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Abstract

This survey covers the basic principles and related works addressing
the time-triggered scheduling of periodic tasks with deadlines. The wide
range of applications and the increasing complexity of modern real-time
systems result in the continually growing interest in this topic. However,
the articles in this field appear without systematic notation. To address it,
we extend the three-field Graham notation to cover periodic scheduling.
Moreover, we formally define three example periodic scheduling problems
(PSPs) and provide straightforward implementations of these examples in
the Satisfiability Modulo Theories formalism with source codes. Then, we
present a summary of the complexity results containing existing polynomi-
ally solvable PSPs. We also provide an overview of simple state-of-the-art
methods and tricks to solve the PSPs efficiently in terms of time. Next,
we survey the existing works on PSP according to the resource environ-
ment: scheduling on a single resource, on parallel identical resources, and
on dedicated resources. In the survey, we indicate which works propose
solution methods for more general PSPs that can be used to solve less
general ones. Finally, we present related problems that are not periodic
by nature to provide an inspiration for a possible solution for the PSP.

1 Introduction

A control loop is a typical example of a hard real-time application that must
operate periodically within the bounds of a stringent deadline. To ensure
the safe behavior of the system, the execution of such an application must
be repeated periodically. For decades, periodic scheduling problems (PSPs)
are found in a wide range of applications, including automotive [12],[83] (e.g.,
steer-by-wire), avionics [13],[3] (e.g., aircraft control), consumer electronics (e.g.,
software-defined radio) [7], maintenance (e.g., periodic machine maintenance
service) [118], and production (e.g., economic lot scheduling problem) [39].

The increasing complexity of modern real-time systems and the requirement
to decrease their size lead to applications sharing resources (e.g., computation
units and network links). For example, an Adaptive Cruise Control is a system
for road vehicles that automatically adjusts the vehicle speed to maintain a
safe distance from the vehicles ahead. The basic periodic tasks to be processed
on Electronic Control Units of a car are sensor processing (e.g., vehicle speed,
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distance from the vehicle ahead), control algorithm, and actuation (e.g., adjust
the throttle position or activate the brake). In these systems, scheduling is
applied to ensure that the deadlines of tasks are satisfied.

The two principal approaches to real-time scheduling are: 1. an event-
triggered (ET) approach [4], where the scheduling decision is made at the run
time of the system according to the task priorities or deadlines; and 2. a
time-triggered (TT) approach [64], in which the schedules that satisfy timing
requirements by construction are obtained during the design time of a system
(sometimes called pre-run-time). Whereas research in the ET domain focuses on
providing a response-time analysis (i.e., to prove that all the tasks are completed
before their deadlines), the TT approach synthesizes the feasible schedules by
design, making schedulability analysis unnecessary. This synthesis is often an
NP-hard problem. Real-time systems comprise not only periodic tasks, but
also sporadic tasks with unknown request times. The main advantage of the
ET approaches is that they can handle sporadic tasks efficiently. On the other
hand, the TT approaches are highly predictable, simplifying the design, veri-
fication, and certification. To utilize the strengths of both approaches, some
authors [35, 52, 51] and technologies (e.g., FlexRay, IEEE 802.1Qbv) combine
them. In this article, we focus on periodic scheduling problems (PSPs) from the
perspective of the TT approach.

The first surveys on the periodic scheduling of real-time systems by Cheng,
Stankovic, and Ramamritham in [19] and by Xu and Parnas in [121] were pub-
lished in the late 1980s – early 1990s and included both TT and ET works.
Over the next 20 years, the embedded real-time systems community has mostly
focused on ET scheduling. Kopetz in 2003 [64] and later in 2011 [65] thoroughly
addressed the TT approach from the implementation point of view. Many pa-
pers have been published that address TT scheduling, going far beyond the
results of the real-time community. This brings a need to make a coherent pic-
ture of the existing works while collecting results from different communities,
e.g., periodic maintenance problem [118]. Whereas [25] have published a broad
and thorough survey on the works and results in ET scheduling, the work by [69]
is the only modern survey on TT scheduling. However, the authors in [69] left
space for incorporating works on periodic scheduling problems (PSPs) into the
overall picture by classifying them and providing state-of-the-art solutions. This
article fills the space.

Existing works on PSPs often do not mathematically formalize the problems
they solve, merging the problem definition and problem solution. This lack of
formalism complicates both the search for existing solutions and the identifi-
cation of new challenging PSPs to be solved. The purpose of this article is to
provide a categorization of the existing works and to introduce the notation that
can simplify the search across different application domains while extending the
traditional three-field Graham notation [43].

The PSP can either be preemptive or non-preemptive. In the preemptive
version, a task can be stopped and completed later after another task. Fur-
thermore, some PSPs assume task migration, i.e., execution of one task on
different resources, whereas others do not. In this survey, we cover works on
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both preemptive and non-preemptive scheduling and works under a migration
policy and without the migration policy. However, since the TT scheduling is
mainly adopted to safety-critical systems, most of the existing works assume
non-preemptive scheduling under no migration policy.

Solving non-preemptive PSPs is computationally more complex than their
preemptive counterparts. Whereas some general preemptive PSPs are pseudo-
polynomially solvable [11], a non-preemptive PSP is strongly NP-hard in its
general form [54]. However, some non-preemptive PSPs with specific restric-
tions can be solved polynomially, e.g., a PSP with periods forming a geometric
progression. Therefore, in this survey, we list the particular restrictions for
which polynomial algorithms exist and provide the least general NP-hard PSPs.

In this article, we provide three educative examples of non-preemptive time-
triggered PSPs and extend the three-field notation for periodic scheduling. With
these examples, we illustrate the possible parameters and constraints for PSP,
which influence the problem complexity. We give straightforward implementa-
tions of the PSP formulations and provide them in the Satisfiability Modulo
Theories formalism in the source code. The main three contributions of this
article are: 1. We present a survey on the complexity results containing poly-
nomially solvable PSP formulations. 2. We give an overview of the simple
state-of-the-art methods and tricks to solve PSPs efficiently. 3. We present a
survey of the existing works, categorizing them into different PSP classes ac-
cording to the resource environment type. We also provide a list of the related
problems, which are not periodic by nature, to find inspiration for more efficient
solutions.

The rest of the article is organized as follows: Section 2 presents PSP formu-
lations and notations. It is followed by Section 3, where the complexity of the
PSP and the polynomially solvable cases under the particular assumptions are
given. Next, some state-of-the-art methods are explained in Section 4. Finally,
the survey of existing works is provided in Section 5, before the conclusions are
given in Section 6.

2 Problem Description and Notation

This section presents the notation and classification for time-triggered PSPs
with hard real-time requirements. Additionally, we provide three educative
examples of a PSP with different resource environments: single resource, parallel
identical resources, and dedicated resources (i.e., the assignment of tasks to
the resources is provided). In these examples, we introduce the most common
constraints for the specific resource environments.

For simplicity, in this section, we assume non-preemptive scheduling. The
most straightforward, but not the most computationally efficient way to formu-
late a preemptive PSP is to split it to non-preemptable chunks as undertaken
in [21]. Formulations without any assumptions on the number of preemptions
can be found in [74] and [71].

In PSPs, we consider a set of periodic tasks T = {τ1, τ2, · · · , τn} to be sched-
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Figure 1: An example schedule with di ≤ Ti for all τi ∈ T on a single resource with
a hyper-period H = 24 for the set of two tasks τ1 and τ2 with periods T1 = 6 and
T2 = 8 and processing times p1 = p2 = 2. The release times are r1 = 4, r2 = 0 and
the deadlines are d1 = 6 and d2 = 4. The required maximum jitters are jit1 = jit2 =
4. The top-headed arrows of the corresponding color are task release times and the
bottom-headed arrows are their deadlines.

t0 2 4 6 1412108 16 18 20 22 24 26 28 30 32

d dd d

Figure 2: An example schedule with d1 > T1. Parameters of τ1 and τ2 are the same as
in Figure 1 except d1 = 10. New tasks are τ3 and τ4 with T3 = T4 = 24, p3 = p4 = 4,
r3 = 0, r4 = 16, d3 = 8, and d4 = 24. Note that the time interval (2+f ·H, 4+f ·H)
for f = 1, 2, · · · is reserved for a job of task τ1 from the previous hyper-period. The
hatched rectangle represents a projection of this interval to the first hyper-period.

uled during the design time of a system, i.e., before the system run. Periodic
task τi is a countably infinite set of iterations called jobs, denoted as τki . A job
τki is the k-th iteration of task τi. Jobs of one task have the same inter-arrival
period Ti, the worst-case processing time pi, release time ri, and deadline di,
with the last two related to the start of the period. We assume that the tasks
are arranged according to their periods so that T1 ≤ T2 ≤ · · · ≤ Tn. Note that
all the task parameters are non-negative integers, i.e., they are multiples of an
elementary time unit due to the time discretization in TT scheduling [64]. Al-
though there are infinitely many jobs of each task to be scheduled, it is enough
to construct a schedule of finite length and repeat it during the system run [20].

Thus, the goal of the considered problem is to find a schedule for the hyper-
period (schedule length) H = lcm(T1, · · · , Tn) with lcm being the least common
multiple function. The schedule is defined by the integer start times ski of each
task τi ∈ T and job k ∈ N∗. In this work, we denote as N∗ the set of natural
numbers without zero and as N0 the set of natural numbers with zero. Note
that the number of jobs of τi in one hyper-period ni is computed as ni =

H
Ti
. For

the example in Figure 1, there are two periodic tasks with periods T1 = 6 and
T2 = 8, and the hyper-period is H = lcm(6, 8) = 24. Therefore, the numbers of
jobs belonging to the first and second task in the hyper-period are n1 = 4 and
n2 = 3, respectively.

Time-window constraints state that the earliest start time of a job is its
release time rki , and the latest completion time of a job is its deadline dki , as
given by Constraint (1). For the moment, we assume that di ≤ Ti for each task.
The case where di > Ti is addressed later in this section (see Figure 2 with
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d1 = 10 and T1 = 6, for example).

rki = ri+(k−1)·Ti ≤ ski ≤ di+(k−1)·Ti−pi = dki −pi,

τi ∈ T , k = 1, · · · , ni.
(1)

Also note that if di ≤ Ti, index k denotes both the period and the iteration of
τki , i.e., s

k
i ∈ [(k−1)·Ti, k·Ti], whereas if di > Ti, index k denotes the iteration

only and the job can be scheduled later than in the k-th period for all jobs of
τ1 in Figure 2.

Moreover, we define the jitter constraints for a task as follows. A jitter
between two jobs of task τi is the difference between their start times related to
the start of their period, as shown in Figure 3. For the case di > Ti, the jitter
is the difference related to the start of its iteration instead, since a job can be
in a later period than the start of its iteration, as mentioned earlier. The jitter
constraints can be either absolute or relative. An absolute jitter of a task is the
maximum value among all the job pairs, as given by Constraint (2). For the
relative jitter, this constraint is modified to consider the pairs of consecutive
jobs only, i.e., k and k+1 instead of k and l. In this example, the absolute
jitter constraint (3) guarantees the maximal possible jitter of task τi given by
the value of jiti. Note that Constraint (2) also ensures that the maximum
jitter is not exceeded for jobs of the same tasks in different hyper-periods due
to projection to the start of the job period.

jiti = max
k=1,··· ,ni,
l=k+1,··· ,ni

(|(ski −(k−1)·Ti)−(sli−(l−1)·Ti)|), (2)

jiti ≤ jiti, τi ∈ T . (3)

Two special cases regarding the jitter constraints are:

• zero jitter with jiti = 0, where the start time is fixed in every period.
The start time of the k-th job of a zero-jitter task τi ∈ T is defined by
the start time of the first job as ski = s1i+(k−1)·Ti for k = 2, · · · , ni.
These constraints can substitute Constraints (2) and (3) when jiti = 0.
If all tasks have zero jitter, the problem is also known as strictly periodic
scheduling.

• with no assumptions on the task jitter, i.e., without Constraint (3).

For the example in Figure 1, task τ1 is scheduled with zero jitter, i.e., jit1 =
0, since it is always scheduled at the start of each period (s11 = s21−T1 =
s31−2·T1 = s41−3·T1 = 0), whereas jit2 = 2 as it is scheduled at time 2 in the
first and the second periods (s12 = s22−T2 = 2) and at time 0 in the third period
(s32−2·T2 = 0), i.e., jit2 = |(s12−(s32−2·T2)| = 2.

In order to classify various types of periodic scheduling problems, we extend
the three-field notation α|β|γ introduced by [43]. The α field characterizes the
resources, the β field reflects properties of tasks, and the γ field contains the
criterion. We list the main elements of the three-field notation for PSPs in
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t0 2 4 6 1412108 16 18 20 22 24

- (1-1)  8. - (2-1)  8. - (3-1)  8.

Figure 3: An example schedule with hyper-period H = 24 that contains task τ1 of
period T1 = 8, release time r1 = 0, deadline d1 = 8, and processing time p1 = 2. The
jitter equals jit1 = max{|(2−0)−(12−8)|, |(2−0)−(22−16)|, |(12−8)−(22−16)|} = 4
according to Equation (2).

Table 2 on page 12. The rows with notations that we newly introduce in this
article are colored gray. Note that in this article, we choose the symbol notation
consistent with the three-field notation.

In the rest of this section, we introduce some parameters and constraints
on three educative examples of non-preemptive PSPs with different resource
environments.

2.1 Periodic Scheduling Problem on a Single Resource

Resource constraint (4) on a single resource guarantee that no two jobs are
executed simultaneously. It states that for any pair of jobs of different tasks,
we schedule either τki before τ lj , or τ

l
j before τki .

t+ t+

Figure 4: Explanation of the resource constraints

ski +pi ≤ slj XOR slj+pj ≤ ski ,

τi, τj ∈ T : i < j, k = 1, · · · , ni, l = 1, · · · , nj .
(4)

Note that in this case XOR is equivalent to OR since both inequalities cannot
hold simultaneously.

The described problem on a single resource defined by Constraints (1), (2), (3),
and (4) without the criterion function is denoted as 1|Ti, jiti, ri, di ≤ Ti|−.
Smaller instances of this problem (with dozens of tasks) can be solved by the
Satisfiability Modulo Theory (SMT) solver Microsoft Z3. The SMT models for
the problems presented in this paper are available in [82]. Note that if the sym-
bol ri is omitted in the three-field notation throughout this article, it is set as
ri = 0.

An instance of this problem is presented in Figure 1. Note that some problem
instances can be infeasible when di ≤ Ti and feasible when di > Ti. An example
is shown in Figure 2, where new tasks τ3 and τ4 are added to tasks τ1 and τ2
from Figure 1. With the initial task parameters, i.e., d1 = 6, it is not possible
to schedule tasks τ1, τ2, τ3, and τ4. However, an increase in the deadline of τ1
to d1 = 10 makes it schedulable.
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Figure 5: An example schedule for a problem on parallel identical resources with five
tasks with periods T1 = 6, T2 = 24, T3 = 3, T4 = 8, T5 = 4, processing times
p1 = p2 = p5 = 2, p3 = 1, p4 = 3, and zero jitter requirement, i.e., jiti = 0. The
release times and deadlines equal the start and end of the period, respectively, i.e.,
ri = 0, di = Ti for i = 1, · · · , 5.

2.2 Periodic Scheduling Problem on Parallel Identical Re-
sources

Parallel identical resources are another typical resource environment. Here, the
scheduling algorithm needs to not only find the start times of the tasks, but
also the mapping fixi : T → N∗ of each task τi to a resource. For the sake of
simplicity, we assume scheduling under a non-migration policy in this example.
Note that the formulation can be changed to the migration case by substituting
fixi by fixk

i . For preemptive scheduling, migration can be defined on the job-
or task- levels, i.e., whether jobs may migrate to another processor as soon
as they are preempted, or chunks of each job must be executed on the same
resource, respectively.

The resource constraint (4) for parallel identical resources are formulated
only for the pairs of tasks mapped to the same resource as given by Con-
straint (5).

if fixi = fixj then:

ski +pi ≤ slj XOR slj+pj ≤ ski ,

τi, τj ∈ T : i < j, k = 1, · · · , ni, l = 1, · · · , nj .

(5)

Various optimization criteria are applied in a parallel identical resource en-
vironment. Even no criterion considered, i.e., finding a feasible schedule for a
given number of resources, is of significant practical importance [87]. The mini-
mization of the number of used resources is a widely assumed criterion as shown
in Section 5. We formulate it in Equation (6) by introducing variable R ∈ N∗

equal to the number of resources. Constraint (7) defines it as the maximum of
the mapping variables fixi.

Minimize: R (6)

R = max
τi∈T

fixi. (7)

Thus, a PSP on parallel identical resources denoted as P|Ti, jiti, ri, di ≤ Ti|R is
defined by Criterion (6) and Constraints (1), (2), (3), (5), and (7). An example
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of a schedule for a periodic scheduling problem on parallel identical resources
is presented in Figure 5. Here, the SMT implementation accompanying this
article [82] shows that the minimum number of resources is 3 for the input data
given in the caption of Figure 5.

In some PSPs, the resources to execute certain tasks are limited, i.e., the
tasks can be executed only by a subset of resources. This resource environment
is called multipurpose resources in operational research and scheduling with ar-
bitrary processor affinities [44] in real-time community. Heterogeneous resources
(called unrelated resources in operational research community) are yet another
resource environment. Here, the processing time pi of a task depends on its
mapping fixi. Thus, processing time is not a scalar anymore, but it is given by
a vector pi = {p1i , p2i , · · · , pmi }, where m is the number of resources. This case

can be formulated by substituting pi by pfixi

i in Constraints (1) and (5).

2.3 Periodic Scheduling of Tasks with Precedence Con-
straints on Dedicated Resources

In this example, we consider dedicated resources, therefore, the mapping f̂ ixi is
provided for each task τi ∈ T . In addition, we consider transaction precedence
constraints that are typically present in periodic scheduling problems with ded-
icated resources (for example, one control processing unit in a car located close
to a camera executes an object detection, the data representing the object pa-
rameters are sent via a time-triggered network and subsequently processed by
another control processing unit located close to the actuator).

The precedence constraints are defined by the directed acyclic graph G, where
each connected component represents one transaction ch consisting of several
tasks connected by the precedence constraints (see Figure 6(a) with two chain
transactions c1 and c2). In this section, we assume that all the tasks of the
same transaction have the same period, i.e., if τi ∈ ch and τj ∈ ch then Ti = Tj .
A more general case with multi-rate dependencies (i.e., those between tasks of
different periods) or a cyclic graph of dependencies is addressed in [99], [59],
[46], [20], and [111].

The precedence constraints are formally defined by Constraint (8), where
predj ⊂ T denotes the set of immediate predecessors of τj .

ski +pi ≤ skj ,

τi, τj ∈ T : τi ∈ predj , k = 1, · · · , ni.
(8)

Other constraints typical for periodic scheduling problems with dedicated
resources and precedence relations are so called end-to-end latency constraints.
We define end-to-end latency lath of transaction ch as the maximum time over
all the iterations from the start time of the earliest source task (i.e., the task
with no predecessor) till the completion time of the latest destination task (i.e.,
the task with no successor) as given by Constraint (9). The upper bound lath
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(a) Precedence relation graph G.
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(b) An example schedule with latency lat1 = 8 for c1, and lat2 = 9 for c2. The hatched rectangles
represent projections of the executions of tasks τ35 , τ

4
4 , and τ36 in the second, third, etc., hyper-periods

to the first one.

Figure 6: A periodic scheduling problem on dedicated resources with an example
solution. There are two transactions with periods 6 and 8 time units and the end-to-
end latency requirements lat1 = lat2 = 14, respectively, each comprising three tasks.
The task mappings are f̂ ix1 = f̂ ix2 = 1, f̂ ix3 = f̂ ix5 = 2, f̂ ix4 = f̂ ix6 = 3, jitters
jiti = 4, release times ri = 0, and deadlines di = 2·Ti for i = 1, · · · , 6.

on the end-to-end latency of each transaction is set in Constraint (10).

lath = max
τi,τj∈ch: predi=∅, succj=∅,

k=1,··· ,ni

(skj+pj−ski ), (9)

lath ≤ lath, ch ∈ G. (10)

Depending on the semantics, there can be different ways to define end-to-end
latency [34] (also called end-to-end delay). For example, some works define end-
to-end latency as an absolute value from the release time of the first source task
in a transaction till the completion time of the latest destination task.

The feasible schedule in Figure 6(b) shows an example of two transactions,
c1 and c2 shown in Figure 6(a). The end-to-end latency of c2 is given by lat2 =
max(s16+p6−s12, s

2
6+p6−s22, s

3
6+p6−s32) = max(10, 14, 10) = 14. On the other

hand, when the first and the last tasks in a transaction have zero jitter as in
transaction c1, the end-to-end latency can be calculated using the first jobs as
lat1 = (s14+p4)−s11 = 6+2−0 = 8.

In this example, we consider that the deadlines are not restricted (i.e., that
di > Ti is possible) to show the formulation of the resource constraint for this
more challenging case. This assumption is reasonable due to the precedence
constraints, which may enforce some jobs to be scheduled in the subsequent
periods for a feasible solution to exist (e.g., tasks τ4 and τ6 on Resource 3 in
Figure 6(b)). If di > Ti, jobs of task τi may complete at time t > H, i.e.,
beyond the hyper-period, as τ35 , τ

4
4 , and τ36 in Figure 6(b). Since the schedule

repeats each hyper-period, the corresponding job is executed at times t+H,

9



t+2·H, etc. Therefore, no other task can be scheduled at time t+H on the
same resource. To guarantee this, we formulate the resource constraint for the
tasks and their replications in further hyper-periods in Constraint (11). Note
that the constraints are also created for pairs of different jobs of the same task.

(ski +f ·H)+pi ≤ (slj+h·H) XOR (slj+h·H)+pj ≤ (ski +f ·H),

f, h ∈ {1, 2, · · · , nmax
H }, nmax

H =

⌈
maxτi∈T ,k=1,··· ,ni dki

H

⌉
,

τi, τj ∈ T , i ≤ j : f̂ ixi = f̂ ixj , k = 1, · · · , ni, l = 1, · · · , nj ,

if i = j, then k ̸= l.

(11)

These constraints are needed even for simpler resource environments if di > Ti

for some task τi. For the example of the PSP on a single resource in Figure 2
on page 4, τ41 may collide with τ12 if Constraint (4) is in the model instead of
Constraint (11).

The decision version of a PSP on dedicated resources with time windows (1),
jitter (2), (3), precedence (8), latency (9), (10), and resource (11) constraints is
denoted PD|Ti, jiti, ri, di, prec, lath|−. A possible optimization version is the
minimization of a weighted sum of latencies that can be performed to improve
the behavior of the control system. This problem is denoted as PD|Ti, jiti, ri,
di, prec, lath|

∑
wh ·lath where wh stands for the weight of transaction ch. SMT

formulations solving these two problems (with and without the criterion) can
be found in [82].

Finally, a survey-based industry practice study of PSPs in real-time systems
can be found in [2].

3 Problem Complexity

This section presents an overview of the complexity results for PSPs with dif-
ferent settings. We state the minimal NP-hard (i.e., the least general) and the
maximal polynomially solvable (i.e., the most general) PSPs to show the gaps
in the complexity results. In the rest of the article, we extensively use the three-
field notation to denote the specific PSPs. Table 2 contains the main elements
of the three-field notation for the PSP. Whereas most of them have already been
introduced in Section 2, the rest will be introduced when required in this section
and in Section 5.

3.1 NP-hard and NP-complete problems

Addressing the PSPs on a single resource, [54] prove that the non-preemptive
PSP with arbitrary task initial phases (i.e., each task is released at ri and
must be finished within Ti time units) and no criterion 1|Ti, ri, di = ri+Ti|− is
strongly NP-hard by polynomial reduction from the 3-Partition problem [38].
However, the proof relies on the different release times of the tasks. Furthermore,
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Table 1: The list of symbols for the PSP description

H ∈ N∗ hyper-period (length) of the schedule
T = {τ1, · · · , τn} set of tasks
τki k-th job of task τi
G = (T , E) graph of the precedence relations
ch ∈ G transaction, a connected component of G
lath ∈ N∗ maximum end-to-end latency of ch
R ∈ N∗ number of parallel identical resources

Task attributes
Ti ∈ N∗ period
pi ∈ N∗ processing time
jiti ∈ N0 maximum jitter
ri ∈ N0 release time
rki ∈ N0 job release time
di ∈ N∗ deadline
dki ∈ N∗ job deadline
predi ⊂ T set of immediate predecessors
succi ⊂ T set of immediate successors
fixi ∈ N∗ number of the resource to which the task is mapped in the solution schedule

f̂ ixi ∈ N∗ number of the resource to which the task must be mapped (input parameter)
ni ∈ N∗ number of jobs computed as ni =

H
Ti

ski ∈ N0 start time of job k of task τi in the schedule.
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Table 2: Main elements of the three-field notation for a PSP (novel colored gray)

Element Meaning

1| ··· | ··· one resource

P| ··· | ··· parallel identical resources as in Section 2.2

PD| ··· | ··· dedicated resources as in Section 2.3

R| ··· | ··· heterogeneous resources with task processing time dependent on the resource
the task is mapped to

··· |Ti, ··· | ··· tasks are periodic
··· |Tharm

i , ··· | ··· harmonic periods (a larger period is an integer multiple of a smaller one)

··· |T pow2
i , ··· | ··· ratio between periods is a power of 2

··· | ··· , ri, ··· | ··· release times as in Eq. (1), if omitted set as ri = 0
··· | ··· , di, ··· | ··· deadlines as in Eq. (1)

··· | ··· , jiti, ··· | ··· jitter bounds as in Eq. (3)

··· | ··· ,prec, ··· | ··· graph of transaction precedence constraints as in Eq. (8), where tasks of different
periods cannot be in the precedence relations

··· | ··· , li,j , ··· | ··· delay li,j has to be respected whenever a job of task τj starts after a job of task τi

··· | ··· ,mltrt, ··· | ··· graph of multi-rate precedence constraints as in Eq. (8), where tasks
of different periods can be in the precedence relations

··· | ··· , chains, ··· | ··· precedence constraints in chains

··· | ··· , lath, ··· | ··· latency bounds as in Eq. (10)
··· | ··· ,pmtn, ··· | ··· preemptive scheduling
··· | ··· ,mlrt, ··· | ··· migration allowed
··· | ··· |R minimization of the number of resources

··· | ··· |α maximization of the scaling factor of the processing times

··· | ··· |Cmax
minimization of the makespan, i.e., completion time of the last task, with
Cmax = maxτi∈T ,k=1,··· ,ni

(ski +pi).

··· | ··· |Tmax
minimization of maximum task tardiness with
Tmax = maxτi∈T ,k=1,··· ,ni{max(0, ski +pi−di)}.

··· | ··· |ctrl optimization of control performance
··· | ··· |npmtn minimization of the number of preemptions
··· | ··· |− no criterion to minimize
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the case of the harmonic period set, when larger periods are divisible by smaller
periods (i.e., for each Ti ≥ Tj it holds Ti mod Tj = 0) seems to be an easier
problem, since there are efficient heuristics to solve it ([29]). Nevertheless, [16]
strengthened the result of [54] by proving NP-hardness of the PSP with zero
release times and harmonic periods. Later, [89] prove that this complexity result
holds even if the ratio between the periods is a power of 2, i.e., Ti = 2j ·T1 for
τi ∈ T , j ∈ N0 (T1 is the smallest period). Note that for PSPs with no zero-
jitter assumptions, ”we do not know whether the feasibility problem is in NP”
([16]).

The complexity of the PSP on a single resource with zero jitter require-
ments 1|Ti, jiti = 0|− is addressed by [66]. The authors show that this problem
is strongly NP-complete, i.e., it does not admit a pseudo-polynomial time al-
gorithm under standard complexity-theoretic assumptions. Moreover, the same
problem with unit processing times 1|Ti, jiti = 0, pi = 1|− is shown to be NP-
complete by [7] by the reduction from the graph coloring problem. To strengthen
this result, [53] proved that the problem is strongly NP-hard. As a matter of
fact, even deciding whether a single task can be added to the set of already
scheduled tasks for this PSP is NP-complete, since it is the problem of comput-
ing simultaneous incongruences [38]. The summary of all the works addressing
the complexity of the PSP is presented in Table 3.

Note that the NP-hardness or NP-completeness of a PSP on a single re-
source holds for the corresponding PSP in a multiple resources environment
(viz., parallel identical, heterogeneous, multipurpose, and dedicated resources).
We polynomially transform a single resource PSP to a multiresource PSP by
setting the number of resources to 1 in the latter. Thus, the complexity results
for PSPs on a single resource presented earlier in this section hold for their
multiple resource analogs.

Finally, the only work addressing complexity of a PSP with precedence rela-
tions, is [47]. The authors prove that PD16|Ti = T, jiti = 0, pi = 1, chains, lath =
T |−, i.e., a monoperiodic PSP on 16 dedicated resources with zero jitter con-
straints, identical processing times, chain precedence relations, and end-to-end
latency constraint equal to chain period, is NP-hard by reduction from the job
shop scheduling problem ([10]).

3.2 Polynomially Solvable Problems

There exist optimal polynomial algorithms solving PSPs with specific set of
task periods. For three different values in the period set, [60] derive an O(n4)
test for the existence of a feasible schedule, and a method of constructing a
feasible schedule if one exists. They consider the PSP on a single resource,
with zero jitter requirements and unit processing times, 1|Ti ∈ {T1, T2, T3}, di =
Ti, jiti = 0, pi = 1|−. In wireless telecommunications, facilitating three different
periodicities increases the power-efficiency of the solutions due to the current
practice of scheduling tasks monoperiodically, i.e., with the same period [100].

For parallel identical resources environment, [40] presents an optimal poly-
nomial algorithm to solve the PSP with the set of task periods forming a geo-
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Table 3: Works on the complexity of the periodic scheduling problems

Reference Problem in the three-field notation Result

[54] 1|Ti, ri, di = ri+Ti|− strongly NP-hard (3-Partition)

[16] 1|Tharm
i , di = Ti|− strongly NP-hard (3-Partition)

[89] 1|T pow2
i , di = Ti|− strongly NP-hard (3-Partition)

[66] 1|Ti, jiti = 0|− strongly NP-complete (3-Partition)

[7] 1|Ti, jiti = 0, pi = 1|− NP-complete (k-coloring)

[53] 1|Ti, jiti = 0, pi = 1|− strongly NP-hard (k-coloring)

[47]
PD16|Ti = T, jiti = 0, pi = 1,

chains, lath = T |−
strongly NP-hard
(job shop scheduling)

Table 4: Works on the periodic scheduling problems optimally solvable in polynomial
time

Reference Problem in the three-field notation Details

[60]
1|Ti ∈ {T1, T2, T3}, di = Ti,

jiti = 0, pi = 1|− at most three distinct periods

[40] P|Ti+1 = K ·Ti, di = Ti|R K ∈ N∗,
p1 + pi ≤ T1 for all τi ∈ T

[27] P|Ti+1 = K ·Ti, di = Ti|R K ∈ N∗, K ≥ 3

[16] P|Ti+1 = K ·Ti, di = Ti|R K ∈ N∗, K = 2

[66] P|{Ti, pi}harm, jiti = 0|R joint harmonic set of periods
and processing times

metric progression, P |Ti+1 = K ·Ti, di = Ti|R. A possible example is a set of
four tasks with T1 = 3, T2 = 12, T3 = 48, T4 = 192 for the factor K = 4. Unlike
the case of harmonic periods, there cannot be tasks with the same period in this
case, and the multiplication factor is constant. The algorithm presented by [40]
works only when the sum of the processing time of the first task (task with the
smallest period) and the processing time of any other task is not more than the
smallest period, i.e., p1+pi ≤ T1 for all τi ∈ T \τ1. This is a serious limitation,
eliminated by [16] and [27] and for K = 2 and K ≥ 3, respectively. Note that
these works assume that the deadline equals the period (di = Ti), which can
reduce the flexibility of the solution. Finally, assuming the values of the set of
periods and processing times (as a joint set) is harmonic, [66] propose a poly-
nomial time algorithm for a PSP on parallel identical resources with zero jitter
requirements, P |{Ti, pi}harm, jiti = 0|R. An example of a harmonic period and
processing time sets is the case when both are powers of 2, i.e., Ti = 2ki1 and
pi = 2ki2 for some ki1 , ki2 = 1, · · · , nk. The algorithms in this paragraph are
useful when some resource utilization can be sacrificed for a faster solution of
the scheduling problem. Moreover, it is sometimes better to form a harmonic
period set to reduce the number of required processors [83].
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4 Basic State-of-the-Art Solutions

This section presents an overview of the existing techniques to solve PSPs effi-
ciently (in terms of computation time) using specific properties of the problem.
First, we present a polynomial transformation of a PSP under specific conditions
to a specific version of the 2D bin packing problem also introducing a related
data structure to represent periodic schedules. We also present three Integer
Linear Programming (ILP) formulations of the PSP on a single resource from
Section 2.1 along with their strengths and weaknesses to illustrate the classical
solution approach to these problems.

4.1 Transformation to Specific 2D Bin-Packing Problem

[73] have shown that the problem of periodic scheduling on parallel identical re-
sources P |T pow2

i , di = Ti, jiti = 0|R with periods equal to powers of 2 and zero
jitter can be polynomially transformed to a special version of the two-dimensional
bin packing (2DBP) problem with parameters equal to powers of 2, and vice-
versa. Later, [45] shows the equivalence of harmonic PSPs and the special
version of the 2DBP problem. In this problem, we aim to pack a set of oriented
rectangular items into a minimum number of bins with width w and height h.
The existence of the polynomial transformation gives an insight into the com-
plexity of the mentioned PSP and provides inspiration for its solution. Specif-
ically, heuristics for 2DBP problems show good results in practice (see [29]),
which makes it an efficient solution for this type of PSP.

In the rest of this subsection, we describe the transformation. We first
introduce a notion of a base period T base for the PSP, which is the smallest
period of a task set, T base = T1 (task indices are sorted in the non-decreasing
order of their respective periods). Then, the schedule for the PSP with harmonic
periods can be represented as schedules in base periods placed above each other,
as shown in Figure 7(b) for the schedule in Figure 7(a). For simplicity, in
Figure 7(b) we denote the schedules in the base periods by letters a, b, · · · , f.
To reconstruct the schedule out of the base period representation (BPR) on one
row, we put rows of the base periods in the same order going from the top to
the bottom.

To transform the schedule in BPR to a 2DBP and vice-versa, we use the
mixed-radix numeral system [61] to index the rows. In this system, the numer-
ical base varies from position to position and the corresponding number in a
decimal system is computed as the sum of digits multiplied by the product of
the previous bases, i.e., d1b1d

2
b2
· · · dnbn = d1+d2 ·b1+d3 ·b1 ·b2+· · ·+dn ·∏n−1

i=1 bi =∑n
k=1 d

k ·∏k−1
i=1 bi. For example, 2312 = 2+1·3 = 5. In our case, the bases

are the quotients of the division of (l+1)-th by l-th period in an ordered set
S of unique task periods. Given a PSP instance defined by a set of tasks with
harmonic periods and zero jitter, we transform it to a 2DBP instance in the
following way. The width of the bins equals the base period, whereas its height
is the number of base periods in the hyper-period, i.e., w = T base and h = H

T base .
The items are the tasks with the width equal to the processing time and the
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(a) An example of the tasks schedule in time
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(b) Base periods (BPR)
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(c) 2D bin-packing (2DBP)

Figure 7: The transformation of the problem of scheduling tasks with harmonic periods
and zero jitter requirements to a specific version of a 2D bin packing problem for the
set of 4 tasks with periods T1 = 5, T2 = T3 = 15 and T4 = 30 and processing times
p1 = p2 = p4 = 2 and p3 = 3.
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Figure 8: Bin tree representation for the schedule in Figure 7.
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height equal to the hyper-period divided by a task period. When we have a so-
lution to the PSP in the BPR, the solution to the 2DBP is obtained by putting
the rows in the order of digits in the mixed-radix system with the swapped bases
as shown in Figure 7(b). Note that for the solution of the 2DBP problem to
be valid for the initial periodic scheduling problem, each item can be placed
anywhere on the x-axis, but only on a multiple of its height on the y-axis.

Another possible representation is a bin tree [8, 31], which is a data struc-
ture often used to derive schedules for periodic zero-jitter tasks with harmonic
periods [31, 60, 8, 77]. Bin trees serve to simplify the development of efficient
polynomial-time heuristic algorithms. The number of levels of a bin tree is the
number of elements in S and the branching factor on level l equals the quotient
of the division of (l+1)-th by l-th period in S. Each leaf node of a bin tree is
one base period, where only a subset of the tasks is scheduled. Nodes on level l
may contain only tasks with periods less or equal to the l-th element in S. The
final schedule can be reconstructed from the leaf nodes placed in the order of
increasing number in the mixed-radix numeral system.

4.2 Integer Linear Programming Formulations

Due to the NP-hardness of the general PSP, the existing formalisms are often
used to obtain the optimal solution (e.g., ILP, SMT, or Constraint Programming
(CP)). This is done to estimate the quality of the heuristic solutions compared
to the optimal solution on smaller problem instances. Since the models in these
formalisms can be formulated, changed, and extended reasonably fast, their
usage is especially appropriate during the stage when the model is undergoing
changes. Moreover, there are solvers to explore the vast solution space efficiently
(e.g., Gurobi Optimizer or IBM ILOG CPLEX for ILP, Microsoft Z3 for SMT,
and CP Optimizer for CP).

Whereas the best optimal solvers on modern computing resources can handle
PSP problem instances roughly with lower hundreds of tasks (viz., 100-200-300)
in a reasonable time (viz., up to an hour of computation), heuristic algorithms
can find good enough solutions for problem instances with thousands of tasks.
Furthermore, it is possible to improve the scalability of the optimal solvers
with decomposition methods preserving the optimality of the solution (e.g.,
column generation ([107])). However, note that the efficiency of the solution
heavily depends on instance characteristics. Both size and complexity of the
solution play an important role. Specifically, problem instances with harmonic
periods, where the hyper-period equals the largest task period are typically
faster and easier to solve than those with non-harmonic periods. The reason
is two-fold: 1. a higher hyper-period result in a larger number of task jobs
(and, consequently, decision variables and constraints, for the case with no zero
jitter requirements) and 2. there are more potential collisions between jobs in
the schedule (especially for zero-jitter case). Some other possible reasons for
a higher computational complexity of instances are higher utilization (i.e., the
sum of task execution times divided by their periods) and large processing times,
resulting in a smaller space of feasible solutions.

17



In this work, we elaborate on the ILP formalism to solve PSPs. We provide
the SMT formulation in codes accompanying this article [82]). Additionally,
unlike the ILP and SMT approaches, the efficiency of the CP formulation heavily
depends on the implementation in the solver (e.g., using a specific solver-defined
data structure for scheduling can accelerate the search tens of times) and can
be found in [99, 84]. Finally, the efficiency of the ILP may significantly depend
on the choice of the decision variables and constraints representation [32], and
it is a widely used tool to solve the problems in real-time systems domain [5,
105, 42, 12, 73]. A slightly outdated comparison of ILP, CP, and SMT using
solvers CPLEX, Yices2, and MiniZinc/G12, respectively, on different PSPs can
be found in [41].

For simplicity and conciseness, in this section we consider the PSP on a sin-
gle resource given by the time-window constraint (1), jitter constraints (2),(3),
and resource constraint (4) defined in Section 2.1. To use the ILP, we need to
linearize (i.e., reformulate) the jitter and resource constraint since the absolute
value and XOR are not linear operators. The linear version of the jitter con-
straints is given by Constraint (12), in which we substitute the absolute value
operator with two inequality constraints.

(ski −rki )−(sli−rli) ≤ jiti,

(ski −rki )−(sli−rli) ≥ −jiti,

τi ∈ T , k = 1, · · · , ni−1, l = k+1, · · · , ni.

(12)

We provide the formulations of the resource constraint within the three
widely used ILP formulations for scheduling problems: 1. the time-indexed
(TI) [30] used in [32, 93], 2. the relative-order (RO) [6] (also called disjunctive)
used in [3], [32], [97], [12], [42], [125], [105], [83], [81], [15], [74], and 3.
the position-based (PB) [72] (also called rank-based or assignment-based) used
in [26], [63]. Almost all existing works on PSPs employing ILP used the RO
formulation due to its straightforward formulation. However, sometimes the TI
and PB formulations may result in a faster solution [62], directly or by a problem
decomposition (e.g., for branch-and-price algorithm) [85]. Note that there is the
fourth type of ILP formulation for PSPs with harmonic periods and zero-jitter
inspired by the transformation to the 2D bin-packing problem presented in the
previous subsection. We point the interested reader to [73] and [32].

An extension to the other presented PSPs is mostly straightforward. For
example, similarly to the jitter constraints (12), the latency constraint (9) for
the PSP with precedence constraints on dedicated resources can be linearized
by substituting the max operator by multiple inequalities (e.g., in [84]).

4.2.1 Time-Indexed Formulation

In the TI formulation, the binary decision variables indicate the allocation of a
time unit by a task:

xi,k,t =

{
1, if job k of task τi starts executing at time t.

0, otherwise.
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Constraint (14) ensures the satisfaction of the resource constraint (4). Finally,
the start time variables are set by Constraint (15).

H−1∑
t=0

xi,k,t = 1, τi ∈ T , k = 1, · · · , ni. (13)

n∑
i=1

ni∑
k=1

v∑
t=v−pi+1

xi,k,t mod H ≤ 1, v = 0, · · · , H−1. (14)

ski =

H−1∑
t=0

t·xi,k,t, τi ∈ T , k = 1, · · · , ni. (15)

In the TI formulation, there are H ·∑τi∈T ni binary decision variables and 3·∑
τi∈T ni (Constraints (1),(13)) +

∑
τi∈T

ni·(ni−1)
2 (Constraint (12)) +H (Con-

straint (14)) constraints. We do not count the variables ski and Constraint (15),
as they can be substituted directly in the jitter and time window constraints.
The number of variables grows with the increasing hyper-period H, which can
be computationally demanding for real-life problems requiring fine time granu-
larity. On the other hand, for coarser granularity and high number of tasks, the
TI formulation may show better results than the RO and PB formulations.

4.2.2 Relative-Order Formulation

This formulation is based on binary decision variables yi,k,j,l responsible for the
order of two jobs on the same resource. They are defined as

yi,k,j,l =

{
1, if job k of task τi finishes before job l of task τj starts,

0, otherwise,

Moreover, the start time variable ski is used with the time window and jitter con-
straints remaining without changes. The resource constraint (4) are linearized
as in the Inequalities (16).

ski +pi ≤ slj+M·(1−yi,k,j,l),

slj+pj ≤ ski +M·yi,k,j,l,
τi, τj ∈ T : i < j, k = 1, · · · , ni, l = 1, · · · , nj ,

(16)

with M being a sufficiently big integer positive constant. The intuition behind
is that the XOR condition in the resource constraint (4) is substituted for the
relative order variables that always turn off one of the two constraints. By
regrouping the terms in the Inequality (16), the linearized resource constraint
can be presented as in Inequalities (17). We will use this form for a later
comparison.

pi−M·(1−yi,k,j,l) ≤ slj−ski ≤ M·yi,k,j,l−pj (17)
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There are in total
∑n−1

i=1

∑n
j=i+1 ni ·nj+

∑n
i=1 ni decision variables and 2·∑n

i=1 ni (time-windows constraint) +
∑n

i=1
ni·(ni−1)

2 (jitter constraints) +2·∑n−1
i=1

∑n
j=i+1 ni ·

nj (resource constraint) constraints in the formulation. Unlike the TI formu-
lation, where the main computational inefficiency is due to the large number
of variables, for the RO formulation, the resource constraint are the reason for
the long computation time. The introduction of M typically results in a higher
duality gap [24], reducing the efficiency of the solution process.

Zero-jitter case Whereas the resource constraints (16) guarantee no colli-
sions for any pair of jobs, the following formulation can be used for two tasks
τi, τj ∈ T with zero jitter requirements, i.e., jiti = jitj = 0, to improve the
computational efficiency of the formulation. Particularly, [68] show that Con-
straint (18) guarantees the absence of collisions with the gcd(Ti, Tj) being the
greatest common divisor of the two periods, while [97] provide an alternative
explanation using the Bezout identity. Note that a schedule of a task τi with
zero jitter requirements is fully defined by the start time s1i of its first job, since
sk+1
i = ski +Ti. Moreover, since Constraint (18) allows checking the feasibility
of a given solution in polynomial time, PSPs with zero-jitter requirements lie in
NP.

(s1i−s1j ) mod gcd(Ti, Tj) ≥ pj ,

(s1j−s1i ) mod gcd(Ti, Tj) ≥ pi, τi, τj ∈ T .
(18)

This constraint guarantees a collision-free schedule even when di > Ti, whereas
Constraint (16) requires additional constraints for jobs in further hyper-periods
as in Constraint (11) if deadlines can be larger than periods.

We linearize Constraint (18) in Constraint (19), in which we introduce a
quotient variable qi,j ∈ Z for each ordered pair of tasks τi, τj ∈ T as in [97],
which is a definition of the modulo operator.

pi ≤ s1j−s1i+qi,j ·gcd(Ti, Tj) < gcd(Ti, Tj),

pj ≤ s1i−s1j+qj,i ·gcd(Ti, Tj) < gcd(Ti, Tj).
(19)

Summing up the two Inequalities (19) results in pi+pj ≤ qi,j ·gcd(Ti, Tj)+qj,i ·
gcd(Ti, Tj) < 2·gcd(Ti, Tj). From the right inequality, it follows that qi,j+qj,i <
2. From the left inequality, since the quotients are integer variables and without
loss of generality we can assume that the tasks have non-zero processing times,
it follows that qi,j+qj,i ≥ 1. This leads to the substitution qj,i = 1−qi,j . Thus,
for each pair of zero-jitter tasks, the resource constraint (4) can be substituted
by Constraint (20).

pi ≤ s1j−s1i+qi,j ·gcd(Ti, Tj) ≤ gcd(Ti, Tj)−pj , τi, τj ∈ T . (20)

Note that this inequality is similar to Inequality (17) with qi,j playing the same
role as yi,k,j,l and gcd(Ti, Tj) - the same as M.
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Schedulability conditions for zero-jitter case As first proven by [68] (and
it follows from Inequlities (18)), a necessary and sufficient condition for schedul-
ing exactly two zero-jitter tasks can be stated as in Inequality (21).

p1+p2 ≤ gcd(T1, T2). (21)

For three and more tasks one has to verify Inequality (22). However, this is the
sufficient condition only.

n∑
i=1

pi ≤ gcd(T1, · · · , Tn). (22)

An example of the task set with unsatisfied Inequality (22) but existing
schedule on one resource is a task set T = {τ1, τ2, τ3} with periods T1 = 4, T2 =
6, and T3 = 12 and processing times p1 = p2 = p3 = 1. An example of a feasible
schedule is s11 = 0, s12 = 5, and s13 = 1.

For three tasks to be schedulable, [97] prove the necessary and sufficient
condition as in Inequality (23). For more than three tasks, Condition (23) with
g = gcd(T1, · · · , Tn), becomes sufficient only.

n∑
i=1

pi ≤ g·
⌊
1

2
· gcd(T1, T2)+gcd(T2, T3)+· · ·+gcd(Tn, T1)

g

⌋
. (23)

4.2.3 Position-Based Formulation

For this formulation, we introduce binary decision variables reflecting the posi-
tion of the job in the job permutation on the resource:

zi,k,f =

{
1, if job k of task τi is at the f -th position on the resource,

0, otherwise.

For the example in Figure 1, z2,3,6 = 1, z2,1,1 = 1, and z1,1,1 = 0.
To ensure that each position is occupied by one job and each job occupies one

position, Constraints (24) and (25) are introduced, respectively. The number of
positions np is the number of all task jobs, i.e., np =

∑n
i=1 ni.

n∑
i=1

ni∑
k=1

zi,k,f = 1, f = 1, · · · , np. (24)

np∑
f=1

zi,k,f = 1, τi ∈ T , k = 1, · · · , ni. (25)

The second decision variable is tf ∈ N0, which is the start time of the task
job on position f in the schedule. For the example in Figure 1, t2 = 4, t5 = 16,
and t7 = 22. Thus, the vector of the tf variables is a reshaped and reordered
matrix of ski variables.
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Finally, we introduce parameter variables indexed by f in Constraints (26),
where we sum the corresponding parameter multiplied by the zi,k,f variable over
all tasks and jobs.

rf =

n∑
i=1

ni∑
k=1

rki ·zi,k,f , df =

n∑
i=1

ni∑
k=1

dki ·zi,k,f ,

pf =

n∑
i=1

ni∑
k=1

pi ·zi,k,f , jitf =

n∑
i=1

ni∑
k=1

jiti ·zi,k,f .
(26)

Then, we replace the resource constraint (4) by Constraint (27), whereas the
time-window constraint (1) and jitter constraints (12) are reformulated using
variables tf instead of ski with the parameter variables rf , df , pf , and jitf ,
defined by Constraint (26).

tf ≥ tf−1+pf−1, f = 2, · · · , np. (27)

Note that jitter constraint should be formulated for all pair of jobs, with active
only those for jobs of the same task (using big M trick as in Constraint (16)).

This formulation comprises
∑n

i=1 ni ·
∑n

i=1 ni+
∑n

i=1 ni decision variables and
5·∑n

i=1 ni+
∑n

i=1 ni ·(
∑n

i=1 ni−1) constraints without the variables and con-
straints in Equations (26) as they can be directly substituted into the other
constraints. Note that this model becomes non-linear when the processing times
or other parameters defined by Equations (26) are not given (i.e., they are deci-
sion variables). Finally, this formulation is non-linear for PSPs with precedence
constraints as in Section 2.3. For this case, an event-based formulation [62] is
more suitable.

5 Survey of Works on Periodic Scheduling Prob-
lems

In this section, we first survey the works addressing non-preemptive PSPs.
Then, we present works solving preemptive PSPs. Finally, we list problems
similar to the PSP and state how they are different from it.

The works in the non-preemptive and preemptive subsections are presented
in the order given by the three-field notation of the solved problem. The works
are presented first based on the resource environment type, i.e., the first field in
the three-field notation. For two works solving PSPs with an identical resource
environment, the order is defined by the assumptions on the task periods. The
third aspect is the release times, etc., and the last differentiator is the optimiza-
tion criterion. We present the first works solving more general PSPs, breaking
the tie based on the publication date (earlier first). Figure 9 shows the most
general PSP in the vertical rectangle and the corresponding less general param-
eter values in the horizontal rounded rectangles. For example, an algorithm
for a PSP with arbitrary periods (Ti) can be used to solve the problem with
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Figure 9: The scheme of PSP reductions in the three-field notation.

harmonic periods (Tharm
i ) or with periods which are powers of 2 (T pow2

i ). Also,
a non-preemptive PSP with identical processing times (pi = 1) is often equiv-
alent to the corresponding preemptive PSP unless there are limitations on the
number and locations of preemptions.

Table 2 in Section 2 presents an explanation of the frequently used elements
in the three-field notation of the problems considered by the existing works.
However, due to the wide application area, some articles solve problems with
non-standardized constraints or criteria that we will introduce ad hoc. Note that
articles marked with ⋆ in the second field of the three-field notation consider
additional application-specific constraints that we do not list to keep the focus.
Moreover, we provide the most general version of the addressed problems. For
instance, if a work addresses both the case of harmonic and arbitrary periods,
we state the latter.

5.1 Works on Non-Preemptive PSP

In this subsection, we first present works solving PSPs on a single resource and
on parallel identical resources and then works addressing PSPs on dedicated
and heterogeneous resources. The resource environments are merged this way
due to the conceptual similarity of the works. Whereas works belonging to the
former resource environments are mostly theoretical often proposing schedulabil-
ity conditions, works in the latter ones are often applied, solving more practical
scheduling problems.

5.1.1 Scheduling on a Single Resource and on Parallel Identical Re-
sources

Tables 5 and 6 present the works in this subsection. The problem of scheduling
with zero-jitter requirements (and zero release times) received a lot of attention
on both a single resource and on parallel resources. [76] address the PSP on
a single resource and restricts the task deadlines to be equal to their periods.
The authors provide schedulability conditions for two tasks and for general sets
of tasks and propose a heuristic, which is based on these conditions. Solving
the same PSP, [77] consider separately the cases of harmonic and non-harmonic
periods in the schedulability analysis. For the harmonic case, the necessary and
sufficient schedulability condition (28) for distinct task periods is presented.
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On the other hand, when two tasks may have the same period (and the peri-
ods are harmonic), the authors propose a cumbersome sufficient schedulability
condition. For the case of non-harmonic periods, the authors present a local
schedulability condition assuming that a set of tasks is already scheduled and a
new task is to be scheduled.

p1+pi ≤ T1, τi ∈ T \τ1. (28)

For the same PSP, [126] propose a constructive heuristic, building a schedule
task-by-task in the order of the increasing greatest common divisor of the task
pairs. Solving this PSP on parallel identical resources, [18] present a sufficient
local schedulability condition for a task τi to be schedulable with a set of al-
ready scheduled tasks. The condition states that if the set of possible start
times where τi with unit processing times can be scheduled contains pi con-
secutive time slots, the task is schedulable. The authors present a First-Fit
based heuristic algorithm using this condition. Finally, [56] generalises the re-
sults of [77] to parallel identical resources and proposes a heuristic using these
generalized results.

A number of works further considered no explicit deadlines in the PSP with
zero-jitter requirements. In this case, the task deadlines di equal to Ti+pi−1
due to the repetition of a task at the same time in each period. For this PSP
on parallel identical resources, [68] propose an approximation algorithm, which
constructively assigns periodic tasks to periodic intervals of the idle resource
time. Both cases, with and without the migration policy, are considered. Later,
[66] address the same problem under the no migration policy and proposes an
approximation algorithm conceptually similar to the approximation algorithm
in [68].

For the same PSP on parallel identical resources with minimization of the
number of resources, [31] show that a simple First-Fit algorithm is a 2-approximation
algorithm for the case of harmonic periods and prove that it cannot be improved,
unless P = NP . In the First-Fit algorithm, tasks are added in a non-decreasing
order of their period lengths using the schedule representation of bin trees (de-
scribed in Section 4). Additionally, the authors propose an asymptotic polyno-
mial time approximation scheme for the case of a bounded number of distinct
harmonic task periods. Finally, the First-Fit inspired heuristic is proposed to
solve the problem with general periods. Later, [32] propose multiple Integer
Programming formulations based on structural properties to solve this problem
with additionally introduced memory and redundancy constraints.

[93] address the PSP with zero jitter, under the migration policy, and as-
suming identical processing times. The authors prove that partitioning the set
of tasks to subsets with relatively prime periods maintains the optimality of the
solution using the Chinese Reminder Theorem. Then, they run the proposed
ILP model on each subset separately. The efficiency of this decomposition de-
pends on the task periods, since the closer the periods are to being harmonic,
the less the subsets are. [123] also address the PSP with unit processing times
and propose a schedulability condition based on the reduction of the PSP to
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a special case of a graph coloring problem. The graph representation helps to
decide faster on the minimal distance between two tasks or on adding a new
task.

A possible criterion is the minimum scaling factor α ≥ 1 among all the
processing times so that the resource constraint (29) hold. Its maximization
allows for the higher flexibility in the cases when the tasks worst-case processing
time is underestimated or changed. Maximizing the minimum scaling factor, [3]
consider a PSP on parallel identical resources with zero jitter requirements and
additional hardware constraints. The authors propose an ILP model and a game
theory-inspired heuristic to solve the problem.

ski +α·pi ≤ slj XOR slj+α·pj ≤ ski (29)

Furthermore, [97] solve the same problem with additional time lag constraints,
where delay li,j ≥ 0 has to be respected whenever a job of task τj starts after
a job of task τi. The authors propose a necessary condition of the task schedu-
lability that is sufficient for, at most, 3 tasks. The authors refine the solution
of [3].

The PSP on a single resource with zero jitter and multi-rate precedence con-
straints is considered by [58] and [22]. The former work limits the multi-rate
constraints to the case when a predecessor or a successor task can have a multi-
ple period of the period of its successor or predecessor tasks, respectively, with
a multiplier n. Then, the predecessor task must be executed n times before the
successor starts or vice-versa. The authors present and prove a sufficient schedu-
lability condition for scheduling a set T of tasks:

∑
τi∈T pi ≤ gcd{Tj , τj ∈ T },

which is an extension of Inequality (21). However, this condition is too restric-
tive: for instance, it is possible to construct a schedule for a set of tasks with
periods 6, 10, and 15 and unit processing times, where the condition is not satis-
fied. The authors prove that this condition becomes sufficient for the set of tasks
with identical pairwise greatest common divisors of the periods. This work also
presents a necessary and sufficient condition for the schedulability of one task
with the set of already scheduled tasks based on their greatest common divi-
sors. [55] extends the results of [58] for parallel identical resources and propose
a heuristic based on these results. [22] solve a PSP with harmonic periods, pro-
hibiting tasks going over their periods, with zero jitter and latency constraints,
and multi-rate precedence constraints defined on the job level. These constraints
are represented by a function codei,j(k, l) that equals 1 if job τki should precede
τ lj . The authors propose an algorithm of latency marking to solve this problem
that finds an optimal solution if one exists. Addressing this PSP on parallel
identical resources and with no end-to-end latency constraint later, [23] prove
the NP-hardness of the problem and propose a branch-and-bound approach and
a heuristic algorithm. In the branch-and-bound, branch-and-cut, and branch-
and-price algorithms, all the possible combinations of the task orderings are
explored in a smart way to find the one that optimizes the given criterion.

For the PSP with zero jitter, [87] assume initial offsets called phases, where
the first job of a task τi can be scheduled not earlier than at time ri and needs

25



Table 5: Works on non-preemptive periodic scheduling on a single resource

Reference Problem in the three-field notation Results / Approaches

[88] 1|Ti, di ≤ Ti|− chained windows heuristic

[58] 1|Ti, di = Ti+pi−1, jiti = 0,mltrt|− sched. conditions

[76] 1|Ti, di = Ti, jiti = 0|− sched. condition, heuristic

[77] 1|Ti, di = Ti, jiti = 0|− sched. conditions

[126] 1|Ti, di = Ti, jiti = 0|− heuristic

[124] 1|Ti, di = Ti, jiti = 0, pi = 1|− sched. condition
(graph coloring)

[103] 1|Ti, di = Ti, pi = 1,mltrt, ⋆|− SMT

[22]
1|Tharm

i , di ≤ Ti,

jiti = 0,mltrt, lath|− algorithm of latency marking

to be processed by ri+Ti. In other words, the time windows of the jobs of
the different tasks are desynchronised with each other. The authors propose a
number of bin-packing-inspired heuristics.

[20] is one of a few works that consider a PSP with arbitrary jitter require-
ments. Additionally, the considered PSP involves cyclic multi-rate precedence
relations and end-to-end latency constraints. Note that although the authors
assume no explicit deadline constraints, the end-to-end latency constraint (10)
bounds the start time implicitly. The problem is solved by a simulated annealing
algorithm ([116]).

Addressing a basic PSP on a single resource with no jitter constraints, [88]
propose a heuristic algorithm reducing the problem complexity for the price of
optimality by working with groups of jobs called chained windows. These are
ordered subsets of jobs executed after each other that allow a limited number of
jobs scheduled between them. Chained windows contribute to removing a large
number of possible job orderings from consideration and thereby pruning the
search tree that can be very big.

Working with a PSP on parallel identical resources without jitter constraints
and with arbitrary release times, [67] present a necessary and sufficient sched.
condition of two tasks. The authors also provide a condition when two tasks
without jitter requirements can be scheduled as one task with zero jitter re-
quirements, and use it in the proposed heuristic. They solve the problem by
first decomposing the task set to subsets that can be scheduled independently
and then solve multiple independent sub-problems. [101] proposes a heuristic
solution to solve the PSP without jitter requirements by first pairwise cluster-
ing the tasks and then assigning each cluster to a resource, and scheduling it
afterwards.

[101] uses the graph expansion proposed earlier in [102], where a task τi in the
directed acycic graph of the precedence relations, as in Figure 6a, is substituted
by ni jobs. [104] address the same PSP proposing to tighten the time windows
where tasks can be scheduled using their precedence relations. Further, they
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Table 6: Works on non-preemptive periodic scheduling on parallel identical resources

Reference Problem in the three-field notation Results / Approaches

[119] P|Ti, ri, di,prec,mlrt, ⋆|Tmax local search heuristic

[99] P|Ti, ri, di ≤ ri+Ti,mltrt, ⋆|R CP

[67] P|Ti, ri, di = ri+Ti|R sched. conditions, heuristic

[87] P|Ti, ri, di = ri+Ti, jiti = 0, ⋆|− heuristics (bin packing)

[12] P|Ti, ri, di = Ti,prec, ⋆|− ILP, heuristics

[20] P|Ti, ri, jiti,mltrt, lath|− simulated annealing

[14] P|Ti, di ≤ Ti,prec, ⋆|R SMT, decomposition

[86] P|Ti, di = Ti,prec|Tmax genetic algorithm

[92] P|Ti, di = Ti,prec|− heuristics (Worst-Fit)

[101] P|Ti, di = Ti,prec, ⋆|− heuristic (pairwise clustering)

[104] P|Ti, di = Ti,prec, ⋆|− heuristic

[33] P|Ti, di = Ti,prec, ⋆|− genetic algorithm, heuristic

[18] P|Ti, di = Ti, jiti = 0|R sched. condition, heuristic

[56] P|Ti, di = Ti, jiti = 0|R sched. conditions, heuristic

[107] P|Ti, di = Ti, jiti = 0|R branch-and-price, heuristic

[23] P|Ti, di = Ti+pi−1, jiti = 0,mltrt|R heuristic, branch-and-bound

[97] P|Ti, di = Ti+pi−1, jiti = 0, li,j |α sched. condition,
ILP, heuristic

[55] P|Ti, di = Ti+pi−1, jiti = 0,mltrt|− sched. condition, heuristic

[109]
P|Ti, di = Ti+pi−1, jiti = 0,

chains, lath, ⋆|
∑

lath
ILP

[68]
P|Ti, di = Ti+pi−1, jiti = 0|R
P|Ti, di = Ti+pi−1, jiti = 0,mlrt|R

sched. condition Eq. (21),
approx. algorithms

[66] P|Ti, di = Ti+pi−1, jiti = 0|R heuristic, partitioning

[93]
P|Ti, di = Ti+pi−1, jiti = 0,

pi = 1,mlrt|R ILP, decomposition

[31] P|Ti, di = Ti+pi−1, jiti = 0|R bin trees, approx. algorithms

[32] P|Ti, di = Ti+pi−1, jiti = 0, ⋆|R integer programming

[3] P|Ti, di = Ti+pi−1, jiti = 0, ⋆|α ILP, heuristic (game theory)

[118] P|Ti, di = Ti+pi−1, jiti = 0, pi = 1|− sufficient sched. condition,
Periodic Maintenance Scheduling

[75] P|Ti,prec, lath, ⋆|− SMT, decomposition

[16] P|Tharm
i , di = Ti|R First-Fit heuristic

[28]
P|Tharm

i , di = Ti+pi−1, jiti = 0,

lath,mltrt|− branch-and-bound, heuristic

[29] P|T pow2
i , ri, di ≤ Ti, jiti = 0, ⋆|Cmax First-Fit based heuristic

[73] P|T pow2
i , di = Ti, jiti = 0|R

transformation to bin packing,
ILP using bin packing,
simulated annealing

[50] P|T pow2
i , di = Ti, jiti = 0, ⋆|− SMT, heuristic

27



use it in the proposed heuristic.
Multiple works solve problems in particular domains. [28] and [99] focus

on avionic IMA architectures. [12] and [92] assume AUTOSAR automotive
applications. On the other hand, [33] and [86] position themselves to solve
PSPs with a general application domain.

Some authors deal with scheduling of networks. These works often not only
have very specific platform-dependent constraints (such as memory requirements
or size of a buffer of switches in TTEthernet networks), but they are also dif-
ficult to categorize in terms of the three-field notation introduced in Section 2.
[73] and [29] address a PSP arising from the scheduling of a FlexRay network.
In this network, the messages are sent in 64 cycles, each consisting of a prede-
fined number of slots, and multiple messages can be scheduled in each slot in
each cycle. Thus, this problem can be seen as scheduling on parallel identical
resources (slots) with periods being powers of 2. [73] present a transformation
of this PSP to a specific version of the 2D bin packing problem shown in Sec-
tion 4, where the width of a bin is the maximal payload in bytes and its height
is the number of cycles. Whereas [73] and [107] consider the minimization of the
used number of slots (number of bins in the bin packing problem), [29] minimize
the maximum makespan (completion time of the latest task) over all slots and
all cycles. Additionally, [29] has release times and general deadlines that are
considered to be on the cycle edges and require the same signal to be scheduled
at the same place at multiple schedules for different FlexRay networks. On
the other hand, [103] schedule messages in multi-hop wireless networks allowing
retransmissions.

Finally, [109], [75], [50], and [14] solve the problem of finding a route for the
messages in switched networks along with the scheduling problem. [109] and
[75] consider a TTEthernet network, and [50] and [14] solve the problem for
networks-on-chip. Whereas [109] address a PSP minimizing the sum of the end-
to-end latencies and solve the joint scheduling and routing problem with ILP,
[75] apply an SMT approach with a possible decomposition of the scheduling
in separate time slices at the price of the solution optimality. [50] and [14] also
apply SMT, the former using the transformation to 2D bin packing problem and
the latter considering multiple optimization criteria that include equalizing the
distribution of the resources utilization and the minimization of the number of
used resources.

5.1.2 Scheduling on Dedicated Resources and on Heterogeneous Re-
sources

Tables 7 and 8 present works in this subsection. Several articles deal with the
scheduling of time-triggered networks. [110] is a pioneering work addressing
the scheduling of multi-hop networks (e.g., TTEthernet). The author presents
an SMT formulation for the PSP with harmonic periods, zero jitter, prece-
dence, and end-to-end latency constraints, additionally introducing bounded
switch memory constraints and simultaneous relay constraints. [91] describes
the scheduling problem of time-sensitive networks under the time-triggered com-
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munication paradigm IEEE 802.1Qbv with array theory encoding using SMT
to solve the problem.

Combining the scheduling of networks with the scheduling of processing
units helps to achieve a more flexible solution. [15] and [49] solve PSPs aris-
ing in avionic domains with the former proposing a scalable optimal integer
programming solution and the latter proposing a heuristic addressing the PSP,
in which some tasks are zero-jitter while others are not. In the automotive
domain, [125] consider the scheduling of a distributed system comprised of pro-
cessing units connected by a time-triggered Ethernet network with two objective
functions: end-to-end latency and response time (i.e., the time when the last
task in the transaction finishes its execution) minimization, and their weighted
combination. Further, [83] consider a multicore on-chip architecture connected
by a bus and explore the influence of jitter requirements on the solution feasibil-
ity. The authors reveal that zero-jitter constraints on tasks can result in up to
28% lower achievable resource utilization compared to reasonably constrained
task jitter. [117] also works in the automotive domain. The authors deal with
Time-Sensitive Networks (TSN) scheduling, proposing an improvement of TSN
switches that results in higher task schedulability.

[108], [98], [113], [1], and [37] solve PSPs with no specific domain. [108]
present a tutorial-like article presenting a CP approach to solve the PSP with
multi-rate precedence constraints. [98] consider a combination of scheduling and
voltage scaling problems on heterogeneous resources and propose a constraint
logic programming approach. [113] assume heterogeneous TTEthernet-based
mixed-criticality systems. Finally, [37] schedule processing units connected by
a network-on-chip.

Control performance optimization is considered by [42], [105], and [84]. [42]
and [105] combine the scheduling problem with the problem of setting the peri-
ods of control plants corresponding to transactions. The approaches proposed in
these works allow one to set the periods to pre-defined values and to only solve
the scheduling problem considered in this article. On the other hand, [84] op-
timize the control performance depending on the end-to-end latency with fixed
task periods only.

[106] and [13] address the problem of scheduling a set of new tasks such that
the change in the existing schedule is minimal. Whereas [106] prohibit changing
the end-to-end latency of the scheduled transactions, [13] keep the schedule of
”old” tasks untouched to minimize the integration cost.

Addressing PSPs on heterogeneous resources, [102] considers the minimiza-
tion of the sum of the communication costs. The author proposes the above-
mentioned graph expansion used in a two-stage heuristic, where the first stage
defines the task mapping, whereas the second one deals with their scheduling.
[95] look at the PSP with zero release times, zero jitter requirements, optimizing
the transaction response times and solve the problem by the branch-and-bound
approach. To the best of our knowledge, it is the only work to allow non-integer
start times ski of tasks. Finally, [57] propose a heuristic without backtracking
and an optimal branch-and-cut algorithm for the PSP with zero jitters and
multi-rate precedence constraints.
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Table 7: Works on non-preemptive PSPs on dedicated resources

Reference Problem in the three-field notation Results / Approaches

[15] PD|Ti, ri, di, jiti = 0, li,j , ⋆|− integer programming

[117]
PD|Ti, ri, di ≤ Ti,

jiti = 0,prec, ⋆|latmax
ILP

[1] PD|Ti, di,prec, ⋆|Tmax branch-and-bound

[49] PD|Ti, di, jiti = 0,prec, ⋆|− heuristics

[91]
PD|Ti, di = Ti, jiti,prec,

lath, ⋆|
∑

wi ·jiti
SMT

[13]
PD|Ti, di = Ti, jiti = 0,

li,j , lath, ⋆|integr. cost
SMT

[105]
PD|Ti, di = Ti, jiti = 0,

chains, lath, ⋆|ctrl
ILP, decompostion

[83] PD|Ti, di = 2·Ti, jiti,prec|− ILP, SMT, heuristic

[108]
PD|Ti, di = Ti+pi−1, jiti = 0,

mltrt, lath, ⋆|−
CP

[42]
PD|Ti, di = Ti+pi−1, jiti = 0,

chains, lath, ⋆|ctrl
ILP

[125]
PD|Ti, di = Ti+pi−1, jiti = 0,

chains, lath, ⋆|latmax
MIP

[106]
PD|Ti, di = Ti+pi−1, jiti = 0,

prec, lath, |integr. cost
SMT, decomposition

[84] PD|Ti, jiti = 0,prec, lath|ctrl CP, ILP, heuristic

[37]
PD|Tharm

i , ri, di = ri+Ti,
jiti = 0,mltrt, ⋆|− heuristic, SMT

[110]
PD|Tharm

i , di = Ti+pi−1, jiti = 0,

li,j , lath, ⋆|−
SMT, decomposition

Table 8: Works on non-preemptive PSPs on heterogeneous resources

Reference Problem in the three-field notation Results / Approaches

[113] RD|Ti, di,prec, ⋆|− tabu search

[98] RD|Ti, di ≤ Ti,prec, ⋆|energy constraint logic
programming

[102] R|Ti, di = Ti,mltrt, ⋆|comm. cost heuristic (graph expansion)

[95] R|Ti, di = Ti,mltrt|resp. branch-and-bound, heuristic

[57] R|Ti, di = Ti+pi−1, jiti = 0,mltrt|− greedy heuristic, branch-and-cut
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5.2 Works on a Preemptive PSP

Table 9 presents works in this subsection. All the presented articles solving
preemptive PSPs consider general periods, and most of the works assume prece-
dence constraints. [122] look at a PSP on a single resource and minimize the
number of preemptions by setting the cost of one time unit for each preemption.
The authors put zero jitter requirements defining them for the start times of
the first chunks of the task’s jobs and propose schedulability conditions based
on the task periods and processing times. This condition is used in a proposed
heuristic approach, in which tasks are scheduled in the non-decreasing order of
periods.

For a PSP on parallel identical resources, [70] propose an ant colony op-
timization approach addressing the PSP under the migration policy, where
the preempted job may change the resource. [114] apply a Timed Petri Net
model [79] to solve the PSP with precedence constraints, but without migra-
tion.

Considering a dedicated resources environment, [36] look at a PSP with ar-
bitrary release times, deadlines, and precedence relations. The authors focus
on the case of deadlines larger than the periods. Unlike other approaches, the
schedule length is a decision variable (specifically, it is a multiple of the least
common multiple of the periods) since it results in a higher number of feasible
problem instances due to the broader search space. The authors propose a con-
structive modified list scheduling algorithm with limited backtracking to solve
this problem. Similarly to the previous work, [90] proposes a genetic algorithm
to solve a PSP with arbitrary release times and precedence constraints. How-
ever, this work considers the time lags, end-to-end latency constraints, and no
explicitly stated deadlines.

[96] solve a PSP on dedicated resources with the minimization of the max-
imum normalized latency over all transactions, i.e., their end-to-end latency
divided by the length of the time window that they may be scheduled in. The
authors assume work-conserving scheduling - if there are jobs ready to be sched-
uled at any time, at least one must be scheduled. [74] propose an ILP model
for both non-preemptive and preemptive scheduling on the processing units and
FlexRay network, allowing a job to preempt another job only once. The authors
consider the minimization of the sum of the end-to-end latencies.

If the number of preemption and preemption points are not limited, pre-
emptive PSPs ··· |Ti, ··· , pmtn| ··· can be solved by the same approach as the
non-preemptive PSPs with each task τi split into pi sub-tasks of a unit time,
i.e., ··· |Ti, pi = 1, ··· | ···. However, it drastically increases the number of variables
and constraints in the model. [21], uses this trick and proposes an SMT and
ILP model and an SMT-based heuristic.

Finally, the following works deal with heterogeneous resources. A modified
list scheduling heuristic is proposed in [17], solving the PSP with arbitrary re-
lease times, deadlines, and precedence and end-to-end latency constraints. In
this work, both the preemptive and non-preemptive tasks are handled, and the
number of preemptions is minimized. Addressing the same problem without

31



Table 9: Works on preemptive PSPs

Reference Problem in the three-field notation Results / Approaches

[122] 1|Ti, di = Ti, jiti = 0,mltrt,pmtn|npmtn
sched. conditions,
heuristic

[78] P|Ti, ri, di ≤ ri+Ti,mlrt,pmtn|− simulated annealing

[70] P|Ti, ri, di,mlrt,pmtn|npmtn ant colony optimization

[114] P|Ti, ri, di,prec, ⋆,pmtn|energy Petri Nets

[36] PD|Ti, ri, di,prec, ⋆,pmtn|Cmax heuristic (limit backtrack)

[96] PD|Ti, ri,mltrt,pmtn|resp. heuristics

[90] PD|Ti, li,j , ⋆,pmtn|Tmax Genetic Algorithm

[74]
PD|Ti, di = Ti+pi−1, jiti = 0,prec,

lath, ⋆,pmtn|∑ lath
ILP

[21]
PD|Ti, di = Ti, jiti = 0,prec,

lath, ⋆,pmtn|∑ lath
SMT, heuristic, MIP

[17] R|Ti, ri, di,prec, lath, ⋆,pmtn|npmtn heuristic (list scheduling)

[112] R|Ti, ri, di,prec, ⋆,pmtn|− branch-and-bound

[71] R|Ti, ri, di = ri+Ti,prec, ⋆,pmtn|npmtn CP

end-to-end latency constraints, [112] propose a tuned branch-and-bound algo-
rithm with the pruning of infeasible search-tree paths and symmetry avoidance.
The solution allows the system to be in two modes: either preemptive or non-
preemptive. A PSP as a Constraint Satisfaction Problem is further formulated
by [71], where both preemptive and non-preemptive tasks can be handled, and
the number of preemptions is minimized.

5.3 Related Problems

This subsection discusses problems that are similar to the PSP, since some
results for these problems can be useful for (specific) PSPs. There are three
classes of problems in this section: 1) problems more general in some parameters,
for which the PSP is a particular case (distance-constrained scheduling); 2)
problems with the same optimal solution as a PSP in specific cases (pinwheel
scheduling or windows scheduling). This class is also comprised of problems
that allow changing period values with the aim of setting the period values as
close as possible to the the ideal ones (perfectly periodic scheduling [94], [9],
and [8]); and 3) problems equivalent to specific PSPs that are called differently
(periodic maintenance scheduling, chairmen assignment, scheduling with release
times and deadlines).

In the distance-constrained scheduling problem addressed in [80], a job of each
task τi should be executed not earlier than li time units and no later than ui

time units from the execution of the previous job and has a unit processing time.
Thus, unlike the PSP, where the scheduling windows are fixed and independent
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of the task start times, in this problem, the scheduling window for each job is
related to the start time of the previous job. However, for li = ui = Ti, the
problem is equivalent to 1|Ti, jiti = 0, pi = 1|−.

The periodic maintenance scheduling problem considered in [118] is the case
with li = ui = Ti by the problem definition. Thus, as mentioned in the previous
subsection, it is equivalent to the PSP with zero jitter requirements and unit
processing times, P |Ti, jiti = 0, pi = 1|− and belongs to the third class. The
authors state the sufficient condition of a task set schedulability for m parallel
identical resources formulated in Inequality (30).

j−1∑
i=1

1

gcd(Ti, Tj)
< m, j = 2, · · · , n. (30)

The Pinwheel Scheduling Problem [48] (also calledWindows Scheduling Prob-
lem) belongs to the second class of problems, while defining only the ui param-
eter. Accordingly, each job of each task τi has to be scheduled no later than
ui time units from the execution of the previous job, also having a unit pro-
cessing time. However, unlike the periodic maintenance scheduling problem,
there cannot be empty slots in the solution, i.e., at each time moment some
task must be scheduled. When minimizing the number of jobs, the solution of
the pinwheel problem can be the solution of a PSP with zero jitter requirements
1|Ti, jiti = 0, pi = 1|−, if a feasible solution to the corresponding PSP exists
and it does not contain empty time slots.

Furthermore, in the chairmen assignment problem [115], one requires the
fairness of the schedule: the number of scheduled task jobs before each time
moment should be proportional to its frequency equal to the inverse of the
period. Formally, at every time t task τi must have been scheduled either⌊

1
Ti
·t
⌋
or

⌈
1
Ti
·t
⌉
times. This problem is equivalent to a PSP with deadline

equal to periods and unit processing times, i.e., P |Ti, di = Ti, pi = 1|−, since
the aforementioned condition requires that each task should be scheduled once
per its period.

Finally, a PSP can be solved by methods applied to solve scheduling problems
with arbitrary release times and deadlines ··· |ri, di, ··· | ··· [120]. However, the
jitter requirements are not considered here similarly to the chairmen assignment
problem. Note that the scalability of a PSP can be higher due to the decreased
number of entities one is working with compared to the non-periodic problem
with arbitrary release times and deadlines.

6 Conclusions

In this paper, we present the basic principles and related works to time-triggered
periodic scheduling of hard real-time systems. Many real-life problems have a
periodic nature, and therefore, their applications can be found in versatile fields,
such as embedded systems, maintenance, and production. These scheduling
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problems are often presented without systematic abstraction, and many au-
thors merge the problem statement and its solution. We address this issue by
extending the three-field Graham notation to define periodic scheduling prob-
lems (PSPs). To facilitate an understanding and motivate future research, we
provide straightforward implementations of three PSPs in the Satisfiability Mod-
ulo Theories formalism with the source code. The development of an efficient
scheduling algorithm is hard, as one can see from the complexity results list-
ing the few polynomially solvable PSPs. To help this development, we provide
an overview of the simple state-of-the-art methods and tricks to solve PSPs.
Finally, we survey works on periodic scheduling, categorizing them with an ex-
tended three-field notation.
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Abella, and Francisco J Cazorla. Runpar: An allocation algorithm for
automotive applications exploiting runnable parallelism in multicores. In
Proceedings of the 2014 International Conference on Hardware/Software
Codesign and System Synthesis, pages 1–10, USA, New York, 2014. ACM.

[93] Kyung S Park and Doek K Yun. Optimal scheduling of periodic activities.
Operations Research, 33(3):690–695, 1985.

[94] Shailesh Patil and Vijay K Garg. Adaptive general perfectly periodic
scheduling. Information processing letters, 98(3):107–114, 2006.

[95] D-T Peng and Kang G Shin. Static allocation of periodic tasks with
precedence constraints in distributed real-time systems. In [1989] Pro-
ceedings. The 9th International Conference on Distributed Computing Sys-
tems, pages 190–198, USA, CA, Newport Beach, 1989. IEEE.

[96] D-T Peng and Kang G Shin. Optimal scheduling of cooperative tasks in
a distributed system using an enumerative method. IEEE Transactions
on Software Engineering, 19(3):253–267, 1993.

[97] Clément Pira and Christian Artigues. Line search method for solving a
non-preemptive strictly periodic scheduling problem. Journal of Schedul-
ing, 19(3):227–243, 2016.

[98] Paul Pop, K̊are Harbo Poulsen, Viacheslav Izosimov, and Petru Eles.
Scheduling and voltage scaling for energy/reliability trade-offs in fault-
tolerant time-triggered embedded systems. In Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and
system synthesis, pages 233–238, 2007.

42



[99] Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti. Off-line mapping
of multi-rate dependent task sets to many-core platforms. Real-Time Sys-
tems, 51(5):526–565, 2015.

[100] Diogo Quintas and Vasilis Friderikos. Energy efficient spatial tdma
scheduling in wireless networks. Computers & Operations Research,
39(9):2091–2099, 2012.

[101] K. Ramamritham. Allocation and scheduling of precedence-related pe-
riodic tasks. Parallel and Distributed Systems, IEEE Transactions on,
6(4):412–420, April 1995.

[102] Krithi Ramamritham. Allocation and scheduling of complex periodic
tasks. In Proceedings., 10th International Conference on Distributed Com-
puting Systems, pages 108–115, France, Paris, 1990. IEEE.

[103] Jin Woo Ro, Partha Roop, and Avinash Malik. Schedule synthesis for
time-triggered multi-hop wireless networks with retransmissions. In 2015
IEEE 18th International Symposium on Real-Time Distributed Comput-
ing, pages 94–101, New Zealand, Auckland, 2015. IEEE.

[104] Stefan Ronngren and Behrooz A Shirazi. Static multiprocessor scheduling
of periodic real-time tasks with precedence constraints and communica-
tion costs. In Proceedings of the Twenty-Eighth Annual Hawaii Interna-
tional Conference on System Sciences, volume 2, pages 143–152, USA, HI,
Wailea, 1995. IEEE.

[105] Debayan Roy, Licong Zhang, Wanli Chang, Dip Goswami, and Samar-
jit Chakraborty. Multi-objective co-optimization of FlexRay-based dis-
tributed control systems. In 2016 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pages 1–12, Austria, Vienna,
2016. IEEE.

[106] Florian Sagstetter, Peter Waszecki, Sebastian Steinhorst, Martin
Lukasiewycz, and Samarjit Chakraborty. Multischedule synthesis for vari-
ant management in automotive time-triggered systems. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
35(4):637–650, 2015.

[107] Thijs Schenkelaars, Bart Vermeulen, and Kees Goossens. Optimal schedul-
ing of switched FlexRay networks. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011, pages 1–6, 2011.
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