Show simple item record



dc.contributor.authorNatanson, Gregory
dc.date.accessioned2022-05-04T12:02:52Z
dc.date.available2022-05-04T12:02:52Z
dc.date.issued2022
dc.identifier.citationActa Polytechnica. 2022, vol. 62, no. 1, p. 100-117.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/100621
dc.description.abstractThe paper advances Odake and Sasaki’s idea to re-write eigenfunctions of rationally deformed Morse potentials in terms of Wronskians of Laguerre polynomials in the reciprocal argument. It is shown that the constructed quasi-rational seed solutions of the Schrödinger equation with the Morse potential are formed by generalized Bessel polynomials with degree-independent indexes. As a new achievement we can point to the construction of the Darboux-Crum net of isospectral rational potentials using Wronskians of generalized Bessel polynomials with no positive zeros. One can extend this isospectral family of solvable rational potentials by including ‘juxtaposed’ pairs of Romanovski-Bessel polynomials into the aforementioned polynomial Wronskians which results in deleting the corresponding pairs of bound energy states.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/7652
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleQuantization of rationally deformed Morse potentials by Wronskian transforms of Romanovski-Bessel polynomials
dc.typearticleen
dc.date.updated2022-05-04T12:02:52Z
dc.identifier.doi10.14311/AP.2022.62.0100
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License