Show simple item record

Road Quality Classification



dc.contributor.advisorFriedjungová Magda
dc.contributor.authorMartin Lank
dc.date.accessioned2021-06-18T22:51:38Z
dc.date.available2021-06-18T22:51:38Z
dc.date.issued2021-06-18
dc.identifierKOS-862365835805
dc.identifier.urihttp://hdl.handle.net/10467/95571
dc.description.abstractAutomatické vyhodnocování kvality vozovky může být užitečné jak správním orgánům, tak i těm účastníkům silničního provozu, kteří vyhledávají vozovky s kvalitním povrchem pro co největší potěšení z jízdy. Tato práce se zabývá návrhem modelu, který klasifikuje obrázky silnic do pěti kvalitativních kategorií na základě jejich celkového vzhledu. V práci prezentujeme nový ručně anotovaný dataset, obsahující fotografie ze služby Google Street View. Anotace datasetu byla navržena pro motorkáře, ale může být použita i pro jiné účastníky silničního provozu. Experimentovali jsme jak s předučenými konvolučními neuronovými sítěmi, jako jsou MobileNet či DenseNet, tak s vlastními architekturami konvolučních neuronových sítí. Dále jsme vyzkoušeli různé techniky předzpracování dat, např. odstraňování stínů či kontrastně-limitní adaptabilní histogramovou ekvalizací (CLAHE). Námi navrhovaný klasifikační model využívá CLAHE a na testovací sadě dosahuje 71% přesnosti. Vizuální kontrola ukázala, že navrhovaný model je i s touto přesností využitelný za účelem, pro který byl navržen.cze
dc.description.abstractAutomated evaluation of road quality can be helpful to authorities and also road users who seek high-quality roads to maximize their driving pleasure. This thesis proposes a model which classifies road images into five qualitative categories based on overall appearance. We present a new manually annotated dataset, collected from Google Street View. The dataset classes were designed for motorcyclists, but they are also applicable to other road users. We experimented with Convolutions Neural Networks, involving custom architectures and pre-trained networks, such as MobileNet or DenseNet. Also, many experiments with preprocessing methods such as shadow removal or CLAHE. Our proposed classification model uses CLAHE and achieves 71% accuracy on a test set. A visual check showed the model is applicable for its designed purpose despite the modest accuracy since the image data are often controversial and hard to label even for humans.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectklasifikace kvality vozovkycze
dc.subjectanalýza povrchu vozovkycze
dc.subjectstreet view snímkycze
dc.subjectdataset snímků kvality vozovkycze
dc.subjectkonvoluční neuronové sítěcze
dc.subjectroad quality classificationeng
dc.subjectroad surface analysiseng
dc.subjectstreet view imageseng
dc.subjectroad quality image dataseteng
dc.subjectimage classificationeng
dc.subjectconvolutional neural networkseng
dc.titleKlasifikace kvality vozovkycze
dc.titleRoad Quality Classificationeng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeVašata Daniel
theses.degree.disciplineZnalostní inženýrstvícze
theses.degree.grantorkatedra aplikované matematikycze
theses.degree.programmeInformatika 2009cze


Files in this item




This item appears in the following Collection(s)

Show simple item record