ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Bachelor Theses - 13133
  • View Item
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Bachelor Theses - 13133
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Úlohy interpretace obličeje na obrázcích nízké kvality

Face Interpretation Problems on Low Quality Images

Type of document
bakalářská práce
bachelor thesis
Author
Šubrtová Adéla
Supervisor
Čech Jan
Opponent
Urban Martin
Field of study
Informatika a počítačové vědy
Study program
Otevřená informatika
Institutions assigning rank
katedra kybernetiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Automatický odhad věku a pohlaví má potenciální reálné aplikace (např. sledovaní osob, komerční profilování, apod.). Často jsou ale k dispozici pouze obrázky s nízkým rozlišením. Cílem této práce je porovnat základní klasifikátor věku a pohlaví, který byl trénován na obrázcích vysoké kvality, se dvěma navrhovanými strategiemi pro zlepšení přesnosti predikce na obrázcích nízkého rozlišení. (1) Rozšíření datové sady, které adaptuje základní CNN klasifikátor věku a pohlaví pomocí syntézy obrázků nízkého rozlišení. (2) Superrozlišení vylepšuje rozlišení za použití podmíněné generativní adversariální sítě a věk a pohlaví se následně odhadují za použití základního CNN klasifikátoru. Na rozdíl od metody rozšíření dat tento mezikrok poskytuje interpretaci výsledků srozumitelnou pro člověka. Experimenty ukazují, že obě zmíněné strategie překonaly základní metodu a opravdu zlepšují přesnost predikce na obrázcích nízkého rozlišení. Se srovnatelným počtem trénovacích dat poskytuje superrozlišení znatelně lepší výsledky.
 
Automatic age and gender prediction is applicable in many real-world problems (e.g. surveillance, commercial profiling, etc.). Often, only low-resolution(LR) images are available. The goal of the thesis is to compare a baseline CNN age and gender predictor trained on high-quality images with two proposed strategies for improving prediction accuracy on low-resolution images: (1) Data-augmentation strategy trains a CNN classifier on synthetically generated LR images. (2) Super-resolution strategy enhances image resolution using conditional generative adversarial network (cGAN) and the age and gender prediction is subsequently made using the baseline CNN. The intermediate step provides human-readable interpretation, unlike in the case of data-augmentation. The experiments show that both methods outperformed the baseline method and indeed improve prediction accuracy on LR images. The super-resolution noticeably exceeding the data-augmentation given comparable amount of training data.
 
URI
http://hdl.handle.net/10467/76125
View/Open
PLNY_TEXT (24.20Mb)
POSUDEK (53.66Kb)
POSUDEK (100.6Kb)
Collections
  • Bakalářské práce - 13133 [851]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV