Self-supervised model pro efektivní rozpoznávání zvuku trénovaný na agregovaných datech
Self-supervised model for efficient sound recognition trained on aggregated data
Type of document
bakalářská prácebachelor thesis
Author
Vojtěch Houska
Supervisor
Kovalenko Alexander
Opponent
Kordík Pavel
Field of study
Znalostní inženýrstvíStudy program
Informatika 2009Institutions assigning rank
katedra aplikované matematikyRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Tato práce shrnuje nejmodernější metody využívané v hlubokém učení. Probírá použití autoenkodérů a metody předzpracování v oblasti rozpoznávání zvuku. Jako zdroj slabě anotovaných dat pro učení těchto modelů byla použita platforma YouTube. Práce porovnala vlastnosti latentních prostorů navrhovaných autoenkoderů, které byly testovány pomocí shlukování K-means. Použitá metoda regularizovaného autoenkodéru nepřekonala náhodně inicializovaný autoenkodér. V závěru práce jsou rozebrány příčiny a byla navrhnuta další doporučení pro pozdější výzkum. The thesis summarizes state-of-the-art approaches in deep learning. It discusses application of self-supervised autoencoders and pre-processing techniques used in sound recognition. YouTube platform served as a source of weakly-labeled data to train such models. Latent space properties of proposed autoencoders were compared and tested using K-means clustering. Implementation of Adversarially Constrained Autoencoder Interpolation failed to outperform randomly initialized autoencoder. The reasons are further discussed and several recommendations for future research are proposed.
Collections
- Bakalářské práce - 18105 [300]