ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Bachelor Theses - 13133
  • View Item
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Bachelor Theses - 13133
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Umělá inteligence pro robustní analýzu signálu z piezoelektrických biosenzorů

Artificial Intelligence for the Robust Analysis of Piezoelectric Biosensors

Type of document
bakalářská práce
bachelor thesis
Author
Lukáš Frána
Supervisor
Fabián Vratislav
Opponent
Horák Petr
Field of study
Základy umělé inteligence a počítačových věd
Study program
Otevřená informatika
Institutions assigning rank
katedra kybernetiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Piezoelektrické biosenzory lze využít k detekci toxických materiálů ve komplexních vzorcích. Diskutovány budou různé techniky pro analýzu signálu z těchto senzorů. Budou představeny metody pro přípravu dat, redukci šumu a filtrování. Výstup z předzpracování dat bude použit jako vstup pro klasifikační algoritmy založené na umělé inteligenci. Tato práce pojednává o využití umělé inteligence (UI) ke zlepšení výkonnostních charakteristik QCM biosenzorů. Konkrétněji se ukáže, že UI lze použít ke klasifikaci pozitivních a negativních vzorků na základě změn rezonanční frekvence.
 
Piezoelectric biosensors can be used for the detection of toxic materials in a complex mass. Here, various techniques are discussed for signal analysis of these sensors. Methods for data preparation, noise reduction and filtering will be introduced. The output of the data preprocessing will be used as an input for classification algorithms based on the artificial intelligence. This thesis discusses the use of artificial intelligence (AI) to improve the performance characteristics of QCM biosensors. More specifically, it will be shown that AI can be used to classify positive and negative samples based on the changes in resonant frequency.
 
URI
http://hdl.handle.net/10467/96701
View/Open
PLNY_TEXT (3.922Mb)
PRILOHA (3.376Mb)
PRILOHA (3.572Mb)
POSUDEK (207.6Kb)
POSUDEK (207.5Kb)
Collections
  • Bakalářské práce - 13133 [622]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV