ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detekce falešných recenzí v rekomendačních systémech

Graph-Based Fraud Detection in Recommender Systems

Typ dokumentu
diplomová práce
master thesis
Autor
Daniel Bohuněk
Vedoucí práce
Da Silva Alves Rodrigo Augusto
Oponent práce
Kordík Pavel
Studijní obor
Znalostní inženýrství
Studijní program
Informatika
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Podvodníci se snaží své chování maskovat, aby zůstali skrytí. To může mít za následek náročný návrh modelů, které je mají spolehlivě detekovat, jelikož část podvodníků může zůstat ukrytá v množině označené za ne-podvodníky. Existující výzkum ukazuje, že grafová konvoluce může přinést vylepšení díky její schopnosti využít vztahy mezi jednotlivými případy. Tato práce navrhuje siamskou grafovou neuronovou síť, kterou lze trénovat semi-supervizovaným učením, kdy je k dispozici jen malá množina známých podvodníků. Tento model projevuje lepší výkon než existující metody a vyšší odolnost proti maskovaným podvodníkům.
 
Fraudsters attempt to camouflage their behavior to remain undetected. This can make it challenging to design models capable of reliably discovering them, as negative samples may be contaminated with hidden positives. Existing research has shown that taking advantage of relationships between instances using graph convolution improves the detection ability. This work proposes a siamese graph neural network that can be trained in a semi-supervised fashion using a small set of known fraudsters. It shows improved performance over existing methods and increased resilience against camouflaged fraudsters.
 
URI
http://hdl.handle.net/10467/114583
Zobrazit/otevřít
PLNY_TEXT (2.687Mb)
POSUDEK (49.13Kb)
POSUDEK (40.60Kb)
Kolekce
  • Diplomové práce - 18105 [235]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV