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Abstract

The thesis develops numerical tools for dynamic analysis of elastic media. Particularly, the hybrid-
Trefftz method is applied in order to approximate the solution of the underlying differential equation
expressed in the frequency domain. In addition, wave propagation in unbounded media is investi-
gated and the absorbing boundary modelling approach is described in detail. The main purpose of
the work was to develop a program enabling such analysis and implement it in MATLAB software.
To validate the code, the obtained results are compared to the analytical solutions as well as to the
results acquired with the wave based method, for which an already existing code has been provided.
Moreover, theoretical aspects of both methods are summarized and compared.
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1 Introduction

The problem of dynamically loaded media is a frequently investigated process, especially in the
fields of civil engineering, earthquake engineering and geotechnics. Under certain simplifications,
such physical behaviour can be described by a set of coupled partial differential equations expressed
in terms of unknown displacement field depending on the time and space coordinates. Unfortu-
nately, for most of the practical cases this mathematical problem cannot be solved analytically and
therefore numerical methods need to be applied to approximate the solution.

As the set of governing equations contains differentiation with respect to time and space co-
ordinates, both dependencies need to be treated by a suitable method. By transferring all the
field equations into the frequency domain, the original problem in time and space is divided into
a number of subproblems, which are however formulated in terms of space coordinates only. The
associated space solution is subsequently approximated. Various methods were developed to tackle
such task, a widely used option is e.g. the finite element method (FEM). However, for higher excita-
tion frequencies a fine domain discretization is required, which results in large equation systems and
computationally expensive simulation. Alternative options for such analysis are Trefftz methods,
which use special shape functions for the approximation of the unknown fields. The individual basis
functions are required to satisfy the governing equation, therefore inside the domain the approxi-
mated field is implicitly the solution of the differential equation. However, the basis components
may violate the prescribed boundary conditions and hence they need to be combined in order to
decrease the resulting error on the boundary. In the thesis the so called hybrid-Trefftz method is
investigated, in which the boundary traction field is additionally approximated on the boundary of
the individual elements. The purpose of such field is to impose the boundary and the inter-element
continuity conditions.

The main objective of this work is to implement the hybrid-Trefftz method for numerical analysis
of 2D elastodynamic media. MATLAB software is used as the programming language for the code
development. Besides the standard boundary conditions, also a modelling approach for the analysis
of unbounded media is incorporated in the program. To validate the implemented method, the
obtained results are compared to both analytical solutions as well as to the results acquired with
the wave based method, for which an already existing code has been provided. Moreover, theoretical
aspects of both hybrid-Trefftz and wave based methods are summarized and compared.

The thesis is structured into six chapters. The first one is dedicated to introduction of the
analysed problem and to derivation of the governing differential equation. In addition, the transfer
of all the fields and equations into the frequency domain is described. The resulting spectral
representation forms the base for the derivation of the hybrid-Trefftz method, which is described

in detail in the second chapter. Before the finite element system of equations is generated, the
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solution procedure of the spectral Lamé equation is outlined, so that the basis functions satisfying
the governing equation are formulated. In the next chapter, wave propagation in infinite media is
studied, particularly, the absorbing boundary modelling approach is derived and described in detail.
The last theoretical chapter is devoted to a brief introduction of the wave based method and to its
comparison to the hybrid-Trefftz method. In the fifth chapter the implementation process of the
whole program is outlined and in-depth description of all the individual subroutines is provided. In
the last chapter the results of three numerical examples are discussed; for the first two the analytical
solutions are available and for the third one the wave based method results are considered as the
reference. Convergence process of both p- and h-refinement strategies is studied and performance

of the absorbing boundary condition is investigated.



2 Problem Description

The aim of this chapter is to introduce the problem of interest and provide a theoretical background
for the upcoming sections.

As was indicated in the introduction, the objective of this thesis is the numerical analysis of loaded
elastodynamic media. To enable a reasonable description of such problem, certain assumptions
regarding the material, loading and geometry need to be adopted, which is discussed in the first
sections. Afterwards, the governing differential equation is derived. It turns out that not only
derivatives with respect to space coordinates but as well with respect to time appear, which makes
the solution procedure more complex. The so called frequency domain analysis method is applied,
which allows to transfer the original problem in space and time into a number of problems dependent
on space coordinates only. The solution procedure of the resulting system of partial differential

equations in space is the main purpose of this work and a single chapter is devoted to it.

2.1 Assumptions and Hypotheses

The analysis of dynamically loaded medium is a complex problem. The following assumptions are

considered through this thesis so that the solution of such task is simplified:

e The matter inside the body is continuously distributed with no empty spaces, hence the

structure may be analysed as a continuum.

e The material is isotropic. This statement indicates that the material response and its prop-

erties are identical in all directions.
e The relation between the stresses and strains is assumed to be linear.

e The strains and displacements are assumed to be small. This implies the deformation caused
by the loading has a negligible effect on the equilibrium of forces, which can therefore be eval-

uated on the undeformed structure. Such assumption is referred to as geometrical linearity.

¢ The loading of the structure is assumed to be a periodic function in time. Some comments

regarding arbitrary transient functions are placed in the end of the chapter.

2.2 Domain and Geometry

To make the modelling procedure and the visualization of the results more convenient, certain as-

sumptions regarding the geometry are considered. It is assumed that a 2D shape placed in zy-plane
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is extruded in the direction of z-axis, in which the dimension of the object tends to infinity. Further-
more, the material properties, prescribed boundary conditions and the loading remain constant in
this longitudinal direction. In addition, both displacement and traction boundary conditions have
zero component in the z-direction. Under such presumptions the body can be modelled as a 2D
domain.

