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Abstract

The thesis develops numerical tools for dynamic analysis of elastic media. Particularly, the hybrid-
Trefftz method is applied in order to approximate the solution of the underlying differential equation
expressed in the frequency domain. In addition, wave propagation in unbounded media is investi-
gated and the absorbing boundary modelling approach is described in detail. The main purpose of
the work was to develop a program enabling such analysis and implement it in Matlab software.
To validate the code, the obtained results are compared to the analytical solutions as well as to the
results acquired with the wave based method, for which an already existing code has been provided.
Moreover, theoretical aspects of both methods are summarized and compared.
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1 Introduction

The problem of dynamically loaded media is a frequently investigated process, especially in the
fields of civil engineering, earthquake engineering and geotechnics. Under certain simplifications,
such physical behaviour can be described by a set of coupled partial differential equations expressed
in terms of unknown displacement field depending on the time and space coordinates. Unfortu-
nately, for most of the practical cases this mathematical problem cannot be solved analytically and
therefore numerical methods need to be applied to approximate the solution.

As the set of governing equations contains differentiation with respect to time and space co-
ordinates, both dependencies need to be treated by a suitable method. By transferring all the
field equations into the frequency domain, the original problem in time and space is divided into
a number of subproblems, which are however formulated in terms of space coordinates only. The
associated space solution is subsequently approximated. Various methods were developed to tackle
such task, a widely used option is e.g. the finite element method (FEM). However, for higher excita-
tion frequencies a fine domain discretization is required, which results in large equation systems and
computationally expensive simulation. Alternative options for such analysis are Trefftz methods,
which use special shape functions for the approximation of the unknown fields. The individual basis
functions are required to satisfy the governing equation, therefore inside the domain the approxi-
mated field is implicitly the solution of the differential equation. However, the basis components
may violate the prescribed boundary conditions and hence they need to be combined in order to
decrease the resulting error on the boundary. In the thesis the so called hybrid-Trefftz method is
investigated, in which the boundary traction field is additionally approximated on the boundary of
the individual elements. The purpose of such field is to impose the boundary and the inter-element
continuity conditions.
The main objective of this work is to implement the hybrid-Trefftz method for numerical analysis

of 2D elastodynamic media. Matlab software is used as the programming language for the code
development. Besides the standard boundary conditions, also a modelling approach for the analysis
of unbounded media is incorporated in the program. To validate the implemented method, the
obtained results are compared to both analytical solutions as well as to the results acquired with
the wave based method, for which an already existing code has been provided. Moreover, theoretical
aspects of both hybrid-Trefftz and wave based methods are summarized and compared.
The thesis is structured into six chapters. The first one is dedicated to introduction of the

analysed problem and to derivation of the governing differential equation. In addition, the transfer
of all the fields and equations into the frequency domain is described. The resulting spectral
representation forms the base for the derivation of the hybrid-Trefftz method, which is described
in detail in the second chapter. Before the finite element system of equations is generated, the
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solution procedure of the spectral Lamé equation is outlined, so that the basis functions satisfying
the governing equation are formulated. In the next chapter, wave propagation in infinite media is
studied, particularly, the absorbing boundary modelling approach is derived and described in detail.
The last theoretical chapter is devoted to a brief introduction of the wave based method and to its
comparison to the hybrid-Trefftz method. In the fifth chapter the implementation process of the
whole program is outlined and in-depth description of all the individual subroutines is provided. In
the last chapter the results of three numerical examples are discussed; for the first two the analytical
solutions are available and for the third one the wave based method results are considered as the
reference. Convergence process of both p- and h-refinement strategies is studied and performance
of the absorbing boundary condition is investigated.
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2 Problem Description

The aim of this chapter is to introduce the problem of interest and provide a theoretical background
for the upcoming sections.

As was indicated in the introduction, the objective of this thesis is the numerical analysis of loaded
elastodynamic media. To enable a reasonable description of such problem, certain assumptions
regarding the material, loading and geometry need to be adopted, which is discussed in the first
sections. Afterwards, the governing differential equation is derived. It turns out that not only
derivatives with respect to space coordinates but as well with respect to time appear, which makes
the solution procedure more complex. The so called frequency domain analysis method is applied,
which allows to transfer the original problem in space and time into a number of problems dependent
on space coordinates only. The solution procedure of the resulting system of partial differential
equations in space is the main purpose of this work and a single chapter is devoted to it.

2.1 Assumptions and Hypotheses

The analysis of dynamically loaded medium is a complex problem. The following assumptions are
considered through this thesis so that the solution of such task is simplified:

• The matter inside the body is continuously distributed with no empty spaces, hence the
structure may be analysed as a continuum.

• The material is isotropic. This statement indicates that the material response and its prop-
erties are identical in all directions.

• The relation between the stresses and strains is assumed to be linear.

• The strains and displacements are assumed to be small. This implies the deformation caused
by the loading has a negligible effect on the equilibrium of forces, which can therefore be eval-
uated on the undeformed structure. Such assumption is referred to as geometrical linearity.

• The loading of the structure is assumed to be a periodic function in time. Some comments
regarding arbitrary transient functions are placed in the end of the chapter.

2.2 Domain and Geometry

To make the modelling procedure and the visualization of the results more convenient, certain as-
sumptions regarding the geometry are considered. It is assumed that a 2D shape placed in xy-plane
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is extruded in the direction of z-axis, in which the dimension of the object tends to infinity. Further-
more, the material properties, prescribed boundary conditions and the loading remain constant in
this longitudinal direction. In addition, both displacement and traction boundary conditions have
zero component in the z-direction. Under such presumptions the body can be modelled as a 2D
domain.

In fig. 2.1 a general scheme of a possible structure of interest is depicted. The domain is rep-
resented by symbol V and Γ stands for the boundary of such body. It can be partitioned into
two nonoverlapping complementary sections, Γu and Γσ, which are called Dirichlet and Neumann
boundaries respectively. Boundary displacements are prescribed on the former one while boundary
tractions are given on the latter one.

Γu

Γ
�

y

x

V

Figure 2.1: Domain and boundary

2.3 Governing Equation in Time Domain

The behaviour of a loaded structure can be described using three main sets of equations, which
are equilibrium equations, kinematic equations and material law. These need to be supplied with
boundary and initial conditions so that the problem is well defined. Afterwards, the relations are
combined to form a governing system of equations.
All the relations are expressed using a matrix notation and a Cartesian reference frame is adopted.

The mentioned equations and formulas can be found in [Poruchikov 2012] and [Gonzalez and Stuart
2008].

2.3.1 Stress and Strain Measure

The assumption of small strains and displacements was briefly discussed in section 2.1. As a result
of geometrical linearity, small strain tensor is adopted as the strain measure. Using Voigt notation,
it can be expressed as a strain vector ε(x,y,t) with six independent components. For the 2D case
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of interest, the number of components reduces to three and are ordered as

ε =
î
εx εy γxy

óT
, (2.1)

where εx(x,y,t) and εy(x,y,t) are the normal strain components while γxy(x,y,t) is the shear strain
component.
As the stress and strain tensors need to form a work conjugate pair, engineering stress tensor

is chosen as the valid stress measure. Similarly to the strain counterpart, its components can be
restructured into the engineering stress vector σ(x,y,t). For the 2D case the vector is expressed as

σ =
î
σx σy τxy

óT
, (2.2)

with σx(x,y,t) and σy(x,y,t) being the normal stress components and τxy(x,y,t) the shear stress
component.

2.3.2 Equilibrium Equations

The equilibrium equations describe an equilibrium of forces on an infinitesimal volume and can be
derived using the law of conservation of momentum. Since the loading and therefore all the field
quantities may vary in time, also inertia forces need to be included. In a matrix notation, the
relations can be expressed as

Dσ + b = ρü in V, (2.3)

where u(x,y,t) is a vector collecting displacement components, vector b(x,y,t) contains body forces
and ρ(x,y) is the mass density. MatrixD is a differential operator matrix. The symbol (̈·) represents
the second time derivative.
For the particular case of 2D elastodynamic continuum the vectors and matrices are formed as

u =
î
u v

óT
, b =

î
bx by

óT
, D =

 ∂

∂x
0 ∂

∂y

0 ∂

∂y

∂

∂x

 , (2.4)

where u(x,y,t) and v(x,y,t) are the displacement components in x and y direction and bx(x,y,t)
and by(x,y,t) are the individual body forces components.

2.3.3 Kinematic Equations

Kinematic equations describe the relation between displacements and strains. The small strain
vector ε can be expressed in terms of displacements as

ε = D∗u in V. (2.5)
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Matrix D∗ is the differential kinematic operator which is the adjoint of D. Such property is a
consequence of the geometrically linearized theory. As a Cartesian reference frame is considered,
D∗ can be replaced by DT .

2.3.4 Material Law

The material equations express the relation between the strains and stresses. For simplicity, the
linear elastic material law

σ = kε in V (2.6)

is considered, where k(x,y) denotes the material matrix. As the material is considered to by
isotropic, only two constants are necessary to form the matrix k. These can either be the Lamé
coefficients λ(x,y) and µ(x,y) or the Young modulus Ẽ(x,y) and Poisson’s ratio ν(x,y). The relation
between both possible descriptions reads [Malvern 1969]

λ = νẼ

(1 + ν)(1− 2ν) , (2.7)

µ = Ẽ

2(1 + ν) . (2.8)

When the 2D case is of interest, one has to distinguish between plane strain and plane stress case.
The assumptions regarding the geometry were described in section 2.1. Such situation indicates
that the displacement as well as the normal strain in z-direction are zero and therefore plane strain
case is of interest. The material matrix has then the form [Bauchau and Craig 2009]

k =

λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ

 . (2.9)

In reality, the applicability of linear elasticity is strongly limited and more complex theories need
to be considered in order to approximate the real behaviour more accurately. Some comments
regarding the incorporation of damping into the formulation are mentioned in section 2.4.4.

2.3.5 Boundary Conditions

To pose a valid problem, boundary conditions must be introduced. The first type of boundary
condition are prescribed displacements on the Dirichlet part of boundary Γu,

u = uΓ on Γu, (2.10)

where uΓ(x,y,t) =
î
uΓ vΓ

óT
denotes the vector of prescribed displacement components uΓ(x,y,t)

and vΓ(x,y,t) in Cartesian directions. This type of boundary condition is also called Dirichlet
boundary condition.
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The second type of boundary condition, also called Neumann boundary condition, is in terms of
prescribed tractions on a portion of boundary Γσ. Symbolically it can be expressed as

t = tΓ on Γσ, (2.11)

where

tΓ(x,y,t) =
î
tΓ,x tΓ,y

óT
(2.12)

stands for vector of prescribed traction components tΓ,x(x,y,t) and tΓ,y(x,y,t) in the individual direc-
tions. The boundary traction vector t(x,y,t) =

î
tx ty

óT
collecting traction components tx(x,y,t)

and ty(x,y,t) is calculated based on the equilibrium at a boundary Γ as

t = Nσ on Γ. (2.13)

Matrix

N =
[
nx 0 ny

0 ny nx

]
(2.14)

collects components of the outward normal at the boundary.

2.3.6 Initial Conditions

For a general type of excitation, it is necessary to provide information regarding the initial state of
the structure, such as initial displacement shape ũ0(x,y) and initial velocity state ṽ0(x,y) in the
beginning of an observation when t = 0. Such condition can be formulated as

u = ũ0 at t = 0,

u̇ = ṽ0 at t = 0,
(2.15)

where symbol ˙(·) denotes the time derivative.
However, it was mentioned in section 2.1 that the loading is assumed to be a periodic function in

time. Due to the damping of the structure, which always occurs in reality, the oscillations caused by
the initial conditions reduce significantly with increasing time. After a certain period they will have
negligible effect and only the oscillations caused by the periodic loading will play a role. Therefore,
the free vibration part of the solution is neglected and only the steady state solution is of interest.

2.3.7 Governing Differential Equation

To form the governing differential equation, previously mentioned sets of equations are combined
together. In particular, kinematic equations (2.5) are substituted into the material law (2.6), which
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is then inserted into equilibrium equations (2.3). The resulting equation is then expressed as

DkD∗u− ρü+ b = 0 in V. (2.16)

Substituting all the already defined matrices and vectors into eq. (2.16) and assuming the Lamé
parameters are constant in the domain V , one obtains

(λ+ µ)∇∇Tu+ µ∇2u− ρü+ b = 0, (2.17)

where ∇ = [∂/∂x ∂/∂y]T is the gradient and ∇2 = ∇T∇ = ∂2/∂x2 + ∂2/∂y2 is the Laplace
operator. Eq. (2.16) expresses a system of two second order partial differential equations in time
and space and is referred to as the Lamé equation.

2.4 Frequency Domain Analysis

In the previous section, the governing system of partial differential equations was derived. As the
problem of interest is of dynamic nature, not only derivatives with respect to space coordinates
but also with respect to time coordinate appear, which makes the solution procedure even more
complex. Various numerical techniques and methods to deal with the time dependency are available,
e.g. modal analysis, explicit and implicit time integration methods or frequency domain analysis.
Depending on the analysed problem and type of excitation, some methods are more suitable than
others. In the scope of this thesis, the frequency domain analysis method will be adopted.
An essence of frequency domain analysis [Clough and Penzien 2003] is to transfer the problem

depending on space and time coordinates into a number of sub problems which however depend
on the space coordinates only. A mathematical procedure enabling such decomposition is named
Fourier series expansion. With its help the governing differential equation as well as all the field
equations and boundary conditions can be transformed into the frequency domain. The resulting
formulation becomes a starting point for the space discretization procedure.

2.4.1 Fourier Series Expansion

Any periodic function f(t) with period T can be decomposed into a sum of harmonic functions
with discrete frequencies, such decomposition is referred to as Fourier series. Using a complex
representation, it is expressed as [Serov et al 2017]

f(t) =
∞∑

k=−∞
ck exp(iωkt), (2.18)

where ωk = kω1 are the discrete circular frequencies and ω1 = 2π/T is the circular frequency of
function f(t). The coefficients ck can be calculated as

ck = 1
T

∫ T

0
f(t) exp(−iωkt)dt. (2.19)
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2.4.2 Transfer to Frequency Domain

An excitation of a structure is driven by the prescribed boundary tractions tΓ(x,y,t), boundary
displacements uΓ(x,y,t) and body forces b(x,y,t), which are all for simplicity assumed to be periodic
functions in time. Due to this property, it is possible to perform a Fourier series expansion of the
related fields in a similar way as was described in eq. (2.18). However, in practice it is not feasible
to keep the infinite number of terms of the expansion, therefore only a finite number of terms 2K−1
is included in the series. This results in an approximation

tΓ(x,y,t) ≈
K−1∑

k=1−K
tΓ,k(x,y) exp(iωkt), (2.20)

uΓ(x,y,t) ≈
K−1∑

k=1−K
uΓ,k(x,y) exp(iωkt), (2.21)

b(x,y,t) ≈
K−1∑

k=1−K
bk(x,y) exp(iωkt), (2.22)

where the coefficients tΓ,k, uΓ,k and bk are computed based on eq. (2.19) as

tΓ,k(x,y) = 1
T

∫ T

0
tΓ(x,y,t) exp(−iωkt)dt, (2.23)

uΓ,k(x,y) = 1
T

∫ T

0
uΓ(x,y,t) exp(−iωkt)dt, (2.24)

bk(x,y) = 1
T

∫ T

0
b(x,y,t) exp(−iωkt)dt. (2.25)

Note that these coefficients are known, since the prescribed boundary values and body forces are
given.
As the loading and boundary conditions are periodic functions in time, one can assume that also

the response is periodic. This allows to perform a Fourier expansion of the unknown displacement,
traction, stress and strain fields, expressed as

u(x,y,t) ≈
K−1∑

k=1−K
uk(x,y) exp(iωkt), (2.26)

t(x,y,t) ≈
K−1∑

k=1−K
tk(x,y) exp(iωkt), (2.27)

σ(x,y,t) ≈
K−1∑

k=1−K
σk(x,y) exp(iωkt), (2.28)

ε(x,y,t) ≈
K−1∑

k=1−K
εk(x,y) exp(iωkt). (2.29)

Coefficients uk(x,y), tk(x,y), σk(x,y) and εk(x,y) are however unknown.
Due to the linearity of the problem, principle of superposition can be applied. This allows to
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calculate the response for each term in the sum separately and superpose the contribution of each
frequency afterwards. Substituting u = uk(x,y) exp(iωkt) and b = bk(x,y) exp(iωkt) into eq. (2.16)
and cancelling the exponential terms yields

DkD∗uk + ω2
kρuk + bk = 0 for k = {1−K,2−K, . . . ,K − 1}. (2.30)

Inserting the particular definitions of the matrices D and k, the previous equation can be reformu-
lated

(λ+ µ)∇∇Tuk + µ∇2uk + ω2
kρuk + bk = 0 for k = {1−K,2−K, . . . ,K − 1}. (2.31)

Eq. (2.31) is the governing differential equation of the system in the frequency domain, also
named spectral form of Lamé equation. For each k it represents a system of two coupled partial
differential equations depending on the space coordinates only.
Similarly, also equilibrium, kinematic and constitutive equations as well as the boundary condi-

tions can be expressed for a single harmonic excitation as

Dσk + ω2
kρuk + bk = 0 in V, (2.32)

εk = D∗uk in V, (2.33)

σk = kεk in V, (2.34)

tk = Nσk on Γ, (2.35)

uk = uΓ,k on Γu, (2.36)

tk = tΓ,k on Γσ. (2.37)

By the previously described procedure, a periodic elastodynamic problem can be decomposed
into 2K − 1 uncoupled sets of partial differential equations (2.30) with dependency on the space
coordinates only. After the solution is obtained for each of 2K− 1 circular frequencies ωk, the final
response can be calculated based on eqs. (2.26) to (2.29). The solution procedure of eq. (2.30) is the
main objective of this thesis and will be described in detail in chapter 3. For clarity, the subscript k
in eqs. (2.30) to (2.37) is omitted in the derivations presented in the subsequent chapters, however,
the individual symbols still denote the spectral representation of the related fields.

2.4.3 Arbitrary Excitation

So far the transformation of the equations into the frequency domain was discussed for periodic
functions in time. When an arbitrary excitation is to be analysed, the previously mentioned
procedure needs to be modified. It is no longer possible to express a function f(t) in eq. (2.18) as a
series of harmonic oscillations with discrete circular frequencies, however, the frequency spectrum
becomes continuous in such case. To perform the transfer of the field variables to the frequency
domain, the Fourier transformation [Serov et al 2017] needs to be applied. Similarly, to reconstruct
the results in the time domain, the inverse Fourier transformation is used. Both of these procedures
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require solution of an integral which for most of the practical cases cannot be computed analytically.
Therefore, a numerical procedure named discrete Fourier transform was invented to approximate
the Fourier transform and the inverse Fourier transform. In the end, a finite number of equations
of similar form as eq. (2.30) is obtained. However, when discrete Fourier transform is used, certain
numerical issues, such as leakage, can occur, which one has to be aware of. As this goes beyond
the scope of this thesis, more detailed explanation is skipped.

2.4.4 Damping

Until now the relation between the stresses and strains was assumed to be linear elastic and in the
frequency domain it is described by eq. (2.34). Since the material matrix k contains real constants,
both stresses and strains oscillate in phase. However, in real situations this is usually not the case
and a phase shift between the stress and strain fields can be observed. This is a consequence of the
fact, that during the loading process, a portion of the mechanical energy is converted into thermal
energy and hence dissipated, which always occurs in reality.
In the scope of the frequency domain analysis, such behaviour can be modelled by assuming

the material constants contained in the material matrix k are complex numbers. The original
definitions (2.9), (2.7) and (2.8) of the material matrix and the Lamé coefficients remain valid, only
the Young modulus Ẽ is considered to be complex value defined as

Ẽ = Ẽs(1 + i sgn(ω)η), (2.38)

where η denotes the loss factor and Ẽs stands for the so called storage modulus [Meyers and Chawla
2008], which represents the real part of the Young modulus.
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3 Hybrid-Trefftz Method

In the previous chapter the elastodynamic problem was introduced and the governing differential
equation in the frequency domain (2.30) was derived. As was already mentioned, eq. (2.30) is a set
of coupled partial differential equations depending on space coordinates only. For general boundary
conditions it is not possible to solve the system analytically and therefore numerical methods need
to be applied instead. This chapter discusses how an approximation of the solution of such equation
is obtained.

There is a wide range of numerical techniques designed to estimate the solution of such problem,
e.g. finite element method, boundary element method or a family of Trefftz methods. The main
focus of this thesis is placed on the so called hybrid-Trefftz method, which offers some significant
advantages compared to the standard FEM.
Similarly to FEM, also in the case of Trefftz methods the domain is discretized into a number

of finite elements, where a certain field is approximated by shape functions multiplied by unknown
coefficients. In standard FEM, these shape functions are polynomials. On the other hand, in the
case of Trefftz methods, the basis functions are restricted to satisfy the homogeneous part of the
governing differential equation. This requirement is also called the Trefftz constraint. As will be
discussed later, it is possible to obtain an infinite series of functions which fulfil such constraint,
but they violate the prescribed boundary conditions and therefore cannot directly be considered as
a solution of the whole problem. However, since the functions are linearly independent, they form
a complete basis. This implies that under certain restrictions, any function can be represented as a
linear combination of these basis functions and since they all satisfy the homogeneous differential
equation, also the linear combination will have this property. The idea of Trefftz methods is to
combine a finite number of such basis functions so that the boundary values of the resulting function
get closer to the prescribed boundary conditions.
The adjective hybrid indicates that more than one field is approximated simultaneously and

independently. There are various options regarding the choice of approximated fields. In the scope
of this thesis, the displacement field is approximated in the domain and the boundary traction field
is approximated on the Dirichlet boundary. In literature, when an element is formulated using such
approach, it is referred to as a displacement element. An alternative would be a stress element,
for which the stress field is approximated in the domain and displacements are approximated on
the boundary. However, only the former option is considered in this work. The purpose of the
boundary field approximation is to enforce the boundary conditions and the continuity between
adjacent elements.
The idea of restricting the basis functions to satisfy the governing differential equations was

firstly proposed in [Trefftz 1926] as an alternative to the Rayleigh-Ritz method. A formulation of
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general Trefftz elements was then reported in [Jirousek 1978], where four possibilities regarding
the enforcement of the inter-element continuity between hybrid-Trefftz elements were presented.
Mathematical fundamentals related to the construction of the complete bases were formulated by
I. Herrera and published in e.g. [Herrera 1980], [Gourgeon and Herrera 1981] and [Herrera and
Gourgeon 1982]. Subsequently, the method was applied to various engineering problems, such
as bending of plates, 3D solid mechanics, potential problems or heat conduction problems. An
overview of the individual formulations can be found e.g. in [Qin 2005]. Application of hybrid-
Trefftz method to analysis of elastodynamic media was mainly studied by the group of J. A. T.
Freitas. A formulation of the displacement element is presented e.g. in [Freitas 1997] or [Cismaşiu
and Freitast 1998]. The approach is then extended for analysis of unbounded media in [Cismaşiu
2000], [Freitas and Cismaşiu 2003] and [Moldovan and Freitas 2006]. Furthermore, in [Moldovan
2008] a propagation in saturated porous media for bounded and unbounded domains in analysed
using the hybrid-Trefftz models.
It is important to note that the concept of nodal interpolation known from FEM is completely

omitted in subsequent derivations. The bases used to approximate both displacement field in the
domain and the traction field on the boundary are hierarchical and the coefficients correspond no
longer to nodal values but are rather called generalized quantities.
The chapter is structured in the following way. Firstly, a discretization of the complete domain

is introduced. Afterwards, an approximation of the domain displacement field is presented and the
basis is derived. This procedure involves a solution of the spectral Lamé equation. Subsequently, the
boundary traction approximation is mentioned and the finite element governing system of equations
is derived. The equilibrium equations, Dirichlet boundary condition and displacement inter-element
continuity conditions are enforced in a weak sense using the Galerkin weighted residual method.
On the other hand, the kinematic equations, material equations and traction boundary condition
are implicitly satisfied. At the end of the chapter a mixed boundary condition is discussed.
Equations (2.30) to (2.37) form a theoretical basis for the subsequent derivations. For clarity the

subscript k will be omitted.

3.1 Finite Element Discretization

The complete domain V is discretized into finite elements with domain V e and boundary Γe as is
illustrated in fig. 3.1. The element boundary is split into nonoverlapping parts, Γeu and Γeσ, which
are the Dirichlet and Neumann boundaries respectively.
It was mentioned in the introduction of the chapter that the approximated fields are the dis-

placement field in the element domain and the boundary tractions on the Dirichlet boundary. To
be more precise, the boundary tractions need to be approximated also on the part of the boundary
shared by neighbouring elements. This is necessary for the enforcement of the continuity condition
between adjacent elements, which will be explained in section 3.4.6. As a result, the inter-element
section of the boundary will be considered as a part of the Dirichlet boundary Γeu, as is also displayed
in fig. 3.1.
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Figure 3.1: Discretization of the domain into finite elements

The individual elements can be of arbitrary shape and also no restrictions are placed on the
number or edges of the individual elements.

3.2 Domain Approximation

As was stated in the introduction of the chapter, the first approximated field is the displacement
field in the element domain V e, expressed as

u = UX + u0 in V e. (3.1)

Matrix U collects the basis functions, X is vector of unknown coefficients, also called generalized
displacements and u0 is a vector of particular solutions.

The basis collected in matrix U is restricted to satisfy the homogeneous part of the spectral
Lamé equation (2.30), such constraint is expressed as

DkD∗U + ω2ρU = 0 in V e. (3.2)

Vector u0 is constructed as a particular solution to the prescribed body forces, hence relation

DkD∗u0 + ω2ρu0 + b = 0 in V e (3.3)

must hold.
In the case of the hybrid-Trefftz method, the strain field is restricted to directly satisfy the

kinematic equations. Applying eq. (2.5) on (3.1) yields

ε = D∗u = EX + ε0, (3.4)

with the strain approximation basis E = D∗U and ε0 = D∗u0. Note that E is not an independent
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basis, it is rather derived from basis U and therefore strain ε is not an independently approximated
field.
To construct the displacement basis U and subsequently the strain basis E, it is necessary to

solve the homogeneous part of the spectral Lamé equation, which will be discussed in the following
subsection.

3.2.1 Solution of the Homogeneous Spectral Lamé Equation

The spectral Lamé equation for the considered 2D case was derived in the previous chapter and
is represented by eq. (2.31). Neglecting the body forces, a homogeneous part is recovered, which
results in

(λ+ µ)∇∇Tu+ µ∇2u+ ω2ρu = 0. (3.5)

This equation is expressed in terms of the displacement field u and represents two coupled partial
differential equations. By the application of the Helmholtz decomposition, the previous equation
can be reformulated in terms of different unknown fields and decoupled into two independent
equations, which simplifies the solution procedure significantly.
The Helmholtz theorem [Arfken et al 2013c] states that any sufficiently smooth vector field can

be expressed in terms of a scalar dilatational potential Φp and a vector potential Φs. For the
2-dimensional case, it can be shown that the vector potential reduces to one component only,
therefore it becomes a scalar shear potential Φs. The relation can be expressed in matrix notation
as

u =∇Φp + ‹∇Φs, (3.6)

where ‹∇ =
î
∂/∂y −∂/∂x

óT
is the curl operator in 2D.

Due to the linearity of the differential operators appearing in eq. (3.5), it is possible to investigate
contributions of each term in relation (3.6) separately.

Dilatational Part

Taking the dilatational part of the displacement vector, that is substituting u =∇Φp into eq. (3.5),
one obtains

(λ+ µ)∇∇T (∇Φp) + µ∇2(∇Φp) + ω2ρ(∇Φp) = 0. (3.7)

Using identities ∇2∇ =∇∇2 and ∇T∇ = ∇2, equation (3.7) is rearranged as

(λ+ µ)∇∇2Φp + µ∇∇2Φp + ω2ρ∇Φp =0

∇
[
(λ+ µ)∇2Φp + µ∇2Φp + ω2ρΦp

]
=0

∇
[
(λ+ 2µ)∇2Φp + ω2ρΦp

]
=0,

(3.8)
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which implies that

(λ+ 2µ)∇2Φp + ω2ρΦp =C1

∇2Φp + ω2 ρ

λ+ 2µΦp = C1
λ+ 2µ,

(3.9)

where C1 denotes an arbitrary constant. The particular solution of eq. (3.9)

Φp,p = C1
ω2ρ

(3.10)

is also constant and as the displacement field is obtained as gradient of the dilatational potential,
contribution of Φp,p to the displacement field vanishes. Therefore, in the upcoming derivations only
the homogeneous part of eq. (3.9) is studied.
Defining the pressure wave (p-wave) velocity as

cp =
 
λ+ 2µ
ρ

(3.11)

and the wave number related to p-waves as kp = ω/cp, eq. (3.9) is reformulated

∇2Φp + k2
pΦp = 0. (3.12)

Shear Part

In this section the part of the displacement related to shear potential is examined. The relation
u = ‹∇Φs is substituted into eq. (3.5)

(λ+ µ)∇∇T (‹∇Φs) + µ∇2
Ä‹∇Φs

ä
+ ω2ρ(‹∇Φs) = 0. (3.13)

As identities ∇T ‹∇ = 0 and ∇2‹∇ = ‹∇∇2 hold, the previous equation results in

µ∇2‹∇Φs + ω2ρ‹∇Φs =0‹∇(µ∇2Φs + ω2ρΦs) =0.
(3.14)

Using the relation for a shear wave (s-wave) velocity

cs =
…
µ

ρ
(3.15)

and the definition of the shear wave number ks = ω/cs, eq. (3.14) implies that

∇2Φs + k2
sΦs = C2

µ
, (3.16)

with C2 being an arbitrary constant. Similarly to the p-wave case, the particular solution of eq.
(3.16) can be neglected and only the homogeneous part is of interest.
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By the use of the Helmholtz decomposition, system of two coupled partial differential equations
(3.5) in terms of displacement components u and v was transformed into two independent partial
differential equations (3.12) and (3.16) in terms of the dilatational potential Φp and the shear
potential Φs. Both equations have a similar form and are denoted as the Helmholtz equation [Arfken
et al 2013d]. In the next section, a solution procedure of such equation is explained. Afterwards,
when the potentials are known, the displacement field can be recovered by the application of eq.
(3.6).

Solution of Helmholtz Equation

The solution of the previously derived Helmholtz equation will now be discussed. Consider a general
form of the homogeneous part of eqs. (3.12) and (3.16)

∇2Φα + k2
αΦα =0

∂2Φα

∂x2 + ∂2Φα

∂y2 + k2
αΦα =0,

(3.17)

where α = {p,s}. Eq. (3.17) can be solved both in Cartesian and polar reference frame, however,
only the latter will be explained in this section. In the polar coordinates, eq. (3.17) is expressed as
[Arfken et al 2013d]

∂2Φα

∂r2 + 1
r

∂Φα

∂r
+ 1
r2
∂2Φα

∂θ2 + k2
αΦα = 0, (3.18)

where r and θ are the radial and angular coordinates respectively. Adopting the separation ap-
proach, the solution is sought in the form

Φα,n = Wn(kαr) exp(inθ), (3.19)

where Wn(kαr) is so far unknown function defined in the radial direction and n is an integer.
Substituting the previous ansatz into eq. (3.18) yields

∂2Wn(kαr)
∂r2 exp(inθ) + 1

r

∂Wn(kαr)
∂r

exp(inθ)− n2

r2Wn(kαr) exp(inθ) + k2
αWn(kαr) exp(inθ) =0

∂2Wn(kαr)
∂r2 + 1

r

∂Wn(kαr)
∂r

+ (k2
α −

n2

r2 )Wn(kαr) =0

1
k2
α

∂2Wn(kαr)
∂r2 + 1

k2
α

1
r

∂Wn(kαr)
∂r

+ (1− n2

(kαr)2 )Wn(kαr) =0.

(3.20)

Using a coordinate substitution ζ = kαr, the previous equation can be reformulated as

∂2Wn(ζ)
∂ζ2 + 1

ζ

∂Wn(ζ)
∂ζ

+ (1− n2

ζ2 )Wn(ζ) = 0. (3.21)
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Eq. (3.21) is known as the Bessel equation [Arfken et al 2013a]. Since it is a second order linear
differential equation, for each integer n there must exist two linearly independent solutions. In
addition, depending on the analysed problem, various formulations of these linearly independent
pairs may be adopted. In this thesis the following representations of the solutions Wn(ζ) are
considered:

• Bessel function of the first and second kind Jn(ζ) and Yn(ζ)

• Hankel function of the first and second kind H(1)
n (ζ) and H(2)

n (ζ)

The Hankel functions can be expressed in terms of the Bessel functions as

H(1)
n (ζ) =Jn(ζ) + iYn(ζ),

H(2)
n (ζ) =Jn(ζ)− iYn(ζ).

(3.22)

For n being an integer, Bessel functions of the first kind take finite values at the origin, while
Bessel functions of the second kind are singular at ζ = 0, therefore are suited for modelling of
singular stress fields. However, if non singular fields are of interest, the origin needs to be placed
outside of the element. Since the Hankel functions are constructed as a linear combination of two
of the Bessel function kinds, also these are singular at the origin. It can be shown that under
certain restrictions the Hankel functions satisfy the Sommerfeld radiation condition. This property
is advantageous when unbounded media are analysed, which is discussed in chapter 4. Bessel
functions of the first and second kind and orders n = 0,1,2 are plotted in fig. 3.2.
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Figure 3.2: Bessel functions of the first and second kind

The unknown dilatational and shear potentials Φp,n and Φs,n for a single order n were found as
a solution of the underlying Helmholtz equations (3.12) and (3.16) and are expressed by eq. (3.19).
Substituting the individual wave numbers, the relations are rephrased

Φp,n = Wn(kpr) exp(inθ), (3.23)

Φs,n = Wn(ksr) exp(inθ). (3.24)
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Any of the previously mentioned solutions of the Bessel equation can be adopted for the radial
component Wn. Note that in general n ∈ Z, therefore there is an infinite number of functions
satisfying the Helmholtz equations (3.12) and (3.16). The complete solution is then expressed as a
linear combination of all the terms

Φp =
∞∑

n=−∞
cp,nΦp,n, (3.25)

Φs =
∞∑

n=−∞
cs,nΦs,n, (3.26)

where cp,n and cs,n are unknown coefficients. Using eq. (3.6), the displacement field can be recovered

u =∇Φp + ‹∇Φs =
∞∑

n=−∞

Ä
cp,n∇Φp,n + cs,n‹∇Φs,n

ä
. (3.27)

The coefficients cp,n and cs,n are found based on the given boundary conditions, but for most
of the practical cases it is an infeasible task. However, the individual parts ∇Φp,n and ‹∇Φs,n are
constructed to satisfy the differential equation and in addition, form a complete basis for n ∈ Z,
therefore they are suitable for construction of the displacement approximation matrix U .

3.2.2 Domain Approximation Basis

In this subsection, previously derived solutions of the homogeneous Lamé equation are used to form
the displacement approximation basis U and consequently the strain basis E.
The displacement field was decomposed into dilatational and shear potentials based on the eq.

(3.6). This motivates to also separate the contributions of individual modes in the basis U . There-
fore, for a single order n, a submatrix Un collecting two basis functions for each displacement
component (one for each mode) has the following form:

Un =
î
∇Φp,n

‹∇Φs,n

ó
=
î
∇[Wn(kpr) exp(inθ)] ‹∇[Wn(ksr) exp(inθ)]

ó
. (3.28)

The first column includes the dilatational mode and the second column represents the shear mode.
To form the complete basis U , orders −N < n < N are considered and the submatrices are
combined as

U =
î
U−N · · · Un · · · UN

ó
, (3.29)

where N is the chosen maximum order of the function Wn, also called the maximum degree of
p-refinement. Using this structure, there are 2N + 1 submatrices Un included in the complete
matrix U , each having two columns, one related to the dilatational mode and the other to the
shear mode. Therefore, the basis matrix U overall collects 2(2N + 1) approximation functions (for
each displacement component). The more terms are included in the basis the richer the element
gets. However, this comes with the cost of numerical issues, since high order Bessel functions take
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much smaller values compared to the lower order ones, when evaluated in the vicinity of the origin.
To a certain extent, this problem can be reduced by adopting a scaling procedure, which will be
explained in detail in chapter 6.

In the following, eq. (3.28) will be investigated in more detail and the exact form of matrix Un
will be derived. One can note the differential operators in eq. (3.28) are defined in the Cartesian
coordinates, however, the functions Φp,n and Φs,n depend on polar coordinates r and θ. One
could express the polar coordinates in terms of the Cartesian ones, substitute the expressions and
perform the differentiation in a software for symbolic calculations. However, a more elegant way is
to perform the differentiation in the polar reference system and afterwards transform the matrix
back to the Cartesian one, which can be illustrated as

Un =
î
∇Φp,n

‹∇Φs,n

ó
=

∂Φp,n

∂x

∂Φs,n

∂y
∂Φp,n

∂y
−∂Φs,n

∂x

 =
[

cos θ − sin θ
sin θ cos θ

] ∂Φp,n

∂r

1
r

∂Φs,n

∂θ
1
r

∂Φp,n

∂θ
−∂Φs,n

∂r

 = TU r,θ
n .

(3.30)

The transformation matrix is denoted by T . As was already discussed, matrix Un collects approx-
imation functions of the displacement components in x and y direction. Similarly, matrix U r,θ

n also
contains basis functions, which now approximate the displacement components in r and θ direction.
It can be further developed as

U r,θ
n =

 ∂Wn(kpr)
∂r

in

r
Wn(ksr)

in

r
Wn(kpr) −

∂Wn(ksr)
∂r

 exp(inθ) =

= 1
2

kp(Wn−1 −Wn+1) iks
2n
ksr

Wn

ikp
2n
kpr

Wn ks(Wn+1 −Wn−1)

 exp(inθ) =

= 1
2

[
kp(Wn−1 −Wn+1) iks(Wn−1 +Wn+1)
ikp(Wn−1 +Wn+1) ks(Wn+1 −Wn−1)

]
exp(inθ).

(3.31)

In the previous manipulations, the relations

2∂Wn(ζ)
∂ζ

= Wn−1(ζ)−Wn+1(ζ),

2n
ζ
Wn(ζ) = Wn−1(ζ) +Wn+1(ζ)

between the solutions of the Bessel equation for various orders n were used [Arfken et al 2013a].
The individual functions contained in the basis Un are plotted in figures 3.3 and 3.4. The Bessel

functions of the first kind and of orders n = 0,1,2 are considered as the function Wn. They are
evaluated on a circular region centred at origin, the particular values of the wave numbers were
chosen as kp = 0.475 1/m and ks = 0.889 1/m. Fig. 3.3 displays the real part of the displacement
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components related to the p-wave solution for various orders n, therefore for a fixed n it represents
the evaluation of the first column of matrix Un. On the other hand, fig. 3.4 depicts the real part
of the displacement components associated to s-waves, hence these functions are contained in the
second column of basis Un.

Figure 3.3: P-wave part of the displacement basis

Figure 3.4: S-wave part of the displacement basis

Similar idea can now be applied for the derivation of the strain field basis E. In eq. (3.4) it is
defined as

E = D∗U =
î
E−N · · · En · · · EN

ó
. (3.32)
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Analogously to the displacement basis ordering, also the strain basis can be built up from the
submatrices En, which carry the basis functions approximating individual strain components in
Cartesian coordinate system for a single order n. To compute it, firstly matrix Er,θn collecting
functions approximating the strains in the radial and angular directions is calculated and afterwards
it is transformed to the original reference frame using strain transformation matrix Tε.

En = D∗Un =


∂

∂x
0

0 ∂

∂y
∂

∂y

∂

∂x


∂Φp,n

∂x

∂Φs,n

∂y
∂Φp,n

∂y
−∂Φs,n

∂x

 =

=

 cos2 θ sin2 θ cos θ sin θ
sin2 θ cos2 θ − cos θ sin θ

−2 cos θ sin θ 2 cos θ sin θ cos2 θ − sin2 θ


︸ ︷︷ ︸

Tε


∂

∂r
0

0 1
r

∂

∂θ
1
r

∂

∂θ

∂

∂r


 ∂Φp

∂r

1
r

∂Φs

∂θ
1
r

∂Φp

∂θ
−∂Φs

∂r


︸ ︷︷ ︸

Er,θn

=

= TεE
r,θ
n .

(3.33)

This way, the formulas contained in the matrix Er,θn can be easily computed analytically and
displayed in one line

Er,θn =


∂2Φp

∂r2
1
r

∂2Φs

∂θ∂r
1
r2
∂2Φp

∂θ2 −1
r

∂2Φs

∂r∂θ

21
r

∂2Φp

∂r∂θ

1
r2
∂2Φs

∂θ2 −
∂2Φs

∂r2

 =

=1
4

 k2
p(Wn−2 − 2Wn +Wn+2) ik2

s(Wn−2 −Wn+2)
−k2

p(Wn−2 + 2Wn +Wn+2) −ik2
s(Wn−2 −Wn+2)

2ik2
p(Wn−2 −Wn+2) −2k2

s(Wn−2 +Wn+2)

 exp(inθ).

(3.34)

From the ordering of the bases U and E also layout of the vector of unknown coefficients X can
be deduced. It can be visualized as

X =
î
X−N · · · Xn · · · XN

óT
=
î
Xp
−N Xs

−N · · · Xp
n Xs

n · · · Xp
N Xs

N

óT
, (3.35)

where the superscript p or s indicates if the component multiplies function related to the dilatational
or shear potential and the subscript specifies the order of the associated basis function. For a
specified maximum order N , there are 2(2N + 1) unknown coefficients collected in the vector X.
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3.3 Boundary Approximation

The second field to be approximated are the tractions on the Dirichlet boundary Γeu, which contains
not only the external part of boundary, where the displacements are prescribed, but also the inter-
element edges, where displacement continuity needs to be enforced. The relation reads

t = Zp on Γeu, (3.36)

where Z is the matrix gathering the boundary approximation basis and p stands for vector of
unknown coefficients, also referred to as generalized tractions. The only restrictions placed upon
basis Z are linear independence and completeness. Note that if the Dirichlet boundary consists
of more parts (e.g. various edges with different displacement boundary condition or a connection
of more elements), the tractions on each part are approximated independently. In such case, eq.
(3.36) can be reformulated to

t = Zpi on Γeui , (3.37)

where i = 1,2, . . . , nD with nD being the total number of Dirichlet edges.
In this work the Chebyshev polynomials of type I are adopted for the basis Z. They are defined

for a side coordinate ξ ∈ 〈−1,1〉 as [Arfken et al 2013b]

Zm(ξ) = cos
(
m cos−1 ξ

)
, (3.38)

where m = 0,1,2, . . . ,M denotes the order of the polynomial. The first four basis functions are
depicted in fig. 3.5.
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Figure 3.5: Traction approximation basis functions
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The individual components are then ordered in the complete matrix Z

Z =
[
Zv 0
0 Zv

]
=
[
Z0 Z1 · · · ZM 0 0 · · · 0
0 0 · · · 0 Z0 Z1 · · · ZM

]
, (3.39)

where Zv =
î
Z0 Z1 · · · ZM

ó
is the basis approximating a single traction component. Therefore,

there are 2(M + 1) columns contained in the complete Z matrix. Consequently, the vector of
generalized tractions p can be expressed as

p =
î
pTx pTy

óT
, (3.40)

where the subvectors px and py collect the unknown coefficients related to the individual traction
components tx and ty respectively.

From the layout of matrix Z and vector p one can note that the traction components tx and ty
are approximated independently using the same basis Zv. Such relation can be expressed as

tx =Zvpx, (3.41)

ty =Zvpy. (3.42)

The traction vector t(x,y) is a function of Cartesian coordinates, however, the approximation
basis Z(ξ) is a function of the local edge coordinate ξ ∈ 〈−1,1〉. Therefore, for every Dirichlet edge,
there must exist a function h(ξ) mapping the coordinate ξ to Cartesian coordinates

î
x y

óT
.

3.4 Finite Element System of Equations

Until this point, the approximation bases of both displacement field and boundary traction field
were introduced. In the following section the finite element system of equations is derived using
the Galerkin weighted residual method. Firstly, the equilibrium equations are weakly imposed, by
substitution of the material law and the kinematic relations the first set of finite element equations
can be formulated. Afterwards, Dirichlet boundary conditions and continuity equations are forced
to hold in a weak sense and combined to form the second set of the finite element system of
equations.
The governing system is firstly derived for a single finite element. To start with, it is assumed

that the displacement boundary condition is applied on a single continuous portion of the complete
boundary. Afterwards, generalizations including non continuous displacement boundary conditions
and domains discretized with multiple elements are discussed.

3.4.1 Equilibrium Equations

The equilibrium equation in the frequency domain was derived in eq. (2.32). It is required that
its residual form weighted by the domain displacement approximation basis “U and integrated over
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the domain of the element is equal to zero∫ “UT
(
Dσ + ω2ρu+ b

)
dV e = 0. (3.43)

The symbol (̂·) denotes the complex conjugate. Plugging in the displacement approximation (3.1)
and splitting the integral yields∫ “UTDσ dV e + ω2

∫
ρ“UTU dV eX + ω2

∫
ρ“UTu0 dV e +

∫ “UTb dV e = 0. (3.44)

The first integral can be modified by applying integration by parts technique∫ “UTDσ dV e =
∫ “UTNσ dΓe −

∫ Ä
D∗“UäT σ dV e. (3.45)

Subsequently, the first term on the right hand side is reformulated by the substitution of the
boundary equilibrium equation (2.35)∫ “UTDσ dV e =

∫ “UT tdΓe −
∫ Ä
D∗“UäT σ dV e. (3.46)

The boundary integral can now be split into two integrals, one performed over the Dirichlet bound-
ary Γeu and the other over the Neumann boundary Γeσ. Afterwards, on Γeσ the boundary traction
condition (2.37) can directly be inserted and on Γeu the boundary traction approximation based on
eq. (3.36) is substituted. The previous equation then results in∫ “UTDσ dV e =

∫ “UT tΓ dΓeσ +
∫ “UTZ dΓeu p−

∫ Ä
D∗“UäT σ dV e. (3.47)

Eq. (3.47) in now inserted back into eq. (3.44) and the terms are rearranged∫ Ä
D∗“UäT σ dV e =

∫ “UT tΓ dΓeσ+
∫ “UTZ dΓeu p+ ω2

∫
ρ“UTU dV eX+

+ω2
∫
ρ“UTu0 dV e +

∫ “UTb dV e.
(3.48)

3.4.2 Elasticity and Kinematic Equations

In this section the material law and the kinematic equations are substituted into eq. (3.48). Firstly,
the integral on the left hand side of eq. (3.48) is developed and afterwards the resulting expression
is back substituted.
Inserting the material law into the first integral of the previous equation and expanding the strain

vector based on eq. (3.4) results in∫
(D∗“U)Tσ dV e =

∫
(D∗“U)TkεdV e =

∫
(D∗“U)TkE dV eX +

∫
(D∗“U)Tkε0 dV e. (3.49)

Subsequently, both integrals on the right hand side are individually integrated by parts and modi-
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fied. Starting with the first one∫
(D∗“U)TkE dV eX =

∫ “UTNkE dΓeX −
∫ “UTDkE dV eX =

=
∫ “UTNkE dΓeX −

∫ “UT DkD∗U︸ ︷︷ ︸ dV eX.
(3.50)

In section 3.2, it is explained that the domain approximation basisU has to satisfy the homogeneous
part of the governing Lamé equation, expressed by means of eq. (3.2). This equation can be
reformulated as

DkD∗U = −ω2ρU in V e. (3.51)

One can note the the term on the left hand side of the previous equation can also be spotted in eq.
(3.50). Therefore, eq. (3.51) is substituted into eq. (3.50), which yields∫

(D∗“U)TkE dV eX =
∫ “UTNkE dΓeX + ω2

∫
ρ“UTU dV eX. (3.52)

Similar approach is also applied to the second integral on the right hand side of eq. (3.49), firstly
it is integrated by parts∫

(D∗“U)Tkε0 dV e =
∫ “UTNkε0 dΓe −

∫ “UTDkε0 dV e =

=
∫ “UTNkε0 dΓe −

∫ “UT DkD∗u0︸ ︷︷ ︸ dV e.
(3.53)

Vector u0 is constructed as a particular solution to certain body forces b, therefore it directly
satisfies the particular part of the Lamé equation described by eq. (3.3). Reformulating this relation
as

DkD∗u0 = −ω2ρu0 − b in V e (3.54)

allows a direct substitution to eq. (3.53), where the same term appears. This procedure results in∫
(D∗“U)Tkε0 dV e =

∫ “UTNkε0 dΓe + ω2
∫
ρ“UTu0 dV e +

∫ “UTb dV e. (3.55)

Finally, eqs. (3.52) and (3.55) can be inserted back into eq. (3.49), which yields∫
(D∗“U)Tσ dV e =

∫ “UTNkE dΓeX + ω2
∫
ρ“UTU dV eX+

+
∫ “UTNkε0 dΓe + ω2

∫
ρ“UTu0 dV e +

∫ “UTb dV e.
(3.56)

The previous expression can then be substituted back into the left hand side of eq. (3.48). It
turns out that all the terms involving domain integrals cancel each other on both sides and only
integrals over the element boundary remain. This is a great advantage of Trefftz methods and a
result of the specific requirements placed on the domain approximation basis U and the vector of
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particular solution u0. The resulting equation develops as∫ “UTNkE dΓeX −
∫ “UTZ dΓeu p =

∫ “UT tΓ dΓeσ −
∫ “UTNkε0 dΓe. (3.57)

Using definitions

D =
∫ “UTNkE dΓe, (3.58)

B =
∫ “UTZ dΓeu, (3.59)

tΓ =
∫ “UT tΓ dΓeσ, (3.60)

tΓ0 =
∫ “UTNkε0 dΓe, (3.61)

eq. (3.57) can be abbreviated to a compact form

DX −Bp = tΓ − tΓ0 . (3.62)

Note that in the previous equation the unknown quantities are collected in vectors X and p and
all the other vectors and matrices are known and can be computed. It is worth the effort to check
the dimensions of the individual matrices and vectors to compare the number of equations and the
number of unknowns. One can show that the dimensions of matrix D are 2(2N + 1)× 2(2N + 1),
dimensions of matrixB are 2(2N+1)×2(M+1), dimensions of vectorsX and p are 2(2N+1)×1 and
2(M+1)×1 respectively and dimensions of both vectors tΓ and tΓ0 are 2(2N+1)×1. This indicates
that eq. (3.62) represents a system of 2(2N + 1) algebraic equations with 2(2N + 1) + 2(M + 1)
unknowns. Therefore, there are still 2(M+1) equations necessary so that the system can be solved.
These are obtained by enforcement of displacement boundary conditions, which will be described
in the following section.

3.4.3 Displacement Boundary Condition

The Dirichlet displacement boundary condition is as well enforced in a weak sense. The condition
(2.36) is weighted by the matrix Z collecting the boundary approximation basis and integrated
over the related portion of the boundary Γeu∫

ZT (u− uΓ) dΓeu = 0. (3.63)

Afterwards, the integral is split and the displacement approximation basis is inserted∫
ZTU dΓeuX =

∫
ZTuΓ dΓeu −

∫
ZTu0 dΓeu. (3.64)
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Using definitions

uΓ =
∫
ZTuΓ dΓeu, (3.65)

uΓ0 =
∫
ZTu0 dΓeu (3.66)

and already existing relation (3.59), eq. (3.64) can be rewritten in compact notation

−“BT X = uΓ0 − uΓ. (3.67)

Eq. (3.67) represents 2(M + 1) algebraic equations with 2(2N + 1) unknown coefficients, which
were however introduced already in the first matrix equation (3.62).

3.4.4 Governing System of Equations

Combining eqs. (3.62) and (3.67) results in the governing system of equations[
D −B
−“BT 0

][
X

p

]
=
[
tΓ − tΓ0

uΓ0 − uΓ

]
. (3.68)

Based on the previous discussions, it can be concluded the system contains the same number of
equations as unknowns. As the material matrix k is symmetric, the matrix D and the complete
system (3.68) are Hermitian, which is an advantageous property when iterative solvers are applied.
The previous system was derived for a single element and assuming only one continuous bound-

ary Γeu and a single boundary Γeσ. In the next section a generalization regarding the complexity
of boundary conditions is introduced. To start with, one element is still assumed. Afterwards,
continuity conditions are enforced and modelling using more elements is described.

3.4.5 Generalization: Multiple Boundary Conditions

Assume the Dirichlet boundary of a single element Γeu is now partitioned into nD nonoverlapping
parts Γeui , where i = 1,2, . . . , nD. Since only one element is still assumed, all the parts of the
Dirichlet boundary are related to prescribed displacements, because no inter-element edges appear
in such case. The displacement boundary condition is then expressed as

u = uΓi on Γeui . (3.69)

As was described in section 3.3, an independent traction approximation

t = Zpi on Γeui (3.70)

is assumed on each of the related parts of the Dirichlet boundary.
Similarly, also the Neumann boundary is divided into nN sections Γeσj , where j = 1,2, . . . , nN .
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The traction boundary condition then reads

t = tΓj on Γeσj . (3.71)

Most of the previous derivations remain valid, only some modifications need to be performed.
The first difference can be spotted in eq. (3.47), where the integrals over the boundaries Γeu and Γeσ
need to be split into the individual sub boundaries. In this sense the equation is modified as∫ “UTDσ dV e =

∫ “UT tΓ1 dΓeσ1 + · · ·+
∫ “UT tΓnN dΓeσnN +

+
∫ “UTZ dΓeu1 p1 + · · ·+

∫ “UTZ dΓeunD pnD

−
∫ Ä
D∗“UäT σ dV e.

(3.72)

This results in the modification of the first of the governing equations (3.62)

DX −B1 p1 − · · · −BnD pnD = tΓ1 + · · ·+ tΓnN − tΓ0 , (3.73)

where definitions

tΓj =
∫ “UT tΓj dΓeσj (3.74)

Bi =
∫ “UTZ dΓeui (3.75)

were used.
Another modification results from the fact that the displacement boundary condition needs to

be imposed separately for each portion of the Dirichlet boundary Γeui . Therefore, eq. (3.67) turns
into nD equations of the similar form

−“BT
i X = uΓ0 i − uΓi for i = 1,2, . . . , nD, (3.76)

where

uΓ0 i =
∫
ZTu0 dΓeui , (3.77)

uΓi =
∫
ZTuΓi dΓeui . (3.78)

The finite element governing system of equations (3.68) can be symbolically expressed in a very
similar form[

D −Bg
−”BgT 0

][
X

pg

]
=
[
tΓ − tΓ0

uΓ0,g − uΓg

]
, (3.79)
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where the global matrices are defined by

Bg =
î
B1 B2 . . . BnD

ó
, (3.80)

pg =
î
pT1 pT2 . . . pTnD

óT
, (3.81)

uΓg =
î
uΓ

T
1 uΓ

T
2 . . . uΓ

T
nD

óT
, (3.82)

uΓ0,g =
î
uΓ0

T
1 uΓ0

T
2 . . . uΓ0

T
nD

óT
, (3.83)

tΓ =tΓ1 + tΓ2 + · · ·+ tΓnN . (3.84)

Note that splitting the Neumann boundary into multiple sections was not necessary. The integral∫
UT tdΓeσ was just split into nN integrals which were computed separately and summed up after-

wards, which is described by eq. (3.84). On the other hand, splitting the integral
∫
UT tdΓeu over

the Dirichlet boundary into multiple integrals was crucial, since the tractions are approximated
independently on each of these sub boundaries.

3.4.6 Generalization: Multiple Finite Elements

The procedure is now generalized for the case of more connected elements. Firstly, consider a
hypothetical example where no connection between elements is introduced. For such case, the first
matrix equation of the finite element system of equations (3.79) could be independently imposed
for each element iel = 1,2, . . . , nel, where nel is the number of finite elements. This can be expressed
in matrix notation asî

DG −B′G
ó[XG

p′G

]
=
î
tΓG − tΓ0,G

ó
, (3.85)
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where relations

DG =


D(1) 0 . . . 0

0 D(2) . . . 0
...

... . . . 0
0 0 0 D(nel)

 , (3.86)

B′G =


Bg

(1) 0 . . . 0
0 Bg

(2) . . . 0
...

... . . . 0
0 0 0 Bg

(nel)

 , (3.87)

p′G =
[
p

(1)
g

T
p

(2)
g

T
. . . p

(nel)
g

T
]T
, (3.88)

XG =
î
X(1)T X(2)T . . . X(nel)T

óT
, (3.89)

tΓG =
[
tΓ

(1)T
tΓ

(2)T
. . . tΓ

(nel)T
]T
, (3.90)

tΓ0,G =
[
tΓ0

(1)T
tΓ0

(2)T
. . . tΓ0

(nel)T
]T

(3.91)

hold. The superscript indicates belonging to a certain element. Note that some of the sub matrices
of the individual B(iel)

g matrices result from an integration over the inter-element part of the
boundary Γeu, since also on this portion the boundary the tractions are approximated.

Until this point, all the elements are separated and have no connection between each other.
To correct this statement, one needs to consider the traction continuity requirement on the inter-
element boundary. When an edge lies between two elements, the traction approximation is shared
by both elements. This implies that the unknown p coefficients related to this inter-element edge
are common for both elements. However, this was not considered in the above definition. The way
p′G vector was defined, it contains some additional unknowns, since for the inter-element edges the
unknown p vector related to that edge is contained in more p(iel)

g vectors.
Discussion made in the previous paragraph is now explained in more detail. Assume all the

inter-element edges are labelled with index h = 1,2, . . . , nI , where nI stands for the overall number
of inter-element edges. For every h there is a pair of adjacent elements k and l sharing the common
edge. The traction continuity

t(k) + t(l) = 0 on Γeuh (3.92)

between the two elements is strongly satisfied. Substituting the traction approximation and ma-
nipulating the expression, the previous equation results in

Zp
(k)
h +Zp(l)

h =0

Z(p(k)
h + p(l)

h ) =0.
(3.93)
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From eq. (3.93) the relation

p
(k)
h = −p(l)

h (3.94)

between the vectors of generalized tractions can be deduced.
The previous formula can be substituted into definitions of the individual p(iel)

g vectors contained
in eq. (3.88). As a consequence, the number of unknown generalized tractions is reduced and the
B′G matrix is modified. In the end, the individual B matrices related to the common edge will
appear in the same column in the global matrix B′G, however, with different sign. As a result, the
block-diagonal structure of B′G is lost, which makes the system of equations coupled.

So far only the first equation of the complete finite element system of equations was discussed for
the case of multiple elements. The second equation results from an imposition of the displacement
boundary condition, which could be performed in a similar manner as was discussed in section 3.4.5.
However, this will not generate final system with enough equations as unknowns. The reason is
that these equations are by definition only enforced on the outer part of the Dirichlet boundary Γeu,
where the displacement boundary condition is prescribed, not on the inter-element edges. On the
other hand, as was discussed in the first part of this subsection, in the first equation (3.85), there
appear unknown vectors p and matrices B which result from an integration over the inter-element
boundary. To counteract this mismatch, the displacement continuity condition needs to be enforced
additionally.

Displacement Inter-element Continuity Condition

Again assume h is an index running over the inter-element edges and superscripts k and l represent
two neighbouring elements to that edge. The displacement inter-element continuity equation

u(k) − u(l) = 0 on Γeuh (3.95)

between these two elements is weakly imposed in a similar way as the Dirichlet boundary condition.
Also it this case the boundary traction basis is used as a weighting matrix, however, this time the
product is integrated over the inter-element part of the boundary only∫

ZT
Ä
u(k) − u(l)

ä
dΓeuh = 0. (3.96)

Introducing the displacement approximation, the previous equation is modified∫
ZTU (k) dΓeuhX

(k) −
∫
ZTU (l) dΓeuhX

(l) =
∫
ZTu

(l)
0 dΓeuh −

∫
ZTu

(k)
0 dΓeuh . (3.97)

Using the already stated definitions, eq. (3.97) can be abbreviated as‘
B

(k)
h

T

X(k) −‘B(l)
h

T

X(l) = uΓ0
(l)
h − uΓ0

(k)
h . (3.98)

Eq. (3.98) needs to hold for every inter-element edge h.
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For completeness, also the equations (3.76) resulting from an imposition of the displacement
boundary condition are introduced once more with slight modification. For every element iel =
1,2, . . . , nel there are n(iel)

D prescribed displacement boundary conditions, therefore, equation

−’B(iel)
i

T

X(iel) = uΓ0
(iel)
i − uΓ

(iel)
i for i = 1,2, . . . , n(iel)

D . (3.99)

must hold for every iel and i (i being the index running over individual displacement boundary
conditions within element).

Complete Governing System of Equations

Finally, the complete governing system of equations can be formed. Modified eq. (3.85) is combined
with eqs. (3.98) and (3.99), resulting in[

DG −BG
−B̂G

T
0

][
XG

pG

]
=
[
tΓG − tΓ0,G

uΓG

]
. (3.100)

Definitions (3.86), (3.89), (3.90) and (3.91) for DG, XG, tΓG and tΓ0,G , respectively, remain still
valid. Defining the BG matrix for a general case is rather complex task, therefore, guidelines of
the construction will be provided instead.
Consider a general matrix B(j)

i evaluated at an edge i and belonging to an element j. The ma-
trices are evaluated at all Dirichlet edges, including both outer edges where displacement boundary
condition is applied as well as the inter-element edges. Note that if the edge is an inter-element one,
two matrices are evaluated, sharing the same index i but differing with index j. The individual
matrices B(j)

i are ordered in the following way into the complete BG matrix: j index corresponds
to the row in which the matrix is located and the i index corresponds to the column. Therefore,
in the case of an inter-element edge, individual matrices will be located in the same column, since
both share the same index i, however, both will appear in a different row since the element index
j varies. What is more, to fulfil the continuity condition (3.98), the sign of both matrices need to
be opposite.
The formation of the global vector of generalized tractions pG can be explained in a similar

manner. As was discussed in the previous sections, for every Dirichlet edge i (including the inter-
element edges) there exists an associated vector of unknown generalized tractions pi. The index i
corresponds to the row in the global vector of generalized tractions pG.
The last undefined quantity is the vector uΓG . It needs to collect the right hand sides of eqs.

(3.98) and (3.99). If the edge of interest i is part of the Dirichlet boundary where the displacement
boundary condition is applied, the component of the vector uΓG at position i will be the right hand
side of eq. (3.99), meaning term

uΓ0
(j)
i − uΓ

(j)
i .

On the other hand, if the edge i is part of the inter-element boundary, the ith component of the
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global vector uΓG is the right hand side of eq. (3.98), that is

uΓ0
(l)
i − uΓ0

(k)
i ,

where k ⊂ j and l ⊂ j are the adjacent elements to the common edge i.
In the following, some comments regarding the number of equations and unknowns in the system

(3.100) are made. The unknown generalized displacements are collected in global vector XG. The
individual unknown vectors X(iel) corresponding to each element are strictly element dependent,
therefore the matrix DG preserves the block diagonal structure. Following the discussion from the
previous sections, for each element, there are 2(2N + 1) unknown coefficients collected in vector
X(iel), where N is the maximum degree of p-refinement. Therefore, for all elements the overall
number of displacement degrees of freedom is 2nel(2N + 1).
From the previous derivations it turned out that the length of the global vector of unknown gen-

eralized tractions pG, and therefore the number of related static degrees of freedom, is proportional
to the overall number of Dirichlet edges rather then to number of elements. In addition, as was
also stated before, tractions on each edge belonging to the Dirichlet boundary are approximated
separately. Each vector pi stores 2(M + 1) unknown coefficients, which indicates that the overall
number of unknown generalized tractions is 2nD(M + 1), with nD being the number of Dirichlet
edges and M the maximum polynomial order of the boundary approximation basis.
The single matrix D(iel) is of size 2(2N + 1)× 2(2N + 1). Due to the block diagonal structure of

the global matrix, size of DG is therefore 2nel(2N + 1) × 2nel(2N + 1). Furthermore, dimensions
of the single Bi matrix are 2(2N + 1)× 2(M + 1). Following the guidelines for construction of the
global matrixBG, its size results 2nel(2N+1)×2nD(M+1). To conclude, there is the same number
of equations as number of unknown components in the final finite element system of equations.

3.4.7 Mixed Boundary Conditions

Until this point it was assumed that the boundary conditions were strictly of displacement or
traction character, respectively. It means that both of the components of the related fields were
assumed to be prescribed simultaneously on the corresponding portion of the boundary. However,
to simulate wider range of problems, it is desired to model also mixed type of boundary conditions,
where certain displacement component is prescribed while the other one is unknown. To be more
precise, mixed boundary condition means that on a certain portion of boundary Γm, displacement
component is prescribed in a certain direction, while in the perpendicular direction a traction
component is given. The modification of the system equations is described for the case of a single
element with a single Dirichlet boundary. This set up is modified and a continuous mixed boundary
Γem is added. A generalization for multiple elements is straightforward. To start with, simplified
situation where the prescribed components are strictly in x or y direction is considered. An example
of such support can be horizontal or vertical sliders. Afterwards, a more general case, in which the
components tangential and normal to the boundary are prescribed, is investigated.



36 3 Hybrid-Trefftz Method

Simplified Case

Firstly, assume that components u and ty are prescribed on Γem. The opposite case can be directly
deduced from the following one. The mixed boundary condition then reads

u =uΓ,

ty =tΓ,y.
on Γem (3.101)

First modification arises in eq. (3.47), where also integral over the mixed boundary pops up∫ “UTDσ dV e =
∫ “UT tΓ dΓeσ +

∫ “UTZ dΓeu p+
∫ “UT tdΓem −

∫ Ä
D∗“UäT σ dV e. (3.102)

The displacement basis consists of two rows

U =
î
UT
x UT

y

óT
,

each approximating one displacement component. The size of vectors Ux and Uy is 1× 2(2N + 1).
Furthermore, the traction vector t on the mixed boundary Γem has components

t =
î
tx ty

óT
=
î
tx tΓ,y

óT
,

where the traction part of the boundary condition (3.101) was inserted. The complete traction
approximation was introduced in eq. (3.36).
In section 3.3 it was also mentioned that the individual traction components are approximated

independently and can be expressed by relations (3.41) and (3.42). As a reminder, they are also
reproduced here

tx =Zvpx, (3.103)

ty =Zvpy. (3.104)

Using the provided equations, the integral over the mixed boundary appearing in eq. (3.102) can
be reformulated∫ “UT tdΓem =

∫ ”UxT tx dΓem +
∫ ”UyT tΓ,y dΓem =

∫ ”UxTZv dΓem px +
∫
tΓ,y”UyT dΓem. (3.105)

Therefore, the first equation of the governing system of equations (3.57) results in∫ “UTNkE dΓeX −
∫ “UTZ dΓeu p−

∫ ”UxTZv dΓem pm =
∫ “UT tΓ dΓeσ+

−
∫ “UTNkε0 dΓe +

∫
tΓ,y”UyT dΓem.

(3.106)

The symbol for the the unknown vector px was replaced with pm to stress the belonging to the
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mixed boundary condition. In an abbreviated notation the previous equation reads

DX −Bp−Bm pm = tΓ − tΓ0 + tΓm, (3.107)

where

Bm =
∫ ”UxTZv dΓem (3.108)

tΓm =
∫
tΓ,y”UyT dΓem. (3.109)

Note that the dimensions of the matrix Bm are 2(2N + 1)× (M + 1) and the length of the vector
of unknown generalized tractions related to the mixed boundary condition is (M + 1). This implies
that the number of unknown coefficients related to the mixed boundary condition is half of the
unknowns of the usual displacement boundary, since only tractions in one direction need to be
approximated.
To obtain a solvable system, besides the standard displacement boundary condition also the

displacement part related to the mixed boundary condition (3.101) needs to be imposed. Since the
condition is enforced for a single component, only the related part of the basis Z is used as the
weighting function. Following the discussion in the first part of this subsection the basis of interest
is Zv. The weakly imposed equation reads∫

ZT
v (ux − uΓ) dΓem = 0. (3.110)

The displacement approximation of the single component

ux = UxX + u0,x

is inserted into eq. (3.110) and the expression is rearranged

−
∫
ZT
v Ux dΓemX =

∫
ZT
v u0,x dΓem −

∫
ZT
v uΓ dΓem. (3.111)

Symbol u0,x denotes the component of the vector of particular solutions u0. Using the stated
definitions and relations

uΓm0 =
∫
ZT
v u0,x dΓem (3.112)

uΓm =
∫
ZT
v uΓ dΓem, (3.113)

eq. (3.111) can be written in compact notation

−B̂m
T
X = uΓm0 − uΓm. (3.114)

Equations (3.107) and (3.114) combined with the displacement boundary condition, expressed by
eq. (3.67), form the set of equations describing the problem of mixed boundary condition. In the
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case when the prescribed components are v and tx the only differences are that in definitions (3.108)
and (3.109) Uy is used instead of Ux and vice versa, in eq. (3.112) u0,x is replaced by u0,y and in
eq. (3.113) uΓ is replaced by vΓ.
A generalization for the case of multiple boundary conditions and multiple elements can be

derived in a similar way as before. Edges belonging to the mixed boundary Γem are in a way treated
as both Dirichlet and Neumann ones. In the procedure of assembling of the BG matrix, individual
B

(j)
i matrices are ordered into the global one. If the edge i belongs to the mixed boundary, B(j)

i is
only replaced by Bm(j)

i . Similarly, in such case a component of the global pG vector is replaced by
pmi and the component of the vector uΓG is changed to uΓm0 i − uΓmi. Formation of the global
vector tΓG is described by eqs. (3.90) and (3.84). Modification appears only in the latter one, where
vector tΓmi needs to be added for every mixed boundary.

General Case

As a general case of the mixed boundary condition it is assumed that the displacement component
is prescribed in the direction normal to the boundary and the traction component is given in the
tangential direction or vice versa. This formulation allows to consider meaningful mixed boundaries
of arbitrary curved shape. An example of such boundary can be fixed zero displacement in normal
direction and zero tractions in the tangential direction, a slider of arbitrary shape.
On the boundary of the domain, the Cartesian components of the displacement and traction vec-

tors can be transformed into components normal and tangential to the boundary. The transformed
vectors u′ =

î
un ut

óT
and t′ =

î
tn tt

óT
are obtained as

u′ =T Tu, (3.115)

t′ =T T t, (3.116)

where

T =
[

cosα − sinα
sinα cosα

]
(3.117)

is the transformation matrix and α is the angle between x axis and the normal vector to the
boundary. Due to the orthogonality of the T matrix, the inverse transformation reads

u =Tu′, (3.118)

t =T t′. (3.119)

For further development it is worth the effort to substitute the displacement approximation (3.1)
into eq. (3.115)

u′ = T Tu = T TUX + T Tu0 = U ′X + u′0. (3.120)

Matrix U ′ = T TU can be viewed as the approximation basis of the displacements normal and
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tangential to the boundary and vector u′0 = T Tu0 as the particular solution for the body forces
expressed in normal and tangential components. Similarly as was discussed in the previous section,
also basis U ′ consists of two rows

U ′ =
î
U ′n

T U ′t
T
óT
,

each approximating the normal or the tangential displacement components respectively.
The boundary condition for the general case is then expressed as

un =uΓ,n,

tt =tΓ,t.
on Γem (3.121)

The key concept is that on the mixed boundary of this type, normal and tangential tractions are
approximated instead of the tractions in Cartesian directions. Therefore, the traction approxima-
tion is modified for the mixed boundary and reads as

t′ = Zp on Γem. (3.122)

All the properties and form of the basis Z remain unchanged, therefore also in this case, individual
components can be expressed independently as Zvpm. Using the previously stated relations, the
integral over the mixed boundary popping up in eq. (3.102) can be reformulated∫ “UT t dΓem =

∫ “UTT t′ dΓem =
∫
Û ′

T
t′ dΓem =

∫ ”U ′nT tn dΓem +
∫
Û ′t

T
tt dΓem. (3.123)

Furthermore, the traction part of the boundary condition (3.121) and the approximation of the
normal traction component is inserted∫ ”U ′nT tn dΓem +

∫
Û ′t

T
tt dΓem =

∫ ”U ′nTZv dΓem pm +
∫
tΓ,tÛ ′t

T
dΓem. (3.124)

Defining

B′m =
∫ ”U ′nTZv dΓem, (3.125)

t′Γm =
∫
tΓ,tÛ ′t

T
dΓem, (3.126)

eq. (3.107) is modified as

DX −Bp−B′m pm = tΓ − tΓ0 + t′Γm. (3.127)

In the following, the displacement part of the boundary condition (3.121) is imposed. As it
contains only one component, vector Zv is used as the weighting function∫

ZT
v (un − uΓ,n) dΓem = 0. (3.128)
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The normal component of the displacement vector can now be expressed as

un = U ′nX + u′0,n,

where u′0,n is the normal component of the vector of particular solution u′0. Substituting the
previous definition into eq. (3.128) yields

−
∫
ZT
v U
′
n dΓemX =

∫
ZT
v u
′
0,n dΓem −

∫
ZT
v uΓ,n dΓem. (3.129)

Using the abbreviations

u′Γm =
∫
ZT
v uΓ,n dΓem, (3.130)

u′Γm0 =
∫
ZT
v u
′
0,n dΓem (3.131)

and already mentioned definitions, eq. (3.129) can be reformulated as

−B̂′m
T
X = u′Γm0 − u′Γm. (3.132)

Comparing the final equations (3.127) and (3.132) of the general case with eqs. (3.107) and (3.114)
derived for the simplified one, the only difference arises in definitions of the matrix B′m and vectors
t′Γm, u′Γm and u′Γm0 . For the general case, the rows of the displacement approximation basis and
of the vector of particular solution are transformed into the normal and tangential components.
One also needs to keep in mind that on the mixed boundary, normal and tangential tractions are
approximated instead of the original traction vector in Cartesian coordinates. The procedure of
generalization for the case, when multiple elements are used, is completely the same as for the
simplified case.

3.5 Post-processing

In the previous section the finite element system of algebraic equations (3.100) was derived. The
unknown coefficients related to the domain displacement and boundary traction approximations
are collected in vectors XG and pG, respectively. As both approximation bases are hierarchical,
the coefficients no longer have the meaning of nodal values of the corresponding field. After the
system is solved, a post-processing phase is necessary so that the displacement, stress and strain
fields are recovered.
Firstly, coefficients X(iel) for each element iel are extracted from the global vector XG. After-

wards, the displacement field evaluated at a certain position (x,y) within element iel is obtained
with the use of eq. (3.1). The basis functions collected in U(x,y) and vector of particular solution
u0(x,y) are also evaluated at position (x,y).
The strain field is evaluated in a similar way. The coefficients X(iel) are plugged into eq. (3.4),

where the approximation of the strain field is introduced. Again, the basis E(x,y) and vector
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ε0(x,y) are evaluated at the desired location (x,y). The stress field is then obtained by application
of eq. (2.34), which means that the previously evaluated strain field is just multiplied by the material
matrix k.

The tractions on the boundary are computed based on the boundary equilibrium (2.35). This
indicates that firstly, the stress field at the location (x,y) ∈ Γiel is evaluated as was discussed in the
previous paragraph. Subsequently, the matrix of unit normals N(x,y) at the investigated location
at the boundary is computed and inserted into eq. (2.35). Note that the boundary tractions are
not evaluated based on the boundary traction approximation stated in eq. (3.36). Therefore, the
coefficients collected in vector pG are not directly used in the post-processing phase. However,
eq. (3.36) can serve as a measure of quality of the results. On the Dirichlet boundary Γielu , the
boundary tractions can be evaluated using both the domain stress field as well as the boundary
traction approximation basis and compared afterwards.

The previous section concludes the chapter dedicated to the hybrid-Trefftz method. As the basis
functions are required to satisfy the homogeneous governing differential equation, the submatrices
and subvectors appearing in the final system of equations are computed based on integrals over the
element boundary. Therefore, on the element level the dimensionality of the problem is reduced,
which makes the integration procedure computationally faster. This property also enables usage
of elements with arbitrary shape and number of edges. Both domain and boundary approximation
bases are constructed hierarchically, therefore an optional number of terms can be included in the
individual bases. Combination of both previous properties allows modelling using very few but rich
elements.
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4 Unbounded Media

In many practical situations the domain of the investigated problem may be very large, in some
cases it may even extend to infinity. An often considered example of such structure is a loaded
half space. Applying the so far explained method, it is not possible to model an infinite structure.
Therefore the domain must be truncated at a certain distance from the source and artificial bound-
ary conditions need to be introduced. However, such approach would result in spurious reflections
of the travelling waves and consequently in a meaningless solution. To limit such undesired be-
haviour, few techniques [Tsynkov 1998] were developed so that the analysis of unbounded media can
be performed. These consist of e.g. modelling using infinite elements or introduction of absorbing
boundary condition.

It was briefly mentioned in section 3.2 that if the Hankel function is chosen as the radial compo-
nent Wn of the solution of the underlying Helmholtz equation, not only that the resulting displace-
ment basis satisfies the governing differential equation but also the Sommerfeld radiation condition
is implicitly fulfilled. This property is a key concept in both of the aformentioned methods. In
the case infinite elements are used, the principle is that the displacement approximation basis is
constructed using the Hankel functions as the radial component Wn. This ensures the Sommerfeld
radiation condition is satisfied. As a consequence of such formulation, integrals over a boundary
placed at infinite distance from the origin need to be computed, which however can be performed an-
alytically. In this thesis only the absorbing boundary condition was investigated and implemented,
therefore, details regarding the infinite elements are not discussed any more.
Various techniques regarding the formulation of the absorbing boundary condition were developed

over the years. The one applied in this thesis in referred to as the Dirichlet-to-Neumann mapping
method [Keller and Givoli 1989]. It can be shown that if the displacement basis functions satisfy the
Sommerfeld radiation condition, a linear mapping between the displacement and traction vectors
exists at infinite distance from the source. The essence of absorbing boundary condition is to enforce
such relation at a finite distance. In such case, the previous imposition results in an approximation.
An advantage of this approach is that any of the solution of the Bessel equation can be adopted
for the radial component Wn. In the following sections the procedure is described in detail.

4.1 Domain Modification

Assume the structure to be analysed is a loaded quarter-space depicted in fig. 4.1. As can be
seen, the domain extends to infinity in the direction of positive x-axis and negative y-axis. When
the absorbing boundary condition is applied for the analysis of unbounded medium, the domain
is divided into an internal region V and an external part Vext. All the loading and geometrical
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irregularities need to be placed in the internal region. The external domain is discarded from
the analysis and only the internal sector is considered. The borderline between the sectors is
named absorbing boundary on which the absorbing boundary condition is imposed. The rest of the
boundary of the internal domain is partitioned in the same way as was described in the previous
chapters.

Γσ

Γu

Γa

V

Vext

y

x

Figure 4.1: Domain modification

In the process of discretization, the internal domain V is divided into finite elements similarly
as was done for bounded domains. The boundary Γe of the element located in the vicinity of the
absorbing boundary will additionally contain part Γea, which stands for a portion of the absorbing
boundary Γa.

4.2 Absorbing Boundary Condition

It was already indicated in the introduction of the chapter, that there exists a linear relation
between the Sommerfeld-compliant displacement field ur,θ and the corresponding traction vector
tr,θ when the radius r tends to infinity. The superscripts r,θ indicate the components are expressed
in radial and angular directions. Generally, such Dirichlet-to-Neumann mapping can be expressed
as

tr,θ = Cur,θ for r →∞, (4.1)

where C denotes matrix of constants.
The previous equation represents the actual absorbing boundary condition, which is subsequently

weakly imposed on the absorbing boundary Γea. Note that eq. (4.1) holds only infinitely far from
the origin, when enforced in the finite distances, it results in an approximation and some reflections
occur.
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In the following sections the Sommerfeld radiation condition is introduced and the exact form of
eq. (4.1) is derived.

4.2.1 Sommerfeld Radiation Condition

The Sommerfeld radiation condition states that energy must be radiated from a source towards
infinity and no waves are allowed to come from infinity. The condition is expressed for the solutions
of the Helmholtz equation. It was described in section 3.2 that the Lamé equation expressed in terms
unknown displacement components can be decomposed into two uncoupled Helmholtz equations in
terms of potentials Φp and Φs. The radiation condition then reads [Sommerfeld 1912]

lim
r→∞

√
r

Å
∂Φα

∂r
− ikαΦα

ã
= 0, (4.2)

where α = {p,s}. Therefore, the solutions expressed by eqs. (3.23) and (3.24) of the underlying
Helmholtz equation are now restricted by eq. (4.2). It was already mentioned that the radiation
condition is satisfied only if the Hankel functions are chosen as the radial component Wn of the
solution for Φα. This statement is now explained in detail.

For a general argument kαr, Hankel functions (as well as all the solutions of the Bessel equation)
are defined by a series expansion. However, for large arguments, an asymptotic form of Hankel
function is found [Arfken et al 2013a]

H(h)
n (kαr) =

 
2

πkαr
exp

(
(−1)h+1i

(
kαr − (2n+ 1)π4

))
, (4.3)

where h = {1,2} denotes the kind of the Hankel function and n stands for its order. The first two
derivatives with respect to r are then expressed as

∂H
(h)
n

∂r
=
 

2
πkαr

exp
(

(−1)h+1i
(
kαr − (2n+ 1)π4

))Å
(−1)h+1kαi−

1
2r

ã
=

=H(h)
n

Å
(−1)h+1kαi−

1
2r

ã
, (4.4)

∂2H
(h)
n

∂r2 =H(h)
n

Å
−k2

α − (−1)h+1kαi

r
+ 3

4r2

ã
. (4.5)

The solutions (3.23) and (3.24) of the Helmholtz equation for a single order n

Φα,n = Wn(kαr) exp(inθ) (4.6)

are now inserted into eq. (4.2). The asymptotic form (4.3) of the Hankel function is considered as
the radial component Wn. Since the radiation condition is expressed for r → ∞, this approach is
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valid. The limit is then reformulated

lim
r→∞

√
r

Å
∂(Wn exp(inθ))

∂r
− ikαWn exp(inθ)

ã
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− ikαH(h)
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ã
=0

lim
r→∞

√
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Å
(−1)h+1kαi−

1
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rH(h)
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(−1)h+1 − 1

ä
kαi− lim
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1

2
√
r
H(h)
n =0.

(4.7)

Note that the exponential term in the asymptotic expression (4.3) for the Hankel function can be
split as

H(h)
n =

 
2

πkαr
exp

Ä
(−1)h+1ikαr

ä
exp

(
−(−1)h+1i(2n+ 1)π4

)
, (4.8)

where the second exponential is a constant. With the use of this property the second limit in eq.
(4.7) can be reformulated

lim
r→∞

1
2
√
r
H(h)
n = lim

r→∞
1

2
√
r

 
2

πkαr
exp

Ä
(−1)h+1ikαr

ä
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−(−1)h+1i(2n+ 1)π4
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=

=1
2

 
2
πkα

exp
(
−(−1)h+1i(2n+ 1)π4

)
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1
r

exp
Ä
(−1)h+1ikαr

ä
.

(4.9)

In general, the wave number kα is a complex number and can be expressed as

kα = Re(kα) + i Im(kα). (4.10)

The limit appearing in the second row of eq. (4.9) is analysed next

lim
r→∞

1
r

exp
Ä
(−1)h+1ikαr

ä
= lim
r→∞

1
r

exp
Ä
(−1)h+1i (Re(kα) + i Im(kα)) r

ä
=

= lim
r→∞

1
r

exp
Ä
(−1)h+1iRe(kα)r

ä
exp

Ä
−(−1)h+1 Im(kα)r

ä
.

(4.11)

The first exponential term in the previous relation represents a harmonic function, since an imagi-
nary unit appears in the exponent. On the other hand, the second term is exponentially increasing
or decaying function, depending on the sign of the imaginary part Im(kα) of the wave number and
the kind of the Hankel function, which is represented by symbol h. In the case of Hankel function
of the first kind (h = 1), the imaginary part of the wave number needs to be positive (Im(kα) > 0)
so that the exponential term is a decaying function and the limit is zero. Contrary, if the Han-
kel function is of second kind (h = 2), imaginary part of the wave number needs to be negative
(Im(kα) < 0) so that the limit is finite and zero. If the imaginary part of the wave number is zero,
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only the harmonic part remains in the expression. However, due to the hyperbolic factor 1/r the
limit is zero any way. For all these cases, the limit in eq. (4.11) is zero and therefore the limit in
eq. (4.9) is also zero.
In the following, the first term in eq. (4.7) is investigated. It can be developed as

lim
r→∞

√
rH(h)

n
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(−1)h+1 − 1

ä
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=
√
r
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exp
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−(−1)h+1i(2n+ 1)π4

)
lim
r→∞

exp
Ä
(−1)h+1ikαr

ä
.

(4.12)

The previous expression is always equal to zero if Hankel function of the first kind is adopted, since
the relation

(−1)h+1 − 1 = 0 for h = 1 (4.13)

holds. For the Hankel function of the second kind, it is necessary that the imaginary part of the
wave number is negative (Im(kα) < 0) so that the limit in the previous equation is zero. This
could be derived in the same way as was described in the previous paragraph. However, if the wave
number is real (Im(kα) = 0), the limit in the last row of eq. (4.12) does not exist and the whole
expression is zero only for the Hankel functions of the first kind due to eq. (4.13).
For convenience the previous derivations are now summarized. It was shown that the asymp-

totic form of the Hankel function for large arguments satisfies the Sommerfeld radiation condition,
however, under constraint placed on the chosen Hankel function kind. This restriction is ensured
for the following cases: If the imaginary part of the wave number is positive, Hankel function of
the first kind must be chosen. On the other hand, if the imaginary part of the wave number is
negative, Hankel function of the second kind must be adopted. If the wave number is real, only
Hankel function of the first kind satisfies the radiation condition.

4.2.2 Far-field Propagation

In the previous section, it was shown that under some restrictions, the asymptotic form of Hankel
functions for large arguments fulfil the Sommerfeld radiation condition. This motivates to also use
the asymptotic expression for the derivation of the exact form of the displacement, strain, stress
and traction fields in the large distances from the origin.
To start with, the displacement field approximation was defined in eq. (3.1), considering only the

homogeneous part, it may be expanded as

u = UX =
N∑

n=−N
UnXn =

N∑
n=−N

un. (4.14)

In the previous equation the layout of the basis U and vector X introduced in eqs. (3.29) and
(3.35) was inserted, which allows to represent the matrix-vector product as a sum of sub products
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un = UnXn. If the basis U contains functions for all orders n, meaning N = ∞, eq. (4.14)
represents the exact solution for arbitrary boundary conditions. Vector un denotes a part of the
complete homogeneous solution related to a single order n. Components of the vector un are
displacements in Cartesian directions, however, for further derivations it is more convenient to
work with vector ur,θn , whose components are displacements in radial and angular directions. The
relation between both vectors reads

ur,θn = T Tun = T TUnXn = Ur,θ
n Xn, (4.15)

where T is the transformation matrix and Ur,θ
n is the matrix collecting basis functions approxi-

mating displacements in radial and angular direction, which were defined in eqs. (3.30) and (3.31)
respectively. The definition of the matrix Ur,θ

n is developed next considering the asymptotic ex-
pression of the Hankel function as the radial component Wn
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Å
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n (kpr) 0

0 H
(h)
n (ksr)
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exp(inθ).

(4.16)

For large radius r, the terms including 1/r can be neglected since their contribution is much smaller
compared to the other parts. With this assumption, the previous equation yields

Ur,θ
n = i(−1)h+1

[
kp 0
0 −ks

][
H

(h)
n (kpr) 0

0 H
(h)
n (ksr)

]
exp(inθ) = U∗Hn exp(inθ), (4.17)

where

U∗ =i(−1)h+1

[
kp 0
0 −ks

]
, (4.18)

Hn =
[
H

(h)
n (kpr) 0

0 H
(h)
n (ksr)

]
. (4.19)

In figures 4.2 and 4.3 the components of the displacement basis Ur,θ
n are plotted considering

the original definition of the basis as in eq. (3.31) or in the first line of eq. (4.16). The Hankel
function of the first kind and order n = 1 was adopted for the function Wn. Note that the original
form of the Hankel function is used in the mentioned plots, not the asymptotic simplification. The
basis functions are evaluated on a circular domain centred at origin. However, a portion of the
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region in the vicinity of the center is excluded, since the derived displacement shapes are singular
when r → 0. The particular values of the wave numbers were chosen as kp = 0.475 1/m and
ks = 0.889 1/m.
In fig. 4.2 the real parts of the displacements in radial and angular direction are visualized

considering the p-wave part of the solution. It can be seen that for large radii, the displacement
component in angular direction tends to zero much faster compared to the radial one. In fig. 4.3 the
s-wave part of the displacement solution is plotted. On the other hand, in latter figure the radial
component of the displacement field tends to zero for large radii. Both of the previous findings
correspond to the diagonal form of the simplified basis Ur,θ

n defined in eq. (4.17), where the part
associated to p-waves has only displacement contribution in radial direction and the s-wave part
generates displacement in angular direction only.

Figure 4.2: P-wave part of the displacement basis Ur,θ
1

Figure 4.3: S-wave part of the displacement basis Ur,θ
1

Similar ideas can now be applied also for the derivation of the strain far field. The strain solution
expressed in the polar reference frame for a single order n is given as

εr,θn = Er,θn Xn, (4.20)
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where matrix Er,θn , collecting the strain basis functions for a single order n, is defined in eq. (3.34).
Inserting the asymptotic form of the Hankel function for the radial component Wn, eq. (3.34) is
modified
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(4.21)

The terms including 1/r and 1/r2 are again neglected since for large r their influence is minor. The
previous equation then results in

Er,θn =
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where
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 . (4.23)

By the application of the material equations, the stress far-field solution σr,θn with components
in radial and angular directions can be easily obtained from the already derived strain solution

σr,θn = kεr,θn = kEr,θn Xn = Sr,θn Xn. (4.24)
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Matrix Sr,θn contains the stress basis for a single order n and its exact form is derived as

Sr,θn =kEr,θn =
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λ λ+ 2µ 0
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(4.25)

where

S∗ =

−k2
p(λ+ 2µ) 0
−k2

pλ 0
0 k2
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 . (4.26)

The last field to be investigated are the tractions evaluated at a circular boundary located
sufficiently far from the origin so that the asymptotic expression of the Hankel functions can be
applied. Boundary tractions can be computed based on the boundary equilibrium expressed by eq.
(2.35). The exact form of matrix N was introduced in eq. (2.14), however, since all the derivations
in this section are perform in the polar reference frame, the components of the matrix N also need
to be expressed in such coordinate system. Therefore, matrix

Nr,θ =
[
nr 0 nθ

0 nθ nr

]
(4.27)

is used instead, nr and nθ are the polar components of the outward unit normal at the boundary.
The desired boundary traction field is then computed as

tr,θn = Nr,θσr,θn = Nr,θSr,θn Xn = T r,θn Xn, (4.28)

where T r,θn stands for the matrix collecting boundary traction functions derived from the solution
ur,θn for a single order n

T r,θn =Nr,θSr,θn = Nr,θS∗Hn exp(inθ) =
[
nr 0 nθ

0 nθ nr
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pλ 0
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−nθk2
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2
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]
Hn exp(inθ) = T∗Hn exp(inθ).

(4.29)

As was mentioned, the boundary at which the tractions are evaluated is assumed to be circular.
This implies that the the angular component nθ of the outward normal is zero and the radial
component nr = 1, since the normal vector has a unit length. Using these findings, the relation for
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T∗ can be simplified

T∗ =
[
−nrk2

p(λ+ 2µ) nθk
2
sµ

−nθk2
pλ nrk

2
sµ

]
=
[
−k2

p(λ+ 2µ) 0
0 k2

sµ

]
. (4.30)

To conclude, main points of this section are summarized. The general form of the basis functions,
which solve the governing differential equation in terms of displacements, was discussed in section
3.2. Each of these displacement solutions has the associated strain, stress and boundary traction
fields, which can be derived based on the relations stated in chapter 2. In this part of the thesis,
the aim was to find the exact relations for the associated fields evaluated in large distances from the
origin. The matrices Ur,θ

n , Er,θn , Sr,θn and T r,θn collecting the individual basis functions for a single
order n were derived. The rows of the matrices are associated with the individual components of
the field, for which the polar reference frame was considered. The columns of the matrices represent
the contribution of the pressure and shear waves respectively.

4.2.3 Dirichlet-to-Neumann Mapping

The solutions of the homogeneous Lamé equation for the individual fields in a sufficiently large dis-
tance from origin are now used to form the Dirichlet-to-Neumann map (4.1). Matrix T∗ appearing
in the expression for the traction basis in eq. (4.29) can be reformulated as

T∗ =
[
−k2

p(λ+ 2µ) 0
0 k2

sµ

]
= i(−1)h+1

[
kp(λ+ 2µ) 0

0 ksµ

]
i(−1)h+1

[
kp 0
0 −ks

]
= CU∗, (4.31)

where

C = i(−1)h+1

[
kp(λ+ 2µ) 0

0 ksµ

]
(4.32)

is the matrix of constants connecting matrices U∗ and T∗. Eq. (4.31) implies that the traction
and displacement bases evaluated at a circular boundary in large distance from origin are related
through a matrix of constants, which can be shown as

T r,θn = T∗Hn exp(inθ) = CU∗Hn exp(inθ) = CU r,θ
n . (4.33)

Furthermore, the complete solution can be recovered by including matrices collecting basis functions
for all orders −∞ < n < ∞ multiplied by unknown coefficients collected in vector X. Therefore,
the complete traction solution evaluated on a circular boundary sufficiently far from the origin is
expressed as

tr,θ =
∞∑

n=−∞
tr,θn =

∞∑
n=−∞

T r,θn Xn =
∞∑

n=−∞
CU r,θ

n Xn = C
∞∑

n=−∞
U r,θ
n Xn = Cur,θ

tr,θ =Cur,θ
(4.34)
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This equation shows that on a circular boundary in large distance from the source of excitation
and irregularities, the boundary tractions and the displacements are connected through a matrix
of constants. This statement holds for arbitrary loading and boundary conditions.

4.2.4 System Modification

The essence of the absorbing boundary technique is that the Robin-type relation, expressed by
eq. (4.34), is weakly imposed on the boundary Γea located at finite distance from the source of
excitation. As the asymptotic form of the Hankel function was used for the derivation of the
relation (4.34), it is only valid when the boundary is infinitely far from origin. Therefore, this
imposition results in an approximation and some spurious reflections may occur in the vicinity of
the boundary. Moreover, the assumption of a circular boundary was considered in the previous
section. Consequently, enforcing eq. (4.34) on a non circular boundary may result in an additional
source of error.
The finite element system modification is now described. Firstly, the changes are presented

for the case of a single element with one continuous Dirichlet boundary and only one absorbing
boundary. Afterwards, a generalization for multiple elements is discussed.
Similarly to the Dirichlet boundary, also on the absorbing boundary Γea the boundary traction

field is approximated

t = Zapa on Γea. (4.35)

Matrix Za collects the approximation basis functions and vector pa contains the related unknown
coefficients. In this work, the same basis was chosen to approximate the boundary tractions on the
Dirichlet as well as on the absorbing boundary, which implies that Za = Z.
As was already mentioned, eq. (4.34) is weakly enforced while the boundary traction basis Za is

used as the weighting matrix. For convenience, eq. (4.34) is firstly inverted so that the displacements
are expressed in terms of boundary tractions

ur,θ = C−1tr,θ. (4.36)

Moreover, the components of the displacement and traction vectors appearing in the previous
relation are in radial and angular directions. However, the boundary traction approximation as
well as the displacement approximation is expressed for components in Cartesian directions, as can
be noted from eqs. (3.1) and (4.35). Consequently, the relation (4.36) needs to be transformed.
Using the transformation matrix T , defined in eq. (3.30), and the formulas

ur,θ =T Tu, (4.37)

tr,θ =T T t, (4.38)
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eq. (4.36) is reformulated

ur,θ =C−1tr,θ

T Tu =C−1T T t

TT Tu =TC−1T T t

u =Cx,y−1t,

(4.39)

where

Cx,y = TCT T . (4.40)

Note that eqs. (4.39) and (4.34) represent the same relation, just using a different formulation.
Finally, eq. (4.39) can be weakly imposed on Γea∫

ZT
a

Ä
u−Cx,y−1t

ä
dΓea = 0. (4.41)

Inserting the domain displacement and boundary traction approximations, the previous equation
is rephrased

−
∫
ZT
aU dΓeaX +

∫
ZT
aC

x,y−1Za dΓea pa =
∫
ZT
a u0 dΓea. (4.42)

Using definitions

Ba =
∫ “UTZa dΓea, (4.43)

Da =
∫
ZT
aC

x,y−1Za dΓea, (4.44)

ua0 =
∫
ZT
a u0 dΓea, (4.45)

eq. (4.42) is abbreviated as

−”BaT X +Da pa = ua0 . (4.46)

Another modification of the system arises in eq. (3.47), since the integral over the complete
boundary now contains a portion related to the absorbing boundary Γea. Hence, the equation is
modified∫ “UTDσ dV e =

∫ “UT tΓ dΓeσ +
∫ “UTZ dΓeu p+

∫ “UTZa dΓea pa −
∫ Ä
D∗“UäT σ dV e. (4.47)

Consequently, the first equation (3.62) of the governing system is changed as

DX −Bp−Ba pa = tΓ − tΓ0 . (4.48)

Considering both modifications, the finite element system expressed in eq. (3.68) is reformulated
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
D −Ba −B
−”BaT Da 0
−“BT 0 0


Xpa
p

 =

 tΓ − tΓ0

ua0

uΓ0 − uΓ

 . (4.49)

A generalization for the case of multiple finite elements is straightforward. Since the individual
absorbing boundary edges cannot be shared by two elements, the coefficients pa are related to one
element only. The global system defined in eq. (3.100) can be modified analogously as the single
element system, which results in

DG −Ba,G −BG
−’Ba,GT Da,G 0
−B̂G

T
0 0


XG

pa,G

pG

 =

tΓG − tΓ0,G

ua0,G

uΓG

 , (4.50)

where

Da,G =


Da1 0 . . . 0

0 Da2 . . . 0
...

... . . . 0
0 0 0 Dana

 , (4.51)

pa,G =
î
pa

T
1 pa

T
2 . . . pa

T
na

óT
, (4.52)

ua0,G =
î
ua0

T
1 ua0

T
2 . . . ua0

T
na

óT
. (4.53)

The additional subscript ia = 1, 2, . . . , na indicates indexing related to individual absorbing bound-
ary edges with na denoting the number of all absorbing boundary edges. The individual Ba(jel)

ia

matrices evaluated for element jel and at absorbing edge ia are sorted in the global Ba,G matrix
in the following way: index jel corresponds to the row and subscript ia to the column in the final
global matrix. As some elements may have no absorbing boundary, the global matrix Ba,G may
contain rows with zeros only.
As the matrix Da,G is symmetric, also the resulting system preserves this property. Due to the

fact that the Robin-type relation is explicitly enforced, arbitrary solutions of the Bessel equation
can be adopted for the formulation of the displacement basis U . The exact forms of the bases
derived using the asymptotic form of the Hankel function were only used to obtain the matrix C
connecting the displacements and tractions at infinity.

This chapter describes the modelling procedure of infinite domains by an application of the absorb-
ing boundary condition method. The Sommerfeld radiation condition constitutes the fundamental
constraint for the previous derivations. In the beginning, it is shown that if the Hankel functions
are used as the radial componentWn for the construction of the basis functions, the solution is also
Sommerfeld-compliant. These findings are then applied for the derivation of the exact forms of the



56 4 Unbounded Media

solution basis of the individual fields in large distances from origin. From the resulting expressions,
the linear mapping is found between the displacement and the traction fields evaluated at the cir-
cular boundary at infinity. Afterwards, this relation is weakly enforced at the absorbing boundary
located at finite distance from origin, which results in an approximation of the real behaviour.
Simultaneously, the tractions are approximated on the absorbing boundary. The resulting system
of equations is modified, additional equation as well as structural degrees of freedom emerge. An
advantage of the described concept is the freedom of choice of the Bessel solution functions used
for the generation of the displacement approximation basis. On the other hand, the main draw-
backs are the artificial wave reflections occurring due to the insufficient distance of the absorbing
boundary from the origin of excitation or because of the inclination of the absorbing boundary.
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5 Introduction to Wave Based Method

It was mentioned in the introduction that to validate the implemented hybrid-Trefftz method, the
obtained results are compared to those acquired with the wave based method (WBM). Even though
the wave based method modelling technique is not the main part of this thesis, a short chapter is
dedicated to a brief introduction of it. Afterwards, main features of both methods are summarized
and compared.

The application of the WBM on the steady-state elastodynamic problem is described in [Deckers
et al 2012] and [Van Genechten et al 2010]. Both publications served as the reference for the
presented theoretical aspects.

5.1 Basic Principle

Similarly to the hybrid-Trefftz method also WBM belongs to the family of Trefftz methods. This
implies that the basis functions selected for the approximation of a certain field within the element
domain are chosen to satisfy the governing differential equation. The individual basis components
implicitly fulfil the governing equation, however, for a general case they violate the prescribed
boundary conditions. Therefore, a finite number of such functions is combined so that the error
between the true and approximated boundary conditions is decreased. What distinguishes both
mentioned methods is the way how the boundary conditions as well as the inter-element continuity
conditions are enforced. In the case of WBM, no additional field needs to be approximated, how-
ever, the boundary and the inter-element continuity conditions are weakly imposed on the element
boundary with the use of the Galerkin weighted residual method. The necessary condition ensuring
convergence of the method to the analytical solution is convexity of the element domain.
The set of equations (2.31) to (2.37) describing the elastodynamic problem in the frequency

domain derived in chapter 2 form the starting point for the upcoming derivations. For clarity the
subscript k related to the time discretization is omitted.

The workflow of the method procedure can be divided in the following parts. Firstly, the domain
of the structure is discretized into a number of convex finite elements. Inside each element domain
the displacement field is expanded in terms of shape functions multiplied by unknown participation
factors. As was already stressed, the basis functions are selected as solutions of the underlying
differential equation. Afterwards, the prescribed boundary conditions as well as the continuity
between adjacent elements are weakly imposed. Subsequently, the system of algebraic equations
is formed with the participation factors being the unknowns. After the solution is obtained, the
unknown fields need to be recovered during a post-processing phase. The individual steps are
described in detail in the following sections.
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5.2 Domain Discretization

It was already indicated that to ensure the convergence to the analytical solution, the analysed
domain must be of convex shape. In case this property is not fulfilled, the domain V needs to
be partitioned into nel convex subdomains V (iel), where iel = 1,2, . . . , nel. The element boundary
Γ(iel) can subsequently be divided into non-overlapping parts Γ(iel)

u , Γ(iel)
σ and Γ(iel,jel)

I . The first
two symbols stand for the Dirichlet and Neumann boundaries where the displacement components
and the boundary tractions are prescribed. Γ(iel,jel)

I denotes the inter-element boundary between
two adjacent elements iel and jel.

The displacement and traction boundary conditions can be formulated in normal and tangential
directions to the boundary. In residual form they are expressed as

R(iel)
un =u(iel)

n − uΓ,n = 0,

R(iel)
ut =u(iel)

t − uΓ,t = 0,

R
(iel)
tn =t(iel)n − tΓ,n = 0,

R
(iel)
tt =t(iel)t − tΓ,t = 0,

on Γ(iel)
u

on Γ(iel)
σ

(5.1)

where uΓ,n, uΓ,t, tΓ,n and tΓ,t are the prescribed displacement and traction components.
There are four continuity conditions which need to be weakly imposed between the neighbouring

elements iel and jel. Two are expressed in terms of displacement components u(iel)
n and u(iel)

t and
two in terms of traction components t(iel)n and t(iel)t . The conditions can be written in residual form
as

R(iel,jel)
un =u(iel)

n + u(jel)
n = 0,

R(iel,jel)
ut =u(iel)

t + u
(jel)
t = 0,

R
(iel,jel)
tn =t(iel)n − t(jel)n = 0,

R
(iel,jel)
tt =t(iel)t − t(jel)t = 0.

on Γ(iel,jel)
I (5.2)

To formulate a well posed problem, exactly two boundary conditions need to be enforced on each
point of the boundary. Therefore, the inter-element displacement continuity conditions are imposed
on one of the two adjacent elements while the traction continuity condition is enforced on the second
element.

5.3 Displacement Field Expansion

As was indicated earlier, the basis functions are restricted to satisfy the homogeneous part of the
governing differential equation (2.31). The solution procedure was already described in detail in
section 3.2.1. It was shown that by the application of the Helmholtz decomposition (3.6), the
system can be decoupled into two independent Helmholtz equations (3.12) and (3.16) in terms of
dilatational and shear potentials Φp and Φs. Afterwards, the solution of the individual Helmholtz
equations was obtained in polar reference. An alternative procedure is adopted in this section,
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which consists of solving the Helmholtz equations directly in the Cartesian reference frame.
For clarity, a general form of the Helmholtz equation is reproduced

∂2Φα

∂x2 + ∂2Φα

∂y2 + k2
αΦα = 0, (5.3)

where α = {p,s} and kα denotes the related pressure or shear wave number. The following wave
function sets can be considered as solutions of the previous equation

Ψa
α(x,y) = sin

(
kax,αx

)
exp
(
ikay,αy

)
,

Ψb
α(x,y) = cos

Ä
kbx,αx

ä
exp
Ä
ikby,αy

ä
,

Ψc
α(x,y) = exp

(
ikcx,αx

)
sin
(
kcy,αy

)
,

Ψd
α(x,y) = exp

Ä
ikdx,αx

ä
cos
Ä
kdy,αy

ä
.

(5.4)

In order the wave functions satisfy the Helmholtz equation (5.3), relations

(
kax,α

)2 +
(
kay,α

)2 =
Ä
kbx,α

ä2
+
Ä
kby,α

ä2
=
(
kcx,α

)2 +
(
kcy,α

)2 =
Ä
kdx,α

ä2
+
Ä
kdy,α

ä2
= k2

α (5.5)

between the individual wave numbers must hold.
It can be noted that there is infinite number of possibilities regarding the choice of the individual

wave number pairs. An often proposed option selects the wave numbers as

(
kax,α, k

a
y,α

)
=
Å
maπ

Lx
,±
√
k2
α −

(
kax,α

)2ã
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kbx,α, k
b
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mbπ
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c
y,α

)
=
Å
±
√
k2
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(
kcy,α
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mcπ
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ã
, mc = 0,1,2, . . . ,McÄ

kdx,α, k
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y,α

ä
=
Å
±
√
k2
α −

(
kdy,α

)2
,
mdπ

Ly

ã
, md = 0,1,2, . . . ,Md

(5.6)

Symbols Lx and Ly denote the lengths of the smallest bounding box to the related element. The
upper limits Ma, Mb, Mc and Md are selected according to the chosen truncation rule.

Based on the previous discussion, the potentials Φα can be expanded in terms of the wave
functions sets defined in eq. (5.4). As only a finite number of terms is included, this procedure
results in an approximation

Φα ≈
Ma∑
ma=1

wamaΨa
α +

Mb∑
mb=1

wbmbΨ
b
α +

Mc∑
mc=1

wcmcΨ
c
α +

Md∑
md=1

wdmdΨ
d
α. (5.7)

The coefficients w∗• are the unknown participation factors related to a single element. Note that
the previously described expansion is performed for each element separately.

The displacement field components can be obtained from the approximated potentials Φp and
Φs by application of eq. (3.6). Subsequently, the boundary tractions are acquired with the use
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of eqs. (2.33) to (2.35). Moreover, both quantities need to be transformed to the normal and
tangential directions with respect to the element boundary, since also the boundary conditions (5.1)
as well as the inter-element continuity conditions (5.2) are expressed in terms of these components.
Symbolically, the individual displacement and traction components, denoted by symbol a, can be
expressed in terms of vector

î
Φp Φs

óT
as

a = La

[
Φp

Φs

]
, (5.8)

where La is the specific differential operator and a = {un,ut, tn,tt}. The individual operators La
have the form

Lun =
ï
∂

∂n

∂

∂t

ò
,

Lut =
ï
∂

∂t
− ∂

∂n

ò
,

Ltn =
ï
2µ ∂2

∂n2 + λ∇2 2µ ∂2

∂n∂t

ò
,

Ltt =
ï
2µ ∂2

∂n∂t
2µ
Å
∂2

∂t2
− ∂2

∂n2

ãò
.

(5.9)

Symbols ∂

∂n
and ∂

∂t
represent the normal and tangential derivative.

5.3.1 Construction of the System of Equations

The system of algebraic equations is obtained by weak imposition of the boundary as well as the
inter-element continuity conditions defined in eqs. (5.1) and (5.2). For each element iel the residuals
are multiplied by weighting functions ã and integrated along the related boundary∫

Γ(iel)
u

t̃(iel)n R(iel)
un +t̃(iel)t R(iel)

ut dΓ−
∫

Γ(iel)
σ

ũ(iel)
n R

(iel)
tn + ũ

(iel)
t R

(iel)
tt dΓ+

+
nel∑

jel=1,jel 6=iel

∫
Γ(iel,jel)
I

t̃(iel)n R(iel,jel)
un + t̃

(iel)
t R(iel,jel)

ut dΓ+

−
nel∑

jel=1,jel 6=iel

∫
Γ(iel,jel)
I

ũ(iel)
n R

(iel,jel)
tn + ũ

(iel)
t R

(iel,jel)
tt dΓ = 0.

(5.10)

The first integral is related to the imposition of the displacement boundary condition while the
second one is associated to enforcement of the traction boundary condition on element iel. Fur-
thermore, integrals along the edges which are shared with neighbouring elements jel are considered.
On each inter-element edge of element iel, either the displacement residuals or the traction residuals
are weakly enforced, the remaining option is then imposed on the neighbouring element jel.

The individual weighting functions denoted by ã are expanded in terms of the same wave function
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sets as the original fields

ã = La

[
Φ̃p

Φ̃s

]
, (5.11)

with

Φ̃α ≈
∑
ma

w̃amaΨa
α +

∑
mb

w̃bmbΨ
b
α +

∑
mc

w̃cmcΨ
c
α +

∑
md

w̃dmdΨ
d
α. (5.12)

The final system of algebraic equations is generated as follows: Firstly, the residuals in eqs.
(5.1) and (5.2) are expressed in terms of unknown participation factors w∗•, which is done by
substitution of eqs. (5.4), (5.7), (5.8) and (5.9). Afterwards, the residuals are substituted into
eq. (5.10). Similarly, by combination of eqs. (5.11) and (5.12) also the weighting functions are
expanded in terms of coefficients w̃∗• and substituted into eq. (5.10). Performing such procedure for
all the elements iel and considering that the coefficients related to the weighting functions may be
arbitrary, the system of algebraic equations is formulated with unknowns being the contribution
factors of all elements. The resulting global system matrix has complex components and is generally
nonsymmetric.

The individual system submatrices are constructed by integration along a portion of the element
boundary. As the integrals cannot be evaluated analytically, numerical quadrature needs to be
applied. Since the integrands are highly oscillatory functions, large number of quadrature points
need to be considered so that the resulting approximation is sufficiently accurate.
After the system of equations is solved, the unknown contribution factors of each wave function

for each element are obtained. To reconstruct the desired fields, a post-processing phase is necessary.
Within each element, firstly the dilatational and shear potential fields are evaluated at the desired
locations by substitution of the related coefficients w∗• into eq. (5.7). Afterwards, the displacement
fields can be obtained with the help of eq. (3.6) and the associated stress field is then acquired by
application of eqs. (2.33) and (2.34).

5.4 Comparison of Wave Based and Hybrid-Trefftz Methods

In the following section both wave based and hybrid-Trefftz methods are compared in various
categories.
Domain discretization: In the case of both methods the aim is to discretize the investigated

structure into small number of large elements. As for both techniques the system matrices are
constructed by integration along the element boundary, it is advantageous to keep the length of
all element boundaries as small as possible, which is accomplished by reduction of the number
of elements. Moreover, in the case of both methods, the complexity of the resulting system of
equations is reduced when p-refinement techniques are adopted instead of the h-refinement ones.
This means that to achieve the desired accuracy of the results, it proves to be more efficient to
increase the number of functions in the approximation basis rather than increase the number of
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elements. However, in the case of the hybrid-Trefftz method, when the elements are too large, and
hence for a sufficient accuracy a large number of basis functions needs to be included, the resulting
equation system turns out to be ill-conditioned. To overcome such issue, h-refinement technique
needs to be applied.
Domain complexity: When complex shapes are modelled, the domain needs to be partitioned in

many elements, which results in an increase of the inter-element boundary length as well as of the
number of degrees of freedom. Overall, the computational cost of both methods is too large for
such cases and perhaps different modelling strategy should be adopted instead. Furthermore, in
the case of WBM, the necessary requirement for the method to converge is the element convexity.
Therefore, some domain shapes, such as structures with circular holes, even cannot be divided into
convex subdomains. This property makes to method even less applicable for modelling of complex
domains.
Approximated fields and basis functions: In the case of both methods the displacement field is

approximated inside the element domain. Moreover, the basis functions are required to satisfy
the governing differential equation. The functions contained in the WBM basis are constructed
as solutions of the Helmholtz equation expressed directly in Cartesian coordinates. On the other
hand, the basis for the hybrid-Trefftz method is obtained by solving the Helmholtz equation in
polar reference frame. Furthermore, in the case of the hybrid-Trefftz method, the tractions on
the Dirichlet and inter-element boundary are additionally approximated. The basis for the such
approximation is constructed using the Chebyshev polynomials.
Construction of the system of equations: In the case of WBM, the system of equations is con-

structed by weak imposition of the boundary as well as the inter-element continuity conditions.
The displacement and traction residuals are multiplied by weighting functions and integrated along
the related portion of the boundary. In the case of hybrid-Trefftz method, the finite element system
of equations is generated as follows: The equilibrium equations are weakly imposed in the element
domain, while the material law and the kinematic equations are satisfied strongly. Furthermore,
the traction boundary approximation and the traction boundary conditions are substituted. All
the equations are combined and the first matrix equation of the final system is formed. The second
one is constructed by weak imposition of the displacement boundary and inter-element continuity
conditions, while the boundary traction approximation basis is used as the weighting matrix. The
individual submatrices in the case of both methods are constructed by integration of highly oscil-
latory functions along the element boundary, hence a large number of quadrature points must be
considered so that the integrals are approximated accurately.
Resulting system of equations and number of degrees of freedom: The resulting global system

matrices have complex components for both compared methods. The matrix associated to the
hybrid-Trefftz method is Hermitian, which is an advantageous property, when iterative solvers are
applied during the solution procedure. The number of degrees of freedom, and hence the size of
the system of equations, related to both methods is generally small when compared to systems
obtained with other methods, such as FEM. In the case of the hybrid-Trefftz method, additional
degrees of freedom are introduced for the approximation of the boundary tractions. Therefore, the
size of the resulting system is larger compared to the one acquired with WBM, when the number
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of domain basis functions is kept the same. For both methods, the unknown coefficients represent
the contribution factors of the related basis functions to the final solution. This implies that to
recover the desired field of interest, post-processing is required, in which the basis functions are
evaluated at the investigated locations and multiplied by the computed coefficients.

The main points are summarized in tab. 5.1.

WBM Hybrid-Trefftz method
Approximated fields in
element domain

Displacements Displacements

Domain basis functions Satisfy the Lamé equation, solved
in Cartesian reference frame

Satisfy the Lamé equation, solved
in polar reference frame

Approximated fields on
element boundary

None Tractions

Construction of the sys-
tem of equations

Prescribed boundary and continu-
ity conditions weakly enforced on
element boundary

Weak imposition of the equilib-
rium equations in element domain,
substitution of the material law,
kinematic equations, traction ap-
proximation and traction bound-
ary condition, weak enforcement
of the displacement boundary and
continuity conditions on element
boundary

System matrices evalua-
tion

Integration along element bound-
ary

Integration along element bound-
ary

Degrees of freedom Contribution factors of the indi-
vidual wave functions in each el-
ement

Contribution factors of the indi-
vidual basis functions in each ele-
ment and coefficients related to the
boundary traction approximation

Properties of the system
of equations

Complex Complex, Hermitian

Element shape require-
ments

Convex None

Table 5.1: Comparison of WBM and hybrid-Trefftz method
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6 Implementation

Most of the theoretical aspects related to the analysis of loaded elastodynamic media were described
in the previous chapters. The hybrid-Trefftz finite element system of equations was derived using
the weighted residual method and the modification of the system for unbounded problems was
introduced. The following chapter is dedicated to the implementation of the previously discussed
theoretical concepts.

The programming aspects of the Trefftz finite element method are discussed in [Qin and Wang
2008], where the implementation is described for potential problems as well as for plane elasticity.
Firstly, the topic of numerical integration is introduced, since it is a necessary mathematical tool

enabling an efficient implementation of the described method. Subsequently, implemented elements
are mentioned and relations for description of the element geometry are derived. The third and
last section of the chapter is devoted to a detailed description of the implemented code and its
structure.

6.1 Numerical Integration

All the system matrices and vectors appearing in the governing system of equations (4.49) are
defined as integrals over the element boundary or a portion of it. For elements of a general shape it
is infeasible to perform the integration analytically and therefore numerical quadrature rules need
to be applied instead.
Let s be the coordinate running along a single element edge and l be the length of the edge.

Integral of an arbitrary function g(x,y) over the single edge is approximated as

∫ l

0
g(x,y) ds ≈

q∑
k=1

wkg(xk,yk), (6.1)

where q denotes the order of the quadrature, (xk,yk) are the quadrature points and wk are the
corresponding quadrature weights. As quadrature rules are defined in terms of the normalized
coordinate ξ ∈ 〈−1,1〉, the previous equation is modified

∫ l

0
g(x,y) ds =

∫ 1

−1
g (x(ξ),y(ξ)) ds

dξdξ ≈
q∑

k=1
wkg(x(ξk),y(ξk))J(ξk), (6.2)

where ξk denotes the quadrature points in 1D normalized reference frame. In the previous equa-
tion the integral over the single edge was transformed to integral performed over the normalized
coordinate ξ, which was done by expanding the differential segment ds using the chain rule. The
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term ds/dξ is referred to as the Jacobian J . The mapping between the side coordinate ξ and the
spatial coordinates x(ξ) and y(ξ) needs to be defined based on the particular element boundary
shape.
To evaluate the Jacobian, the differential boundary segment ds is firstly expressed in terms of the

differential Cartesian segments dx and dy, which are then with the use of the chain rule expanded
in terms of the coordinate ξ

ds =
»
dx2 + dy2 =

 Ådx
dξ dξ

ã2
+
Ådy
dξ dξ

ã2
=

 Ådx
dξ

ã2
+
Ådy
dξ

ã2
dξ. (6.3)

Therefore the Jacobian results in

J = ds
dξ =

 Ådx
dξ

ã2
+
Ådy
dξ

ã2
. (6.4)

The exact relation for the Jacobian hence depends on the shape of the boundary and the specific
form of the mapping between the side coordinate and the Cartesian reference frame.
In this work the Gauss-Legendre quadrature rule is chosen. For q integration points a polynomial

of order 2q − 1 is integrated exactly. The integration points and weights can be obtained by the
application of the Golub-Welsch algorithm [Golub and Welsch 1969].

6.2 Implemented Elements

In this section the implemented element types are discussed and the particular form of the mapping
between the side coordinate ξ and the Cartesian coordinates x and y of the points on the element
edge is introduced. Subsequently, the derivative of such mapping is derived so that the Jacobian
defined in eq. (6.3) can be computed. In addition, components of the unit normal at the point on
the boundary are expressed, since such information is necessary for computation of some of the
system matrices.
In chapter 3 it was mentioned that elements of arbitrary shape and with optional number of

edges can be used. However, for simplicity, in this work only elements with straight or circular
edges were implemented. In the following subsections both formulations are explained in detail.

6.2.1 Element with Straight Edges

Assume index i = 1,2, . . . , nno runs over the element nodes with nno being the number of element
nodes. Since a straight edge is completely defined be two neighbouring nodes, number of edges
ned corresponds to the number of nodes, therefore ned = nno. In the case of straight edge, the
geometry can be described using the linear shape functions. Therefore, an arbitrary point on the
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edge between nodes i and i+ 1 can be obtained as

x =
ï

1− ξ
2

1 + ξ

2

ò[
xi

xi+1

]
, (6.5)

y =
ï

1− ξ
2

1 + ξ

2

ò[
yi

yi+1

]
, (6.6)

where (xi,yi) are the coordinates of ith node. For the computation of the Jacobian, the derivatives
with respect to ξ coordinate need to be expressed as well

dx
dξ =

[
−1

2
1
2

] [ xi

xi+1

]
, (6.7)

dy
dξ =

[
−1

2
1
2

] [ yi

yi+1

]
. (6.8)

Components of the outward unit normal vector n =
î
nx ny

óT
are then calculated as

nx =dy
ds = dy

dξ
dξ
ds = 1

J

dy
dξ ,

ny =− dx
ds = −dx

dξ
dξ
ds = − 1

J

dx
dξ .

(6.9)

It is important to stress that the concept of nodal interpolation is only applied for the description
of the geometry of the element. As was mentioned in chapter 3, the domain displacement and
boundary traction approximation bases are strictly hierarchical and their exact form was derived
earlier.

6.2.2 Element with Circular Edges

The situation gets more complex when a circular edge is considered. In such case, not only co-
ordinates of the two neighbouring nodes are sufficient to define the geometry of the edge, but
additional information regarding the coordinates of the center (xc,j ,yc,j) of the circular edge needs
to be provided. Index j runs over all circular edges belonging to a certain element. To define the
mapping from the coordinate ξ to the Cartesian coordinates of points on the edge, the radius r,
starting angle α0 and ending angle α1 need to be calculated first. α0 indicates the positive angle
between the x-axis and the position of node i. Similarly, α1 stands for the positive angle between
x-axis and the position of node i+ 1. The geometry of a single edge j is depicted in fig. 6.1. The
formulas for calculation of the mentioned parameters read as

r =
»

(xi − xc,j)2 + (yi − yc,j)2, (6.10)

α0 =atan2(yi − yc,j ,xi − xc,j), (6.11)

α1 =atan2(yi+1 − yc,j ,xi+1 − xc,j). (6.12)
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y
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(xi, yi)

(xi+1, yi+1)
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Figure 6.1: Circular edge geometry

Afterwards, for the given coordinate ξ, the position of a point on the edge is calculated as

x =xc,j + r cos
Å
α0 + 1 + ξ

2 (α1 − α0)
ã
, (6.13)

y =yc,j + r sin
Å
α0 + 1 + ξ

2 (α1 − α0)
ã
. (6.14)

To obtain the derivatives of the spatial coordinates with respect to the side coordinate, the previous
relations are differentiated

dx
dξ =− rα1 − α0

2 sin
Å
α0 + 1 + ξ

2 (α1 − α0)
ã
, (6.15)

dy
dξ =rα1 − α0

2 cos
Å
α0 + 1 + ξ

2 (α1 − α0)
ã
. (6.16)

The Jacobian can subsequently be calculated using eq. (6.4), which results in

J =

 Ådx
dξ

ã2
+
Ådy
dξ

ã2
= r

α1 − α0
2 . (6.17)

The components of the outward normal are expressed by eq. (6.9), substituting the individual terms
yields

nx = 1
J

dy
dξ = cos

Å
α0 + 1 + ξ

2 (α1 − α0)
ã
,

ny =− 1
J

dx
dξ = sin

Å
α0 + 1 + ξ

2 (α1 − α0)
ã
.

(6.18)

The previously derived formulas completely define the mapping between the normalized side co-
ordinate ξ and the Cartesian coordinates of points located at the element edge. Therefore, the
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system matrices can be approximated using the numerical quadrature rule by the application of
eq. (6.2). For the case of a straight edge, only coordinates of the two end nodes are the necessary
input. For a circular edge, coordinates of the center needs to be provided additionally. The number
of element edges may be arbitrary. In the thesis only elements with four edges are implemented,
however, generalization for optional number of edges is straightforward.

So far no comments were placed regarding the position of the Cartesian reference frame used for
the derivation of above formulas. Two options are implemented in this work. One possibility is to
consider the xy-reference frame as the global one and formulate the relations for all elements in
terms of this single coordinate system. In such case, the coordinates (xi,yi) of nodes of a single
element also correspond to their global coordinates.
The other option is to consider the xy-reference frame as the local coordinate system placed at

the element center. For such case, assume there exists a different global reference frame with axis
xG and yG. In addition, (xGi ,yGi ) are the coordinates of the nodes of a single element and (xGc,i,yGc,i)
are the global coordinates of the center of the circular edges. The position of the geometrical center
of the element is calculated as

xGcentre = 1
nno

nno∑
i=1

xGi , (6.19)

yGcentre = 1
nno

nno∑
i=1

yGi . (6.20)

Subsequently, the element nodal coordinates in the local reference frame are obtained as

xi = xGi − xGcentre, (6.21)

yi = yGi − yGcentre. (6.22)

Similarly, when a circular edge is considered, the coordinates of the center of the edge are expressed
as

xc,i = xGc,i − xGcentre, (6.23)

yc,i = yGc,i − yGcentre. (6.24)

Note that such transformation has no influence on the value of the Jacobian or on the components
of the unit normal, it only affects the location of points on the element boundary, which are now
shifted by the position of the element center.
The application of the second option together with incorporation of scaling procedures of the

final system of equations often results in reduction of the numerical error caused by ill-conditioned
global system matrix.
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6.3 Program Structure

The program is implemented in software Matlab. The reason for the choice of interpretive pro-
gramming language is the wide range of inbuilt functions and commands, which makes the pro-
gramming and visualization process faster and easier compared to compiled languages such as C
or C++. On the other hand, this comes with a cost of greater run time. However, for the objective
of this thesis such drawback is acceptable.

The program workflow can be divided into the following sections: data input, computation of the
system matrices, solution of the system of equations and post-processing and visualization. Each
of these procedures is described in detail in the subsequent sections.

6.3.1 Data Input

All the necessary data are input from a text file. It needs to contain information related to
material properties, geometry, loading, boundary conditions, approximation bases and number of
Gauss points.
The material properties consist of the Young modulus, Poisson’s ratio, loss factor and the mass

density. The Lamé parameters can then be calculated based on the formulas provided in chapter 2
and subsequently, the wave velocities can be evaluated.
It is assumed that the domain of interest is already discretized into finite elements and therefore

the meshing procedure is skipped. In the input file, for each element, indices of the related nodes
need to be provided and also Cartesian coordinates of each node are given. By default it is assumed
that the element edges are straight. Additionally, a list of circular edges is included in the input
file, containing the indices of the related end nodes and Cartesian coordinates of the centres of the
circular edges. Furthermore, as was mentioned in the previous section, information regarding the
choice of the reference frame for the evaluation of points on the boundary is attended.
The loading is defined by a list of loaded edges. For each loaded edge, index of the related

element together with indices of the edge end nodes are provided. Only distributed loading varying
linearly is implemented, hence it can be completely defined by the values of the loading at the end
nodes of the edge. This information is also given for each edge in the list. Moreover, the frequency
of excitation needs to be mentioned in the input file so that the wave numbers can be computed.
Constrained edges are defined in a similar way as the loaded edges. In the list of constrained

edges, related element index as well as indices of the end nodes are mentioned. For each constrained
edge, values of the prescribed displacements are included. In addition, if the constrained edge is of
mixed type, the fixed degree of freedom is marked. In the case an unbounded domain is analysed,
a list of edges on which the absorbing boundary condition is considered needs to be given. The
edges are again defined by the index of the related element and by indices of the end nodes.
Information related to the approximation bases need to contain the length of both domain dis-

placement and boundary traction bases. Moreover, the type of the Bessel solution function needs
to be indicated. The number of terms contained in the domain approximation basis is calculated
from the maximum order N of the Bessel solution function Wn, which is discussed in section 3.2.1.
Therefore, maximum order of the Bessel solution function is included in the input file. Similarly,
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the length of the boundary approximation basis can be deduced from the maximum order M of
the polynomial included in the basis, which is hence provided as the input.

6.3.2 System Matrices Computation

After the necessary data are obtained, the process of building the system of equations may start.
All the matrices and vectors which appear in the global system of equations (4.50) are gradually
assembled. This procedure is discussed in detail in the following sections.
For the implementation, it is assumed no body forces are applied on the analysed structure. This

implies that the vector of particular solution u0, appearing in eq. (3.1), vanishes. Consequently,
also vectors tΓ0,G and ua0,G , which are included in the right hand side of the governing system
of equations (4.50), have zero components only. Furthermore, in the definition of vector uΓG all
the terms uΓ0

(j)
i are neglected. Moreover, in the case the mixed boundary condition is applied,

it is assumed that the prescribed traction component is zero, hence also the vectors tΓm or t′Γm
appearing in eqs. (3.107) and (3.127) vanish.

Global DG Matrix

The global DG matrix is composed from the local D(iel) matrices evaluated for each element in the
way described by eq. (3.86). Therefore, in the code there is a loop over all elements, in which the
individual D(iel) matrices are computed and afterwards assembled to the allocated DG matrix.

The single D(iel) matrix is evaluated based on the definition in eq. (3.59). The integration
needs to be performed over the whole element boundary, however, the integral can be split into
multiple integrals over the individual edges. The edge integrals are then approximated using the
Gauss-Legendre quadrature of the given order q, which is expressed by eq. (6.2). This procedure
is illustrated as

D =
∫ “UTNkE dΓe =

ned∑
j=1

∫ lj

0
“UTNkE dsj ≈

ned∑
j=1

q∑
k=1

wk“UT (ξk)N(ξk)kE(ξk)Jj(ξk), (6.25)

where j is an index running over the element edges, sj denotes an individual edge coordinate, lj is
the length of the edge j and Jj stands for the Jacobian related to the particular edge.

The implemented function for the computation of the individual D(iel) matrices consists of two
nested loops, one running over the element edges and the second one over the number of integra-
tion points. Firstly, for each integration point k the related weight wk and point coordinate ξk
are obtained. Afterwards, Cartesian coordinates of the associated Gauss point together with the
components of the unit normal and value of the Jacobian are acquired. These values are calculated
based on the formulas derived in sections 6.2.1 and 6.2.2. It is however necessary to firstly check,
if the current evaluated edge is circular, so that the correct formulation is chosen. Moreover, if
the local reference frame was chosen for the evaluation of points on the boundary, the global nodal
coordinates as well as the global positions of the center of the circular edges need to be transformed
to the local coordinate system, which is described by eqs. (6.19) to (6.24).
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Subsequently, when the Cartesian coordinates of the quadrature points are known, the displace-
ment and strain basesU(x(ξk),y(ξk)) andE(x(ξk),y(ξk)) can be evaluated by implementation of the
formulas mentioned in section 3.2.2. The number of terms contained in the basis strictly depends
on the chosen maximum order N of the Bessel solution function.

The material matrix k has constant components and therefore can be evaluated outside of both
loops. Afterwards, as all the required terms are known, the contribution of a single gauss point
to the complete integral appearing in eq. (6.25) can be calculated and next iteration may proceed.
This scheme is repeated until all the edges and integration points are considered. The overall
procedure of evaluation of the matrix DG is illustrated by the following pseudocode:

1. Allocate DG

2. Loop over all elements iel

a) Obtain nodal coordinates

• If local reference frame is chosen → transform the nodal coordinates

b) Compute D(iel)

i. Allocate D(iel)

ii. Compute material matrix k

iii. Loop over element edges

A. Loop over integration points k

• Evaluate position of the Gauss point, the components of the unit normal and
the Jacobian

• Evaluate bases U(x(ξk),y(ξk)) and E(x(ξk),y(ξk)) at the Gauss point location

• Compute the contribution of the integration point and add it to the existing
matrix: D(iel) = D(iel) + wk“UTNkEJj

c) Assemble D(iel) to DG

When choosing the reference frame for evaluation of the element matrices, one needs to be aware
that the Bessel function of the second kind or any of the Hankel functions are singular at the origin.
Therefore, if any of the aforementioned Bessel solution functions is chosen for the radial component
Wn appearing in the definition of the bases U or E, the origin of the chosen reference frame needs
to be placed outside of the element. This implies that in such case only the option of the global
reference frame needs to be adopted, since the local one is placed at the center of the element.
As is evident from the previous discussion, the individualD(iel) matrices are approximated by the

sum of weighted evaluations of the integrand multiplied by the Jacobian. This procedure contains
evaluation of the bases U(x,y) and E(x,y), and therefore evaluation of the Bessel solution functions
at positions on the boundary. As the Bessel functions of the first kind and of high orders n tend
to get flatter in the vicinity of origin, some components of the evaluated bases are almost zero,
when large number of terms is considered in the approximation basis and the evaluation position is
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located close to the origin of the reference frame. As an outcome, matrices D(iel) and consequently
the global DG matrix collect components of varying orders of magnitude, which results in badly
conditioned system of equations. Such outcome motivates to apply certain scaling procedures of
the final system of equations in order to diminish the resulting numerical error.
To a certain extend, the condition number of the matrix DG could be reduced by placing the

global reference frame sufficiently far from all elements. However, for such case the implemented
scaling of the final system of equations does not improve the condition number as much. Overall,
it turns out that the combination of using the Bessel functions of the first kind with local reference
frame and applying the scaling procedure described in section 6.3.3 results in the system of equations
with the lowest condition number of all the considered options.

Global BG Matrix

As was discussed in section 3.4.6, the global BG matrix is assembled from the individual B(iel)
j ma-

trices evaluated for edge j belonging to element iel. All edges on which the displacement boundary
condition is applied together with the inter-element edges are considered for the evaluation. In the
implemented algorithm, firstly the list of all the mentioned edges containing the related element
index is obtained and then the matrix BG is allocated. Subsequently, loop over the listed edges
is performed, in which the individual B(iel)

j matrices are evaluated. Afterwards, the individual
matrices are assembled to the global one, the element index iel corresponds to the row and the edge
index j to the column in the resulting global matrix.
The single B(iel)

j matrix is computed using the definition in eq. (3.75). By the application of the
numerical quadrature rule, the integral is approximated as

B
(iel)
j =

∫ ’U (iel)
T

Z dΓeuj =
∫ lj

0
’U (iel)

T

Z dsj ≈
q∑

k=1
wk
’U (iel)

T

(x(ξk),y(ξk))Z(ξk)Jj(ξk), (6.26)

where sj denotes the coordinate running along the single edge j and lj stands for the length of the
edge.
The function for computation of the single B(iel)

j matrix contains a loop over the integration
points k. For each Gauss point the coordinates in the chosen reference frame are calculated as well
as the value of the Jacobian. Afterwards, the displacement basis U(x(ξk),y(ξk)) can be evaluated
at the position of the quadrature points. In addition, also the boundary approximation basis Z(ξk)
is evaluated, since it is defined in terms of the coordinate ξ, the position of the Gauss point ξk can
directly be inserted. Subsequently, the contribution of the single integration point to the overall
sum appearing in eq. (6.26) can be computed.
It was mentioned in section 3.4.6 that for the inter-element edges, two B(iel)

j matrices are eval-
uated, sharing the same edge index j but differing with the element index iel. In the assembly
process, the sign of those two matrices must be the opposite, which results from enforcement of
the displacement continuity condition. Therefore, in the algorithm it needs to be checked, if the
matrix for the common edge was already evaluated for the neighbouring element, and if yes, the
second matrix needs to be multiplied by the minus sign.
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In the case the mixed boundary condition is applied on the current edge j, matrix B(iel)
j needs to

be replaced by Bm(iel)
j , which was defined in eq. (3.108). A way of implementing such modification

is to discard half of the columns of the matrix Z related to the unconstrained degree of freedom.
In addition, in the general case of mixed boundary condition, when the displacement is fixed in
normal or tangential direction, the matrixB(iel)

j is replaced by matrixB′m
(iel)
j , which is defined in eq.

(3.125). In such situation the only difference compared to the previous case is that the components
of the displacement approximation basis need to be transformed to normal and tangential directions,
which is described by eq. (3.120). Otherwise the procedure is identical.
The algorithm for computation of theBG matrix can be summarized by the following pseudocode.

1. Obtain list of all Dirichlet (constrained and inter-element) edges

2. Allocate BG matrix

3. Loop over all Dirichlet edges j

a) Get related element index iel and corresponding nodal coordinates

• If local reference frame is chosen → transform the nodal coordinates

b) Compute B(iel)
j

i. Allocate B(iel)
j

ii. Loop over integration points k

A. Evaluate position of the Gauss point, the components of the unit normal and
the Jacobian

B. Evaluate bases U(x(ξk),y(ξk)) at the Gauss point location ξk

• If the general case of mixed boundary condition is applied → transform the
basis as: U = T TU

C. Evaluate bases Z(ξk) at the Gauss point location ξk

• If only one displacement component is prescribed → keep only half of the
matrix Z

D. Compute the contribution of the integration point and add it to the existing
matrix: B(iel)

j = B
(iel)
j + wk“UTZJj

• If the edge was already evaluated for the neighbouring element→ multiply to
Gauss point contribution by the minus sign: B(iel)

j = B
(iel)
j − wk“UTZJj

c) Assemble B(iel)
j to BG

Global Da,G and Ba,G Matrices

The matrices Da,G and Ba,G, related to the absorbing boundary condition, are defined in section
4.2.4. Both are assembled from the individual Daja and Ba(iel)

ja
matrices evaluated for absorbing

boundary edges ja. The algorithm therefore contains a loop over all edges ja, on which the absorbing
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boundary condition is applied. For each edge, firstly the element index and the associated nodal
coordinates are obtained. In the case the local reference frame is adopted, the coordinates are
transformed. Afterwards, individual Daja and Ba(iel)

ja
matrices are computed and assembled to

their global counterparts.
The single Daja matrix is defined in eq. (4.44). The integral over the absorbing edge is approxi-

mated using the numerical quadrature rule

Daja =
∫
ZT
aC

x,y−1Za dΓeaj =
∫ lja

0
ZT
aC

x,y−1Za dsja =
q∑

k=1
wkZ

T
a (ξk)Cx,y−1(ξk)Za(ξk)Jja(ξk),

(6.27)

where sja denotes the coordinate running along the single absorbing edge ja and lja stands for the
length of the edge. The function for computation of the single Daja matrix therefore consists of a
loop over all integration points. For each Gauss point, the Jacobian and components of unit normal
are expressed together with the basis Za(ξk). Matrix Cx,y is calculated based on eq. (4.40), in
which the matrix C (defined in eq. (4.32)) is transformed. As C has constant components, it can
be evaluated outside of the loop. Symbol h, appearing in definition of matrix C, represents the
kind of the Hankel function for which the Dirichlet-to-Neumann map was derived. The sign of the
imaginary part of the wave numbers is the decisive factor for the choice of the Hankel function
kind h, which is thoroughly discussed in section 4.2.1. After all the matrices are computed for
the current Gauss point, its contribution to the complete sum can be evaluated and the code may
proceed to the next iteration.
The process of computation of the single matrix Ba(iel)

ja
is very similar to the evaluation of

matrix B(iel)
j , which is described above. Since the absorbing boundary edges cannot be shared

by two elements and no mixed boundary condition is applied there, the function for evaluation of
Ba

(iel)
ja

is simplified.
The algorithm for computation of the global system matrices related to absorbing boundary

edges can be summarized by the following pseudocode.

1. Allocate matrices Da,G and Ba,G

2. Loop over all edges ja on the absorbing boundary

a) Get related element index iel and the corresponding nodal coordinates

• If local reference frame is chosen → transform the nodal coordinates

b) Compute Daja

i. Allocate Daja

ii. Compute matrix C

iii. Loop over integration points k

A. Evaluate components of unit normal and the Jacobian at the current Gauss
point
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B. Evaluate bases Za(ξk) at the Gauss point location ξk

C. Calculate matrix Cx,y and invert it

D. Compute the contribution of the integration point and add it to the existing
matrix: Daja = Daja + wkZ

T
aC

x,y−1ZaJja

c) Compute Ba(iel)
ja

i. Allocate Ba(iel)
ja

ii. Loop over integration points k

A. Evaluate position of the Gauss point and the Jacobian

B. Evaluate bases U(x(ξk),y(ξk)) at the Gauss point location ξk

C. Evaluate bases Za(ξk) at the Gauss point location ξk

D. Compute the contribution of the integration point and add it to the existing
matrix: Ba(iel)

ja
= Ba

(iel)
ja

+ wk“UTZaJja

d) Assemble Daja to Da,G

e) Assemble Ba(iel)
ja

to Ba,G

Global Vector tΓG

The global vector tΓG is assembled from the individual tΓ(iel) load vectors evaluated for each element
using eq. (3.90). The single tΓ(iel) vector is defined in eq. (3.60). The integral over the complete
Neumann boundary associated to a certain element can be split to multiple integrals performed
over the edges where non-zero tractions are prescribed. The parts of the Neumann boundary where
the tractions are zero can be discarded from the integration, since the integrand vanishes in such
case.
Assume that all the loaded edges are labelled by index jN = 1,2, . . . , nN with nN being the

overall number of loaded edges. Furthermore, assume a set S(iel) collects the indices jN related to
a certain element iel. Under such considerations, loading vector tΓ(iel), related to a single element,
can be split into integrals evaluated over the individual edges contained in the set S(iel)

tΓ
(iel) =

∑
n∈S(iel)

tΓn =
∑

n∈S(iel)

∫ ln

0
“UT tΓn dsn. (6.28)

In this equation sn denotes the coordinate running along a single edge n and ln means the length
of such edge. Vector tΓn contains functions describing the distributed loading on the current edge
n. Furthermore, the contributions related to a single edge are approximated using the numerical
quadrature

tΓjN =
∫ ljN

0
“UT tΓjN dsjN ≈

q∑
k=1

wk“UT (x(ξk),y(ξk))tΓjN (ξk)JjN (ξk). (6.29)
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The implemented code is structured in the following way. It contains a loop over all loaded
edges jN . After the element index iel associated to the current edge is obtained, the related
nodal coordinates are extracted. In the case of local reference frame, they need to be transformed
afterwards. Subsequently, vector tΓjN is evaluated and assembled to the global vector tΓG according
to the related element index iel.

In the function for computation of the single tΓjN vector, firstly the components of the loading at
the end nodes are extracted from the input data. Subsequently, a loop over the integration points
k is entered and the position of the Gauss point, components of the unit normal and Jacobian
are evaluated. As was mentioned before, the loading is assumed to be linear along the edge,
hence the corresponding value of the loading function at the quadrature points can be obtained
with the use of the linear shape functions. Therefore, also the shape functions are evaluated and
afterwards the loading intensity at the current point can be calculated. As the input loading
components are expressed in normal and tangential directions, they need to be transformed to
Cartesian components eventually. Then the basis U(x(ξk),y(ξk)) is expressed at the Gauss point
location and the contribution of the current integration point to the complete integral is evaluated.
In the following pseudocode the main points of the algorithm implemented for evaluation of the

vector tΓG are recapitulated.

1. Allocate tΓG

2. Loop over edges jN where non-zero tractions are prescribed

a) Get element index iel and the corresponding coordinates of the element nodes

• If local reference frame is chosen → transform the nodal coordinates

b) Compute tΓjN
i. Allocate tΓjN
ii. Obtain normal and tangential components of the loading at the end nodes

iii. Loop over integration points k

A. Evaluate position of the Gauss point, the components of the unit normal, the
Jacobian and the value of the shape functions

B. Compute the loading components at the current integration point multiplying
the end values by shape functions

C. Transform the components to Cartesian directions

D. Evaluate bases U(x(ξk),y(ξk)) at the Gauss point location

E. Compute the contribution of the integration point and add it to the existing
vector: tΓjN = tΓjN + wk“UT tΓjNJjN

c) Assemble tΓjN to tΓG based on the element index iel
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Global Vector uΓG

The construction procedure of the vector uΓG described in section 3.4.6 is simplified, when no
body forces are acting on the structure. The length of the global vector uΓG depends on the
number of all Dirichlet edges j (including both constrained and inter-element ones). However, non-
zero components only appear in the rows related to the edges, where the displacement boundary
condition is applied. For these edges vector −uΓ

(iel)
j is evaluated based on eq. (3.65) and added to

the global vector according to index j.
The integral appearing in the definition of the single uΓ

(iel)
j vector is approximated using the

quadrature rule

uΓ
(iel)
j =

∫ lj

0
ZTuΓj dsj =

q∑
k=1

wkZ
T (ξk)uΓjJj(ξk). (6.30)

Vector uΓj collects the prescribed displacement components on the current edge j, which are
constant functions.
Assume a set Sc collects the indices j related to the constrained edges, hence indices associated to

the inter-element edges are omitted. In the algorithm a loop over the indices n ∈ Sc is performed.
Inside the loop the individual −uΓ

(iel)
n vectors are evaluated and assembled to the global vector

uΓG based on the edge index n.
The function for computation of the single uΓ

(iel)
n vector contains a loop over the integration

points. Inside the loop the Jacobian Jn(ξk) and the basis Z(ξk) are evaluated. Afterwards, the
contribution of one Gauss point to the complete sum appearing in eq. (6.30) is calculated. If the
constrained edge is of mixed type, and therefore only one degree of freedom uΓn is prescribed, the
product ZT (ξk)uΓn in eq. (6.30) is replaced by ZT

v (ξk)uΓn. Vector Zv is a part of the complete
matrix Z and was defined in section 3.3.

The following list of procedures sums up the implemented algorithm for computation of the
vector uΓG .

1. Allocate uΓG vector

2. Loop over all constrained edges n ∈ Sc

a) Get related element index iel and corresponding nodal coordinates

• If local reference frame is chosen → transform the nodal coordinates

b) Compute uΓ
(iel)
n

i. Allocate uΓ
(iel)
n

ii. Loop over integration points k

A. Evaluate the Jacobian

B. Evaluate bases Z(ξk) at the Gauss point location ξk

C. Compute the contribution of the integration point and add it to the existing
vector: uΓ

(iel)
n = uΓ

(iel)
n + wkZ

TuΓnJn
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• If only one degree of freedom is prescribed → uΓ
(iel)
n = uΓ

(iel)
n +wkZ

T
v uΓnJn

c) Assemble uΓ
(iel)
n to uΓG

6.3.3 System Solution and Scaling

The final governing system of equations is constructed by combining all the previously derived
global matrices and vectors, which is described by eq. (4.50). In short notation, the system can be
expressed as

Ax = b, (6.31)

where

A =


DG −Ba,G −BG

−’Ba,GT Da,G 0
−B̂G

T
0 0

 , (6.32)

x =
î
XT
G pTa,G pTG

óT
, (6.33)

b =
î
tΓG

T 0T uΓG
T
óT
. (6.34)

The condition number of the matrix A as well as the resulting numerical error can be reduced by
the application of a system scaling procedure. Eq. (6.31) can be reformulated as

ŜTASS−1x = ŜTb

Ax = b,
(6.35)

where A = ŜTAS, x = S−1x and b = ŜTb. The term S denotes a diagonal scaling matrix. The
previously described modification preserves the symmetry property of the original matrix A.
The idea of the scaling procedure is to modify the system so that the diagonal terms of A are

of similar magnitude and close to unity. Therefore, the diagonal components of the scaling matrix
collect inverted square roots of the diagonal terms appearing in the matrix A. In the case the
diagonal component of A is zero, the associated term in the scaling matrix is taken as one. Hence
the components Si,i on the diagonal of matrix S can be expressed as

Si,i =


1√
Ai,i

, if Ai,i 6= 0

1, if Ai,i = 0,
(6.36)

where Ai,i denotes the diagonal components of A. Symbol i stands for the row index of the related
matrix.
The modified system in eq. (6.35) is solved by the application of the Matlab inbuilt function

mldivide, which chooses a suitable solver according to the properties of the matrix A. After the
scaled solution vector x is computed, the original vector of unknown coefficients x is obtained as
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x = Sx.

6.3.4 Post-processing and Visualization

As was mentioned in section 3.5, vectors XG, pa,G and pG collect the generalized quantities
and therefore a post-processing phase is necessary so that the values of the fields of interest are
obtained. These consist of the displacement, strain and stress field, which are all derived from the
the approximated displacement field within an element.
In the post-processing part of the algorithm, a loop over all elements is implemented. Inside the

loop indices of the Dirichlet edges j as well as the absorbing edges ja related to the particular element
are obtained. Subsequently, the coefficients X(iel) associated to the displacement approximation of
the element are extracted from the global vector XG. Similarly, also the coefficients pj and paja
linked to the Dirichlet and absorbing edges at the current element are pulled out from the global
vectors pG and pa,G. Afterwards, the function for evaluation of the fields on a single element is
called.
Inside the function a grid of points (xe,ye) belonging to the investigated element is calculated.

Subscript e denotes the index of the point. A loop over those evaluation locations is performed,
for each, the bases U(xe,ye) and E(xe,ye) are computed and values of the displacement and strain
fields are calculated based on eqs. (3.1) and (3.4). The stress field can then be evaluated by the
application of the material law expressed by eq. (2.34).
The tractions on the Dirichlet and absorbing boundary can be computed using two approaches.

The first option is to use the boundary traction approximation introduced in eq. (3.36), where the
related pj or paja coefficients are inserted. The second way is to directly compute the tractions from
the stress field evaluated based on the domain displacement approximation. In fact, the second
option represents the tractions associated to the computed displacement field and therefore these
are of main interest. However, comparing them with the tractions, which were computed based on
the boundary traction approximation, can serve as a measure of quality of the results.
Based on the discussion in the previous paragraph, also normal and tangential tractions on the

Dirichlet and absorbing edges are evaluated in the field evaluation function. Therefore, a second
loop over the aforementioned edges is implemented. Inside the loop the normalized locations of the
points ξl ∈ 〈−1,1〉 are generated and a loop over those is entered. Subscript l stands for the index
of the point. Subsequently, for each point on the boundary, the tractions derived from the domain
displacement field are evaluated. This procedure consists of mapping the normalized boundary
coordinate ξl to the chosen Cartesian reference frame and evaluation of the matrix of unit normals
at the current point. Then the strain basisE(x(ξl),y(ξl)) is calculated and the stresses are expressed
by application of eqs. (3.4) and (2.34). The Cartesian components of the boundary tractions are
then computed with the use of the boundary equilibrium based on eq. (2.35). As the components
in normal and tangential directions are of interest, the tractions need to be transformed eventually.
Computation of the boundary tractions based on the boundary approximation can be performed

in the same loop over the locations ξl. The boundary approximation basis Z(ξl) can directly be
evaluated at the point location ξl and multiplied by the corresponding coefficients pj or paja . In
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the case the current Dirichlet edge j is the inter-element one, it needs to be checked, if in the
assembly process of Bg the related B(iel)

j matrix was considered with the minus sign. In the case it
was, the associated pj vector needs to be multiplied by the minus sign as well, which results from
the traction continuity condition and eq. (3.94).

After all the fields are evaluated for the investigated points in the domain and on the boundary
of the element, the stored results can be visualized. The previously described procedure is then
repeated for all elements.
The post-processing procedure is recapitulated in the following pseudocode.

1. Loop over all elements iel

a) Get nodal coordinates related to the current element

• If local reference frame is chosen → transform the nodal coordinates

b) Obtain indices j and ja of the Dirichlet and absorbing edges related to the current
element

c) Extract the vectors of coefficients X(iel), pj and paja associated to the current element

d) Evaluate the displacements, strains and stresses in the element domain and tractions on
the boundary

i. Compute the material matrix k

ii. Create a grid of points (xe,ye) inside the element

iii. Loop over the evaluation points

A. Evaluate bases U(xe,ye) and E(xe,ye) at the current point

B. Compute the displacement, strain and stress components at the current point

iv. Loop over the Dirichlet and absorbing edges

A. Generate boundary evaluation points ξl in the normalized space ξ

B. Loop over the points ξl

• Compute the tractions derived from the displacement field

– Map the points to the Cartesian coordinates in the chosen reference frame
and obtain components of the unit normal

– Evaluate the strain basis E(x(ξl),y(ξl)) and subsequently the vector of
strain components

– Compute the stress vector and the derived traction components

• Compute tractions from the boundary traction approximation

– Evaluate basis Z(ξl)

– Compute the boundary tractions by multiplying the basis Z(ξl) with the
coefficients pj or paja

• Transform the boundary tractions to normal and tangential components
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v. Plot the evaluated fields in the element domain and on the element boundary

The overall program structure is summarized in the flowchart in fig. 6.2.
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Figure 6.2: Program structure
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7 Results

In the following chapter the implemented method is tested on various examples and the results are
presented and summarized.

As the first example, bounded domain is analysed and the results are compared to the known
analytical solution. The convergence process is studied in detail while both p-refinement and h-
refinement strategies are applied. In the second test case the implemented approach for modelling
of infinite domains is validated. Also for this example the simulation outcome, which was obtained
for various meshes and for approximation bases including various numbers of terms, is compared
to the true reference solution. Furthermore, the effect of the distance from the origin at which the
infinite domain is truncated is investigated. As the last example, wave propagation in a loaded half
space is examined and the results are compared to those obtained using the wave based method.
In the first section of the chapter the quantity chosen as the measure for comparison of the

obtained results is introduced.

7.1 Global Comparison Quantity

To compare the approximated results to the reference solution, it is advantageous to introduce
a single scalar quantity which reflects the properties of the obtained vector fields. The chosen
quantity, denoted by E, is defined as

E = 1
2

∫
σ̂Tε dV − 1

2

∫ ̂̇uTρu̇dV. (7.1)

The first term in the previous equation denotes the potential energy related to the deformed body
averaged over one period T = 2π/ω. The second term in eq. (7.1) represents the kinetic energy
averaged over the period T , therefore the meaning of the quantity E is the difference between
average potential and kinetic energies associated to the investigated domain. The reason why
measure E is used instead of the average mechanical energy, which is expressed as the sum of
both mentioned energies, is the simplicity of its evaluation. As will be shown, eq. (7.1) can be
reformulated into convenient expression, which can be evaluated by the product of the vector of
coefficients XG and already computed matrix DG.

The velocity field u̇(x,y), appearing in eq. (7.1), can be expressed in terms of the displacement
field u(x,y) as

u̇ = iωu, (7.2)

which follows from the spectral representation of the individual fields discussed in chapter 2. Sub-
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stituting the previous expression into eq. (7.1), the quantity E can be reformulated to

E = 1
2

∫
σ̂Tε dV − 1

2

∫
îωûTρiωu dV = 1

2

∫
σ̂Tε dV − 1

2ω
2

∫
ûTρudV. (7.3)

In the subsequent sections, this equation is further developed and manipulated and exact formulas
for its evaluation based on both analytical solutions as well as on the results obtained using hybrid-
Trefftz method are expressed.

7.1.1 Analytical Expression

The solution procedure of the spectral Lamé equation was thoroughly discussed in section 3.2.
The solution functions are ordered in the displacement and strain approximation bases U and E.
For a single order n, the components in radial and angular directions are collected in matrices
Ur,θ
n and Er,θn , which are expressed in eqs. (3.31) and (3.34). The functions associated to p-waves

are collected in the first column and the ones related to s-waves appear in the second column.
The quantity E related to these individual modes can be obtained by substitution of the basis
components into eq. (7.3).
For the particular 2D case of interest, the volume integral in eq. (7.3) turns to a surface integral

multiplied by the thickness of the structure, which is assumed to be unitary. Furthermore, to
simplify the resulting expression, the shape of the body is assumed to be circular section defined
by the inner and outer radii r0 and r1 and starting and ending angles θ0 and θ1. The integration
is then performed in polar coordinate system, therefore eq. (7.3) is modified as

E = 1
2

∫ Ä
σ̂Tε− ω2ûTρu

ä
dV = 1

2

∫ r1

r0

∫ θ1

θ0

Ä
σ̂Tε− ω2ûTρu

ä
r dθdr. (7.4)

In the following, this expression is expanded individually for the p-wave and s-wave solution func-
tions.

P-wave Solution

The displacement components in polar coordinates associated to the p-wave solution can be ex-
tracted from the expression (3.31) and read as

ur,θn,p = 1
2kp

[
Wn−1(kpr)−Wn+1(kpr)
iWn−1(kpr) + iWn+1(kpr)

]
exp(inθ). (7.5)

Similarly, the strain components associated to p-waves are taken from eq. (3.34) and are expressed
as

εr,θn,p = 1
4k

2
p

 Wn−2(kpr)− 2Wn(kpr) +Wn+2(kpr)
−Wn−2(kpr)− 2Wn(kpr)−Wn+2(kpr)

2i(Wn−2(kpr)−Wn+2(kpr))

 exp(inθ). (7.6)
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The related stress field is obtained by the application of the material law (2.6). Substituting the
previous expressions for the displacement, strain and stress components into eq. (7.4), the relation
can be reformulated. After some symbolic manipulations, the individual products appearing in the
integrand result in

σ̂Tε =1
2k

4
p

Ä
2ŴnWn(λ+ µ) + µ

Ä’Wn−2Wn−2 + ’Wn+2Wn+2
ää
, (7.7)

ûTρu =1
2ρk

2
p

Ä’Wn−1Wn−1 + ’Wn+1Wn+1
ä
. (7.8)

One can note that both of the previous terms are independent of angular coordinate θ and hence
the associated integral in eq. (7.4) can be computed separately and the expression is then simplified

E =1
2

∫ r1

r0

∫ θ1

θ0

Ä
σ̂Tε− ω2ûTρu

ä
r dθdr = 1

2(θ1 − θ0)
∫ r1

r0

Ä
σ̂Tε− ω2ûTρu

ä
r dr, (7.9)

where the products σ̂Tε and ûTρu are expressed by eqs. (7.7) and (7.8). The integral appearing in
the previous equation cannot be computed analytically for an arbitrary type of the Bessel solution
function Wn and therefore the resulting value is approximated by the application of numerical
integration techniques.

S-wave Solution

The quantity E related to the displacement shapes associated to s-waves is obtained in the sim-
ilar way as was described in the previous subsection. The related displacement and strain basis
components are extracted from expressions (3.31) and (3.34)

ur,θn,s =1
2ks

[
iWn−1(ksr) + iWn+1(ksr)
Wn+1(ksr)−Wn−1(ksr)

]
exp(inθ), (7.10)

εr,θn,s =1
4k

2
s

 iWn−2(ksr)− iWn+2(ksr)
iWn+2(ksr)− iWn−2(ksr)
−2(Wn−2(ksr) +Wn+2(ksr))

 exp(inθ). (7.11)

The products appearing in the integral in eq. (7.4) can subsequently be simplified to

σ̂Tε =1
2µk

4
s

Ä’Wn−2Wn−2 + ’Wn+2Wn+2
ä
, (7.12)

ûTρu =1
2ρk

2
s

Ä’Wn−1Wn−1 + ’Wn+1Wn+1
ä
. (7.13)

Also in the case of s-wave solution, the integrand turns out to be independent of the angular
coordinate θ and hence the expression for E is simplified to eq. (7.9), where the terms σ̂Tε and
ûTρu are formulated in eqs. (7.12) and (7.13).
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7.1.2 Finite Element Approximation

Substituting the domain displacement and strain field approximations defined in eqs. (3.1) and (3.4)
into expression (7.3), the relation for the finite element approximation EFE of the true quantity
E can be obtained. To simplify the derivation, the terms related to the particular solution are
omitted. Firstly, the approximation EeFE associated to a single element is expressed as

EeFE =1
2

∫
σ̂Tε dV e − 1

2ω
2

∫
ûTρudV e =

=1
2

∫ ⁄�(kD∗UX)
T

EX dV e − 1
2ω

2
∫ ÷(UX)

T
ρUX dV e =

=1
2X̂

T
∫

(D∗“U)
T
kE dV eX − 1

2ω
2X̂T

∫ “UTρU dV eX.

(7.14)

Subsequently, the first integral in the previous equation is modified using the integration by parts
technique and the property (3.2) of the displacements basis U is applied. Similar procedure was
also used for the derivation of eq. (3.52), which can now be substituted into eq. (7.14)

EeFE =1
2X̂

T
∫ “UTNkE dΓeX + 1

2ω
2X̂T

∫ “UTρU dV eX − 1
2ω

2X̂T
∫ “UTρU dV eX =

=1
2X̂

T
∫ “UTNkE dΓeX = 1

2X̂DX.
(7.15)

The definition (3.58) of the matrix D was substituted into the previous equation.
The approximation EFE for all elements is then expressed as

EFE =
nel∑
i=1

EeFE
(i) = 1

2

nel∑
i=1

‘X(i)
T

D(i)X(i) = 1
2X̂G

T
DGXG. (7.16)

7.2 Example 1: Comparison with Analytical Solution

To validate the implemented code, the obtained results are compared with the known analytical
solution. The quantity E, defined in the previous section, is chosen as the measure used for
comparison of the analytical and approximated solutions.
For this test case, the domain shape was chosen as the quarter of a hollow circle with inner radius

r0 = 5m and outer radius r1 = 25m. The scheme of the investigated structure is depicted in fig.
7.1a.
The assumed material properties and excitation frequency f = ω/2π are listed in tab. 7.1, where

also the derived wave numbers are mentioned.

Ẽ [N/m2] ν ρ [kg/m3] f [Hz] η kp [1/m] ks [1/m]
26000000 0.3 2000 10 0 0.475 0.889

Table 7.1: Material properties, Example 1

Firstly, the analytical solution is introduced and subsequently the results of the numerical sim-
ulation are presented.
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Figure 7.1: Example 1

7.2.1 Analytical Solution

The displacement shapes satisfying the Lamé equation were derived in section 3.2 and for a single
order n are collected in matrix Un defined in eq. (3.30). The functions associated to p-waves are
stored in the first column of the matrix and the s-wave terms appear in the second column. These
basis functions are directly considered as the analytical solution to which the approximated solution
obtained with the implemented method is compared.
The Hankel function of the first kind was chosen as the function W appearing in the matrix Un.

The origin for the evaluation of the displacement shapes corresponds to the origin of the Cartesian
coordinate system visualized in fig. 7.1a. The order n = 4 was selected for the investigated case.
In fig. 7.2 the shapes of the displacement field components associated to the p-wave solution are
visualized. Similarly, in fig. 7.3 both components of the s-wave displacement solution are plotted.

(a) Displacement component u (b) Displacement component v

Figure 7.2: Analytical displacement solution of Example 1, W = H(1), n = 4, p-wave contribution

Due to the special choice of the shape of the investigated domain, the simplified expression
(7.9) for the measure E, which is derived in section 7.1.1, can be used for its evaluation. For the
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(a) Displacement component u (b) Displacement component v

Figure 7.3: Analytical displacement solution of Example 1, W = H(1), n = 4, s-wave contribution

particular case, values θ0 = −π/2 and θ1 = 0 are substituted into eq. (7.9). The products σ̂Tε and
ûTρu appearing in the integrand are expressed in eqs. (7.7) and (7.8) for the p-wave solution and
by eqs. (7.12) and (7.13) for the s-wave solution. The integral is then approximated by the inbuilt
Matlab function integral.
The shown displacement shapes have certain associated strain fields, which can directly be ob-

tained from the basis En defined in eq. (3.33). Afterwards, the related stress fields can be acquired
by application of the material law. Subsequently, using the boundary equilibrium equation (2.35),
the tractions on the boundary of the investigated domain can be recovered. When the problem is
modelled using the hybrid-Trefftz method, these tractions derived from the analytical solutions are
applied as the boundary condition. Further details are discussed in the next section.

7.2.2 Approximated Solution

As was outlined in the previous paragraph, the boundary tractions obtained from the analytical
solution are applied as the loading when the structure is modelled using the implemented method.
Therefore the whole boundary of the domain is considered as the Neumann boundary, which is also
visualized in fig. 7.1a. Firstly, the boundary tractions associated to the p-wave solution, which is
displayed in fig. 7.2, are applied on all the outer edges and the results are compared to the analytical
solution. As the second test case, the boundary tractions derived from the s-wave solution (see fig.
7.3) are considered as the traction boundary condition. For both cases, expression (7.16) is used
for evaluation of the comparison measure E.

The structure is analysed using three different finite element meshes, which discretize the domain
into one, two and four finite elements. The individual meshes are visualized in fig. 7.1b. For each
mesh and each test case (p-wave or s-wave case) simulations for various orders N and M , which
determine the number of terms contained in the domain displacement and boundary traction bases,
are performed. The total number of degrees of freedom, which defines the number of unknowns in
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the final system of equations, can be calculated as

nDOF = 2nel(2N + 1) + 2nD(M + 1). (7.17)

Symbol nD denotes the overall number of Dirichlet edges, meaning both inter-element ones as well
as the edges, where the displacement components are prescribed. As all the outer edges are part
of the Neumann boundary for this test case, nD stands directly for the number of inter-element
edges. For each mesh the number of Dirichlet edges is listed in tab. 7.2.

nel 1 2 4
nD 0 1 4

Table 7.2: Number of Dirichlet edges for Example 1

The Bessel function of the first kind is chosen as the functionW appearing in the definition of the
basis Un. For the evaluation of the system matrices, local reference frame placed to the geometrical
center of the related element is considered. The number of Gauss points used for the numerical
integration along the individual edges was set to q = 250. Perhaps even fewer quadrature points
would be sufficient, however, the aim was to reduce the error caused by the numerical integration
as much as possible.
The convergence plots for the case, when the domain is discretized using a single element, are

depicted in fig. 7.4. As for this case there are no Dirichlet edges, all the degrees of freedom are
related to the coefficients X multiplying the domain approximation functions. The simulation was
performed for the displacement basis of maximum orders N = 16, 17, . . . , 30. The total number
of degrees of freedom is then calculated using formula (7.17) and plotted on the x-axis. On the
y-axis, the ratio EFE/E is plotted.
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Figure 7.4: Example 1: Comparison to the analytical solution, 1 element

It can be seen that for increasing number of terms contained in the displacement basis the
approximated solution converges to the analytical one. For the p-wave case, when N = 24, and
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therefore nDOF = 98, the error is less than 5%. For the s-wave case, order N = 22, which
corresponds to nDOF = 90, is required to achieve results with error smaller than 5%.

When the structure is discretized using two finite elements, the boundary tractions are approx-
imated on the single inter-element edge. The convergence plots for both p-wave and s-wave cases
are visualized in fig. 7.5. The analysis is performed for maximum orders M = 7, 9, 11, 13 of the
polynomial contained in the boundary traction basis. For each order M , the number of terms
contained in the displacement basis is increased, orders in range from N = 10 to N = 21 are
considered. Therefore the individual lines illustrate an increase of the number of terms contained
in the domain displacement basis while the length of the traction basis is fixed. The total number
of degrees of freedom, which is plotted on the x-axis, is calculated using the relation (7.17).
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Figure 7.5: Example 1: Comparison to the analytical solution, 2 elements

From fig. 7.5a for the p-wave case, it can be noted that for all the considered maximum orders
M , the approximated results tend towards the reference solution, when the length of the domain
approximation basis is increased. Such results indicate that the analytical tractions evaluated at
the inter-element boundary can be sufficiently well approximated by the polynomials with all the
considered maximum orders M . However, this statement does not hold any more when the s-wave
case is analysed. From fig. 7.5b it can be seen that for M = 7 the results converge to value which
is significantly different compared to analytically evaluated one. As the s-wave analytical solution
is more oscillatory compared to the p-wave one, the polynomial of maximum order M = 7 cannot
approximate the related tractions evaluated at the inter-element edge sufficiently well.
In fact, the same behaviour can be observed even for the p-wave case, only in much larger

scale. In fig. 7.6 the results evaluated for domain basis with orders between N = 21 and N = 25
are visualized. One can note that the lines for orders M = 7 and M = 9 also tend towards
values which are larger compared to the analytical solution. However, the error is negligible in
such case, since the analytical tractions are well captured by the polynomial of the related orders.
Nevertheless, the exact value of the analytical solution can be recovered only when both orders N
and M tend to infinity.
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Figure 7.6: Example 1: Comparison to the analytical solution, 2 elements, p-wave case, large scale

From the convergence plots in fig. 7.5 it can be concluded that for the p-wave case, sufficiently
accurate results, that is with error smaller than 5%, are achieved for basis orders M = 7 and
N = 13 and hence for nDOF = 124. For the s-wave case, similar accuracy is obtained for M = 9
and N = 13, which means nDOF = 128.

As the last investigated case, the domain is discretized using four finite elements. Results for
both p-wave and s-wave cases are shown in fig. 7.7. The maximum polynomial orders M contained
in the boundary traction basis are M = 4, 6, 8. Simultaneously the displacement basis dimension
is increased, the maximum included orders vary from N = 9 to N = 15.

200 220 240 260 280 300 320

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(a) P-wave case

200 220 240 260 280 300 320

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(b) S-wave case

Figure 7.7: Example 1: Comparison to the analytical solution, 4 elements

For the p-wave case, it can be concluded that for all the considered boundary traction basis
lengths with maximum orders M , the approximated results converge to values sufficiently close to
the analytical expression. For M = 4 and N = 10, which corresponds to nDOF = 208, the error is
smaller than 5%.
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For the s-wave case, noticeable mismatch occurs for traction basis with M = 4, however, the
resulting error of the converged value is smaller then 5%, which is acceptable. Already for M = 4
and N = 9, and therefore for nDOF = 192, the difference compared to the analytical solution is
smaller than 5%.
To give a reader an idea, how the approximated displacement shapes look like, in the following

figures they are visualized for the four-element mesh with bases constructed for orders N = 10 and
M = 4. In fig. 7.8 the p-wave case is shown and in fig. 7.9 the s-wave one is depicted.

(a) Displacement component u (b) Displacement component v

Figure 7.8: Example 1: Approximated displacement shapes, p-wave case, 4 elements, N = 10, M = 4

(a) Displacement component u (b) Displacement component v

Figure 7.9: Example 1: Approximated displacement shapes, s-wave case, 4 elements, N = 10, M = 4

From the briefly summarized results for the individual meshes and cases, certain trend regarding
the required number of terms included in both domain displacement and boundary traction bases
can be observed. For increasing number of elements, the individual bases need to have less terms to
achieve similar accuracy as was obtained with the coarser mesh. This is an expected behaviour, since
the approximated fields evaluated in smaller domains tend to have less oscillations and therefore
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smaller number of basis functions is necessary for their sufficient approximation. On the other
hand, the total number of degrees of freedom required for a certain accuracy is larger for the finer
meshes. This motivates to model the analysed domain using only few elements but bases with many
terms. However, a drawback of such approach are the numerical difficulties which result in badly
conditioned system of equations. The reason for such behaviour is that high order Bessel functions
tend to get flatter in the vicinity of origin. Therefore, the domain approximation basis U evaluated
at the given location contains values which are due to limited computer precision regarded as zero.
A possible remedy could be the introduction of the scaling of the individual Bessel functions. This
way it could be ensured that the basis functions of all orders have similar maximum amplitudes
within the element domain. However, as this approach was not implemented in the code, for some
cases it is necessary to include more elements in the mesh to decrease the error caused by high
condition number of the global system matrix.
In all the provided plots the approximated measure EFE tends to converge to a certain value,

when the boundary traction basis orderM is fixed and the number of terms contained in the domain
basis is increased. However, as was already discussed, for the finite traction approximation order
M there exists a mismatch between the converged value and the analytically evaluated one. A nice
visualization of such convergence process can be obtained by plotting the inter-element tractions.
These can be derived directly from the stress field associated to the displacement solution. Note
that since the inter-element edge is shared by two elements, two variants of the common tractions
exist. Moreover, as the inter-element tractions are independently approximated based on eq. (3.36),
also such representation of the tractions is available. In fig. 7.10 the normal tractions evaluated at
the inter-element edge are plotted for the case the domain is discretized using two finite elements.
The tractions are evaluated for the s-wave case, the boundary basis order M = 9 is chosen and the
domain approximation basis order is increased from N = 10 to N = 16 with step of two orders.
The associated convergence plot can be found in fig. 7.5b, where it is represented by the red line.
In fig. 7.10 the individual lines correspond to tractions evaluated from the obtained displacement
solution for both adjacent elements, to the approximated boundary tractions and to the analytical
solution. Radius r is plotted on the x-axis.
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(b) N = 12
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(c) N = 14
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(d) N = 16

Figure 7.10: Example 1: Inter-element normal tractions for varying order N , s-wave case, 2 elements, M = 9

From fig. 7.10a it is apparent that there is a significant deviation between the tractions obtained
from the displacement solution and the ones evaluated from the boundary approximation. In addi-
tion, non-negligible mismatch can be spotted between the tractions associated to the approximated
solution and the analytical ones. From figures 7.10b and 7.10c one can see that for increasing order
N of the domain displacement basis the tractions computed from the boundary approximation and
those related to the obtained displacement solution tend to be more similar to each other and closer
to the analytically evaluated ones. In fig. 7.10d all the representations are in a good agreement,
which indicates the associated orders M and N are sufficient.

The situation, when the maximum order M is not sufficiently high to capture the behaviour
of the real boundary tractions, can be observed for the two-element mesh case for order M = 7.
In fig. 7.5b the related convergence plot is visualized with blue color. For order N = 21, which



7.3 Example 2: Absorbing Boundary Condition Validation 95

corresponds to nDOF = 188, the resulting solution seems to be already converged. The normal
tractions evaluated on the inter-element boundary are depicted in fig. 7.11.
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Figure 7.11: Example 1: Inter-element normal tractions, s-wave case, 2 elements, M = 7, N = 21

One can see that the lines representing tractions derived from the displacement solution and
those obtained from the traction approximation have very similar shapes. This implies that for the
given boundary basis order M , the domain basis order N is sufficient. However, from fig. 7.11 it
is obvious that these shapes are remarkably different from the true solution. Further increase of
order N would not solve this issue. In such situation it is necessary to enlarge the boundary basis
order so that the true tractions can be approximated more accurately.

7.3 Example 2: Absorbing Boundary Condition Validation

In this example the implemented absorbing boundary condition approach is validated.
The aim of the absorbing boundary condition technique is to approximate the solution in an

infinite domain by analysing only a finite region. The domain is truncated at certain distance
from the origin of excitation and the absorbing boundary condition is applied on the associated
boundary. The investigated domain for this test case is very similar to the one analysed in Example
1, only the outer radius r1 tends to infinity. Moreover, at the radius ra from the origin the absorbing
boundary is placed. The scheme of such structure is depicted in fig. 7.12. The specific values of
the radii are r0 = 5m and ra = 25m.
As was discussed in section 4.2.1, when the Hankel function is used as the function W for the

generation of the displacement basis, the resulting solution also satisfies the Sommerfeld radiation
condition. Therefore, the displacement basis functions considered as the analytical solution in
Example 1 are not only solutions of the governing differential equation but as well fulfil the radiation
condition in infinity. Therefore, they are also considered as the reference solution for this test case.
The procedure of obtaining the approximated solution is similar to the one adopted in Example
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Figure 7.12: Example 2: Domain scheme

1. From the analytical solution, which is the same for both examples, the tractions on the outer
boundary are derived and applied as the loading to the numerical model. However, in this test case,
the Neumann boundary does not include the edge, at which the infinite domain is truncated. This
one is considered as the absorbing boundary and the absorbing boundary condition is enforced
there. In fig. 7.12 the Neumann edges, where the traction boundary condition is applied, are
denoted by Γσ and the absorbing boundary is marked by symbol Γa. In the case the absorbing
boundary is located sufficiently far from origin, the approximated displacement shapes should be
similar to the analytical solutions plotted in figures 7.2 and 7.3.
The quantity E is again chosen as the measure for comparison of the approximated and analytical

solutions. Its reference value can be evaluated using eq. (7.9). The aim is to compare both solution
shapes within the interior domain, therefore the upper limit for the integration in eq. (7.9) is now
replaced by ra. The finite element approximation EFE is obtained using eq. (7.16).

The considered material properties and the loading frequency are identical to those used in
Example 1 and are listed in tab. 7.1. The simulations are again performed for single-element,
two-element and four-element meshes, which are depicted in fig. 7.1b. The Bessel function of the
first kind is used for the construction of the domain basis and local reference frame located at the
element center is chosen for the evaluation of the system matrices. Also in this example the number
of integration points is set to q = 250.
For each of the p-wave and s-wave test cases and each mesh, simulations for various dimensions of

the domain displacement and boundary traction bases are performed. The number of total degrees
of freedom serves as the measure of complexity of the resulting system of equations and can be
calculated as

nDOF = 2nel(2N + 1) + 2(nD + na)(M + 1), (7.18)

where na denotes the overall number of absorbing edges in the finite element system. Note that when
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absorbing boundary condition is applied, the boundary tractions are additionally approximated on
the related absorbing edges. Therefore the related degrees of freedom need to be included in the
formula. In the single-element mesh, there is one absorbing edge and for both two- and four-element
meshes, two absorbing edges appear in the system.

In figures 7.13, 7.14 and 7.15 the convergence plots for all the considered meshes and for both
p-wave and s-wave cases are presented. The individual lines denote results for the fixed maximum
orderM of the polynomial included in the boundary traction basis while the order N of the domain
basis is increased. For each combination of orders N and M the number of degrees of freedom is
calculated and plotted on the x-axis.
The considered orders N and M are the same as for the cases in Example 1. As the boundary

approximation needs to be applied also in the case of the single-element mesh in this example,
multiple lines for orders M = 4, 6, 8 can be spotted in fig. 7.13.
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Figure 7.13: Comparison to the analytical solution, unbounded domain, 1 element

From the provided results, one can note that for the p-wave case, the approximated quantity
EFE tends to converge to value which is very close to the analytically evaluated one, this holds
for all the investigated meshes and all the considered orders M . The plots 7.14a and 7.15a are
very similar to their finite counterparts presented in Example 1. One can note that in fig. 7.13a
the lines for all orders are almost the same. This indicates that the tractions evaluated at the
absorbing boundary might be sufficiently approximated also by the polynomial of lower order than
those considered. Based on the given results one can conclude that for the p-wave case the selected
distance ra, where the infinite domain is cut, is adequately large.
In the case of s-wave solution, the approximated results tend to converge to value which is 3.7%

larger than the analytically evaluated one. Such behaviour can be seen for all the meshes and for
most of the considered orders M . Only for the single-element mesh the order M = 4 and for the
two-element mesh the order M = 7 are insufficient to capture the behaviour of the approximated
boundary tractions. The reason for such overestimation are the spurious reflections, which occur
due to the imposition of the absorbing boundary condition in the finite distance from the origin.



98 7 Results

140 160 180 200 220 240

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) P-wave case

140 160 180 200 220 240

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) S-wave case

Figure 7.14: Comparison to the analytical solution, unbounded domain, 2 elements
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Figure 7.15: Comparison to the analytical solution, unbounded domain, 4 elements

Recall that the enforced relation (4.36) between the displacements and tractions only holds when
evaluated in infinity. When imposed in finite distances, it results in an approximation. The resulting
error depends on the characteristics of the target solution. As the s-wave displacement shape is
more oscillatory compared to the p-wave one, truncation of the domain at the same distance ra
yields more severe errors.
The effect of varying distance ra, at which the absorbing boundary is placed, on the resulting

energy is studied next. The four-element mesh is chosen and computations for domains with
various distances ra are performed. The number of terms included in the domain displacement and
boundary traction bases is chosen such that the the convergence is reached and further increase
in orders N and M has negligible impact on the approximated solution. The outcome of the
simulations is depicted in fig. 7.16.



7.4 Example 3: Comparison to Wave Based Method 99

20 30 40 50 60 70 80 90

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

Figure 7.16: Effect of the distance ra on the approximated solution of Example 2

One can clearly see that as the distance of the absorbing boundary from the origin is increased,
the difference between the analytical and approximated solutions is diminished. Such results are
in agreement with the expected behaviour.

7.4 Example 3: Comparison to Wave Based Method

In the previous two examples the results obtained using the hybrid-Trefftz method were compared
to the known analytical solutions. In both of the cases the approximated solutions were in a good
agreement with the reference one. In this section a more realistic test case is analysed, which is an
infinite half-space loaded by a distributed load q. The scheme of the domain is visualized in fig.
7.17, where also the dimensions are stated. One can note that in certain distance from origin the
infinite space is truncated and the absorbing boundary is introduced.

q 

1
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8 m6 m 4 m 18 m

Γa

x
y

Figure 7.17: Example 3: Domain scheme

In this example also the damping of the structure is considered, the loss factor η together with
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other material and loading parameters are listed in tab. 7.3.

Ẽ [N/m2] ν ρ [kg/m3] f [Hz] q [N/m2] η

26000000 0.3 2000 30 1 0.1
Table 7.3: Material properties, Example 3

Firstly, a number of simulations for various orders of the approximation bases is performed and
the convergence of the results towards a stationary value is checked. Both maximum orders N
and M are increased until the resulting value EFE stabilizes, such procedure enables to estimate
the required number of terms, which need to be considered in the approximation bases. The
approximated displacement shapes associated to the converged values are then compared to the
results obtained with the wave based method. The already existing Matlab program, developed
at the Chair of Structural Mechanics at Technical University of Munich, was provided for the WBM
simulations.

7.4.1 Hybrid-Trefftz Method Results

For the analysis using the implemented hybrid-Trefftz method, the domain is discretized into ten
finite elements. The mesh is visualized in fig. 7.18.

Figure 7.18: Hybrid-Treffz method mesh for Example 3

For the assessment of the required number of terms, which need to be included in the approx-
imation bases, simulations for orders N = 24, 26, . . . , 42 and M = 13, 15, . . . , 21 were performed.
The resulting approximated quantity EFE related to each combination of N and M is visualized
in fig. 7.19. The individual lines correspond to the fixed order M of the boundary traction basis
while the order N of the domain displacement basis is increased and plotted on the x-axis. Due to
inclusion of the damping of the structure, the approximated comparison quantity EFE is complex
value, hence the plots for both real and imaginary parts are depicted in figs. 7.19a and 7.19b.
From the shown convergence plots the following statements can be deduced. Firstly, one can note

that the imaginary part varies only marginally for almost all the considered orders M and N . For
orders M = 15, 17, 19, 21 the converged value is almost identical. From the plots for the real part
of EFE , it can be seen that for high order N the difference between the evaluated lines for all the
considered orders M is only marginal. Hence one can assume that even polynomial of maximum
order M = 13 is able to approximate the boundary tractions sufficiently well. Moreover, as the
convergence rate is higher for the boundary basis of the lower maximum order, accurate results
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Figure 7.19: Example 3: Convergence of EFE , 10 elements

can be obtained also already for smaller number of terms included in the domain approximation
basis. Therefore, it can be concluded that for the highest considered orders, which are M = 21
and N = 42, the most accurate results are obtained. However, in comparison with results for
orders M = 13 and N = 36 the benefit of the additional number of degrees of freedom is minor.
Therefore, the latter orders are assumed to produce sufficiently accurate results and are considered
for the further assessment. The associated number of degrees of freedom is computed using formula
(7.18), where the number of Dirichlet edges is nD = 15 and number of absorbing edges is na = 4.
Therefore, the resulting number of degrees of freedom in the system is 1992. A significant reduction
of the unknowns in the system could be achieved by discretizing the domain with smaller number
of elements. However, without incorporation of further scaling procedures, the system of equation
gets ill-conditioned and the quality of the results for coarser mesh is compromised.
The approximated displacement shapes are depicted in fig. 7.20. In fig. 7.20b, where the v dis-

placement component is visualized, clear wave pattern travelling in the y-direction can be spotted.
Similar displacement shape could be expected from the given loading, therefore the approximated
solution seems to be plausible.

7.4.2 Wave Based Method Results

As was already mentioned, to validate the results of Example 3, the solution obtained using the
implemented hybrid-Trefftz method is compared with the one acquired with the wave based method.
To model the wave propagation in the infinite domain, coupling with integral transform method
is introduced. Therefore, the infinite half-space sketched in fig. 7.17 is divided into the external
and internal regions, the separating boundary coincides with the absorbing boundary Γa. In the
internal region, wave based method is used to simulate the wave propagation, while in the external
part the integral transform method is applied. Subsequently, coupling at the circular boundary
(denoted by Γa) is enforced. A short introduction into the wave based method modelling together
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(a) Displacement component u (b) Displacement component v

Figure 7.20: Example 3: Approximated displacement shapes obtained with hybrid-Trefftz method

with the comparison of both WBM and hybrid-Trefftz method is provided in chapter 5. As was
mentioned previously, an already existing code is provided for the WBM analysis.

The internal region is discretized into three finite elements, the resulting mesh is depicted in fig.
7.21. As this test case was taken from the model examples provided with the WBM code, the
simulation parameters are assumed to be tuned so that the results are sufficiently accurate. The
overall number of degrees of freedom associated to the coupled system of equations is 3324. For
the numerical integration along the boundary edges 102 quadrature points were used.

Figure 7.21: WBM mesh for Example 3

The resulting displacement shapes are shown in fig. 7.22. From the visual comparison with the
solution acquired with the hybrid-Trefftz method, which is depicted in fig. 7.20, strong similarity
can be noticed. Further analysis of the error between both approximations is described in the next
section.

7.4.3 Results Comparison

In this section the difference between the displacement fields obtained with both methods is studied.
Firstly, to get an idea about the similarity of the approximations, the results are displayed in the
same figure. To make the graphs more illustrative and clear, the displacement fields are evaluated
at various vertical sections and plotted afterwards. The x-coordinates xs of the evaluation sections
are chosen as xs = −7, −10, −13, −16 m. In fig. 7.23 the real part of the v displacement component
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(a) Displacement component u (b) Displacement component v

Figure 7.22: Example 3: Approximated displacement shapes obtained with wave based method

associated to both WBM and hybrid-Trefftz method (HT) is visualized for each investigated section.
The y-coordinate of the evaluated point at the vertical line is plotted on the x-axis.

It can be seen that for the sections located at xs = −7 m and xs = −10 m the vertical dis-
placement components v evaluated using both methods are almost identical. A notable mismatch
can be spotted for the sections located further from the loading and closer to the left boundary.
Nevertheless, also for xs = −13 m and xs = −16 m both methods produce similar results.
In fig. 7.24 the horizontal displacement component u evaluated at the same vertical sections is

visualized. Also for this case both approximations are in a very good agreement, larger deviations
can be noted only at the very left section with xs = −16 m.
As for the practical cases the displacements at the surface are perhaps the most important

outcome, also these are presented. In fig. 7.25 both components evaluated at the horizontal line
located at ys = 0 m are depicted. As can be seen, also at the surface the approximated displacement
fields look alike, non negligible deferences are apparent in the vicinity of the left absorbing boundary.

The so far discussed results served mainly for the qualitative assessment of the solutions obtained
using both methods. In the following, the mismatch between the displacement shapes is computed
for the whole surface and visualized in fig. 7.26. The absolute error measure is chosen and is
computed as the difference between real parts of the displacement component evaluated using
hybrid-Trefftz method and the one computed with WBM. Hence it is expressed as

Err(u) =real(uHT − uWBM ),

Err(v) =real(vHT − vWBM ),
(7.19)

where uHT (x,y), vHT (x,y) and uWBM (x,y), vWBM (x,y) denote the displacement components eval-
uated using hybrid-Trefftz method and wave based method.
The already stated conclusions regarding the error distribution can be deduced also from fig.

7.26. The largest deviations occur near the left side of the absorbing boundary, which is located
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(d) xs = −16 m

Figure 7.23: Example 3: Comparison of the vertical displacement component v evaluated at various vertical sections

close to the source of excitation. Possible reason for this mismatch might be the insufficient distance
between the position of the absorbing boundary and the loading, which may cause spurious wave
reflections. The potential remedy could be to increase the radius at which the absorbing boundary
is located and hence diminish the resulting deviations. However, one has to be aware that in this
example the results are not compared to the true analytical solution, but to the different numerical
approximation. Therefore, the mismatch between both displacement shapes does not imply that
one of the methods produce such error, but rather that the error of both approximations combined
together generates the mentioned deviations.
The average error for each displacement component, which is calculated as the mean of absolute

value of Err(u) or Err(v), is evaluated in tab. 7.4. Furthermore, the maximum of the absolute value
of the individual displacement components evaluated using WBM is also stated and the ratio of the
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average error and the maximum displacement is computed. As can be seen, for both components

f̃ mean(abs(Err(f̃))) [m] max(abs(f̃WBM )) [m] mean(abs(Err(f̃)))/max(abs(f̃WBM ))
u 8.6972 e-11 9.3159 e-09 0.0093
v 8.3992 e-11 2.1047 e-08 0.0040

Table 7.4: Example 3: Error evaluation

the average difference between the results obtained with individual methods is less than 1% of the
maximum displacement.
Overall, it can be concluded that both approximated solutions are in a good agreement. The

number of total unknowns in the system for the considered simulation parameters is significantly
larger in the case of the wave based method. However, no basis refinement study was performed
for the WBM results, perhaps similar accuracy could be achieved even for lower number of degrees
of freedom. Therefore, no conclusions regarding the comparison of the computational efficiency of
both methods are stated.
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(d) xs = −16 m

Figure 7.24: Example 3: Comparison of the horizontal displacement component u evaluated at various vertical sec-
tions
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(a) Displacement component u
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Figure 7.25: Example 3: Comparison of the displacement components evaluated at the surface

(a) Error in displacement component u (b) Error in displacement component v

Figure 7.26: Example 3: Error between hybrid-Trefftz and wave based method results
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8 Conclusion

In the thesis the hybrid-Trefftz method is applied as the numerical technique for approximation of
the solution of the spectral form of Lamé equation. The distinctive feature of the method is the
special choice of the shape functions, which are used for approximation of the displacement field
inside the element domain. The basis functions are chosen as the solutions of the governing differ-
ential equation. Therefore, due to the fact that the approximation functions reflect the mechanical
features of the modelled phenomenon, the domain can be discretized into only a few elements. In
addition, the number of required elements is independent of the excitation frequency, which makes
the method applicable even for higher frequencies.

To obtain more accurate results, the number of terms included in the domain basis is increased
instead of refining the element mesh. Such p-refinement technique proves to produce equation
systems with a relatively low number of degrees of freedom compared to conventional methods.
Even local singularities can be modelled without mesh refinement by including special singular
functions in the approximation basis. Moreover, the resulting system matrices appearing in the
final system of equations are constructed by integration along the element boundary instead along
the element domain as is common in e.g. FEM. As a consequence, elements of arbitrary shape and
number of edges may be used for the analysis. In addition, numerical error arising due to mesh
distortion is practically avoided.
What distinguishes the hybrid-Trefftz approach from other subclasses of the Trefftz family is the

way how the boundary conditions and the inter-element continuity conditions are enforced. For this
purpose, the boundary tractions are additionally approximated at the element boundary. Compared
to e.g. wave based method, for which the inter-element and boundary conditions are directly weakly
imposed without introduction of additional degrees of freedom, such approach results in certain
benefits as well as disadvantages. The obvious drawback is the additional number of degrees of
freedom and hence a larger resulting system of equations for the same number of domain basis
functions. On the other hand, the element convexity requirement is completely relaxed, which
makes the method applicable even for more complex domains.
From the obtained results it can be concluded that the quality of the approximated solution

is determined by the number of basis functions included in both the domain displacement as
well as in the boundary traction basis. Moreover, the required number boundary approximation
functions strongly depends on the character of the target solution. The maximum order of the
polynomial contained in the boundary traction basis needs to be high enough so that the shape
of the true inter-element and boundary traction fields is well captured. If this condition is not
fulfilled, even for increasing number of terms contained in the domain displacement basis the
approximated displacement solution does not converge to the true one but rather to a different
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artificial displacement shape. The theoretical convergence to the analytical solution is only reached
when the number of terms contained in both bases tends to infinity.
Even though the efficiency of the method lies in coarse discretization with elements containing a

large number of basis functions, for certain cases this approach yields non-converging results. The
reason is that for large elements both domain and boundary bases need to contain many terms so
that the fields are approximated accurately. As the high order Bessel functions of the first kind
tend to get flatter near the origin, some components of the evaluated displacement basis are close
to zero. As a consequence of the limited computer precision, the final system of equations turns out
to be badly conditioned and therefore producing non-negligible numerical error. Such issue may
be overcome by applying a mesh refinement strategy in order to decrease the number of required
basis functions. Alternatively, scaling of the individual functions based on the dimensions of the
element might improve the numerical stability.
The absorbing boundary condition strategy adopted for modelling of infinite domains implicitly

results in an approximation, when enforced at finite distance from the source of excitation. The
required distance for generation of acceptably accurate results depends on the dissipative nature of
the true displacement shape. The advantage of the absorbing boundary condition approach lies in
the non-restricted choice of the displacement basis functions, which may be constructed from any
of the mentioned solutions of the Bessel equation. When e.g. infinite elements are used for analysis
of unbounded media, the related approximation functions need to implicitly satisfy the radiation
condition and hence their choice is limited.
Based on the comparison of the results with analytical solutions for both bounded and unbounded

domains, the implemented code is considered to be validated. The results are also in a good
agreement with those obtained with the wave based method, which was shown for the example of a
loaded half-space. From the analysis of the error between the approximations acquired using both
methods, it may be observed that the largest deviations occur near the absorbing boundary located
in the closest distance to the loading. Such outcome implies that perhaps the radius at which the
absorbing boundary is placed should be enlarged, in order to decrease the mismatch between both
solutions.
Regarding the possibilities of future extensions of the implemented code, there are many potential

generalizations which may be introduced. A simple and straightforward modification might be
implementation of elements with an arbitrary number of edges, which would enable a user to model
more complex domains without the need of mesh refinement. The second idea for generalization is
to incorporate non-linear material models, since the so far included material law has only limited
applicability. Another possible direction for the future work is the introduction of coupling of the
method to other structural systems, such as Euler-Bernoulli beam. Such extension would enable to
model e.g. wave propagation in the soil under a loaded foundation of a building more accurately.
This idea could be generalized to coupling of the method with the finite element method. This
way the parts of the structure with complex geometry could be analysed using FEM, while the
hybrid-Trefftz method could be applied in large interior regions.
Overall, the hybrid-Trefftz method represents an efficient solution procedure of various engineer-

ing problems and offers some significant advantages compared to other deterministic approaches.
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Nevertheless, one has to be aware of the limitations of its application, since for domains of complex
shapes the preferable efficiency is compromised.
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