Zobrazit minimální záznam

Numerical Assessment of Friction Dampers Under Quasi-Static and Impact Loading



dc.contributor.advisorCruz Santiago Aldina Maria
dc.contributor.authorMaqbool Uzair
dc.date.accessioned2018-07-02T11:04:12Z
dc.date.available2018-07-02T11:04:12Z
dc.date.issued2018-02-07
dc.identifierKOS-779034221105
dc.identifier.urihttp://hdl.handle.net/10467/78309
dc.description.abstractSteel structures are being the most widely used form of construction in various types of applications around the globe in recent years. To make the built environment sustainable, steel construction is considered as the nodal intervention in the construction industry. Whereas, in steel frame structures joints are considered to play the most significant role in providing ductility, sufficient rotational capacity and adequate dissipation under extreme conditions. However, the accidental loadings such as blast, fire and impact, may instantaneously causes rupture of the elements that are located within the vicinity of the impact, in some situation leading to a disproportionate failure of structural components or even to the failure of complete structure. Therefore, to make the built environment safe and to ensure that buildings remain operational and more importantly do not collapse under extreme loading conditions, this work aims at investigating a new innovative design strategy of ?FREEDAM?(Free from Damage Connections) connection under accidental conditions. This connection was initially design as a sustainable connection, able to withstand without any damage in the rotation demands due to seismic events. The response of this type of connections subject to transient dynamic loads is uncertain and yet absent in current design guidelines. Such innovative beam-to-column connections are equipped with friction dampers which are located at the bottom flange level of the connected beam to dissipate the input energy. Therefore, the study addresses the issues by developing a validated three-dimensional finite element model of such a connection under impact and quasi-static conditions. Exploring numerical procedures to simulate non-linear behaviour of friction damper subjected to impact loads, the friction resistance is calibrated by accounting the number of bolts, their diameter and tightening torque governing the preloading. The flexural resistance results from the product between the damper friction resistance and the lever arm. The friction damper numerical model is used to describe the behaviour of joint; i) ?under quasi-static loading? and ii) ?under impact conditions? presented in a beam-to-column moment resistant connection. The components of the friction damper are responsible in facilitating the dissipation of induced energy in joints and being able to provide sufficient ductility to a joint. Although, the friction damper model is a less intricate model, compared to the complete joint, yet its frictional behaviour incorporation to a joint?s dissipation capacity is quite arduous. Equipped with a failure criterion describing the softening phase of the materials, the FE model describes the failure modes observed experimentally in the displacing plate of the friction damper. Results exhibited that the transient loads application, induced elevated strain rate in the material, which enhanced the constitutive mechanical properties. Therefore, enabling the friction damper to resist the maximum load observed in quasi-static cases with reduced displacements. Parametric studies show that stiffer friction dampers are less prone to develop elevated strain rates and therefore, less keen to strength enhancement; on the other hand, the ductility capacity is reduced for rather flexible dampers comparing the quasi-static with the impact response.cze
dc.description.abstractSteel structures are being the most widely used form of construction in various types of applications around the globe in recent years. To make the built environment sustainable, steel construction is considered as the nodal intervention in the construction industry. Whereas, in steel frame structures joints are considered to play the most significant role in providing ductility, sufficient rotational capacity and adequate dissipation under extreme conditions. However, the accidental loadings such as blast, fire and impact, may instantaneously causes rupture of the elements that are located within the vicinity of the impact, in some situation leading to a disproportionate failure of structural components or even to the failure of complete structure. Therefore, to make the built environment safe and to ensure that buildings remain operational and more importantly do not collapse under extreme loading conditions, this work aims at investigating a new innovative design strategy of ?FREEDAM?(Free from Damage Connections) connection under accidental conditions. This connection was initially design as a sustainable connection, able to withstand without any damage in the rotation demands due to seismic events. The response of this type of connections subject to transient dynamic loads is uncertain and yet absent in current design guidelines. Such innovative beam-to-column connections are equipped with friction dampers which are located at the bottom flange level of the connected beam to dissipate the input energy. Therefore, the study addresses the issues by developing a validated three-dimensional finite element model of such a connection under impact and quasi-static conditions. Exploring numerical procedures to simulate non-linear behaviour of friction damper subjected to impact loads, the friction resistance is calibrated by accounting the number of bolts, their diameter and tightening torque governing the preloading. The flexural resistance results from the product between the damper friction resistance and the lever arm. The friction damper numerical model is used to describe the behaviour of joint; i) ?under quasi-static loading? and ii) ?under impact conditions? presented in a beam-to-column moment resistant connection. The components of the friction damper are responsible in facilitating the dissipation of induced energy in joints and being able to provide sufficient ductility to a joint. Although, the friction damper model is a less intricate model, compared to the complete joint, yet its frictional behaviour incorporation to a joint?s dissipation capacity is quite arduous. Equipped with a failure criterion describing the softening phase of the materials, the FE model describes the failure modes observed experimentally in the displacing plate of the friction damper. Results exhibited that the transient loads application, induced elevated strain rate in the material, which enhanced the constitutive mechanical properties. Therefore, enabling the friction damper to resist the maximum load observed in quasi-static cases with reduced displacements. Parametric studies show that stiffer friction dampers are less prone to develop elevated strain rates and therefore, less keen to strength enhancement; on the other hand, the ductility capacity is reduced for rather flexible dampers comparing the quasi-static with the impact response.eng
dc.language.isoENG
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectFriction Dampers,Quasi-Static Loading,Impact loading,Steel structurescze
dc.subjectFriction Dampers,Quasi-Static Loading,Impact loading,Steel structureseng
dc.titleNumerical Assessment of Friction Dampers Under Quasi-Static and Impact Loadingcze
dc.titleNumerical Assessment of Friction Dampers Under Quasi-Static and Impact Loadingeng
dc.typediplomová prácecze
dc.typemaster thesiseng
dc.date.accepted2018-02-07
dc.contributor.refereeBorges Pereira Eduardo Nuno
theses.degree.disciplineSustainable Constructions under Natural Hazards and Catastrophic Eventscze
theses.degree.grantorkatedra ocelových a dřevěných konstrukcícze
theses.degree.programmeCivil Engineeringcze


Soubory tohoto záznamu




Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam