Monokulární rekonstrukce 3D scény pro autonomní bezpilotní helikoptéru
Monocular 3D Scene Reconstruction for an Autonomous Unmanned Aerial Vehicle
Type of document
bakalářská prácebachelor thesis
Author
Matouš Melecký
Supervisor
Petrlík Matěj
Opponent
Čížek Petr
Field of study
Základy umělé inteligence a počítačových vědStudy program
Otevřená informatikaInstitutions assigning rank
katedra kybernetikyRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Rekonstrukce 3D modelu prostředí je klíčovou částí autonomního letu bezpilotní helikoptéry (UAV). Kombinace inerciální měřicí jednotky (IMU) a kamery je běžnou a dostupnou senzorovou sadou, jež je schopna získat informaci o měřítku prostředí. Tato práce si klade za cíl vyvinout algoritmus řešící problém 3D rekostrukce pro tyto senzory za využití existujících metod vizuálně-inerciální lokalizace (VINS). V práci jsou navrženy dva algoritmy, odlišené způsobem, jakým extrahují korespondence mezi snímky: párovací algoritmus se širokou bází a algoritmus založený na trackingu s malou bází. Také je implementována metoda vylepšující výslednou 3D strukturu po letu. Algoritmy jsou otestovány na veřejně dostupné datové sadě. Navíc jsou otestovány v simulátoru a je proveden experiment v reálném prostředí. Výsledky ukazují, že algoritmus založený na trackingu dosahuje výrazně lepších výsledků. Navíc testy na datech a experimenty v reálném prostředí ukazují, že algoritmus může být nasazen v praktických aplikačních situacích. The real-time 3D reconstruction of the surrounding scene is a key part in the pipeline of the autonomous flight of unmanned aerial vehicle (UAV). The combination of an inertial measurement unit (IMU) and a monocular camera is a common and inexpensive sensor setup that can be used to recover the scale of the environment. This thesis aims to develop an algorithm solving this problem for this particular setup by leveraging the existing visual-inertial navigation system (VINS) odometry algorithms for localisation. Two algorithms are developed, wide-baseline matching-based and small-baseline tracking-based. Also, an offline post-processing structure-refinement step is implemented to further improve the resulting structure. The algorithms and the refinement step are then evaluated on publicly available datasets. Furthermore, they are tested in a simulator, and a real-world experiment is conducted. The results show that the tracking-based algorithm is significantly more performant. Importantly, tests on the datasets and the real-world experiments suggest that this algorithm can be practically employed in application scenarios.
Collections
- Bakalářské práce - 13133 [778]