ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • View Item
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generování trénovacích dat pro vizuální vyhledávání pomocí neuronových sítí

Data Augmentation by Image-to-Image Translation for Image Retrieval

Type of document
bakalářská práce
bachelor thesis
Author
Albert Möhwald
Supervisor
Jeníček Tomáš
Opponent
Mishkin Dmytro
Field of study
Informatika a počítačové vědy
Study program
Otevřená informatika
Institutions assigning rank
katedra kybernetiky
Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Denní a noční změny vzhledu obrázků jsou řešeny uměle naučenou augmentací dat. Konvoluční neuronové sítě (CNN) jsou jednou z nejmodernějších technik pro vizuální vyhledávání. Nicméně, výkon hlubokých neuronových sítí je závislý na počtu dat. pokud dojde k zadání nepravidelného vyhledávání, které se liší od učících dat, projeví se to na nízké úspěšnosti vyhledávání. Augmentace je provedena pomocí pix2pix a CycleGAN, jež poskytují překlad z obrázku do obrázku, kde z běžných denních obrázků jsou generovány nepravidelné noční obrázky, a tento překlad je trénován na čtyřech datasetech. Pro změření kvality překladu obrázků jsou využita evaluační skóre pro generující adversariální sítě (GAN), která jsou v této práci zkoumána a porovnána s datovou augmentací. Výsledný efekt augmentace je testován prostřednictvím meřítek pro visuální vyhledávání, kde výsledky ukazují zlepšení na datasetu 24/7 Tokyo za menší ztráty výkonu na znovuvytvořených datasetech Oxford a Paris.
 
Daytime and nighttime visual appearance changes are addressed with artificially learned data augmentation. Convolutional neural networks (CNNs) are one of the state-of-the-art techniques for image retrieval. However, powerful deep neural networks are data-driven resulting in poor performance, when an irregular query, different from training data, is inputted. Augmentation is addressed with pix2pix a CycleGAN, used to provide image-to-image translation from regular daytime images into irregular nighttime images and are trained over four image datasets. To measure image translation quality, Generative Adversarial Network (GAN) evaluation scores are explored and compared with data augmentation. The final data augmentation effect is tested on the image retrieval benchmarks, where results show improvement on the 24/7 Tokyo dataset with minor performance loss on daytime Revisited Oxford and Paris datasets.
 
URI
http://hdl.handle.net/10467/87756
View/Open
PLNY_TEXT (14.16Mb)
POSUDEK (90.25Kb)
POSUDEK (106.8Kb)
Collections
  • Bakalářské práce - 13133 [467]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV