ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedra teoretické informatiky
  • Diplomové práce - 18101
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedra teoretické informatiky
  • Diplomové práce - 18101
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Meta-learning na relačních datech

Meta-learning on relational data

Typ dokumentu
diplomová práce
master thesis
Autor
Blažková Adéla
Vedoucí práce
Motl Jan
Oponent práce
Šimeček Ivan
Studijní obor
Znalostní inženýrství
Studijní program
Informatika
Instituce přidělující hodnost
katedra teoretické informatiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Předmětem této práce je návrh a implementace meta-learningového modelu, který predikuje optimální pořadí výpočtu příznaků při transformaci relačních dat do jedné tabulky. V návrhu řešení je stanovena metrika pro vyhodnocení optimálního pořadí příznaků, na základě které jsou vytvořeny 4 predikční modely. Zvolené algoritmy pro klasifikační a regresní modely jsou logistická regrese, algoritmus ElasticNet a algoritmus XGBoost. Použitými technologiemi jsou Jupyter Notebook (Python), databáze MySQL a nástroj Predictor Factory pro transformaci relačních dat. Výstupem práce jsou vytvořená trénovací meta-data a vyhodnocení přínosu jednotlivých predikčních modelů.
 
The aim of this thesis is to design and implement a meta-learning model that predicts the optimal order of calculation features when transforming relational data into a single table. The design part specifies a metric for evaluation of the optimal order of the features, based upon which four prediction models are created. Logistic regression, ElasticNet algorithm and XGBoost algorithm were chosen to create classification and regression models. The technologies used for implementation of these algorithms were Jupyter Notebook (Python), MySQL database, and Predictor Factory tool for relational data transformation. The output of the thesis is represented by the created training meta-data and the evaluation of the contribution of each individual prediction model.
 
URI
http://hdl.handle.net/10467/73968
Zobrazit/otevřít
PLNY_TEXT (3.588Mb)
POSUDEK (110.9Kb)
POSUDEK (112.8Kb)
Kolekce
  • Diplomové práce - 18101 [227]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV