Acta Polytechnica. 2014, vol. 54, no. 2
http://hdl.handle.net/10467/66602
2021-05-18T05:18:34ZEXACT RENORMALIZATION GROUP FOR POINT INTERACTIONS
http://hdl.handle.net/10467/67131
EXACT RENORMALIZATION GROUP FOR POINT INTERACTIONS
Turgut Teoman, Osman Teoman Turgut; Eröncel , Cem
Renormalization is one of the deepest ideas in physics, yet its exact implementation in any interesting problem is usually very hard. In the present work, following the approach by Glazek and Maslowski in the flat space, we will study the exact renormalization of the same problem in a nontrivial geometric setting, namely in the two dimensional hyperbolic space. Delta function potential is an asymptotically free quantum mechanical problem which makes it resemble nonabelian gauge theories, yet it can be treated exactly in this nontrivial geometry.
2014-01-01T00:00:00ZLAPLACERUNGELENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
http://hdl.handle.net/10467/67130
LAPLACERUNGELENZ VECTOR IN QUANTUM MECHANICS IN NONCOMMUTATIVE SPACE
Prešnajder , Peter; Gáliková , Veronika; Kováčik , Samuel
The object under scrutiny is the dynamical symmetry connected with conservation of the Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of noncommutative quantum mechanics (NCQM). The considered noncommutative configuration space has such a “fuzzy”structure that the rotational invariance is not spoilt. An analogy with the LRL vector in the NCQM is brought to provide our results and also a comparison with the standard QM predictions.
2014-01-01T00:00:00ZA SIMPLE DERIVATION OF FINITETEMPERATURE CFT CORRELATORS FROM THE BTZ BLACK HOLE
http://hdl.handle.net/10467/67129
A SIMPLE DERIVATION OF FINITETEMPERATURE CFT CORRELATORS FROM THE BTZ BLACK HOLE
Ohya , Satoshi
We present a simple Lie-algebraic approach to momentum-space two-point functions of two-dimensional conformal field theory at finite temperature dual to the BTZ black hole. Making use of the real-time prescription of AdS/CFT correspondence and ladder equations of the Lie algebra so(2,2) ∼= sl(2,R)L⊕sl(2,R)R, we show that the finite-temperature two-point functions in momentum space satisfy linear recurrence relations with respect to the left and right momenta. These recurrence relations are exactly solvable and completely determine the momentum-dependence of retarded and advanced two-point functions of finite-temperature conformal field theory.
2014-01-01T00:00:00ZA DIFFERENTIAL INTEGRABILITY CONDITION FOR TWODIMENSIONAL HAMILTONIAN SYSTEMS
http://hdl.handle.net/10467/67128
A DIFFERENTIAL INTEGRABILITY CONDITION FOR TWODIMENSIONAL HAMILTONIAN SYSTEMS
Mostafazadeh , Ali
We review, restate, and prove a result due to Kaushal and Korsch [Phys. Lett. A 276, 47 (2000)] on the complete integrability of two-dimensional Hamiltonian systems whose Hamiltonian satisfies a set of four linear second order partial differential equations. In particular, we show that a two-dimensional Hamiltonian system is completely integrable, if the Hamiltonian has the form H = T + V where V and T are respectively harmonic functions of the generalized coordinates and the associated momenta.
2014-01-01T00:00:00Z