Show simple item record

dc.contributor.authorGazeau , Jean-Pierre
dc.date.accessioned2017-02-09T11:34:20Z
dc.date.available2017-02-09T11:34:20Z
dc.date.issued2016
dc.identifier.citationActa Polytechnica. 2016, vol. 56, no. 3, p. 173-179.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67263
dc.description.abstractWe present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on a normalized positive operator-valued measure. The latter are built from families of density operators labeled by points of the measure space. We especially focus on group representation and probabilistic aspects of these constructions. Simple phase space examples illustrate the procedure: plane (Weyl-Heisenberg symmetry), half-plane (affine symmetry). Interesting applications to quantum cosmology (“smooth bouncing”) for Friedmann-Robertson-Walker metric are presented and those for Bianchi I and IX models are mentioned.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/3506
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectIntegral quantization, covariance, POVM, affine group, Weyl-Heisenberg group, coherent states, FRW model, smooth bouncingen
dc.titleCOVARIANT INTEGRAL QUANTIZATIONS AND THEIR APPLICATIONS TO QUANTUM COSMOLOGY
dc.typearticleen
dc.date.updated2017-02-09T11:34:20Z
dc.identifier.doihttps://doi.org/10.14311/AP.2016.56.0173
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License