. West. Learning in imbalanced relational data.
2008 19th Int. Conf. Pattern Recognit., pages 1–4, 2008.

[88] L. Ghionna and G. Greco. Boosting tuple propagation in multi-relational classifica-
tion. In Proc. 15th Symp. Int. Database Eng. & Appl. - IDEAS ’11, pages 106–114,
New York, sep 2011. ACM Press.

[89] V. Gjorgjioski and S. Džeroski. Stochastic propositionalization of relational data
using aggregates. Technical report, Jožef Stefan Institute, 2008.

[90] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins, 4th edition,
2013.

[91] A. N. Gorban and I. Y. Tyukin. Blessing of dimensionality: Mathematical founda-
tions of the statistical physics of data. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci., 376(2118), 2018.

[92] S. B. Green. How Many Subjects Does It Take To Do A Regression Analysis.
Multivariate Behav. Res., 26(3):499–510, 1991.

[93] T. Gunasegaran and Y. N. Cheah. Evolutionary cross validation. ICIT 2017 - 8th
Int. Conf. Inf. Technol. Proc., pages 89–95, 2017.

[94] H. Guo. Learning from Multirelational Data through Multiple Views. PhD thesis,
University of Ottawa, 2010.

[95] H. Guo and H. L. Viktor. Mining relational databases with multi-view learning.
Proc. 4th Int. Work. Multi-relational Min., pages 15–24, 2005.

[96] H. Guo and H. L. Viktor. Mining imbalanced classes in multirelational classifica-
tion. In Proceeding 6th Int. Work. Multi-Relational Data Min., pages 46–57, 2007.

[97] H. Guo and H. L. Viktor. Learning from Skewed Class Multi-relational Databases.
Fundam. Informaticae, 89(1):69–94, 2008.

[98] H. Guo and H. L. Viktor. Multirelational classification: a multiple view approach.
Knowl. Inf. Syst., 17(3):287–312, feb 2008.

[99] I. Guyon and A. Elisseefl. An introduction to feature extraction. Stud. Fuzziness
Soft Comput., 207:1–25, 2006.

171

BIBLIOGRAPHY

[100] I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, editors. Feature Extraction,
volume 207 of Studies in Fuzziness and Soft Computing. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006.

[101] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. An Introduction to Variable and
Feature Selection Isabelle. Mach. Learn., 46(1/3):389–422, 2002.

[102] M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD thesis,
The University of Waikato, 1999.

[103] T. Halpin and S. Rugaber. LogiQL: A Query Language for Smart Databases. CRC
Press, 2014.

[104] T. Hastie and R. Tibshirani. Generalized Additive Models. Stat. Sci., 1(3):297–310,
1986.

[105] T. Hastie and R. Tibshirani. Discriminant Analysis by Gaussian Mixtures. J. R.
Stat. Soc. Ser. B, 58(1):155–176, 1996.

[106] C. Helma, R. D. King, S. Kramer, and A. Srinivasan. The Predictive Toxicology
Challenge 2000-2001. Bioinformatics, 17(1):107–108, jan 2001.

[107] J. D. Hirst, R. D. King, and M. J. E. Sternberg. Quantitative structure-activity
relationships by neural networks and inductive logic programming. I. The inhib-
ition of dihydrofolate reductase by pyrimidines. J. Comput. Aided. Mol. Des.,
8(4):405–420, 1994.

[108] D. S. Hochbaum. Integer Programming and Combinatorial Optimization. Technical
report, University of California, 2010.

[109] C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving
averages. Int. J. Forecast., 20(1):5–10, 2004.

[110] A. G. Howard. Missing Data in Non-Parametric Tests of Correlated Data. PhD
thesis, University of North Carolina at Chapel Hill, 2012.

[111] Huan Liu and R. Setiono. Chi2: feature selection and discretization of numeric
attributes. In Proc. 7th IEEE Int. Conf. Tools with Artif. Intell., pages 388–391.
IEEE Comput. Soc. Press, 1995.

[112] G. B. Huang, Q. Y. Zhu, and C. K. Siew. Extreme learning machine: Theory and
applications. Neurocomputing, 70(1-3):489–501, 2006.

[113] C. J. Huberty, J. M. Wisenbaker, J. D. Smith, and J. C. Smith. Using Categorical
Variables in Discriminant Analysis. Multivariate Behav. Res., 21(4):479–496, oct
1986.

172

Bibliography

[114] T. N. Huynh and R. J. Mooney. Discriminative structure and parameter learning
for Markov logic networks. In Proc. 25th Int. Conf. Mach. Learn. - ICML ’08,
volume 307, pages 416–423, New York, New York, USA, 2008. ACM Press.

[115] J. Jambeiro Filho and J. Wainer. Using a hierarchical Bayesian model to handle
high cardinality attributes with relevant interactions in classification problem. In
IJCAI Int. Jt. Conf. Artif. Intell., pages 2504–2509, 2007.

[116] J.-h. Jiang, Z.-p. Chen, C.-j. Xu, and R.-q. Yu. Robust Linear Discriminant Ana-
lysis for Chemical Pattern Recognition. J. Chemom., 13(January 1998):3–13, 1999.

[117] J. Kalina, Z. Valenta, and J. D. Tebbens. Computation of Regularized Linear
Discriminant Analysis. Comput. Stat. Int. Conf., pages 128–133, 2015.

[118] T. Kamishima, H. Kazawa, and S. Akaho. A Survey and Empirical Comparison
of Object Ranking Methods. In J. Fürnkranz and E. Hüllermeier, editors, Prefer.
Learn., pages 181–201. Springer, Berlin, 2010.

[119] J. M. Kanter and O. Gillespie. Label, Segment, Featurize : a cross domain frame-
work for prediction engineering. In IEEE DSAA 2016, page 10. IEEE, 2016.

[120] J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards automating
data science endeavors. In 2015 IEEE Int. Conf. Data Sci. Adv. Anal., pages 1–10.
IEEE, oct 2015.

[121] A. Karalič and I. Bratko. First Order Regression. Mach. Learn., 26(2-3):147–176,
1997.

[122] T. Karunaratne and H. Boström. Graph propositionalization for random forests.
8th Int. Conf. Mach. Learn. Appl. ICMLA 2009, pages 196–201, 2009.

[123] T. Karunaratne, H. Boström, and U. Norinder. Pre-processing structured data for
standard machine learning algorithms by supervised graph propositionalization - A
case study with medicinal chemistry datasets. Proc. - 9th Int. Conf. Mach. Learn.
Appl. ICMLA 2010, pages 828–833, 2010.

[124] V. Kassarnig and F. Wotawa. Evolutionary propositionalization of multi-relational
data. Proc. 30th Int. Conf. Softw. Eng. Knowl. Eng., 2018:629–690, 2018.

[125] S. Kaufman and S. Rosset. Leakage in data mining: Formulation, detection, and
avoidance. KDD ’11 Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. data
Min., pages 556–563, 2012.

[126] M. Kaufmann, P. Fischer, N. May, and D. Kossmann. Benchmarking Bitemporal
Database Systems: Ready for the Future or Stuck in the Past? EDBT, pages
738–749, 2014.

173

BIBLIOGRAPHY

[127] N. Kaur, G. Kunapuli, S. Joshi, K. Kersting, and S. Natarajan. Neural Networks
for Relational Data. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), 11770 LNAI:62–71, 2020.

[128] S. M. Kazemi, D. Buchman, K. Kersting, S. Natarajan, and D. Poole. Relational
logistic regression. Proc. Int. Work. Tempor. Represent. Reason., pages 548–557,
2014.

[129] C. S. Kheau, R. Alfred, and L. H. Keng. Dimensionality Reduction in Data Sum-
marization Approach to Learning Relational Data. ACIIDS, 7802:166–175, 2013.

[130] A. Kiel. Datomic. Technical report, University Leipzig, 2013.

[131] W. O. N. Kim, B.-j. J. Choi, S.-k. K. Kim, E. K. Hong, S.-k. K. Kim, and D. Lee.
A Taxonomy of Dirty Data. Data Min. Knowl. Discov., 7(1):81–99, 2003.

[132] R. Kimball and M. Ross. The data warehouse toolkit: The definitive guide to
dimensional modeling. John Wiley & Sons, 2013.

[133] R. D. King, M. Sternberg, and A. Srinivasan. Relating chemical activity to struc-
ture: An examination of ILP successes. New Gener. Comput., 13(3-4):411–433,
1995.

[134] I. Kitzmann, C. Konig, D. Lubke, and L. Singer. A Simple Algorithm for Automatic
Layout of BPMN Processes. 2009 IEEE Conf. Commer. Enterp. Comput., pages
391–398, 2009.

[135] D. J. Klein. Centrality measure in graphs. J. Math. Chem., 47(4):1209–1223, 2010.

[136] A. J. Knobbe. Multi-relational data mining. PhD thesis, Universiteit Utrecht, 2004.

[137] A. J. Knobbe, M. de Haas, and A. Siebes. Propositionalisation and Aggregates.
Lect. Notes Comput. Sci., 2168:277–288, 2001.

[138] G. T. Knofczynski and D. Mundfrom. Sample sizes when using multiple linear
regression for prediction. Educ. Psychol. Meas., 68(3):431–442, 2008.

[139] R. Kohavi. A study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. IJCAI, 5(0):7, 1995.

[140] S. Kok, M. Summer, M. Richardson, P. Singla, H. Poon, D. Lowd, J. Wang, and
P. Domingos. The Alchemy system for statistical relational AI. Technical report,
University of Washington, 2009.

[141] J. Kranjc, V. Podpečan, and N. Lavrač. ClowdFlows: A Cloud Based Scientific
Workflow Platform. In ECML PKDD, pages 816–819, Bristol, 2012.

174

Bibliography

[142] M.-A. Krogel. On Propositionalization for Knowledge Discovery in Relational Data-
bases. PhD thesis, Otto-von-Guericke-Universität Magdeburg, 2005.

[143] M.-A. Krogel, S. Rawles, F. Železný, P. A. Flach, N. Lavrač, S. Wrobel, F. Železný,
P. A. Flach, N. Lavrač, S. Wrobel, M.-A. Krogel, N. Lavrač, S. Rawles, P. A. Flach,
and S. Wrobel. Comparative Evaluation of Approaches to Propositionalization. In
Proc. 13th Int. Conf. Inductive Log. Program., volume 2835, pages 194–217, 2003.

[144] M.-A. Krogel and S. Wrobel. Transformation-Based Learning Using Multirelational
Aggregation. In ILP, pages 142–155. Springer, London, 2001.

[145] M.-A. Krogel and S. Wrobel. Propositionalization and Redundancy Treatment. In
Databases, Doc. Inf. Fusion, pages 1–13, Hannover, 2002. CEUR.

[146] M.-A. Krogel and S. Wrobel. Facets of aggregation approaches to propositionaliz-
ation. In Inductive Log. Program., pages 30–39. Springer, Berlin, 2003.

[147] S. Kruse, T. Papenbrock, H. Harmouch, and F. Naumann. Data Anamnesis: Ad-
mitting Raw Data into an Organization. IEEE Data Eng. Bull., pages 8–20, 2016.

[148] K. Kulkarni and J. E. Michels. Temporal features in SQL:2011. SIGMOD Rec.,
41(3):34–43, 2012.

[149] O. Kuželka. Fast Construction of Relational Features for Machine Learning. PhD
thesis, Czech Technical University, 2013.

[150] O. Kuželka and F. Železný. Block-wise construction of tree-like relational features
with monotone reducibility and redundancy. Mach. Learn., 83(2):163–192, 2011.

[151] N. Lachiche. Good and Bad Practices in Propositionalisation. In AI*IA 2005 Adv.
Artif. Intell., volume 3673 LNAI, pages 50–61. Springer, Berlin, 2005.

[152] M. Lan, C. L. Tan, and H. B. Low. Proposing a new term weighting scheme for
text categorization. Proc. Natl. Conf. Artif. Intell., 1:763–768, 2006.

[153] N. Landwehr. nFOIL: Integrating Naive Bayes and FOIL. J. Mach. Learn. Res.,
8:481–507, 2007.

[154] N. Landwehr, K. Kersting, and L. D. Raedt. Integrating Naïve Bayes and FOIL.
JMLR, pages 481–507, 2007.

[155] N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi. kFOIL: Learning simple
relational kernels. AAAI, 6:389–394, 2006.

[156] N. Lavrač and S. Džeroski. Inductive Logic Programming: Techniques and Applic-
ations. Ellis Horwood, 1994.

175

BIBLIOGRAPHY

[157] N. Lavrač, S. Džeroski, and M. Grobelnik. Learning nonrecursive definitions
of relations with LINUS. Proc. 5th Eur. Work. Sess. Learn., 482(OCTOBER
2006):265–281, 1991.

[158] O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock
returns with an application to portfolio selection. J. Empir. Financ., 10(5):603–621,
dec 2003.

[159] H. A. Leiva, A. Atramentov, and V. Honavar. A multi-relational decision tree
learning algorithm. Proc. 13th Int. Conf. Inductive Log. Program., pages 38–56,
2002.

[160] C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey of trends and tech-
nologies. Artif. Intell., 44(1):117–130, 2015.

[161] W. S. Li and C. Clifton. SEMINT: a tool for identifying attribute correspondences
in heterogeneous databases using neural networks. Data Knowl. Eng., 33(1):49–84,
2000.

[162] H. Liu, X. Yin, and J. Han. An efficient multi-relational Naïve Bayesian classifier
based on semantic relationship graph. In Proc. 4th Int. Work. Multi-relational
Min., pages 39–48, New York, 2005. ACM Press.

[163] Y. W. Liyanage, D. S. Zois, and C. Chelmis. On–the–Fly Joint Feature Selection
and Classification. arXiv, pages 1–12, 2020.

[164] H. Lodhi and S. Muggleton. Is Mutagenesis still challenging? Proc. 15th Int. Conf.
Inductive Log. Program., pages 35–40, 2005.

[165] N. Logan. Package stringdist. Technical report, CRAN, 2016.

[166] V. López, A. Fernández, and F. Herrera. On the importance of the validation
technique for classification with imbalanced datasets: Addressing covariate shift
when data is skewed. Inf. Sci. (Ny)., 257:1–13, 2014.

[167] F. M. Lord. On the Statistical Treatment of Football Numbers. Am. Psychol.,
8(12):750–751, 1953.

[168] K. Lounici. High-dimensional covariance matrix estimation with missing observa-
tions. Bernoulli, 20(3):1029–1058, 2014.

[169] R. Magoulas and J. King. 2013 Data Science Salary Survey. O’Reilly, 2013.

[170] V. M. Markowitz. Safe referential integrity and null constraint structures in rela-
tional databases. Inf. Syst., 19(4):359–378, jun 1994.

176

Bibliography

[171] V. M. Markowitz and J. A. Makowsky. Identifying Extended Entity-Relationship
Object Structures in Relational Schemas. IEEE Trans. Softw. Eng., 16(8):777–790,
1990.

[172] P. Mateti and N. Deo. On Algorithms for Enumerating All Circuits of a Graph.
SIAM J. Comput., 5(1):90–99, mar 1976.

[173] N. D. Mauro and F. Esposito. Ensemble relational learning based on selective
propositionalization. CoRR, pages 1–10, 2013.

[174] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construction
of Internet Portals with machine learning. Inf. Retr. Boston., 3:127–163, 2000.

[175] A. McNab and D. A. Ladd. Information quality: The importance of context and
trade-offs. In Proc. Annu. Hawaii Int. Conf. Syst. Sci., pages 3525–3532, 2014.

[176] L. Meurice, F. J. B. Ruiz, J. H. Weber, and A. Cleve. Establishing referential
integrity in legacy information systems - Reality bites! Proc. - 30th Int. Conf.
Softw. Maint. Evol. ICSME 2014, pages 461–465, 2014.

[177] D. Micci-Barreca. A preprocessing scheme for high-cardinality categorical attrib-
utes in classification and prediction problems. ACM SIGKDD Explor. Newsl.,
3(1):6, jul 2001.

[178] D. Michie, S. Muggleton, D. Page, and A. Srinivasan. To the international comput-
ing community: A new east-west challenge. Technical report, Oxford University
Computing laboratory, Oxford, 1994.

[179] M. Minsky and S. A. Papert. Perceptrons. An Introduction to Computational
Geometry. MIT, jan 1969.

[180] S. Modi. Relational Classification using Multiple View Approach with Voting. Int.
J. Comput. Appl., 70(16):31–36, 2013.

[181] J. Moeyersoms and D. Martens. Including high-cardinality attributes in predictive
models: A case study in churn prediction in the energy sector. Decis. Support Syst.,
72:72–81, 2015.

[182] J. G. Moreno-Torres, J. A. Saez, and F. Herrera. Study on the impact of partition-
induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Networks
Learn. Syst., 23(8):1304–1312, 2012.

[183] C. N. Morris. Parametric empirical Bayes inference: Theory and applications. J.
Am. Stat. Assoc., 78(381):47–55, 1983.

[184] F. Mosteller. Data Analysis and Regression: A Second Course in Statistics.
Addison-Wesley Publishing Company, 1977.

177

BIBLIOGRAPHY

[185] S. Muggleton. Inverse entailment and progol. New Gener. Comput., 13(3-
4):245–286, dec 1995.

[186] S. Muggleton, M. Bain, J. Hayes-Michie, and D. Michie. An Experimental Com-
parison of Human and Machine Learning Formalisms. In Proc. Sixth Int. Work.
Mach. Learn., pages 113–118. Morgan Kaufmann, 1989.

[187] S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and meth-
ods. J. Log. Program., 19-20:629–679, 1994.

[188] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. Turaga. Learning
Feature Engineering for Classification. In Proc. Twenty-Sixth Int. Jt. Conf. Artif.
Intell., number August, pages 2529–2535, 2017.

[189] S. Natarajan, K. Kersting, S. Joshi, and S. Saldana. Early prediction of coron-
ary artery calcification levels using statistical relational learning. In IAAI, pages
1557–1562, Bellevue, 2013. AAAI Press.

[190] R. F. O. Neto, P. J. L. Adeodato, A. C. Salgado, D. R. Filho, G. R. Machado,
D. R. de Carvalho Filho, and G. R. Machado. CoMoVi: a Framework for Data
Transformation in Credit Behavioral Scoring Applications Using Model Driven Ar-
chitecture. SEKE 2014, pages 286–291, 2014.

[191] B. Neupane, D. Richer, A. J. Bonner, T. Kibret, and J. Beyene. Network meta-
analysis using R: a review of currently available automated packages. PLoS One,
9(12):e115065, jan 2014.

[192] J. Neville and D. Jensen. Collective classification with relational dependency net-
works. J. Mach. Learn. Res., 8:77–91, 2003.

[193] J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning relational probability
trees. In KDD, pages 625–630. ACM Press, 2003.

[194] J. Neville, D. Jensen, and B. Gallagher. Simple estimators for relational bayesian
classifiers. Proc. - IEEE Int. Conf. Data Mining, ICDM, pages 609–612, 2003.

[195] R. S. Olson, W. L. Cava, Z. Mustahsan, A. Varik, and J. H. Moore. Data-driven
advice for applying machine learning to bioinformatics problems. In Biocomput.
2018, pages 192–203. World Scientific, jan 2018.

[196] Oracle. Oracle SQL Developer Data Modeler, 2017.

[197] E. J. Pedersen, D. L. Miller, G. L. Simpson, and N. Ross. Hierarchical generalized
additive models in ecology: An introduction with mgcv. PeerJ, 2019(5), 2019.

[198] L. Pedro de Jesus and P. Sousa. Selection of Reverse Engineering Methods for
Relational Databases. Proc. Third Eur. Conf. Softw. Maint., pages 194–197, 1998.

178

Bibliography

[199] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy. IEEE TPAMI,
27(8):1226–1238, aug 2005.

[200] C. Perlich and F. Provost. Distribution-based aggregation for relational learning
with identifier attributes. Mach. Learn., 62(1-2 SPEC. ISS.):65–105, 2006.

[201] M. Perovšek, A. Vavpetič, J. Kranjc, B. Cestnik, and N. Lavrač. Wordification :
Propositionalization by unfolding relational data into bags of words. Expert Syst.
Appl., 42(17-18):6442–6456, 2015.

[202] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-Learning by Landmark-
ing Various Learning Algorithms. In ICML, volume 951, pages 743–750, 2000.

[203] U. Pferschy and R. Staněk. Generating subtour elimination constraints for the TSP
from pure integer solutions. Cent. Eur. J. Oper. Res., pages 1–30, 2016.

[204] A. Popescul and L. H. Ungar. Structural Logistic Regression for Link Analysis. In
MRDM, number August, pages 92–106, 2003.

[205] C. Preisach and L. Schmidt-Thieme. Relational ensemble classification. Proc. -
IEEE Int. Conf. Data Mining, ICDM, pages 499–509, 2006.

[206] P. Probst, M. N. Wright, and A. Boulesteix. Hyperparameters and tuning strategies
for random forest. WIREs Data Min. Knowl. Discov., 9(3):1–19, may 2019.

[207] F. Provost. Machine learning from imbalanced data sets 101. Proc. AAAI’2000
Work., pages 1–3, 2000.

[208] F. Provost, C. Perlich, and S. a. Macskassy. Relational learning problems and
simple models. In Proc. Relational Learn. Work. IJCAI-2003, pages 116–120, 2003.

[209] L. D. Raedt. Attribute-value Learning versus Inductive Logic Programming: the
Missing Links. In ILP, volume 1446 of Lecture Notes in Computer Science, pages
1–8, Berlin, Heidelberg, 1998. Springer.

[210] L. D. Raedt. Inductive Logic Programming, volume 1446 of Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg, 1998.

[211] L. D. Raedt. Logical and Relational Learning. Cognitive Technologies. Springer,
Berlin, 2008.

[212] L. D. Raedt and W. V. Laer. Inductive Constraint Logic. Algorithmic Learn.
Theory, pages 80–94, 1995.

[213] M. Rahmaninia and P. Moradi. OSFSMI: Online stream feature selection method
based on mutual information. Appl. Soft Comput. J., 68:733–746, 2018.

179

BIBLIOGRAPHY

[214] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets, volume 67. Cam-
bridge University Press, New York, NY, USA, 2011.

[215] J. Ramon. Clustering and Instance Based Learning in First Order Logic. PhD
thesis, KU Leuven, 2002.

[216] M. Reif and F. Shafait. Efficient feature size reduction via predictive forward
selection. Pattern Recognit., 47(4):1664–1673, 2014.

[217] Z. Reitermanová. Data Splitting. In Week Dr. Students, pages 31–36. Charles
University, 2010.

[218] P. Reutemann, B. Pfahringer, and E. Frank. A Toolbox for Learning from Rela-
tional Data with Propositional and Multi-Instance Learners. In G. Webb and X. Yu,
editors, AI 2004 Adv. Artif. Intell., volume 3339, pages 1017–1023. Springer, 2004.

[219] J. Rice. The Algorithm Selection Problem. Adv. Comput., 15(C):65–118, 1976.

[220] A. M. Richard and C. R. Williams. Distributed structure-searchable toxicity
(DSSTox) public database network: A proposal. Mutat. Res. - Fundam. Mol.
Mech. Mutagen., 499(1):27–52, 2002.

[221] M. Richardson and P. Domingos. Markov logic networks. Mach. Learn., 62(1-2
SPEC. ISS.):107–136, feb 2006.

[222] D. R. Roberts, V. Bahn, S. Ciuti, M. S. Boyce, J. Elith, G. Guillera-Arroita,
S. Hauenstein, J. J. Lahoz-Monfort, B. Schröder, W. Thuiller, D. I. Warton,
B. A. Wintle, F. Hartig, and C. F. Dormann. Cross-validation strategies for data
with temporal, spatial, hierarchical, or phylogenetic structure. Ecography (Cop.).,
40(8):913–929, 2017.

[223] C. Roever, N. Raabe, K. Luebke, U. Ligges, G. Szepannek, M. Zentgraf, and M. U.
Ligges. The klaR package, 2006.

[224] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser. A machine
learning approach to foreign key discovery. In 12th Int. Work. Web Databases,
pages 1–6, 2009.

[225] S. Roy, U. Roy, S. Sciences, and W. Bengal. Performance Evaluation of Various
Distance-based Data-Mining Classifiers on Typing Patterns for User Authentication
/ Identification. Int. J. Innov. Res. Dev., 5(2):148–156, 2016.

[226] U. Rückert and S. Kramer. Margin-based first-order rule learning. Mach. Learn.,
70(2-3):189–206, nov 2008.

[227] A. Said and A. Bellogín. RiVal – A Toolkit to Foster Reproducibility in Recom-
mender System Evaluation. RecSys 2014 Proc. 8th ACM Conf. Recomm. Syst.,
pages 371–372, 2014.

180

Bibliography

[228] C. Sammut and G. I. Webb, editors. Encyclopedia of Machine Learning. Springer,
New York, 2011.

[229] M. Samorani. Automatically Generate a Flat Mining Table with Dataconda. In
2015 IEEE Int. Conf. Data Min. Work., pages 1644–1647. IEEE, nov 2015.

[230] G. R. Sandercock, A. A. Ogunleye, D. A. Parry, D. D. Cohen, M. J. Taylor, and
C. Voss. Athletic performance and birth month: Is the relative age effect more
than just selection bias? Int. J. Sports Med., 35(12):1017–1023, 2014.

[231] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia,
and T. Lillicrap. A simple neural network module for relational reasoning. Adv.
Neural Inf. Process. Syst., 2017-Decem(Nips):4968–4977, 2017.

[232] SAP. Event Log Aggregation Scenario. Technical report, SAP, 2015.

[233] O. Schulte, B. Bina, B. Crawford, D. Bingham, and Y. Xiong. A hierarchy of
independence assumptions for multi-relational Bayes net classifiers. Proc. 2013
IEEE Symp. Comput. Intell. Data Min., pages 150–159, 2013.

[234] O. Schulte, Z. Qian, A. E. Kirkpatrick, X. Yin, and Y. Sun. Fast learning of
relational dependency networks. Mach. Learn., 103(3):377–406, jun 2016.

[235] O. Schulte and K. Routley. Aggregating predictions vs. aggregating features for
relational classification. In 2014 IEEE Symp. Comput. Intell. Data Min., pages
121–128. IEEE, dec 2014.

[236] K. Sechidis, G. Tsoumakas, and I. Vlahavas. On the Stratification of Multi-label
Data. In Lect. Notes Comput. Sci., volume 6913, pages 145–158. Springer, Berlin,
Heidelberg, 2011.

[237] S. Y. Sekeh, M. R. Ganesh, S. Banerjee, J. J. Corso, and A. O. Hero. A Geometric
Approach to Online Streaming Feature Selection. arXiv, 2019.

[238] R. She, K. Wang, Y. Xu, and P. S. Yu. Pushing feature selection ahead of join. In
Proc. 2005 SIAM Int. Conf. Data Min., pages 1–5, 2005.

[239] J. H. Skillings and G. A. Mack. On the Use of a Friedman-Type Statistic in
Balanced and Unbalanced Block Designs. Technometrics, 23(2):171–177, may 1981.

[240] J. Sobehart, S. Keenan, and R. Stein. Validation methodologies for default risk
models. Credit, 4(May):51–56, 2000.

[241] P. Sondhi. Feature Construction Methods : A Survey. Technical report, Univeristy
of Illinois at Urbana Champaign, 2010.

[242] G. Šourek, V. Aschenbrenner, F. Železný, and O. Kuželka. Lifted relational neural
networks. CEUR Workshop Proc., 1583:1–9, 2015.

181

BIBLIOGRAPHY

[243] A. Srinivasan. The Aleph Manual. Technical report, University of Oxford, 2001.

[244] A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Sternberg. Carcinogenesis
predictions using ILP. Inductive Log. Program., 1297:273–287, 1997.

[245] S. S. Stevens, N. Series, and N. Jun. On the Theory of Scales of Measurement.
Science (80-.)., 103(2684):677–680, jun 1946.

[246] J. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, P. Baldi, S. J. Swami-
dass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, and P. Baldi. Kernels for small
molecules and the prediction of mutagenicity, toxicity and anti-cancer activity.
Bioinformatics, 21(SUPPL. 1):359–368, jun 2005.

[247] P. Szymański and T. Kajdanowicz. A Network Perspective on Stratification of
Multi-Label Data. In Int. Work. Learn. with Imbalanced Domains Theory Appl.,
pages 22–35, 2017.

[248] P. Szymański, T. Kajdanowicz, and K. Kersting. How is a data-driven approach
better than random choice in label space division for multi-label classification?
Entropy, 18(8):1–23, 2016.

[249] L. Tjen-Sien, L. Wei-Yin, and Y.-S. Shih. A Comparison of Prediction Accur-
acy, Complexity, and Training Time of Thirty-three Old and New Classification
Algorithms. Mach. Learn., 229:203–229, 1992.

[250] B. Trawiński, M. Smetek, Z. Telec, T. Lasota, M. Smętek, Z. Telec, T. Lasota,
M. Smetek, Z. Telec, T. Lasota, B. T. Nski, M. S. M. Etek, Z. Telec, T. Lasota,
B. Trawiński, M. Smętek, Z. Telec, T. Lasota, B. Trawinski, M. Smetek, Z. Telec,
and T. Lasota. Nonparametric statistical analysis for multiple comparison of
machine learning regression algorithms. Int. J. Appl. Math. Comput. Sci.,
22(4):867–881, jan 2012.

[251] A. Trotman, A. Puurula, and B. Burgess. Improvements to BM25 and language
models examined. ACM Int. Conf. Proceeding Ser., 27-28-Nove:58–65, 2014.

[252] P. Urbanke, A. Uhlig, and J. Kranz. A Customized and Interpretable Deep Neural
Network for High-Dimensional Business Data - Evidence from an E-Commerce
Application. In ICIS 2017 Transform. Soc. with Digit. Innov., number November,
pages 1–18, 2018.

[253] W. Uwents and H. Blockeel. Classifying relational data with neural networks. Lect.
Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci., 3625:384–396, 2005.

[254] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: networked science
in machine learning. ACM SIGKDD Explor. Newsl., 15(2):49–60, jun 2014.

182

Bibliography

[255] Y. L. Varol. An algorithm to generate all topological sorting arrangements. Comput.
J., 24(1):83–84, jan 1981.

[256] C. Vens, J. Ramon, and H. Blockeel. Refining Aggregate Conditions in Relational
Learning. In Eur. Conf. Princ. Data Min. Knowl. Discov., pages 383–394, 2006.

[257] C. Vens, A. Van Assche, H. Blockeel, and S. Džeroski. First order random forests
with complex aggregates. Lect. Notes Comput. Sci., 3194/2004:323–340, 2004.

[258] J. Wainer. Comparison of 14 different families of classification algorithms on 115
binary datasets. arXiv, pages 1–36, 2016.

[259] K. M. Wittkowski. Friedman-Type statistics and consistent multiple comparisons
for unbalanced designs with missing data. J. Am. Stat. Assoc., 83(404):1163–1170,
dec 1988.

[260] K. M. Wittkowski, E. Lee, R. Nussbaum, F. N. Chamian, and J. G. Krueger. Com-
bining several ordinal measures in clinical studies. Stat. Med., 23(10):1579–1592,
2004.

[261] M. Wolters and M. Kirsten. Exploring the use of linguistic features in domain and
genre classification. In Proc. ninth Conf. Eur. chapter Assoc. Comput. Linguist.,
pages 142–149, Morristown, NJ, USA, jun 1999. Association for Computational
Linguistics.

[262] X. Wu, K. Yu, H. Wang, and W. Ding. Online Streaming Feature Selection. Int.
Conf. Mach. Learn., pages 1159–1166, 2010.

[263] X. Z. Wu and Z. H. Zhou. A unified view of multi-label performance measures.
34th Int. Conf. Mach. Learn. ICML 2017, 8:5778–5791, 2017.

[264] C. Yan. Ant-FOIL: Integrating Ant Colony System and FOIL. In 2015 7th Int.
Conf. Intell. Human-Machine Syst. Cybern., pages 559–562. IEEE, aug 2015.

[265] Y. Yang and T. M. Hospedales. Deep multi-task representation learning: A tensor
factorisation approach. In 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf.
Track Proc., pages 1–9, 2017.

[266] X. Yin, J. Han, J. Yang, and P. S. Yu. CrossMine: Efficient classification across
multiple database relations. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), 3848 LNAI(6):172–195, 2006.

[267] D. You, X. Wu, L. Shen, S. Deng, Z. Chen, C. Ma, and Q. Lian. Online Feature
Selection for Streaming Features Using Self-Adaption Sliding-Window Sampling.
IEEE Access, 7:16088–16100, 2019.

[268] K. Yu, W. Ding, D. A. Simovici, and X. Wu. Mining emerging patterns by stream-
ing feature selection. KDD, pages 60–68, 2012.

183

BIBLIOGRAPHY

[269] K. Yu, X. Wu, W. Ding, and J. Pei. Towards Scalable and Accurate Online Fea-
ture Selection for Big Data. Proc. - IEEE Int. Conf. Data Mining, ICDM, 2015-
Janua(January):660–669, 2015.

[270] L. Yu and H. Liu. Feature Selection for High-Dimensional Data: A Fast Correlation-
Based Filter Solution. In ICML, pages 856–863, Washington, D.C., 2003.

[271] F. Železný and N. Lavrač. Propositionalization-based relational subgroup discovery
with RSD. Mach. Learn., 62(1-2 SPEC. ISS.):33–63, 2006.

[272] X. Zeng and T. R. Martinez. Distribution-balanced stratified cross-validation for
accuracy estimation. J. Exp. Theor. Artif. Intell., 12(1):1–12, 2000.

[273] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivastava. On
multi-column foreign key discovery. Proc. VLDB Endow., 3(1-2):805–814, 2010.

[274] J. Zhou, D. Foster, R. Stine, and L. Ungar. Streaming feature selection using
alpha-investing. KDD, pages 384–393, 2005.

[275] P. Zhou, P. Li, S. Zhao, and X. Wu. Feature Interaction for Streaming Feature
Selection. IEEE Trans. Neural Networks Learn. Syst., pages 1–12, 2020.

[276] X. Zhou. Shrinkage Estimation of Log-odds Ratios for Comparing Mobility Tables.
Sociol. Methodol., 45(1):320–356, 2015.

[277] S. Zilberstein. Using Anytime Algorithms in Intelligent Systems. AI Mag.,
17(3):73–83, 1996.

[278] H. Zou and T. Hastie. Addendum: Regularization and variable selection via the
elastic net. J. R. Stat. Soc. Ser. B (Statistical Methodol., 67(5):768–768, nov 2005.

[279] J.-D. Zucker and J.-G. Ganascia. Learning structurally indeterminate clauses. In
8th Int. Conf. Inductive Log. Program., pages 235–244, Madison, Wisconsin, 1998.

[280] N. Zumel and J. Mount. vtreat: a data.frame Processor for Predictive Modeling.
arXiv, 2016.

184

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] J. Motl and P. Kordík. Aggregate Function Generalization to Temporal Data. In
ICTAI-2021, pages 5. IEEE Computer Society, 2021.

[A.2] J. Motl and P. Kordík. Discriminant Analysis on a Stream of Features. In
ADMA2021, pages 15. Springer International Publishing, 2021.

[A.3] J. Motl and P. Kordík. Trend and Seasonality Elimination from Relational Data.
In ICTAI-2021, pages 4. IEEE Computer Society, 2021.

[A.4] J. Motl and P. Kordík. Stratified Cross-Validation on Multiple Columns. In
ICTAI-2021, pages 6. IEEE Computer Society, 2021.

[A.5] J. Motl and P. Kordík. Learning on a Stream of Features with Random Forest.
In CEUR Workshop Proc., pages 79–83, 2019.

[A.6] J. Motl and P. Kordík. Violation of Independence of Irrelevant Alternatives in
Friedman’s Test. CEUR Workshop Proc., 2203:59–63, 2018.

[A.7] J. Motl and P. Kordík. Do We Need to Observe Features to Perform Feature
Selection? In CEUR Workshop Proc., pages 44–51, 2018.

[A.8] J. Motl and P. Kordík. Foreign Key Constraint Identification in Relational Data-
bases. In CEUR Workshop Proc., pages 106–111. CEUR, 2017.

The paper has been cited in:

◦ M. Cruz-Luna, C. Luna-Trejo, and J. Urbina-Fernández. Aseguramiento de
integridad de datos para el sistema de encuestas del ITSH. Rev. Tecnol.
Comput., 2(6):15–21, 2018.

◦ P. Rahman, A. Nandi, and C. Hebert. Amplifying Domain Expertise in
Clinical Data Pipelines. JMIR Med. Informatics, 8(11):24, nov 2020.

185

REVIEWED PUBLICATIONS OF THE AUTHOR RELEVANT TO THE THESIS

◦ J. Yoo, J. Lee, P.-L. Rhee, D. K. Chang, M. Kang, J. S. Choi, D. W. Bates,
and W. C. Cha. Alert Override Patterns With a Medication Clinical Decision
Support System in an Academic Emergency Department: Retrospective De-
scriptive Study. JMIR Med. Informatics, 8(11):14, nov 2020.

◦ М. Л. Цымблер. Методы и алгоритмы поддержки целостности
реляционных баз данных в приложениях классов OLAP и OLTP. PhD
thesis, Южно-уральский Государственный Университет, 2019.

[A.9] J. Motl and P. Kordík. Benchmarking Classifier Performance with Sparse Meas-
urements. In J. Yaghob, editor, CEUR Workshop Proc., pages 172–178. CEUR,
2015.

The paper has been cited in:

◦ V. Kassarnig and F. Wotawa. An Approach to Automatically Extract Pre-
dictive Properties from Nominal Attributes in Relational Databases. In 2018
IEEE Int. Conf. Big Data (Big Data), pages 4932–4939. IEEE, dec 2018.

186

Remaining Publications of the Author
Relevant to the Thesis

[A.10] J. Motl Predictor Factory. Ph.D. Minimum Thesis, Czech Technical University,
2016.

[A.11] J. Motl Predictor Factory. Pražská technika 2/2016, 2016.

[A.12] J. Motl and O. Schulte. The CTU Prague Relational Learning Repository. arXiv,
pages 7, nov 2015.

The paper has been cited in:

◦ M. Bahri, G. Bahl, and S. Zafeiriou. Binary Graph Neural Networks. CVPR,
pages 1–14, dec 2021.

◦ G. Benito and M. Luna. Inferencia de dependencias funcionales mediante
funciones de similitud en minería de datos. PhD thesis, Cinvestav, 2019.

◦ A. O. Chudý. Detecting similarities of data domains using machine learning
methods. Master’s thesis, Czech Technical University, 2019.

◦ B. Du, C. Yuan, R. Barton, T. Neiman, and H. Tong. Hypergraph Pre-
training with Graph Neural Networks. arXiv, pages 1–12, 2021.

◦ S. Gholami. Upgrading Bayesian network scores for multi-relational data.
Master’s thesis, Simon Fraser University, 2016.

◦ F. A. Hofmann. Tracer: A Machine Learning Approach to Data Lineage.
Master’s thesis, Massachusetts Institute of Technology, 2020.

◦ A. C. José. Implementación de un repositorio de objetos de aprendizaje
durante la enseñanza de la geometria analítica en la carrera de matemática
del instituto superior de ciencias de la educación de sumbe. PhD thesis,
Universidad de Matanzas, 2016.

187

REMAINING PUBLICATIONS OF THE AUTHOR RELEVANT TO THE THESIS

◦ A. Kakadiya, S. Natarajan, and B. Ravindran. Relational Boosted Bandits.
In Proc. AAAI Conf. Artif. Intell., volume 35, pages 12123–12130. aaai.org,
2020.

◦ A. Komanduri. Improving Bayesian Graph Convolutional Networks using
Markov. Bachelor’s thesis, University of Arkansas, 2021.

◦ N. Lavrač, B. Škrlj, and M. Robnik-Šikonja. Propositionalization and em-
beddings: two sides of the same coin. Mach. Learn., 109(7):1465–1507, 2020.

◦ A. Nazi, B. Ding, V. Narasayya, and S. Chaudhuri. Efficient estimation
of inclusion coefficient using hyperloglog sketches. In Proc. VLDB Endow.,
volume 11, pages 1097–1109. dl.acm.org, 2018.

◦ A. d. C. Oliveira-Filho. Benchmark para Métodos de Consultas por Palavras-
Chave a Bancos de Dados Relacionais. PhD thesis, Universidade Federal de
Goiás, 2018.

◦ C. Y. Park and K. B. Laskey. MEBN-RM: A Mapping between Multi-Entity
Bayesian Network and Relational Model. Appl. Sci., (9):26, apr 2019.

◦ N. Patki, R. Wedge, and K. Veeramachaneni. The Synthetic Data Vault.
In Proc. - 3rd IEEE Int. Conf. Data Sci. Adv. Anal. DSAA 2016, pages
399–410. ieeexplore.ieee.org, 2016.

◦ N. Patki. The Synthetic Data Vault: generative modeling for relational data-
bases. Master’s thesis, 2016.

◦ F. Riahi and O. Schulte. Propositionalization for unsupervised outlier de-
tection in multi-relational data. In Proc. 29th Int. Florida Artif. Intell. Res.
Soc. Conf. FLAIRS 2016, pages 448–453. aaai.org, 2016.

◦ P. Scherer, H. Andres-Terre, P. Lio, and M. Jamnik. Decoupling feature
propagation from the design of graph auto-encoders. arXiv, pages 1–7, 2019.

◦ M. Schleich. Structure-Aware Machine Learning over Multi-Relational Data-
bases. In Proc. ACM SIGMOD Int. Conf. Manag. Data, pages 736–748.
dl.acm.org, 2021.

◦ J. Schouterden, J. Davis, and H. Blockeel. LazyBum: Decision Tree Learning
Using Lazy Propositionalization. Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 11770 LNAI:98–113,
2020.

◦ B. J. Schreck. Towards An Automatic Predictive Question Formulation. PhD
thesis, Massachusetts Institute of Technology, 2016.

◦ O. Schulte and S. Gholami. Locally Consistent Bayesian Network Scores for
Multi-Relational Data. In Proc. Twenty-Sixth Int. Jt. Conf. Artif. Intell.,
pages 2693–2700, California, aug 2017. International Joint Conferences on
Artificial Intelligence Organization.

◦ T. Sciammarella and G. Zaverucha. Weight Your Words: The Effect of Differ-
ent Weighting Schemes on Wordification Performance. Lect. Notes Comput.

188

Remaining Publications of the Author Relevant to the Thesis

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
11770 LNAI:114–128, 2020.

◦ H. Seki and M. Nagao. An efficient Java implementation of a GA-based miner
for relational association rules with numerical attributes. In 2017 IEEE Int.
Conf. Syst. Man, Cybern., pages 2028–2033. IEEE, oct 2017.

◦ H. Seki and M. Nagao. An FCA approach to mining quantitative association
rules from multi-relational data. Int. J. Comput. Intell. Stud., 6(4):366–383,
2017.

◦ H. Seki and M. Nagao. Mining correlated association rules from multi-
relational data using interval patterns. In Int. Conf. Concept Lattices Their
Appl., volume CLA2018, pages 47–58. cla2018.inf.upol.cz, 2018.

◦ W. P. Sousa and J. C. Silva. Uma Técnica para Ranqueamento de Inter-
pretações SQL Oriundas de Consultas com Palavras-chave Uma Técnica para
Ranqueamento de Interpretações SQL Oriundas de Consultas com Palavras-
chave. PhD thesis, Universidade Federal de Goiás, 2017.

◦ S. V. Srikanthan and S. Xu. The K-Multiple Instance Representation. PhD
thesis, Case Western Reserve University, 2019.

◦ L. Stanković, B. Scalzo, D. Mandic, S. Li, M. Daković, A. G. Constantinides,
and M. Brajović. Data analytics on graphs Part III: Machine learning on
graphs, from graph topology to applications. Found. Trends Mach. Learn.,
13(4):332–530, 2020.

◦ R.-A. Stoica. R2PG-DM: A direct mapping from relational databases to
property graphs. PhD thesis, Eindhoven University of Technology, 2019.

◦ K. K. Veeramachaneni, N. Patki, K. P. Durg, J. S. Wilkinson, and S. R.
Nochilur. Methods and apparatus for transforming and statistically modeling
relational databases to synthesize privacy-protected anonymized data, 2020.

◦ P. Wijegunawardana, R. Gera, and S. Soundarajan. Node Classification with
Bounded Error Rates. In Springer Proc. Complex., pages 26–38, 2020.

189

Relevant Theses Supervised by the
Author

[A.13] E. Vondráčková. Metaučení přínosu příznaků. Master’s thesis, Czech Technical
University, 2020.

[A.14] R. Severa. Lineární diskriminační analýza na proudu příznaků. Bachelor’s thesis,
Czech Technical University, 2020.

[A.15] P. Mück. Klasifikace na temporálních relačních datech. Master’s thesis, Czech
Technical University, 2018.

[A.16] A. Blažková. Meta-learning na relačních datech. Master’s thesis, Czech Technical
University, 2018.

191

Remaining Publications of the Author

[A.17] J. Motl and P. Kordík. Fast and exact audit scheduling optimization. Springer
SN Applied Sciences, pages 17, 2020.

[A.18] J. F. Fullard, M. E. Hauberg, J. Bendl, G. Egervari, M. D. Cirnaru, S. M. Reach,
J. Motl, M. E. Ehrlich, Y. L. Hurd, and P. Roussos. An atlas of chromatin
accessibility in the adult human brain. Genome Res., 28(8):1243–1252, 2018.

The paper has been cited in:

◦ N. Almeida, M. W. H. Chung, E. M. Drudi, E. N. Engquist, E. Hamrud,
A. Isaacson, V. S. K. Tsang, F. M. Watt, and F. M. Spagnoli. Employing
core regulatory circuits to define cell identity. EMBO J., 40(10), 2021.

◦ P. Baloni, C. C. Funk, B. Readhead, and N. D. Price. Systems modeling of
metabolic dysregulation in neurodegenerative diseases. Curr. Opin. Phar-
macol., 60:59–65, oct 2021.

◦ J. Bendl, M. E. Hauberg, K. Girdhar, E. Im, J. M. Vicari, S. Rahman,
P. Dong, R. Misir, S. M. Reach, P. Apontes, B. Zeng, W. Zhang, G. Vol-
oudakis, R. A. Nixon, V. Haroutunian, G. E. Hoffman, J. F. Fullard, and
P. Roussos. The three-dimensional landscape of chromatin accessibility in
Alzheimer’s disease. bioRxiv, 2021.

◦ V. Berge-Seidl, L. Pihlstrøm, and M. Toft. Integrative analysis identifies
bHLH transcription factors as contributors to Parkinson’s disease risk mech-
anisms. Sci. Rep., 11(1), 2021.

◦ S. M. Bilinovich, K. Lewis, B. L. Thompson, J. W. Prokop, and D. B. Camp-
bell. Environmental epigenetics of diesel particulate matter toxicogenomics.
Int. J. Environ. Res. Public Health, 17(20):1–14, 2020.

◦ B. B. Boutwell and M. A. White. Gene regulation and the architecture of
complex human traits in the genomics era. Curr. Opin. Psychol., 27:93–97,
2019.

193

REMAINING PUBLICATIONS OF THE AUTHOR

◦ K. Bowles, D. A. Pugh, K. Farrell, N. Han, J. TCW, and Y. Liu. 17q21. 31
Sub-Haplotypes Underlying H1-Associated Risk for Parkinson’s Disease and
Progressive Supranuclear Palsy Converge on Altered Glial Regulation. Cell,
2019.

◦ J. Bryois, N. Skene, T. F. Hansen, L. Kogelman, H. Watson, L. Brueggeman,
G. Breen, C. Bulik, E. Arenas, J. Hjerling-Leffler, and P. Sullivan. Genetic
Identification of Cell Types Underlying Brain Complex Traits Yields Novel
Insights Into the Etiology of Parkinson’s Disease. bioRxiv, 2019.

◦ D. Cameron. Gene regulation in microglia and genetic risk for complex brain
disorders. PhD thesis, Cardiff University, 2019.

◦ N. V. Carullo and J. J. Day. Genomic Enhancers in Brain Health and Disease.
Genes (Basel)., 10(1):43, jan 2019.

◦ N. V. Carullo, R. A. Phillips, R. C. Simon, S. A. Roman Soto, J. E. Hinds,
A. J. Salisbury, J. S. Revanna, K. D. Bunner, L. Ianov, F. A. Sultan, K. E.
Savell, C. A. Gersbach, and J. J. Day. Enhancer RNAs predict enhancer–gene
regulatory links and are critical for enhancer function in neuronal systems.
Nucleic Acids Res., 48(17):9550–9570, 2020.

◦ J. Cedernaes and J. Bass. You are when you eat: On circadian timing and
energy balance. J. Clin. Invest., 131(1), 2021.

◦ A. Chawla, C. Nagy, and G. Turecki. Chromatin profiling techniques: Ex-
ploring the chromatin environment and its contributions to complex traits.
Int. J. Mol. Sci., 22(14), 2021.

◦ Y. Chen, X. Ding, S. Wang, P. Ding, Z. Xu, J. Li, M. Wang, R. Xiang,
X. Wang, H. Wang, Q. Feng, J. Qiu, F. Wang, Z. Huang, X. Zhang, G. Tang,
and S. Tang. A single-cell atlas of mouse olfactory bulb chromatin accessib-
ility. J. Genet. Genomics, 48(2):147–162, 2021.

◦ M.-D. Cirnaru, S. Song, K.-T. Tshilenge, C. Corwin, J. Mleczko, C. G.
Aguirre, H. Benlhabib, J. Bendl, P. Apontes, J. Fullard, J. C. Mun-
cunill, A. Reyah, A. Nik, P. Carlsson, P. Roussos, S. Mooney, L. Ellerby,
and M. Ehrlich. Transcriptional and epigenetic characterization of early
striosomes identifies Foxf2 and Olig2 as factors required for development of
striatal compartmentation and neuronal phenotypic differentiation. bioRxiv,
2020.

◦ M. R. Corces, A. Shcherbina, S. Kundu, M. J. Gloudemans, L. Frésard, J. M.
Granja, B. H. Louie, T. Eulalio, S. Shams, S. T. Bagdatli, M. R. Mumbach,
B. Liu, K. S. Montine, W. J. Greenleaf, A. Kundaje, S. B. Montgomery,
H. Y. Chang, and T. J. Montine. Single-cell epigenomic analyses implicate
candidate causal variants at inherited risk loci for Alzheimer’s and Parkin-
son’s diseases. Nat. Genet., 52(11):1158–1168, 2020.

◦ P. Dong, G. E. Hoffman, P. Apontes, J. Bendl, S. Rahman, M. B. Fernando,
B. Zeng, J. M. Vicari, W. Zhang, K. Girdhar, K. G. Townsley, R. Misir,

194

Remaining Publications of the Author

C. Consortium, K. J. Brennand, V. Haroutunian, G. Voloudakis, J. F. Ful-
lard, and P. Roussos. Transcribed enhancers in the human brain identify
novel disease risk mechanisms. bioRxiv, 2021.

◦ P. Dong, G. E. Hoffman, P. Apontes, J. Bendl, S. Rahman, M. B. Fernando,
B. Zeng, J. M. Vicari, W. Zhang, K. Girdhar, K. G. Townsley, R. Misir, t. C.
Consortium, K. J. Brennand, V. Haroutunian, G. Voloudakis, J. F. Fullard,
and P. Roussos. Population-level variation of enhancer expression identifies
novel disease mechanisms in the human brain. bioRxiv, 2021.

◦ G. Egervari, D. Akpoyibo, T. Rahman, J. F. Fullard, J. E. Callens, J. A.
Landry, A. Ly, X. Zhou, N. Warren, M. E. Hauberg, G. Hoffman, R. Ellis,
J. M. N. Ferland, M. L. Miller, E. Keller, B. Zhang, P. Roussos, and Y. L.
Hurd. Chromatin accessibility mapping of the striatum identifies tyrosine
kinase FYN as a therapeutic target for heroin use disorder. Nat. Commun.,
11(1), 2020.

◦ P. O. Estève, U. S. Vishnu, H. G. Chin, and S. Pradhan. Visualization
and Sequencing of Accessible Chromatin Reveals Cell Cycle and Post-HDAC
inhibitor Treatment Dynamics. J. Mol. Biol., 432(19):5304–5321, 2020.

◦ J. F. Fullard, A. W. Charney, G. Voloudakis, A. V. Uzilov, V. Haroutunian,
and P. Roussos. Assessment of somatic single-nucleotide variation in brain
tissue of cases with schizophrenia. Transl. Psychiatry, 9(1), 2019.

◦ T. Gao and J. Qian. Eagle: An algorithm that utilizes a small number of gen-
omic features to predict tissue/ cell type-specific enhancer-gene interactions.
PLoS Comput. Biol., 15(10), 2019.

◦ T. Gao and J. Qian. EnhancerAtlas 2.0: An updated resource with enhancer
annotation in 586 tissue/cell types across nine species. Nucleic Acids Res.,
48(D1):58–64, 2020.

◦ M. García-Cabezas, H. Barbas, and B. Zikopoulos. Parallel Development
of Chromatin Patterns, Neuron Morphology, and Connections: Potential for
Disruption in Autism. Front. Neuroanat., 12, 2018.

◦ K. Girdhar, G. E. Hoffman, J. Bendl, S. Rahman, P. Dong, W. Liao,
L. Brown, O. Devillers, B. S. Kassim, J. R. Wiseman, R. Park, E. Zhar-
ovsky, R. Jacobov, E. Flatow, A. Kozlenkov, T. Gilgenast, J. S. Johnson,
L. Couto, M. A. Peters, J. E. Phillips-Cremins, C.-G. Hahn, R. E. Gur,
C. A. Tamminga, D. A. Lewis, V. Haroutunian, S. Dracheva, B. K. Lipska,
S. Marenco, M. Kundakovic, J. F. Fullard, Y. Jiang, P. Roussos, and S. Ak-
barian. Acetylated Chromatin Domains Link Chromosomal Organization to
Cell- and Circuit-level Dysfunction in Schizophrenia and Bipolar Disorder.
bioRxiv, 2021.

◦ P. Giusti-Rodríguez, L. Lu, Y. Yang, C. A. Crowley, X. Liu, J. Bryois,
I. Juric, J. S. Martin, S. C. Allred, N. Ancalade, J. J. Crowley, J. Guintivano,
P. R. Jansen, G. J. Jurjus, G. Mahajan, G. Rajkowska, J. C. Overholser,
S. Pochareddy, G. Santpere, J. E. Savage, Y. Shin, A. F. Pardiñas, M. C.

195

REMAINING PUBLICATIONS OF THE AUTHOR

O’Donovan, M. J. Owen, D. Posthuma, N. Sestan, C. A. Stockmeier, J. T. R.
Walters, G. E. Crawford, Y. Li, F. Jin, M. Hu, Y. Li, and P. F. Sullivan.
Schizophrenia and a high-resolution map of the three-dimensional chromatin
interactome of adult and fetal cortex. bioRxiv, 2018.

◦ P. Giusti-Rodríguez, L. Lu, Y. Yang, C. A. Crowley, X. Liu, I. Juric, J. S.
Martin, A. Abnousi, S. C. Allred, N. E. Ancalade, N. J. Bray, G. Breen,
J. Bryois, C. M. Bulik, J. J. Crowley, J. Guintivano, P. R. Jansen, G. J. Jur-
jus, Y. Li, G. Mahajan, S. Marzi, J. Mill, M. C. O’Donovan, J. C. Overholser,
M. J. Owen, A. F. Pardiñas, S. Pochareddy, D. Posthuma, G. Rajkowska,
G. Santpere, J. E. Savage, N. Sestan, Y. Shin, C. A. Stockmeier, J. T. Wal-
ters, S. Yao, G. E. Crawford, F. Jin, M. Hu, Y. Li, and P. F. Sullivan. Using
three-dimensional regulatory chromatin interactions from adult and fetal cor-
tex to interpret genetic results for psychiatric disorders and cognitive traits.
bioRxiv, 2018.

◦ A. A. Golicz, P. E. Bayer, P. L. Bhalla, J. Batley, and D. Edwards. Pan-
genomics Comes of Age: From Bacteria to Plant and Animal Applications.
Trends Genet., 36(2):132–145, 2020.

◦ P. Gontarz, S. Fu, X. Xing, S. Liu, B. Miao, V. Bazylianska, A. Sharma,
P. Madden, K. Cates, A. Yoo, A. Moszczynska, T. Wang, and B. Zhang.
Comparison of differential accessibility analysis strategies for ATAC-seq data.
Sci. Rep., 10(1), 2020.

◦ G. B. Gutierrez. Transcriptome dynamics of neurodegeneration using single-
cell and long-read approaches. PhD thesis, University of California, 2021.

◦ J. L. Haigh, A. Adhikari, N. A. Copping, T. Stradleigh, A. A. Wade,
R. Catta-Preta, L. Su-Feher, I. Zdilar, S. Morse, T. A. Fenton, A. Nguyen,
D. Quintero, S. Agezew, M. Sramek, E. J. Kreun, J. Carter, A. Gompers,
J. T. Lambert, C. P. Canales, L. A. Pennacchio, A. Visel, D. E. Dickel, J. L.
Silverman, and A. S. Nord. Deletion of a non-canonical regulatory sequence
causes loss of Scn1a expression and epileptic phenotypes in mice. Genome
Med., 13(1), 2021.

◦ M. M. Halstead. Dynamic Chromatin Accessibility in Livestock Genomes:
Characterizing the Epigenetic Regulome from Fertilization to Differentiation.
PhD thesis, University of California, 2020.

◦ M. E. Hauberg, J. Creus-Muncunill, J. Bendl, A. Kozlenkov, B. Zeng,
C. Corwin, S. Chowdhury, H. Kranz, Y. L. Hurd, M. Wegner, A. D. Bør-
glum, S. Dracheva, M. E. Ehrlich, J. F. Fullard, and P. Roussos. Common
schizophrenia risk variants are enriched in open chromatin regions of human
glutamatergic neurons. Nat. Commun., 11(1), 2020.

◦ P. W. Hook. Leveraging mouse genomic data to prioritize genes and variants
associated with common, complex neurological disease. PhD thesis, Johns
Hopkins University, 2020.

196

Remaining Publications of the Author

◦ P. W. Hook and A. S. McCallion. Leveraging mouse chromatin data for herit-
ability enrichment informs common disease architecture and reveals cortical
layer contributions to schizophrenia. Genome Res., 30(4):528–539, 2020.

◦ S. Jäkel and A. Williams. What Have Advances in Transcriptomic Tech-
nologies Taught us About Human White Matter Pathologies? Front. Cell.
Neurosci., 14, 2020.

◦ H. Jeong, I. Mendizabal, S. Berto, P. Chatterjee, T. Layman, N. Usui,
K. Toriumi, C. Douglas, D. Singh, I. Huh, T. M. Preuss, G. Konopka, and
S. V. Yi. Cell-type and cytosine context-specific evolution of DNA methyla-
tion in the human brain. bioRxiv, 2020.

◦ H. Jeong, I. Mendizabal, S. Berto, P. Chatterjee, T. Layman, N. Usui,
K. Toriumi, C. Douglas, D. Singh, I. Huh, T. M. Preuss, G. Konopka, and
S. V. Yi. Evolution of DNA methylation in the human brain. Nat. Commun.,
12(1), 2021.

◦ I. M. Kaplow, M. E. Wirthlin, A. J. Lawler, A. R. Brown, M. Kleyman, and
A. R. Pfenning. Predicting lineage-specific differences in open chromatin
across dozens of mammalian genomes. bioRxiv, 2020.

◦ R. K. Kawaguchi, Z. Tang, S. Fischer, R. Tripathy, P. K. Koo, and J. Gil-
lis. Exploiting marker genes for robust classification and characterization of
single-cell chromatin accessibility. bioRxiv, pages 1–18, 2021.

◦ K. Koshi-Mano, T. Mano, M. Morishima, S. Murayama, A. Tamaoka,
S. Tsuji, T. Toda, and A. Iwata. Neuron-specific analysis of histone modific-
ations with post-mortem brains. Sci. Rep., 10(1), 2020.

◦ B. Lai, S. Qian, H. Zhang, S. Zhang, A. Kozlova, J. Duan, X. He, and J. Xu.
Predicting Epigenomic Functions of Genetic Variants in 1 the Context of
Neurodevelopment via Deep Transfer 2 Learning 3. bioRxiv, 2021.

◦ J. T. Lambert, L. Su-Feher, K. Cichewicz, T. L. Warren, I. Zdilar, Y. Wang,
K. J. Lim, J. Haigh, S. J. Morse, T. W. Stradleigh, E. Castillo, V. Haghani,
S. Moss, H. Parolini, D. Quintero, D. Shrestha, D. Vogt, L. C. Byrne, and
A. S. Nord. Parallel functional testing identifies enhancers active in early
postnatal mouse brain. bioRxiv, 2021.

◦ M. Langmyhr, S. P. Henriksen, C. Cappelletti, W. D. van de Berg, L. Pihl-
strøm, and M. Toft. Allele-specific expression of Parkinson’s disease suscept-
ibility genes in human brain. Sci. Rep., 11(1), 2021.

◦ C.-X. Lin, H.-D. Li, C. Deng, W. Liu, S. Erhardt, F.-X. Wu, X.-M. Zhao,
J. Wang, D. Wang, and B. Hu. Genome-wide prediction and integrat-
ive 1 functional characterization of Alzheimer’s 2 disease-associated genes.
bioRxiv, 2021.

◦ Y. Liu. Clinical implications of chromatin accessibility in human cancers.
Oncotarget, 11(18):1666–1678, 2020.

197

REMAINING PUBLICATIONS OF THE AUTHOR

◦ D. Mancarella and C. Plass. Epigenetic signatures in cancer: proper controls,
current challenges and the potential for clinical translation. Genome Med.,
13(1), 2021.

◦ L. Mangnier, C. Joly-Beauparlant, A. Droit, S. Bilodeau, and A. Bureau. Cis-
Regulatory Hubs: a Relevant 3D Model to Study the Genetics of Complex
Diseases with an Application to Schizophrenia. bioRxiv, 2021.

◦ J. K. Mich, L. T. Graybuck, E. E. Hess, J. T. Mahoney, Y. Kojima, Y. Ding,
S. Somasundaram, J. A. Miller, B. E. Kalmbach, C. Radaelli, B. B. Gore,
N. Weed, V. Omstead, Y. Bishaw, N. V. Shapovalova, R. A. Martinez,
O. Fong, S. Yao, M. Mortrud, P. Chong, L. Loftus, D. Bertagnolli, J. Goldy,
T. Casper, N. Dee, X. Opitz-Araya, A. Cetin, K. A. Smith, R. P. Gwinn,
C. Cobbs, A. L. Ko, J. G. Ojemann, C. D. Keene, D. L. Silbergeld, S. M.
Sunkin, V. Gradinaru, G. D. Horwitz, H. Zeng, B. Tasic, E. S. Lein, J. T.
Ting, and B. P. Levi. Functional enhancer elements drive subclass-selective
expression from mouse to primate neocortex. Cell Rep., 34(13), 2021.

◦ L. Minnoye, G. K. Marinov, T. Krausgruber, L. Pan, A. P. Marand, S. Sec-
chia, W. J. Greenleaf, E. E. M. Furlong, K. Zhao, R. J. Schmitz, C. Bock,
and S. Aerts. Chromatin accessibility profiling methods. Nat. Rev. Methods
Prim., 1(1), 2021.

◦ J. Mukai, E. Cannavò, G. W. Crabtree, Z. Sun, A. Diamantopoulou,
P. Thakur, C. Y. Chang, Y. Cai, S. Lomvardas, A. Takata, B. Xu, and J. A.
Gogos. Recapitulation and Reversal of Schizophrenia-Related Phenotypes in
Setd1a-Deficient Mice. Neuron, 104(3):471–487, 2019.

◦ D. Pal, S. Dutta, D. P. Iyer, U. Bhaduri, and S. M. R. Rao. Identification
of PAX6 and NFAT4 as the transcriptional regulators of lncRNA Mrhl in
neuronal progenitors. bioRxiv, 2021.

◦ C. J. Playfoot, J. Duc, S. Sheppard, S. Dind, A. Coudray, E. Planet, and
D. Trono. Transposable elements and their KZFP controllers are drivers of
transcriptional innovation in the developing human brain. bioRxiv, 2020.

◦ S. K. Powell, C. P. O’Shea, S. R. Shannon, S. Akbarian, and K. J. Brennand.
Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells.
Adv. Neurobiol., 25:155–206, 2020.

◦ P. Rajarajan and S. Akbarian. Use of the epigenetic toolbox to contextu-
alize common variants associated with schizophrenia risk. Dialogues Clin.
Neurosci., 21(4):407–416, 2019.

◦ E. Ramamurthy, G. Welch, J. Cheng, Y. Yuan, L. Gunsalus, D. A. Bennett,
L. H. Tsai, and A. Pfenning. Cell type-specific histone acetylation profiling
of Alzheimer’s Disease subjects and integration with genetics. bioRxiv, 2020.

◦ R. H. Reynolds, J. Hardy, M. Ryten, and S. A. Gagliano Taliun. Informing
disease modelling with brain-relevant functional genomic annotations. Brain,
142(12):3694–3712, 2019.

198

Remaining Publications of the Author

◦ L. F. Rizzardi, P. F. Hickey, A. Idrizi, R. Tryggvadóttir, C. M. Callahan,
K. E. Stephens, S. D. Taverna, H. Zhang, S. Ramazanoglu, K. D. Hansen,
and A. P. Feinberg. Human brain region-specific variably methylated regions
are enriched for heritability of distinct neuropsychiatric traits. Genome Biol.,
22(1), 2021.

◦ D. Rocks, I. Jaric, L. Tesfa, J. M. Greally, M. Suzuki, and M. Kundakovic.
Cell type-specific chromatin accessibility analysis in the mouse and human
brain. Epigenetics, 2021.

◦ P. Shooshtari, S. Feng, V. Nelakuditi, J. Foong, M. Brudno, and C. Cotsapas.
OCHROdb: A comprehensive, quality checked database of open chromatin
regions from sequencing data. bioRxiv, 2018.

◦ K. Spiess and H. Won. Regulatory landscape in brain development and
disease. Curr. Opin. Genet. Dev., 65:53–60, 2020.

◦ C. Srinivasan, B. N. Phan, A. J. Lawler, E. Ramamurthy, A. R. Brown,
I. M. Kaplow, M. E. Wirthlin, and A. R. Pfenning. Addiction-associated
genetic variants implicate brain cell type-and region-specific cis-1 regulatory
elements in addiction neurobiology 2. bioRxiv, 2020.

◦ P. F. Sullivan and D. H. Geschwind. Defining the Genetic, Genomic, Cellular,
and Diagnostic Architectures of Psychiatric Disorders. Cell, 177(1):162–183,
2019.

◦ I. Tripodi, M. Chowdhury, and R. Dowell. ATAC-seq signal processing and
recurrent neural networks can identify RNA polymerase activity. bioRxiv,
2019.

◦ I. J. Tripodi. Inferring mechanisms of toxicity from differential genomics
and semantic knowledge representations. PhD thesis, University of Colorado
at Boulder, 2020.

◦ I. J. Tripodi, M. Chowdhury, M. Gruca, and R. D. Dowell. Combining signal
and sequence to detect RNA polymerase initiation in ATAC-seq data. PLoS
One, 15(4), 2020.

◦ K. Van den Berge, H.-J. Chou, H. Roux de Bézieux, K. Street, D. Risso,
J. Ngai, and S. Dudoit. Normalization benchmark of ATAC-seq datasets
shows the importance of accounting for GC-content effects. bioRxiv, 2021.

◦ Y. Wang, X. Zhang, Q. Song, Y. Hou, J. Liu, Y. Sun, and P. Wang. Char-
acterization of the chromatin accessibility in an Alzheimer’s disease (AD)
mouse model. Alzheimer’s Res. Ther., 12(1), 2020.

◦ M. E. Wirthlin, I. M. Kaplow, A. J. Lawler, J. He, B. D. N. Phan, A. Brown,
W. Stauffer, and A. Pfenning. The Regulatory Evolution of the Primate
Fine-Motor System. bioRxiv, 2020.

◦ Y. Xiang, B. Cakir, and I. H. Park. Deconstructing and reconstructing the
human brain with regionally specified brain organoids. Semin. Cell Dev.
Biol., 111:40–51, 2021.

199

REMAINING PUBLICATIONS OF THE AUTHOR

◦ M. Xu, Q. Liu, R. Bi, Y. Li, C. Zeng, Z. Yan, Q. Zheng, X. Li, C. Sun, M. Ye,
X.-J. Luo, M. Li, D.-F. Zhang, and Y.-G. Yao. A multiple-causal-gene-cluster
model underlying GWAS signals of Alzheimer’s disease. bioRxiv, 2021.

◦ F. Yan, D. R. Powell, D. J. Curtis, and N. C. Wong. From reads to insight:
A hitchhiker’s guide to ATAC-seq data analysis. Genome Biol., 21(1), 2020.

◦ S. Yin, K. Lu, T. Tan, J. Tang, J. Wei, X. Liu, X. Hu, H. Wan, W. Huang,
Y. Fan, D. Xie, and Y. Yu. Transcriptomic and open chromatin atlas of high-
resolution anatomical regions in the rhesus macaque brain. Nat. Commun.,
11(1), 2020.

◦ D. T. Youmans. Recruitment of Polycomb Repressive Complex 2 to Chro-
matin by Accessory Proteins. PhD thesis, University of Colorado at Boulder,
2021.

◦ S. Zhang, H. Zhang, Y. Zhou, M. Qiao, S. Zhao, A. Kozlova, J. Shi, A. R.
Sanders, G. Wang, K. Luo, S. Sengupta, S. West, S. Qian, M. Streit, D. Av-
ramopoulos, C. A. Cowan, M. Chen, Z. P. Pang, P. V. Gejman, X. He, and
J. Duan. Allele-specific open chromatin in human iPSC neurons elucidates
functional disease variants. Science (561-565)., 369(6503):561–565, 2020.

◦ W. Zhang, G. Voloudakis, V. M. Rajagopal, B. Readhead, J. T. Dudley,
E. E. Schadt, J. L. Björkegren, Y. Kim, J. F. Fullard, G. E. Hoffman, and
P. Roussos. Integrative transcriptome imputation reveals tissue-specific and
shared biological mechanisms mediating susceptibility to complex traits. Nat.
Commun., 10(1), 2019.

◦ B. Zhao, T. Li, S. M. Smith, D. Xiong, X. Wang, Y. Yang, T. Luo, Z. Zhu,
Y. Shan, N. Matoba, Q. Sun, Y. Yang, M. E. Hauberg, J. Bendl, J. F.
Fullard, P. Roussos, W. Lin, Y. Li, J. L. Stein, and H. Zhu. Common
variants contribute to intrinsic human brain functional networks. bioRxiv,
22(919), 2020.

◦ B. Zhao, T. Li, Y. Yang, X. Wang, T. Luo, Y. Shan, Z. Zhu, D. Xiong
and Y. Li. The comprehensive genetic architecture of brain white matter.
bioRxiv, 2020.

◦ B. Zhao, T. Li, Y. Yang, X. Wang, T. Luo, Y. Shan, Z. Zhu, D. Xiong, M. E.
Hauberg, J. Bendl, J. F. Fullard, P. Roussos, Y. Li, J. L. Stein, and H. Zhu.
Common genetic variation influencing human white matter microstructure.
Science., 372(6548), 2021.

◦ Y. Zhou, Y. Sun, D. Huang, and M. J. Li. epiCOLOC: Integrating
Large-Scale and Context-Dependent Epigenomics Features for Comprehens-
ive Colocalization Analysis. Front. Genet., 11, 2020.

[A.19] J. Motl and W. Nie. What Makes a Fairytale Five Factors of Fairytales. Int. J.
Comput. Linguist. Appl., 8(1):9, 2017.

The paper has been cited in:

200

Remaining Publications of the Author

◦ F. Muhabat, R. A. Mangrio, B. Kazemian, S. Sadia, and M. Noor. Arabic
Fairy-Tales: An Analysis of Hatim Tai’s Story within Propp’s Model. SSRN
Electron. J., 1(2):21–25, 2015.

[A.20] J. Motl. Supporting the Diagnosis of Borreliosis by Machine Learning Methods.
Master thesis, Czech Technical University, 2013.

The paper has been cited in:

◦ P. Kordík. Meta-learning Templates: Beyond Algorithm Selection in Data
Mining. habilitation thesis, Czech Technical University, 2016.

◦ P. Kordík, J. Černý, and T. Frýda. Discovering predictive ensembles for
transfer learning and meta-learning. Mach. Learn., 107(1):177–207, 2018.

201

APPENDIX A
Appendix

A.1 Feature Functions

Feature function Description

accented Does the string contain an accented character?
affinity Similar to Weight of Evidence (WoE), but without normaliza-

tion and transformation with logarithm. For decision trees it
should be as informative as WoE, but the calculation should
be faster. For interpretability or logistic regression, WoE is
still preferred.

aggregate Apply aggregate functions on a numerical attribute. Following
aggregate functions were selected for being supported in many
databases: avg, min, max and stddev_samp.

aggregate distinct Apply aggregate functions on distinct values.
aggregate frame Apply aggregate functions on a numerical attribute. In com-

parison to aggregate pattern, this pattern limits the history to
the specific amount of days.

aggregate range As many databases do not support range aggregate, calcu-
late it with min and max. The value is given with: f(x) =
max(x)−min(x), where x is an attribute.

aggregate robust Returns the n-th lowest/biggest value instead of the lowest-
/biggest value. This pattern is also known as “ranked aggreg-
ate”.

aggregate subgroup Apply aggregate functions on a subgroup of numerical attrib-
utes. The subgroup is defined by a value of a nominal attrib-
ute.

aggregate text length An aggregate of string lengths.
aggregate woe An aggregate of weight of evidence.
change count Count number of changes in time.

203

A. APPENDIX

change ratio Ratio of count of increases to count of decreases in time.
coefficient of variation This is a special scenario of ratio of aggregates. It is defined

as the ratio of the standard deviation to the mean.
concentration Any statistic (e.g. percentage of the most frequent value) cal-

culated from the distribution of the nominal child field with
child filter F.

correlation Calculate Pearson correlation of an attribute with time.
count Number of records (including nulls).
decimals Number of decimal digits.
direct field Returns the attribute unchanged.
direct field as nominal Converts a numeric attribute to nominal attribute.
distinct count Number of distinct values (all nulls are counted as one value).
duplication ratio Proportion of records with a duplicate value.
email domain Extracts suffix after @ from a string.
entropy Shannon entropy for discrete distributions.
entropy continuous Entropy estimate for numerical attributes.
existential count Count of occurrences of a specific value.
frequency Relative frequency of the given nominal value in the popula-

tion.
geometric mean One of the three classical Pythagorean means.
harmonic mean One of the three classical Pythagorean means.
integral The integral (area under curve) computed with the trapezoidal

rule.
intercept Time, when the attribute crosses zero, as estimated with a

regression line.
ip local Is it a local IP address?
is null Is the value null?
leave one out A regularized version of WoE.
log product Log product of numbers.
mean absolute difference Measures dispersion (MAD).
mode The most frequent value.
moments Skewness and kurtosis.
nominal change Count of changes of a nominal attribute in time.
null ratio Real-world data commonly contain contain missing values.

And sometimes they are not missing at random. Thus we
mine them.

odds ratio The pattern is from: Feature selection for unbalanced class
distribution and Naive Bayes, Mladenic & Grobelnik.

percentile Percentiles.
prefix Extracts prefix of a constant length from a string.
product Calculate product of numbers.
ratio Ratio of the two attributes X and Y .

204

A.1. Feature Functions

segment comparison Value of a numerical attribute divided by an aggregate (avg,
min,...) of the nominal field.

slope Slope of an attribute in time as estimated with a linear regres-
sion.

suffix Extracts suffix of a constant length from a string.
text woe Converts a text attribute to bags-of-words, which get further

converted to WoE.
text dirty woe Converts a dirty text attribute to bags-of-character-trigrams,

which get further converted to WoE.
text length Returns number of characters.
time aggregate Just like aggregate pattern, but on time attributes. In com-

parison to “Time since pattern”, this pattern is not relative to
the target date.

time aggregate since Time since some date in the past till the time when the pre-
diction is required.

time aggregate since event Time since event E till the time when the prediction is re-
quired.

time date diff Difference between two dates in days.
time date part The day/day-of-week/month of the event.
time date since Days since some date in the past till the moment when the

prediction is required.
time day part Identify, whether it’s working hour, morning, evening or night.
time diff Difference between two times.
time frequency Count of records divided by duration.
time from peak Time from the peak.
time is weekend Divide the date into workday/weekend.
time month part Identify, whether it’s the beginning, middle or end of the

month.
time of peak Time when the signal peaks.
time part The hour/minute of the event.
time range Max time - min time.
time since Time since some date in the past till the time when the pre-

diction is required. The selection of the date is driven with
aggregate functions like min, max and avg.

time woe Weight of evidence for time.
title case Is the string in “Title Case” format? In other words, are all

initial letters in upper case and everything else in lower case?
woe Weight of evidence.
woe limit Weight of evidence. Considers only cases with at least 10

samples.
zero crossing Count of how many times zero was crossed.
zeros Returns the count of trailing zeros. If the value is zero, we

return zero.

205

A. APPENDIX

Table A.1: List of implemented feature functions.

A.2 Leaking Features
Leakage is the introduction of information about the label to the model, which should not
be legitimately available [125]. Some of the most common sources of leaks in relational
databases are discussed in the following paragraphs.

Target column Features that use target column naturally leak information about the
target into the feature. If these features are not evaluated on records with the blinded
target column but on the training data, they have overly optimistic predictive power.

Absent temporal constraint If the target table contains a target timestamp, but
non-target tables are not constrained with temporal constraints, data from the future
(relative to target timestamp) may leak into features.

Attributes from the target table In praxis, it is not uncommon that a target table
contains “forgotten” attributes that were used as intermediate steps during the construc-
tion of the target column. These auxiliary attributes should not be used in features as
they are not going to be available in the deployment.

A.3 Computational Complexity
The following text lists the computational complexity of a feature insert per class when
the current QDA model contains n instances and d features. We assume that the scoring
(testing) data have the same size as the training data and that they do not change from
one iteration to another. The computation complexity of Algorithm 2 line-by-line:

2. O(n+d) to estimate the mean of the new feature of length n and extend the vector
of the means from d to d+ 1 by the estimated mean. If we have to allocate a new
vector and copy all the data into the new vector, the computational complexity is
O(n+ d). However, if the vector is pre-allocated to a size of at least d+1, we have
to only write down a scalar, bringing the computational complexity to O(n).

3. O(nd) to center the new feature and extend the matrix of the centered features
from n × d to n × (d + 1). If we have to allocate a new matrix and copy all the
data into the new matrix, the computational complexity is O(nd). However, if the
matrix is pre-allocated to a size of at least n× (d+1), we only need to write down
the vector of length n, which is O(n).

4. O(nd) to perform vector-matrix multiplication of vector length n and matrix n ×
(d+1). The complexity can be derived from the basic matrix multiplication of one

206

A.3. Computational Complexity

m × n matrix and one n × d matrix with a computational complexity of O(mnd).
The matrix is then multiplied by a scalar with O(nd).

5. O(d2) for Cholesky insert. The Cholesky insert of column x into the triangular
matrix Rt can be computed with block Cholesky factorization, as described in [90,
Algorithm 4.2.3]:

Algorithm 4: cholinsert of feature x into triangular Rt. The used functions
are standard Octave functions.
Input: Rt, x, where t is the count of features
Output: Rt+1

1 R21 = mrdivide(x[1 : t]ᵀ, Rt)
2 R22 = sqrt(x[t+1] - R21 · R21ᵀ)
3 Rt+1 = [Rt, R21ᵀ; zeros(1, size(Rt, 2)), R22]

The first line is a forward substitution of the d×d triangular matrix and a vector d.
This is O(d2) (see [90, Section 3.1]). The second line consists of a dot product of a
vector of length d, one scalar subtraction, and one scalar square root. In total, this
is O(d). The assembly of all the pieces together is O(d2). The total computational
complexity of cholinsert is O(d2).

6. O(1) to calculate one scalar logarithm, one scalar multiplication, and one scalar
addition.

7. O(nd) to perform scalar subtraction from a matrix n× (d+1), which is O(nd), and
backward substitution update, which consists of a vector-matrix multiplication of
a vector length d and a matrix n× d, division of a vector of length d with a scalar,
and subtraction of a vector length n with another vector of length n, which in total
is also O(nd).

8. O(nd) to update the scores. The update consists of element-wise squaring of a
matrix of size n × (d + 1), column-wise summation of the n × (d + 1) matrix, and
two additions between a scalar and a vector of length n. In total, this is O(nd).
However, only the right-most column of matrix A changes. This can be exploited
to reduce the computational complexity of this code line to O(n).

The biggest terms in this breakdown are O(nd) and O(d2). Because we do not enforce
that n ≥ d, it is appropriate to write the overall computational complexity as O(nd+d2).

The computational complexity of QDA from scratch, as considered in the text, con-
sists of the same steps, with the computational complexity multiplied by d, giving
O(nd2 + d3). This result is comparable to O(ndt + t3), where t = min(n, d), as reported
by [28], where SVD decomposition is used instead of Cholesky factorization.

207

A. APPENDIX

A.4 User Manual
In theory, there is no difference
between theory and practice.
But, in practice, there is.

Jan van de Snepscheut

The following paragraphs describe a common process of application Predictor Factory
from the point of view of a consultant that is asked to extract a table of features. The
process begins with data stored in a relational database and has the following steps (with
time estimate in parenthesis):

◦ Get access to the data (1 day – 3 months)
◦ Data quality review and remedy (1 day – 2 weeks)
◦ Identify/build a target table (2 days)
◦ Run Predictor Factory (1 day)
◦ Check results (1 day)
◦ Model (1 day)
◦ Interpret the model (1 day)
◦ Test the model in the real world (2 months and more)

A.4.0.1 Data access

Obtaining access to the data is generally a difficult task because a consultant must
pass multiple password prompts and configuration quests. Even if you are assured that
everything is set up and tested, you had better reserve a day just to access the data.

A.4.0.2 Data quality

Once you pass the initial level and get access to the data, you have to identify a schema
that contains your data. If the tables are spread over multiple schemas, bear yourself
for a fight. Predictor Factory requires all the input tables to be in a single schema1.
Furthermore, forget about a quick win if the tables are not linked together with foreign
key constraints. If the foreign key constraints are not set, you may either define them
in the database or in a supplementary XML file called foreignConstraint.xml in the
config directory. If you can write into the database or make a copy of the database and
change the database schema, it is highly advisable to set the constraints in the database
rather than in the XML. The reason is that a database may warn you about a mismatch
of data types in the foreign constraint and violating records.

1This requirement originated in the fact that foreign key constraints can be by default set only across
tables in a single schema.

208

A.4. User Manual

Experienced users may argue that 2 days is a gross underestimation of the time
necessary to fix the data. However, these 2 days are to write off the unsalvageable data,
not to fix them.

A.4.0.3 Target Table

Once we have all the data in a single schema and with foreign constraints set up, we
have to identify the target table. In most cases, however, the target table is not readily
available and must be manually created. The target table should contain target id – an
identifier of the subject, for which we wish to make a prediction (typically customer_id),
the target timestamp – a timestamp of the time when we wish to have the prediction (for
example, for each first day in a month), and the target (the historically known outcomes
that we wish to predict). While it may look overly generous to reserve 2 days for the
definition of the target table, if the target table is wrong, everything, including features,
model, and predictions, will be wrong. Hence, 1 day is reserved for the creation of the
target table and another day for meditation, whether the target is well defined. As a
rudimentary sanity check, check that a combination of the target id and the target are
unique in the target table (for example, with a single unique constraint on both attributes
together). Also check, that neither the target timestamp or the target id contain null
values (for example, with not null constraints).

If you want to score new data, append (row-wise) the scoring data to the target table
with null values in place of thetarget.

A.4.0.4 Run Predictor Factory

Start Predictor Factory by opening predictorFactory.jar. If java is not installed, call the
following command from a command line to use the attached Java Runtime Environment
(JRE)2:

jre\bin\java.exe -Xmx30G -d64 -jar PredictorFactory.jar

The flag Xmx specifies the maximum memory that Predictor Factory can allocate.
The flag d64 says to run it in a 64-bit environment to be able to utilize more than 4GB
of memory.

After starting Predictor Factory, log in to the database. If you have problems with
the connection, check the following:

◦ Validate that the same connection parameters work in another tool.
◦ It is not a firewall problem.
◦ The version of the JDBC driver in the lib directory of Predictor Factory is up to

date.
2The attached JRE is for 64 bit Windows. If you use a different operating system, you have to

install/copy JRE for your system.

209

A. APPENDIX

After connecting to the database, set configuration in the tabs one after another from
left to right. On the last tab, start the execution by clicking on “Run” button.

A.4.0.5 Check Results

It is advisable to follow the following checklist:

◦ Was mainSample, the table with calculated features, produced in the output
schema?

◦ Does it have the same count or rows as the target table?
◦ Does it have some features?
◦ Were temporal constraints correctly identified? To check it, open journal_table in

the output schema and look for temporal_constraint attribute.
◦ Were all the tables, which were selected for processing, correctly propagated? To

check it, see is_ok attribute in journal_table.

210

	Introduction
	Background
	History and Significance
	Terminology
	Relational Databases
	Relational Supervised Learning
	Time Series

	Problem Statement
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Theoretical Background
	Data Representation
	Information Propagation
	Feature Function
	Feature Refinement
	Feature Selection
	Feature Collection
	Feature Representation
	Evaluation
	Conclusions

	Empirical Comparison
	Introduction
	Related Work
	Method Description
	Evaluation
	Application

	Predictor Factory
	Data Representation
	Processing in a Database or in an Application
	Typology
	Automatic Data Type Detection

	Information Propagation
	Training, Testing & Scoring Data in a Single Relation
	Do we need Target Identifier?
	Identifiers
	Are Lookup Tables Useful?
	Relationship Detection
	Time Constraints

	Feature Function
	Naming Convention
	Supervised Features
	Text Attributes
	Dirty Text Attributes

	Feature Selection
	Adjusted Chi2
	Concept Drift
	Downsampling
	Duplicate Feature Detection
	Feature Selection Ahead of Feature Collection

	Implementation
	Technology
	Vendor-Agnostic
	Architecture
	Network
	Configuration Files
	Metadata
	SQL
	Main

	Testing and Validation
	Connection Leaks
	User Testing

	Relational Repository
	Goals
	Design
	Content
	Access and Contributions
	The Meta-Database
	Conclusions

	Empirical Evaluation
	Algorithms
	Datasets
	Protocol
	Results
	Discussion

	Foreign Key Constraint Identification
	Introduction
	Related Work
	Method
	Results
	Discussion
	Conclusions

	Stratified Cross-Validation by Multiple Columns
	Introduction
	Definitions
	Related Work
	Solution
	Experiments
	Results
	Discussion
	Conclusions

	Trend and Seasonality Elimination
	Introduction
	Propositionalization
	Detrending and Deseasoning
	Method
	Experiments
	Results
	Discussion
	Conclusions

	Generalized Aggregates
	Introduction
	Related Work
	Method
	Experiments
	Results
	Discussion
	Conclusions

	Meta-learning
	Introduction
	Related Work
	Method
	Experiment
	Results
	Discussion
	Conclusions

	Learning on Stream of Features
	Online Random Forest
	Implementation
	Experiments
	Discussion
	Conclusions

	Online Discriminant Analysis
	Introduction
	Related work
	QDA Algorithm
	Experiments
	Discussion
	Conclusions

	Discussion
	Conclusions
	Contributions
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Relevant Theses Supervised by the Author
	Remaining Publications of the Author
	Appendix
	Feature Functions
	Leaking Features
	Computational Complexity
	User Manual

