ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rozpoznávání orientačních bodů pomocí hlubokého učení

Visual Landmark Recognition with Deep Learning

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
Ondřej Bouček
Vedoucí práce
Tolias Georgios
Oponent práce
Mishkin Dmytro
Studijní obor
Informatika a počítačové vědy
Studijní program
Otevřená informatika
Instituce přidělující hodnost
katedra kybernetiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
V této práci se zabýváne rozpoznávání instancí pomocí hlubokého učení. Získáváme deskriptory pomocí modelu neuronové sítě, který byl naučený přístupem metric learning. Vytvořili jsme různá upravení k-NN klasifikátorů pro vylepšení kvality rozpoznávání. Vyzkoušeli jsme použití více deskriptodů, získaných z různých změn velikostí obrazu. Abychom simulovali použití v reálném světě, k vyhodnocení přístupu používáme data, která jsme vytvořili pod názvem Tini GLD. Pomocí více deskiptorů jsme dosáhli 0,84 Micro Average Precision.
 
In this work we deal with instance recognition using deep learning. For extracting global descriptors we use neural network model trained with metric learning approach. Various modifications to k-NN classifiers to improve recognition quality were created. We also experiment with using multiple descriptors extracted from rescaled images. To simulate real world application we evaluate the model on created dataset referred to as Tini GLD. We achieved 0.84 Micro Average precision when using multiple descriptors.
 
URI
http://hdl.handle.net/10467/89881
Zobrazit/otevřít
PLNY_TEXT (2.775Mb)
POSUDEK (116.4Kb)
POSUDEK (629.4Kb)
Kolekce
  • Bakalářské práce - 13133 [622]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV