Show simple item record

dc.contributor.authorHrivnak , Jiri
dc.contributor.authorMotlochova , Lenka
dc.date.accessioned2017-02-09T11:37:02Z
dc.date.available2017-02-09T11:37:02Z
dc.date.issued2016
dc.identifier.citationActa Polytechnica. 2016, vol. 56, no. 4, p. 283-290.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67273
dc.description.abstractThe aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of A1 and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of A2 and a specific version of two variable Jacobi polynomials. The connection with recently studied G2-polynomials is established. Formulas for connection between the four types of orbit functions of Bn or Cn and the (anti)symmetric multivariate cosine and sine functions are explicitly derived.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/3517
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectWeyl group orbit functionsen
dc.subjectChebyshev polynomialsen
dc.subjectJacobi polynomialsen
dc.subject(anti)symmetric trigonometric functionsen
dc.titleON CONNECTING WEYLORBIT FUNCTIONS TO JACOBI POLYNOMIALS AND MULTIVARIATE ANTISYMMETRIC TRIGONOMETRIC FUNCTIONS
dc.typearticleen
dc.date.updated2017-02-09T11:37:02Z
dc.identifier.doihttps://doi.org/10.14311//AP.2016.56.0282
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License