
Instructions

The main goal of this thesis is to design, implement, and test a mobile application for public transport 

visualization. The system should enhance the work of Ing. Jan Spolek, "Vizualizace a predikce pražské 

příměstské dopravy" and should use the same data structures. The application should not only 

visualize the current public transport but provide statistics and offer some delay prediction. 

The mobile application should implement a user account via which the users could customize the 

provided information and bus lines. The student should do the analysis and define these 

customizations (for example favourite bus lines). The application can offer to store some historical 

data but the user should give consent to do that. Consent can be every time changed and data erased. 

Mobile application should be responsive and for Android phones only. 

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 28 August 2020 in Prague.

Assignment of bachelor’s thesis

Title: Mobile application for Prague public transport visualization

Student: Galymzhan Dosmagambet

Supervisor: Ing. Marek Sušický

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Web Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2021/2022





Bachelor’s thesis

Mobile application for Prague public
transport visualization

Galymzhan Dosmagambet

Department of Software Engineering
Supervisor: Marek Sušický

February 11, 2022





Acknowledgements

I would like to thank my family and friends for the moral support.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on February 11, 2022 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2022 Galymzhan Dosmagambet. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dosmagambet, Galymzhan. Mobile application for Prague public transport
visualization. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2022.



Abstrakt

Role veřejné dopravy je v současné době zásadńı. Je př́ıtomen v každém mo-
derńım městě a je možné jej maximálně využ́ıt pro socioekonomický rozvoj.
Proto si tato bakalářská práce klade za ćıl vytvořit mobilńı aplikaci OS An-
droid a vhodnou infrastrukturu pro vizualizaci MHD města Prahy. Navrho-
vané řešeńı poskytne kompletńı systém, který se skládá z mobilńı aplikace,
webového serveru a databáze. Systém nab́ıdne jiný př́ıstup k mobilńım apli-
kaćım MHD. Kromě vizualizace a sledováńı v reálném čase poskytne funkce
personalizace, jako je vytvořeńı účtu, označeńı obĺıbených tras a statistiky
zpožděńı. Výsledkem je vývoj prototypu systému, který slouž́ı jako d̊ukaz kon-
cepce.

Kĺıčová slova Mobilńı aplikace, veřejná doprava, OS Android, vizualizace,
Golemio

vii



Abstract

The role of public transport is fundamental in the current era. It is present
in every modern city, and it is possible to take maximum advantage of it for
socio-economic development. Therefore, this bachelor’s thesis aims to create
an Android OS mobile application and appropriate infrastructure for visual-
ization of public transport of the city of Prague. The suggested solution will
provide a complete system which consists of a mobile application, a web server,
and a database. The system will offer a different approach to public trans-
port mobile applications. Apart from visualization and real-time tracking, it
will provide a personalization functionality such as account creation, marking
favorite routes and statistics of delays. As a result, a prototype system is
developed and serves as a proof of concept.

Keywords Mobile application, public transport, Android OS, vizualization,
Golemio

viii



Contents

Introduction 1

Aims 3

1 Analysis and design 5
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Global solutions . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Local solutions . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Requirements analysis . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Functional requirements . . . . . . . . . . . . . . . . . . 7
1.2.2 Non-functional requirements . . . . . . . . . . . . . . . 7

1.3 Data source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Public API . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Design analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 UI Design . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 PID-MobApp Architecture . . . . . . . . . . . . . . . . 16
1.4.4 PID-Backend Architecture . . . . . . . . . . . . . . . . . 18

1.5 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.1 PID-MobApp . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2 PID-Backend . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Implementation 23
2.1 Problems and solutions . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 PID-Backend . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.1.1 Object-Relational Mapping . . . . . . . . . . . 23
2.1.1.2 Delays records . . . . . . . . . . . . . . . . . . 25
2.1.1.3 Security . . . . . . . . . . . . . . . . . . . . . . 26

2.1.2 PID-MobApp . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



3 Testing 33

Conclusion 35

Bibliography 37

A Acronyms 41

B Contents of enclosed CD 43

x



List of Figures

1.1 General Architecture Diagram . . . . . . . . . . . . . . . . . . . . 9
1.2 (a) Main screen (b) Stop view . . . . . . . . . . . . . . . . . . . . 10
1.3 (a) Trip view (b) Search view . . . . . . . . . . . . . . . . . . . . 11
1.4 (a) Login (b) Register . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 (a) Route view (b) Route view when logged in . . . . . . . . . . . 12
1.6 Original Database Diagram . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Extended Database Diagram . . . . . . . . . . . . . . . . . . . . . 15
1.8 PID-MobApp Architecture Diagram . . . . . . . . . . . . . . . . . 17
1.9 PID-Backend Architecture Diagram . . . . . . . . . . . . . . . . . 18

2.1 (a) Default view (b) Menu (c) Login . . . . . . . . . . . . . . . . . 30
2.2 (a) Menu (b) Trip View (c) Favourite Routes . . . . . . . . . . . . 31

xi





List of Tables

1.1 Table of REST API endpoints. . . . . . . . . . . . . . . . . . . . . 20

xiii





Introduction

Public transport is essential for modern society and comes with meaningful
benefits. It has a favorable effect on the environment by leaving a smaller
carbon footprint and reducing the use of private transport, which causes most
greenhouse emissions. Furthermore, it serves people to advance their lifestyle
and our community would not work properly without it and highly depends
on it. This factor boosts growth in a variety of other spheres and increases the
standard of living. To attract and encourage the population to adopt more to
urban transportation services rather than driving private vehicles, the mobile
application for public transport was developed.

Mobile applications cooperate to make full usage of public transport. They
increase the convenience of use for people and provide services affecting their
day-to-day life. Mobile applications for public transport helps to save time
for journey and simplify planning, by providing schedules, shortest routes and
other useful services. Nevertheless, it also has a good effect on the environ-
ment. Most greenhouse emissions are caused by private cars and the attraction
of people to public transport via mobile applications improves this effect.

There are several solutions with different perspectives to the problem.
They cover most of the basic needs for tracking in visualizing public transport.
Standard functionality is finding the shortest way between 2 addresses or stops
and listing time schedule for routes. Some of them like PID Litacka[1] also
offer purchase of tickets, ticket pass management, places search and more.

However, these applications mostly do not support features for personal-
ization and proper visualization, due to different approaches to facilitate the
use of public transport. For example, real-time tracking of vehicles, as well
as providing delays, improves the visualization, therefore allowing passengers
to plan their journeys more precisely and adjust to the current transport sit-
uation faster. Another advantageous information is historical data such as
delays for the past week or average delay. There are ways to improve person-
alization too. In general, people use public transport on daily basis and know
destinations and routes they need to take. Thus one of the positive assets

1



Introduction

would be marking favorite routes or trips.
The main goal of this thesis is to develop a mobile application for visu-

alization of public transport of the city of Prague with personalization func-
tionality. This application should try to fulfill lacking features and take into
account the shortcomings of existing alternatives.

2



Aims

The main aim of the bachelor thesis is to extend existing master’s thesis[2]
by designing and implementing a mobile application for Android OS and ap-
propriate infrastructure. Infrastructure should include Web a server and a
database. The application suppose to visualize public transport of Prague on
the map and present additional information about it. User should be able
to create an account to mark their favourite routes and trips. In summary,
several subgoals can be extracted, to better describe what needs to be done:

• Develop a mobile application for Android OS.

• Develop a Web server with REST API support.

• Use, extend and adapt existing database inherited from master’s thesis[2].

• Provide visualization of public transport.

• Support log in and registration functionality to create user accounts.

• Provide functionality to allow users to mark favourite routes and trips.

• Provide delays and delay statistics for the last 7 days for favourite trips.

3





Chapter 1
Analysis and design

1.1 Related work

Arrangement and support of public transport is the non-trivial problem of any
city and it is hard to find the best resolution, thus most of the time travelers
have to face compromises. Routes can be changed or canceled, time schedule
may differ for every day. This brings inconvenience for people and makes pub-
lic transport harder to use without any guidance. Mobile applications try to
help the community to provide services to use public transport advantageously,
and different solutions solve different issues. These mobile applications can
be divided into 2 major groups by common features. The first group consists
of apps provided by tech giants like Google, Microsoft, Yandex, etc. They do
not focus specifically on providing a day-to-day solution, but rather follow a
general approach to apply it everywhere. The main goal of the second group
of apps is to come up with a localized solution that will be specific to the
particular city, hence in this paper, only Prague-related mobile applications
will be reviewed.

1.1.1 Global solutions

Google maps is one of the most popular map services that exist. However,
it was designed to be generalized and support a variety of features simulta-
neously. In this service, users can search for almost any public place, like
a museum, theatre, school, monuments, etc. Users can leave reviews about
any presented places and the administration of the places can provide photos,
schedule, website and other useful information. Google maps is also able to
find a route to a given destination with different travel options: public trans-
port, car, bicycle or by foot. Although information about public transport
is not reliable enough to use it on daily basis. Because it is very ambitious
to keep up-to-date such information along with everything else Google maps
maintain. Moreover, this is a global service, therefore it has to track not one

5



1. Analysis and design

but thousands of cities, which decreases reliability even more. Google maps
is a utility to search public places and obtain their location or address.

1.1.2 Local solutions

Pubtran[3] - is a mobile application for Prague public transport. Its main
feature is to find the shortest way between 2 locations and provide a number
of possible connections, with the opportunity to add an in-between stop. It
also allows user to choose the type of public transport: for example, user can
filter out results with train or tram, connections with wheelchair accessibility,
or do not apply any filter. Another convenient feature is to display path
on map including transport connection. There is another option for filtering
in the main menu, where user can choose a time of departure or arrival.
Additionally, Pubtran allows you to purchase transport tickets, but the price
can be by 1-2 czk higher. Prime disadvantage is the inability to show the
current location of the vehicle or present any historical data of a given or
favorite route or trip.

Czech Public Transport IDOS[4] - is another mobile application for Prague
public transport. This application implements a similar set of conveniences.
Although it extends this set with a more advanced search option. User can
choose transport operators and minimal interchange time. Aside from the dis-
advantages of Pubtran, IDOS is not a completely free application. It contains
ads, and in order to remove them, the user has to pay. Another additional
downside is data collecting. This application collects data about users in favor
of selling it or showing specific ads.

PID Litacka[1] - is one more mobile application for Prague public trans-
port which is integrated into PID Litacka regional transport system. This
application has practically all features and search options as described above
but drastically differentiates from them. It mainly focuses on the PID litacka
system hence on managing Litacka card and purchasing tickets. Unlike in
other apps, the user buys tickets and monthly passes within the PID Litacka
system and not by SMS. This allows track transaction history which is linked
to the user account and can be displayed not only in the app. This is a useful
feature for users PID Litacka card especially because it is used as the main sys-
tem for transport passes. In some cases, PID Litacka application can provide
enough information for public transport controllers and can be used instead
of a physical card.It has some additional positive sides like presenting plans
for all kinds of public transport and further useful information for passengers.

In summary, all these application address specific problems, which does
not cover the whole domain. This thesis offers a solution in form of a mobile
application which will provide visualization and different personalization user
experience.

6



1.2. Requirements analysis

1.2 Requirements analysis

In order to create a mobile application, it requires a server, which will take
responsibility for providing the data. The server should have most of the busi-
ness logic of the system and act as a core. The server will be connected to the
database, inherited from master’s thesis[2] and provided by supervisor Marek
Sušický. Therefore, the system is required to have three main components:
mobile application, web server and database. The next two subsections will
be discussed Functional and Non-functional requirements for the system. It
will describe exact functionality and expected behavior.

1.2.1 Functional requirements

• FR1: Account. User should be able to create an account for personal-
ization purposes.

• FR2: Error handling. If application will encounter any error it should
properly handle it and not crash. The same should be applied to the
server.

• FR3: Delays. Application should provide delay for given vehicle.

• FR4: Save favourite Routes/Trips. User should be able add Routes/Trips
in ”favourites”.

• FR5: Search Routes. User should be able to search among Routes.
Search does not require account or any sort of logging in.

• FR6: Provide historical data for favourite Trips. Application should pro-
vide historical data for the last week for given favourite trip. Historical
data consists of delay time for each day.

• FR7: Show live-time position of the vehicle. Application should display
live time position of chosen vehicle.

1.2.2 Non-functional requirements

• NFR1: Scalability. Mobile application will use specific REST API, so
the server can be changed easily.

• NFR2: Compatibility. Android releases new OS API every year, there-
fore not all android smartphones are capable of running newest appli-
cations. Thus this application should support an API, which will cover
70% of users.

• NFR3: Security. The system should has authentication and authoriza-
tion functionality in order to protect Users data.

• NFR4: Usability. The UI should be intuitive.

7



1. Analysis and design

1.3 Data source

The Golemio data platform[5] is operated by Operátor ICT[6], a.s., which is
established and wholly owned by the capital city of Prague. Its services are
available to the municipality, 57 city districts, city companies, contributory
organizations and other organizations established or owned by the capital city
of Prague, and in the form of selected open data to the public. DP Golemio
services (integration, storage, data visualization, etc.), as well as regular team
services of the Golemio Data Platform (technical consultations, a consultancy
with the preparation of tender documentation, etc.), are available within the
tariff defined by the contract for the municipality and city districts.

The platform is designed for different clients such as municipality and city
districts, city companies, commercial entities and the general public. The
goal is to arrange suitable data for analysis and reports for these clients. The
general results of the monitoring should lead to improvements in public and
commercial services. For different clients, The Golemio team can offer diverse
services and options that they can agree on. However, for the public, it is more
straightforward. The Golemio platform has an open public REST API. This
is an expedient reason for using in the original thesis on which this project
is based. Data are consumed through the API and stored in the database to
be used and visualized in the mobile application. The Golemio’s public API
provides a variety of contrasting types of data: public transport, parking,
air quality, public space, traffic, waste, pedestrians, traffic restrictions. This
thesis will use only data of public transport.

1.3.1 Public API

The Golemio’s API consists of several end-points which provide GTFS (Gen-
eral Transit Feed Specification) data about the city’s public transportation
schedules. This public API shall be used to fill with data the system’s database.

GTFS Services[7] displays on which days it is online for given service.
GTFS Routes[8] displays data about given route. Route can be used to

find general information and use it to get more specific through trips.
GTFS Shapes[9] displays path of the specific trip. It is a number of geo-

points which construct the path on the map.
GTFS Stops[10] returns general information about given stop including

coordinates, name, parent station ID.
RealTime Vehicle Positions[11] describes data of given vehicle and expands

it. It has data not only about specific vehicle, but also information about
previous stop, next stop and other.

GTFS Trips [12] displays data about given trip. Trips are real instances
of the routes. Specific trip holds the most important data for visualization
for the user. Trips are connecting link between all other data. They have

8



1.4. Design analysis

references to route, shape, service. Individual trip also has information about
itself: trip head-sign, wheelchair accessibility, direction and other.

1.4 Design analysis

The system has to be easy to maintain and expand. This will allow to add new
features easier and faster, develop new components and expand functionality.
In order to make a scalable system, it has to be split into different logical
layers which will have different responsibilities. This will give an opportunity
to substitute them with different implementation if necessary.The whole portal
will consist of 3 main components: Database, Backend server (PID-Backend)
and Graphical User Interface (GUI) i.e. Android Mobile application (PID-
MobApp). Therefore components will not be dependent on each other but on
the Application Programming Interface (API). Namely, if any component is
replaced, it has to only support an API, but implementation can be completely
different. For example, in the future, PID-Portal might require to support IOS.
In this case, will be necessary to develop only the IOS application which will
support Backends API. As a choice Database can be replaced with a database
for another city. Overall this will bring colossal flexibility. The architecture
design of each component will be discussed Further.

Figure 1.1: General Architecture Diagram

1.4.1 UI Design

In order to understand how PID-MobApp will look like, it is required to design
a draft or wireframes. On these wireframes schematically will be shown main
features and states of the application.

On the main screen will be displayed map with stops, ”Search” bar and
”Hamburger” icon representing menu button as demonstrated on the figure
number 1.2 (a). If user will tap on any stop, application should display routes
that go through chosen stop and when next vehicle for every route will arrive
as shown on the figure number 1.2 (b). User will be able to select one of the
offered routes. This will activate another view with trip details. In this case

9



1. Analysis and design

Figure 1.2: (a) Main screen (b) Stop view

details of the closest trip of the selected route to the selected stop will be
displayed. At the same time track of the trip will be drawn on the map along
with icon representing location of the vehicle. This is demonstrated on the
figure 1.3 (a). In the trip details will presented information such as direction,
head sign, if it is wheelchair accessible and if bikes are allowed.

User will be able to search for some specific route via Search bar. By
tapping on it Search view will be activated as shown on the figure number
1.3 (b). In the input view user will type route number and after results will
appear below. Then user can select route from the results. Then Search
view will be removed and Route view will appear at the bottom with Route
details. Route details will contain information as starting stop, terminal stop,
short name and long name. Likewise in Trip view, track line will appear with
multiple point icons representing vehicles locations following the route. User
will be able to tap on one the icons to see trip details dedicated to the selected
vehicle. The same Trip view will be displayed as in case of opening it via stop.

The menu button will open a side bar with login option if user is not
logged in. User can login or register via Login or Register views like shown

10



1.4. Design analysis

Figure 1.3: (a) Trip view (b) Search view

on figure number 1.4. Logged in user can mark and unmark favourite trips
and routes on the Route and Trip views. ”Heart” icon will crop up on the
right-hand side next to the name of a trip or route on the Trip view or Route
view as demonstrated on the figure 1.5 (a), which can be tapped to mark.
Additionally, on the menu will appear supplemental options to see favourite
routes or trips. They will be listed on the corresponding views: Favourite
Trips and Favourite Routes. User will be able to select favourite trip or route
and appropriate view will appear on the screen.

11



1. Analysis and design

Figure 1.4: (a) Login (b) Register

Figure 1.5: (a) Route view (b) Route view when logged in

12



1.4. Design analysis

1.4.2 Database

The database should be filled and updated by external application or manu-
ally. This is due to frequent changes in Golemio’s public API. If the mobile
application would use it directly, there might be a potential failures and er-
rors, because application will not know about new API. Moreover, in case of
API changes, new version of the application has to be released, which might
take some time. This is a threat for comfortable usage. Therefore it is nec-
essary for PID-Portal has its own server and database. And fill the database
from outside, for instance by another component or application, which will be
responsible for supporting Golemio’s API and filling up the database.

Original Database
The original database was inherited from master’s project[2] and provided

as a part on top of which PID-Portal has to be build.
The tables in the database represent data provided by Golemio’s API and

have similar information and properties as shown on the figure number 1.6.
The database is build around main entity - Trip. Trip is and abstract entity
of a vehicle following specific route.

Shapes table is a representation of sequence of geo points. This sequence
will be used to draw a track or path on map.

Services table describes availability of a trip. This can be used to display
only relevant trips.

Stops table represents a stop and basic information about it, like name
and coordinates. That information will be used to display stops on map.

Positions table contains more specific information about trip’s position:
location, next stop and previous stop, traveled distance and other. This table
contains live data and intended to be updated very frequently. it is necessary
to track vehicle in real time.

Vehicles table has details about specific vehicle assigned to a specific trip.
This information further describes trips. This table should be kept up to date
like Positions table and for teh same reasons.

Routes table defines routes and holds main general information about
them.

Trips table is a connecting link between all information in this database.
It contains mostly of foreign keys, thus all other information can be found
through that table.

13



1. Analysis and design

Figure 1.6: Original Database Diagram

Extended Database
The original database does not contain all the mandatory data for the

PID-Portal to work properly. Therefore extra tables and fields were added,
but initial structure was not changed as shown on the figure 1.7.

New tables are: Users, Users Favourite Trips, Users Favourite Routes, Trip Stops
and Delays. Table Users is required to store information about users and their
preferences. Attributes:

• id: ID of user.

• username: username of user.

14



1.4. Design analysis

Figure 1.7: Extended Database Diagram

• password: user’s password.

• email: user’s email.

• name: user’s name.

• role: user’s role. At this moment it is not required for more types of
roles, but it will be unavoidable in the future work. Thus it is better to
take role into account at this moment of the development

Tables Users Favourite Trips and Users Favourite Routes are conceptually
the same and their purpose if to store favourites routes or trips. Attributes:

15



1. Analysis and design

• user id: ID of user.

• favourite routes uid / favourite trips uid: favourite routes / trips.

Table Trip Stops represents ordered list of stops visited within specific trip.
It will be used to see and follow schedule of individual trip. That means trip
will have numbered list of stops with expected arrival time. Attributes:

• trip id: ID of a trip.

• stop id: ID of stop visited within given trip.

• index: index number of the stop.

• day of week the day of the week. It can be week day, weekend or ex-
ceptional.

• arrival: time of expected arrival to a given stop.

Table Delays will contain delays of specific trips, that are marked as
favourite by any user. This table will be updated by the PID-Backend if
any favourite trip exists. Attributes:

• ddate: date of delay

• trip id: ID of a trip.

• stop id: ID of stop.

• delay min: actual delay in minutes.

1.4.3 PID-MobApp Architecture

The architecture of PID-MobApp follows same design principals - flexibility
and maintainability as the whole PID-Portal, within the constraints of An-
droid mobile app development. PID-MobApp architecture will subsist of 3
layers: Presentation, Business, Persistence. And will follow View-ViewModel-
Model architecture pattern, respectively to the layers.

Presentation layer will contain Android UI elements or rather Views, called
activities or fragments. View’s main responsibility is to present and display
data to a user and consume user input events. After user’s interactions, inputs
and actions will be processed in Business layer by ViewModel.

PID-MobApp will have a several Activities which will contain inside Frag-
ments. It gives an opportunity to reuse fragments in different activities.

Login activity will handle login and registration inputs. It will contain
Login fragment and Registration fragment and follow the design on figure
number 1.4.

16



1.4. Design analysis

Figure 1.8: PID-MobApp Architecture Diagram

Maps activity is a main activity. It will handle main functionality: display
map and map interactions, search of routes and display results, draw route
line and provide information about chosen route. Therefore Maps activity will
contain following Fragments:

• Search Fragment will be placed at the bottom when inactive. It will
an input view with ”Hamburger” icon. Tapping on the icon will open
up Navigation Menu. Tapping on Search input view activates Search
Fragment and displays it on full screen.

• Search results Fragment will be a part of Search Fragment. Here search
results will be displayed in a scrollable view. By clicking on any result,
Route fragment for chosen route should be opened.

• Stop fragment will present an information about chosen stop along with
scrollable view with list of routes going through that stop with an arrival
time. By clicking on of the routes Trip fragment for closest trip to the
stop of this route should be opened.

• Route fragment will show the name of the route and its direction from
the starting stop to the final.

• Trip view will contain an information about a trip including list of delays
if it is marked as favourite and user is logged in. AS well it will contain
the average time of delays.

• Navigation Menu will have 1 option - Authorization, when user is not
logged in and three when logged in: Favourite Routes, Favourite trips
and logout. Favourite Routes and Trips buttons lead to corresponding

17



1. Analysis and design

scrollable views with lists of routes and trips: Favourite Routes Fragment
and Favourite Trips Fragment.

The application will have a Database. The database will contain user
information and users favourite trips and routes.

1.4.4 PID-Backend Architecture

Figure 1.9: PID-Backend Architecture Diagram

Architecture of the Backend likewise architecture of the whole PID-portal
is obligatory to be flexible and modular enough because of the same reasons,
mentioned above. The approach is analogous to PID-MobApp architecture.
Therefore the structure will be divided into 3 layers: Presentation, Business,
Persistence. This is displayed on the figure number 1.9. Each layer has a
specific role and responsibility within the architecture. Layers are isolated
from each other, having no knowledge of the inner workings of other layers.
Each layer communicates only with the layer beneath it. They will have
marginally different logic behind, however abstractly have same purpose.

Presentation layer consists of REST API controllers. These controllers
are triggered or called by the client-side or GUI in case of PID-Portal. The mo-
bile application will be calling this REST API in order to obtain and present
requisite data to a user. The Presentation layer’s responsibility is to process
http request, gain response data from Business layer and send a suitable re-
sponse to the client-side. The Presentation layer must communicate only with
Business layer and must not have any business logic. This characteristics will
give an opportunity to add new API. Simultaneously separation of REST API
controllers from business logic will make them independent of business logic’s
implementation. Additionally any other client application like web applica-
tion, IOS application and others can use the API of Presentation layer and
consequently full functionality of Backend. In order to fulfill PID-MobApp
needs the Presentation layer should have following REST API like presented
on the table 1.1.

Business layer contains business logic and services responsible for its
implementation. There are several Service classes for each logical entity like

18



1.4. Design analysis

Route Service, Trip Service, User service, etc. Hence the design remains ad-
justable and Service’s implementation can be easily replaced. Although Busi-
ness layer should not have any direct interaction with persistent data. It must
never has a direct connection do a Database or any source of data. Instead, it
should use Persistence layer. The main logic in this layer focuses on prepar-
ing data for GUI requests and handling account interactions, like sign in/sign
up features and marking favourite routes and trips. In addition, here will be
a process responsible for updating Delays table. It will be run periodically
checking delay last stop attribute in Vehicles table and updating records in
Delays tables. More details about delays management are in the section 2.1.

Persistence layer is an adaptor between Business layer and persistent
data or Database. It is crucial to include such layer in case of any Database
changes. In case of changes of the database schema only modification of
Persistence layer will be required. Therefore other layers will still be valid
and process requests correctly without additional changes.

Another part of the PID-Backend is Model. Model represents data that
the application will be working with. Each Model class will be corresponding
to the entities in the database. This classes will be mapped onto database
tables using an Object-Relational Mapping tool (ORM). Used technologies
are described in the section 1.5

19



1. Analysis and design

Name Base URL Additional path [METHOD] Description

Authentication /api/auth /signup [POST] Sign up.
/signin [POST] Sign in.

Route /api/route

/id [GET] Route by ID
/id/trips [GET] Trips for Route

/search/name [GET] Search Route by
name

/id/trips vehicles [GET] Trips and Vehicles
for Route.

/id/vehicles [GET] Vehicles with loca-
tions.

Shape /api/shape /id [GET] Shape by ID

Stop /api/stop

/ [GET] All Stops
/id [GET] Stop By ID.
/name [GET] Stop by name.

/id/routes [GET] Routes that going
through Stop.

/id/routesTime [GET] Routes with next
time arrival.

/stopId/routeId
[GET] Closest Trip com-
ing by Stop and Route
ID.

Trip /api/trip /id [GET] Trip by ID

/tripId/stopId [GET] Trip By ID with
delays to given Stop.

User /api/user

/routes [GET] favourite Routes

/routes/routeId [POST] Add new
favourite Route.

/routes/routeId [DELETE] Delete
favourite Route.

/trips [GET] Favourite Trips.

/trips/tripsId [POST] Add new
favourite Trip.

/trips/tripsId [DELETE] Delete
favourite Trip.

Vehicle /api/vehicle /id [GET] Vehicle by ID

/route/routeId [GET] All Vehicles of
given Route.

Table 1.1: Table of REST API endpoints.

20



1.5. Technologies

1.5 Technologies

In this section are described used technologies.

1.5.1 PID-MobApp

• Android SDK [13] is a Android Software Development Kit that includes
a comprehensive set of development tools. its version corresponds to a
version of Android OS. For this project was chosen Android SDK 28,
because it covers approximately 70% of all devices on Android OS.

• Kotlin[14] is a programming language and was chosen as main language
for PID-MobApp. But this still leaves an option of using Java because
of their compatibility.

• Google Maps platform[15] one of the most popular maps frameworks.
This framework was chosen because it has huge support for Android
OS, has documentation for Kotlin, has multiple platform support, has
multiple cities support, has

• Retrofit[16] is an HTTP client that is used to communicate with PID-
backend

• Room[17] was used for local database. It will store user information
including favourite trips and routes.

1.5.2 PID-Backend

• Java[18] is a programming language and computing platform that was
chosen as a main language for the PID-Backend. Because it is enterprise-
oriented, it is supported by a huge community and there are many frame-
works that helps developing any size applications.

• Maven[19] is a build automation tool used primarily for Java projects.
It will be used for building the application.

• Hibernate[20] is an object–relational mapping tool for the Java program-
ming language. it will be used

• Springboot[21] is a framework for java. It allows to create web server
with minimum configuration.

• Spring security [22] is an authentication and access-control framework.
It is an addition to Springboot framework which will e used for autho-
risation and authentication functionality.

• Log4j[23] is a Java-based logging utility that will be used to log certain
events for better maintainability.

21



1. Analysis and design

• JJWT[24] is a library that supports JWT. It allows to generate and
manage JWT.

• Lombok[25] is a java library tool that is used to minimize/remove the
boilerplate code and save the precious time of developers during devel-
opment by just using some annotations.

Combination of all these frameworks provides enough of functional power
for the development.

22



Chapter 2
Implementation

The implementation was going accordingly to the design described in the
previous part without deviations and the final result meets the requirements
established in the section 1.2. However, there were several issues during the
development process. In the section 2.1 I described problems faced and the
solution applied. In the section 2.2 are presented results of the implementation
part.

2.1 Problems and solutions

Database I was provided with a database Docker image and Python appli-
cation which fills the database with data using Golemio’s API[5]. However,
Golemio’s API was changing and the Python application at some moment was
not able to support an API and put all necessary data. As a solution, I had set
up an embedded H2 Database[26]. It creates a new database when Backend
is started and destroys it when it is stopped. Then I created a SQL script
to fill the database with temporary data, which was used for development,
testing and demonstration purposes. This database is used as default, to be
able to start up the server without additional configuration. Although, the
configuration for the provided database is kept and can be easily turned on,
instead of H2.

2.1.1 PID-Backend

2.1.1.1 Object-Relational Mapping

One of the most important parts in the software development is a work with
data. The main and only source of data for PID-Backend is the Database.
Therefore, it is required to properly map database data on Java objects.

Hibernate ORM [20] was used to map entity classes onto tables in the
Database. I have created relevant entity classes for tables that already exist

23



2. Implementation

in the database and for tables that are new. To mark classes as entities for
Hibernate was used an annotations @Entity as shown on the Listing number
2.1.

1 @Entity
2 @Table (name = "trips")
3 @Data
4 @NoArgsConstructor
5 @AllArgsConstructor ( access = AccessLevel . PUBLIC )
6 public class Trip {
7
8 @Id
9 @Column (name = "uid")

10 private String uid;
11
12 @ManyToOne
13 @JoinColumn (name = " route_id ", referencedColumnName = "uid")
14 private Route route;
15 @ManyToOne
16 @JoinColumn (name = " service_id ", referencedColumnName = "uid"

, insertable = false , updatable = false )
17 @JsonIgnore
18 private Service service ;
19
20 @Column (name = " shape_id ")
21 private String shapeId ;
22 @Column (name = " direction ")
23 private int direction ;
24 @Column (name = " exceptional ")
25 private int exceptional ;
26 @Column (name = " headsign ")
27 private String headsign ;
28 @Column (name = " wheelchair ")
29 private boolean wheelchair ;
30 @Column (name = " bikes_allowed ")
31 private boolean bikesAllowed ;
32 @Column (name = " block_id ")
33 private String blockId ;
34 }
35

Listing 2.1: User class example

The next will be annotating with @Column every attribute accordingly
to the database table, in this case Trips table. Hibernate also allows to map
foreign keys with @JoinColumn annotation. On the Listing number 2.1 illus-
trated mapping of foreign keys of tables Routes and Services.

However, I encountered problems with mapping these classes onto existing
database tables, because some of the primary keys were composite. After
studying documentation and its explanation on the internet I discovered a
solution. In order to map such keys via Hibernate, it is required to create an
additional class for the primary key and move necessary attributes from the

24



2.1. Problems and solutions

entity class. The new primary key should be annotated with @EmbeddedId
annotation to specify to Hibernate, that it is a composite key. This is shown
on the on the Listing number 2.2 and 2.3.

1 @Entity
2 @Table (name = " shapes ")
3 @Data
4 @NoArgsConstructor
5 @AllArgsConstructor ( access = AccessLevel . PUBLIC )
6 public class Shape implements Serializable {
7
8 @EmbeddedId
9 public ShapeId uid;

10
11 @Column (name = "lat")
12 private Double lat;
13 @Column (name = "lon")
14 private Double lon;
15 @Column (name = " dist_traveled ")
16 private Double distTraveled ;
17 }

Listing 2.2: Shape class example

Class ShapeId also has to be annotated with @Embedable and it has to
implement Serializable interface.

1 @Embeddable
2 @Data
3 @NoArgsConstructor
4 @AllArgsConstructor ( access = AccessLevel . PUBLIC )
5 public class ShapeId implements Serializable {
6
7 public String uid;
8 public int ptSequence ;
9 }

Listing 2.3: User class example

Annotations @Data, @NoArgsConstructor, @AllArgsConstructor are Lombok[25]
annotations. They describe that for this class needs to be generated getters,
setters, no argument constructor and constructor with all arguments.

2.1.1.2 Delays records

By the reason of live tracking of vehicles’ locations, delays, and others, the
database constantly updates or substitutes this information. Therefore, De-
lays records for user favorite trips should be stored separately. Namely, there
should be a task running in a different thread that checks trips in the Database
and accordingly inserts new delay records. Thus, I had created such a task
which starts right after the Backend is started. It periodically, every 3 min-
utes, fetches the favorite trips of all users. For each trip, it verifies if there is

25



2. Implementation

a record of a delay for the previous stop. If there is no new delay record is
saved. The pseudo code is presented on the listing 2.4.

1 private void updateDelays () {
2 for (Trip t : getFollowedTrips ()) {
3 Vehicle v = vehicleRepo . findById (t. getUid ());
4 if (v. isEmpty ())
5 continue ;
6 Stop lastStop = v.get (). getLastStop ();
7 if ( delayRepo . findDelayByTripIdAndStopIdAndDate (
8 t. getUid (),
9 lastStop .getId (),

10 Date.Taday ()). isEmpty ()) {
11 addDelay (t. getUid (), lastStop .getId (),Date.Today (), v

. getDelayLastStop ());
12 }
13 }
14 }

Listing 2.4: Update delays task pseudo code example

In the worst-case scenario, when all trips are marked as favorite, the task
will verify all of them, which might take too much time or slow down the
Database. As a possible future solution, this logic can be moved into the
Database. Instead of having a task in the application, database triggers can
be set up. Database trigger is procedural code that is automatically executed
in response to certain events on a particular table or view in a database.
Therefore, when the table Vehicle is updated delay at the last stop can be
stored in the table Delay. However, in this case, only the Database will be re-
sponsible for the delay records, which might cause other issues. For instance,
if in the future the Backend will be connected to several databases, like pri-
mary and secondary, all of them have to be configured separately. This might
complicate the maintenance process.

2.1.1.3 Security

One of the requirements is to support login and registration functionality
to allow users to save their favorite trips and routes i.e. implement Security
features. Since PID-Backend is a Springboot Appliaction, Springboot Security
framework was chosen to manage authorization and authentication processes.
In order to use it, was set up Security configuration.

First of all, I created a User entity class that implements UserDetails class
from Sprinboot Security. This was necessary to make Spring use it for au-
thorization and authentication. Additionally, was created an enum with only
one role ”USER”. The current task does not require to support multiple roles
such as Admin or Moderator. Although this is required by Spring Security
and can be useful in the future.

26



2.1. Problems and solutions

Then I created UserService and UserRepository classes. UserService class
must implement UserDetailsService from Spring Security, like in case of User
class. With help of these classes, users can login and register.

PID-Backend is a stateless application i.e. it does not have, hold or mem-
orize a state. Thus, once the request is processed, all sessions are closed. This
means a user will not be able to do any operations. To solve that, can be
used tokens. These tokens are generated when a user logs in and returned to
the client. Then the client can use the token for operations allowed only to
logged-in users. In PID-Application was used JWT Token, which I configured
to make Spring use it as an authentication method.

With help of these classes, Spring can verify incoming requirements, au-
thenticate users, and restrict access to some of the REST API.

DTO became necessary at some moment, because sometimes not all the
data is needed to be transferred to the GUI and sometimes more data is
required. For example when it requests information about a trip it actually
needs shapes and delays as well. However, in the case of requesting user’s
data, all information about favorite trips is not necessary, only IDs and route
names.

Implementation of other parts of PID-Backend was straightforward enough
and follows the design.

2.1.2 PID-MobApp

Android development requires either to have a mobile phone with Android OS
or an Android Emulator - Android Virtual Device (AVD). In practice it is more
convenient to work with an emulator, because it is easier to debug, application
can be tested for numerous different devices and no physical device is needed.
However, there are some problems with running AVD on some Linux OS,
including mine. For this reason, at the stage of developing PID-MobApp, I
had to transfer all development on Windows OS.

In order to use Google Maps platform and its features, it is obligatory to
create an account there. The account is needed to create an API key to obtain
maps data. The downside of this approach is that for every new device on
which project is built has to be assigned to the API key. This was not obvious
after I transferred the project on Windows.

It was challenging to work on XML layouts for Activities and Fragments.
Android libraries offer many different approaches to design. Most of the lay-
outs use Constraint layout[27]. This layout allows to arrange UI objects rel-
atively to each other. This simplifies work with a lot of items on the screen,
especially in terms of different screen resolutions and sizes. Another UI ele-
ment I worked with a lot is Recycler View[28]. It allows to create scrollable
lists which were used in Search Results Fragment, Favourite Trips Fragment
and Favourite Routes Fragment.

27



2. Implementation

Here is an example of Stop Fragment layout. It is a Constraint Layout
which contains two Text Views and a Recycler View. The Text Views are the
names of the columns ”Routes” and ”Next At” on the Stop view on the figure
number 1.2 (b). Under it a list of routes which is placed inside of Recycler
View.

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <androidx . constraintlayout . widget . ConstraintLayout xmlns: android =

"http :// schemas . android .com/apk/res/ android "
3 xmlns:app="http :// schemas . android .com/apk/res -auto"
4 xmlns:tools="http :// schemas . android .com/tools"
5 android : layout_width =" match_parent "
6 android : layout_height =" match_parent ">
7 <TextView
8 android :id="@+id/ route_name_tv "
9 android : layout_width ="0dp"

10 android : layout_height =" wrap_content "
11 android : background =" @drawable /

group_bottom_line_background "
12 android :text=" @string / routes "
13 android : textSize ="24sp"
14 app: layout_constraintHorizontal_bias ="0.5"
15 app: layout_constraintStart_toStartOf =" parent "
16 app: layout_constraintEnd_toStartOf ="@id/ delay_min_tv "
17 app: layout_constraintTop_toTopOf =" parent " />
18 <TextView
19 android :id="@+id/ delay_min_tv "
20 android : layout_width ="0dp"
21 android : layout_height =" wrap_content "
22 android : background =" @drawable /

group_bottom_line_background "
23 android :text=" @string / next_at "
24 android : textSize ="24sp"
25 android : paddingStart ="8dp"
26 app: layout_constraintHorizontal_bias ="0.5"
27 app: layout_constraintEnd_toEndOf =" parent "
28 app: layout_constraintStart_toEndOf ="@id/ route_name_tv "
29 app: layout_constraintTop_toTopOf =" parent " />
30 <androidx . recyclerview . widget . RecyclerView
31 android :id="@+id/ route_rv "
32 app: layout_constraintTop_toBottomOf ="@id/ route_name_tv "
33 app: layout_constraintStart_toStartOf =" parent "
34 android : layout_width =" match_parent "
35 android : layout_height =" wrap_content "/>
36 </ androidx . constraintlayout . widget . ConstraintLayout >
37

Listing 2.5: Stop Fragment Layout XML

It is being filled up with Route Item (Listing 2.6) that contains 2 Text
Views. To these views Route number and arrival time are filled. In the similar
fashion are used and designed other UI elements. They act like templates that
are filled with required data.

28



2.2. Results

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <androidx . constraintlayout . widget . ConstraintLayout
3 xmlns: android ="http :// schemas . android .com/apk/res/ android "
4 xmlns:app="http :// schemas . android .com/apk/res -auto"
5 xmlns:tools="http :// schemas . android .com/tools"
6 android : layout_width =" match_parent "
7 android : layout_height =" match_parent "
8 android : padding ="4dp"
9 android : focusable ="true"

10 android : clickable ="true"
11 android : background =" @drawable / selectable_under_v_23 ">
12 <TextView
13 android :id="@+id/ route_name_tv "
14 android : layout_width ="0dp"
15 android : layout_height =" wrap_content "
16 android : textSize ="16sp"
17 android : padding ="4dp"
18 app: layout_constraintHorizontal_bias ="0.5"
19 app: layout_constraintStart_toStartOf =" parent "
20 app: layout_constraintEnd_toStartOf ="@id/ delay_min_tv "
21 app: layout_constraintTop_toTopOf =" parent " />
22 <TextView
23 android :id="@+id/ delay_min_tv "
24 android : layout_width ="0dp"
25 android : layout_height =" wrap_content "
26 android : background =" @drawable /

group_bottom_line_vertical_background "
27 android :text=" @string / next_in "
28 android : textSize ="16sp"
29 android : paddingStart ="8dp"
30 android : padding ="4dp"
31 app: layout_constraintHorizontal_bias ="0.5"
32 app: layout_constraintEnd_toEndOf =" parent "
33 app: layout_constraintStart_toEndOf ="@id/ route_name_tv "
34 app: layout_constraintTop_toTopOf =" parent "
35 tools: ignore =" RtlSymmetry " />
36 </ androidx . constraintlayout . widget . ConstraintLayout >
37

Listing 2.6: Update delays task pseudo code example

The PID-MobApp has to track vehicles’ positions in real-time. Therefore
was implemented a mechanism that requests a vehicle position from PID-
Backend every 5 seconds. When any vehicles appear on the map, the applica-
tion starts to update them periodically via REST API. When an event that
removes the vehicles’ icons from the map happens, they are no longer being
tracked.

2.2 Results

As a result of all work upon the system, PID-Portal was developed. It consists
of three major components: Database, PID-Backend and PID-MobApp. It has

29



2. Implementation

Figure 2.1: (a) Default view (b) Menu (c) Login

flexible, extendable and maintainable architecture. It follows the concept of
Single responsibility. It can be comfortably scaled up horizontally or vertically.

A mobile application for Android OS was successfully developed. The
Database was inherited from the supplied original database and extended for
supplementary functionality. The PID-MobApp allows users to create an ac-
count and customize provided public transport data by marking or unmarking
favorite routes or trips. The application provides statistics and historical data
of delays for the last 7 days.

Figure 2.1 presents a login use case. It is visible that user has an option
to log in or register. Once user is logged they can find favourite routes or trip
as shown on the figure 2.2.

30



2.2. Results

Figure 2.2: (a) Menu (b) Trip View (c) Favourite Routes

31





Chapter 3
Testing

An important part of any software development is testing. For this project at
this stage of the development were chosen 2 types: unit testing and UI manual
testing.

Unit testing is the basic first level of testing. It is performed on the func-
tionality of individual method, preferably on interfaces. The goal of unit
testing is to validate the correctness of behavior and logic of certain methods.
It allows detecting errors in methods’ behavior when they are changed. Which
might save a significant amount of time in error finding or debugging.

In this project unit testing majorly was performed on PID-Backend be-
cause of its core-like behavior. PID-Backend contains the business logic of the
whole PID-Portal, thus even slight changes have to be instantly tested and
unit testing is a handy tool designed for this purpose. Although there are
cases when classes are dependent and it might be not so convenient to create
all classes and start the database. Therefore to solve this problem mocks were
introduced. Mainly has to be tested an API of each layer of PID-Backend.

For Controllers’ tests, it is necessary to check that they correctly handle
input processing and call classes of the Business layer if the input is valid.
Since during unit testing we do not want to create and test other classes,
there were created mock classes instead.

For Services in Business Layer, it is necessary to verify that the business
logic is correct and appropriate Repositories’ methods are called. Services are
tested in a similar manner using mocks of Repositories. Tests check responses
of Services and what Repositories’ methods are called.

During unit testing, problems were revealed with finding the closest trip
of a given route going through a given stop. The application was finding the
closest trip regardless of whether it passed the stop or not. Thus additional
filtering was added. Problems with adding new favorite trips were also de-
tected. This happened because of copying the existing method which adds
favorite route and the application was trying to save favorite route instead of
the trip.

33



3. Testing

In order to test the behavior of the whole PID-Portal, there were con-
ducted manual end-to-end testing. For this testing, it was required to start
up the whole system including the database. Test scenarios are derived from
functional requirements to ensure that each of them is met.

As a result of manual testing were exposed a number of errors. The PID-
MobApp would crush every time it would get a NULL value in a response from
PID-Backend. This led to changes on both sides. Additional NULL-checks
were added to PID-MobApp and NULL values are not sent from PID-Backend.

34



Conclusion

The main goal of this project was to create a mobile application for the visual-
ization of public transport of the city of Prague. The result of the project was
a three-layered infrastructure consisting of database, server and mobile appli-
cation. The database was provided for this project as a source of data from
another master’s thesis. It was extended to support additional features of the
application. The server was designed with REST API to provide data for the
mobile application or any future GUI like web pages or IOS applications. The
mobile application was created for Android OS which consumes data from the
server’s public API and visualizes it. The system allows users to create an
account to mark favorite routes for a better user experience. Hence the goal
was achieved and requirements were satisfied.

The system was designed and built to be vertically and horizontally ex-
tendable. Its architecture allows easy maintenance and develops more features.
Future advancement of the system and application accordingly can be made
in order to improve user experience, functionality, usability and others. Here
are described the most important and big extensions, in my opinion, that can
be introduced in the future.

• Finding shortest path is one of the features to make full use of public
transport. This thesis does not focus on it in order to offer new and dif-
ferent functionality from alternative solutions. Although it is obviously
a next thing that should be added in such application.

• Ticket purchase is a common option offered by public transport appli-
cations. It definitely would fit into this project as well. This change
would allow users and in particular tourists, who use mostly one-time
tickets instead of long-term passes, not to be dependent on shops where
one-time tickets are sold. Which indirectly improves their experience of
the city.

35



Conclusion

• Different platform support might drastically increase number of users.
Such limitations like platform exclusiveness cuts down not only the num-
ber of users, but important feed back, and possible business profit. IOS
application and web application are necessary additions to the system
withing business context and overall availability. Multiple client support
was taken into account at the design stage and already built into system.
Public REST API of the server can by used by any client application.

• Multiple city support is another big step further to gain more users. This
might cover the whole country and make user experience the same for
people of different cities. Therefore it does not matter for them when
they travel across the country and use public transport in different cities,
because they will be using the same application.

This thesis was a good challenge and critical experience for me as a future
software engineer. I have gained knowledge of working on a bigger project
than I used to work on before. In the process, I have learned new technologies,
approaches and best practices. My mistakes gave me a better perspective of
the importance of system design, documentation, time management, constant
self-improvement. I hope this project can be used as an example of this type
of systems, or even a base for something bigger, where extensions described
above are included.

36



Bibliography

[1] ICT, O. PID Litacka [online]. [cit. 2021-10-01]. Available from: https:
//pidlitacka.cz/home

[2] SPOLEK, Jan. Vizualizace a predikce pražské př́ıměstské dopravy. Praha,
2020. Diplomová práce. České vysoké učeńı technické v Praze, Fakulta
informačńıch technologíı, 2020.

[3] Seznam.cz, a.s. PubTran [online]. [cit. 2021-10-01]. Available from:
https://aplikace.seznam.cz/jizdnirady/

[4] ICT, O. IDOS [online]. [cit. 2021-10-01]. Available from: https://
idos.idnes.cz/vlakyautobusymhdvse/spojeni/

[5] O, ICT. Golemio API [online]. [cit. 2021-10-01]. Available from: https:
//golemioapi.docs.apiary.io/#

[6] ICT, O. Operator ICT [online]. [cit. 2021-10-01]. Available from: https:
//operatorict.cz/en/

[7] ICT, O. Public Transport - GTFS Services [online]. [cit. 2021-10-
01]. Available from: https://golemioapi.docs.apiary.io/#reference/
public-transport/gtfs-services/get-gtfs-services?console=1

[8] ICT, O. Public Transport - GTFS Routes [online]. [cit. 2021-10-01]. Avail-
able from: https://golemioapi.docs.apiary.io/#reference/public-
transport/gtfs-routes/get-all-gtfs-routes?console=1

[9] ICT, O. Public Transport - GTFS Shapes [online]. [cit. 2021-10-01]. Avail-
able from: https://golemioapi.docs.apiary.io/#reference/public-
transport/gtfs-shapes/get-gtfs-shape?console=1

[10] ICT, O. Public Transport - GTFS Vehicles [online]. [cit. 2021-10-
01]. Available from: https://golemioapi.docs.apiary.io/#reference/
public-transport/gtfs-stops/get-all-gtfs-stops?console=1

37

https://pidlitacka.cz/home
https://pidlitacka.cz/home
https://aplikace.seznam.cz/jizdnirady/
https://idos.idnes.cz/vlakyautobusymhdvse/spojeni/
https://idos.idnes.cz/vlakyautobusymhdvse/spojeni/
https://golemioapi.docs.apiary.io/##
https://golemioapi.docs.apiary.io/##
https://operatorict.cz/en/
https://operatorict.cz/en/
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-services/get-gtfs-services?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-services/get-gtfs-services?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-routes/get-all-gtfs-routes?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-routes/get-all-gtfs-routes?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-shapes/get-gtfs-shape?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-shapes/get-gtfs-shape?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-stops/get-all-gtfs-stops?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-stops/get-all-gtfs-stops?console=1


Bibliography

[11] ICT, O. Public Transport - GTFS Vehicles [online]. [cit. 2021-
10-01]. Available from: https://golemioapi.docs.apiary.io/
#reference/public-transport/realtime-vehicle-positions/
get-all-vehicle-positions?console=1

[12] ICT, O. Public Transport - GTFS Trips [online]. [cit. 2021-10-01]. Avail-
able from: https://golemioapi.docs.apiary.io/#reference/public-
transport/gtfs-trips/get-all-gtfs-trips?console=1

[13] Google. SDK Platform Tools release notes [online]. [cit. 2021-10-01].
Available from: https://developer.android.com/studio/releases/
platform-tools

[14] Jet Brains. A modern programming language that makes develop-
ers happier. [online]. [cit. 2021-10-01]. Available from: https://
kotlinlang.org/

[15] Google. Welcome to Google Maps Platform [online]. [cit. 2021-10-01].
Available from: https://mapsplatform.google.com/

[16] Square, Inc. A type-safe HTTP client for Android and Java [online]. [cit.
2021-10-01]. Available from: https://square.github.io/retrofit/

[17] Google. Room [online]. [cit. 2021-10-01]. Available from: https://
developer.android.com/jetpack/androidx/releases/room

[18] Oracle. What is Java [online]. [cit. 2021-10-01]. Available from: https:
//www.java.com/en/download/help/whatis_java.html

[19] The Apache Software Foundation. Welcome to Apache Maven [online].
[cit. 2021-10-01]. Available from: https://maven.apache.org/

[20] Red Hat. Hibernate [online]. [cit. 2021-10-01]. Available from: https:
//hibernate.org/orm/documentation/5.4/

[21] VMware, Inc. Springboot [online]. [cit. 2021-10-01]. Available from:
https://spring.io/projects/spring-boot

[22] VMware, Inc. Springboot [online]. [cit. 2021-10-01]. Available from:
https://spring.io/projects/spring-security

[23] The Apache Software Foundation. Apache Log4j 2 [online]. [cit. 2021-10-
01]. Available from: https://logging.apache.org/log4j/2.x/

[24] Les Hazlewood. JJWT [online]. [cit. 2021-10-01]. Available from: https:
//github.com/jwtk/jjwt

[25] The Project Lombok. The Project Lombok [online]. [cit. 2021-10-01].
Available from: https://projectlombok.org/

38

https://golemioapi.docs.apiary.io/##reference/public-transport/realtime-vehicle-positions/get-all-vehicle-positions?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/realtime-vehicle-positions/get-all-vehicle-positions?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/realtime-vehicle-positions/get-all-vehicle-positions?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-trips/get-all-gtfs-trips?console=1
https://golemioapi.docs.apiary.io/##reference/public-transport/gtfs-trips/get-all-gtfs-trips?console=1
https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/releases/platform-tools
https://kotlinlang.org/
https://kotlinlang.org/
https://mapsplatform.google.com/
https://square.github.io/retrofit/
https://developer.android.com/jetpack/androidx/releases/room
https://developer.android.com/jetpack/androidx/releases/room
https://www.java.com/en/download/help/whatis_java.html
https://www.java.com/en/download/help/whatis_java.html
https://maven.apache.org/
https://hibernate.org/orm/documentation/5.4/
https://hibernate.org/orm/documentation/5.4/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-security
https://logging.apache.org/log4j/2.x/
https://github.com/jwtk/jjwt
https://github.com/jwtk/jjwt
https://projectlombok.org/


Bibliography

[26] Mozilla Foundation. H2 Database Engine [online]. [cit. 2021-10-01]. Avail-
able from: https://www.h2database.com/html/main.html

[27] Google Developers. Build a Responsive UI with ConstraintLayout [online].
[cit. 2021-10-01]. Available from: https://developer.android.com/
training/constraint-layout

[28] Google Developers. Create dynamic lists with RecyclerView [online]. [cit.
2021-10-01]. Available from: https://developer.android.com/guide/
topics/ui/layout/recyclerview

39

https://www.h2database.com/html/main.html
https://developer.android.com/training/constraint-layout
https://developer.android.com/training/constraint-layout
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://developer.android.com/guide/topics/ui/layout/recyclerview




Appendix A
Acronyms

API Application programming interface

GUI Graphical user interface

JSON JavaScript object notation

JWT JSON web token

ORM Object–relational mapping

OS Operating system

REST Representational state transfer

XML Extensible markup language

41





Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

43


	Introduction
	Aims
	Analysis and design
	Related work
	Global solutions
	Local solutions

	Requirements analysis
	Functional requirements
	Non-functional requirements

	Data source
	Public API

	Design analysis
	UI Design
	Database
	PID-MobApp Architecture
	PID-Backend Architecture

	Technologies
	PID-MobApp
	PID-Backend


	Implementation
	Problems and solutions
	PID-Backend
	Object-Relational Mapping
	Delays records
	Security

	PID-MobApp

	Results

	Testing
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