In fig. 2.1 a general scheme of a possible structure of interest is depicted. The domain is rep-
resented by symbol V and I' stands for the boundary of such body. It can be partitioned into
two nonoverlapping complementary sections, I', and I',, which are called Dirichlet and Neumann
boundaries respectively. Boundary displacements are prescribed on the former one while boundary

tractions are given on the latter one.

Figure 2.1: Domain and boundary

2.3 Governing Equation in Time Domain

The behaviour of a loaded structure can be described using three main sets of equations, which
are equilibrium equations, kinematic equations and material law. These need to be supplied with
boundary and initial conditions so that the problem is well defined. Afterwards, the relations are
combined to form a governing system of equations.

All the relations are expressed using a matrix notation and a Cartesian reference frame is adopted.
The mentioned equations and formulas can be found in [Poruchikov 2012] and [Gonzalez and Stuart
2008].

2.3.1 Stress and Strain Measure

The assumption of small strains and displacements was briefly discussed in section 2.1. As a result
of geometrical linearity, small strain tensor is adopted as the strain measure. Using Voigt notation,

it can be expressed as a strain vector e(z,y,t) with six independent components. For the 2D case
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of interest, the number of components reduces to three and are ordered as

e=leo & ) - (2.1)

where €, (z,y,t) and €,(z,y,t) are the normal strain components while 7, (z,y,t) is the shear strain
component.

As the stress and strain tensors need to form a work conjugate pair, engineering stress tensor
is chosen as the valid stress measure. Similarly to the strain counterpart, its components can be

restructured into the engineering stress vector o (x,y,t). For the 2D case the vector is expressed as
T
o= [Jm Oy Txy} ) (22)

with o,(x,y,t) and oy(x,y,t) being the normal stress components and 7,,(x,y,t) the shear stress

component.

2.3.2 Equilibrium Equations

The equilibrium equations describe an equilibrium of forces on an infinitesimal volume and can be
derived using the law of conservation of momentum. Since the loading and therefore all the field
quantities may vary in time, also inertia forces need to be included. In a matrix notation, the

relations can be expressed as
Do +b=piiinV, (2.3)

where u(z,y,t) is a vector collecting displacement components, vector b(z,y,t) contains body forces
and p(z,y) is the mass density. Matrix D is a differential operator matrix. The symbol () represents
the second time derivative.

For the particular case of 2D elastodynamic continuum the vectors and matrices are formed as

9 4 9

u=[u U]T, b= b, by]T, p=|% Y| (2.4)
0o - =
oy Ox

where u(z,y,t) and v(z,y,t) are the displacement components in x and y direction and b, (z,y,t)

and by(x,y,t) are the individual body forces components.

2.3.3 Kinematic Equations

Kinematic equations describe the relation between displacements and strains. The small strain

vector € can be expressed in terms of displacements as

e=D'uin V. (2.5)
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Matrix D* is the differential kinematic operator which is the adjoint of D. Such property is a
consequence of the geometrically linearized theory. As a Cartesian reference frame is considered,
D* can be replaced by DT

2.3.4 Material Law

The material equations express the relation between the strains and stresses. For simplicity, the

linear elastic material law
oc=keinV (2.6)

is considered, where k(z,y) denotes the material matrix. As the material is considered to by
isotropic, only two constants are necessary to form the matrix k. These can either be the Lamé
coefficients A(x,y) and j(x,y) or the Young modulus E(x,y) and Poisson’s ratio v(x,y). The relation
between both possible descriptions reads [Malvern 1969

vE
A e + )1 —2w) (27)
1 :7E . (2.8)
2(1+v)

When the 2D case is of interest, one has to distinguish between plane strain and plane stress case.
The assumptions regarding the geometry were described in section 2.1. Such situation indicates
that the displacement as well as the normal strain in z-direction are zero and therefore plane strain

case is of interest. The material matrix has then the form [Bauchau and Craig 2009]

A+2u A 0
k= A A+2u 0] . (2.9)
0 0 "

In reality, the applicability of linear elasticity is strongly limited and more complex theories need
to be considered in order to approximate the real behaviour more accurately. Some comments

regarding the incorporation of damping into the formulation are mentioned in section 2.4.4.

2.3.5 Boundary Conditions

To pose a valid problem, boundary conditions must be introduced. The first type of boundary

condition are prescribed displacements on the Dirichlet part of boundary I,
u = ur on Iy, (2.10)

T
where up(x,y,t) = [up vp] denotes the vector of prescribed displacement components up(x,y,t)
and vp(z,y,t) in Cartesian directions. This type of boundary condition is also called Dirichlet

boundary condition.
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The second type of boundary condition, also called Neumann boundary condition, is in terms of

prescribed tractions on a portion of boundary I',. Symbolically it can be expressed as

t=tr onTy, (2.11)
where
T
tr(zy.t) = [tI‘,x tF,y] (2.12)

stands for vector of prescribed traction components tr ,(x,y,t) and tr 4 (x,y,t) in the individual direc-
T
tions. The boundary traction vector ¢(x,y,t) = [tw ty} collecting traction components ¢, (x,y,t)

and t,(z,y,t) is calculated based on the equilibrium at a boundary I' as

t=Noonl. (2.13)
Matrix
N |t O (2.14)
0 ny ng

collects components of the outward normal at the boundary.

2.3.6 Initial Conditions

For a general type of excitation, it is necessary to provide information regarding the initial state of
the structure, such as initial displacement shape @g(z,y) and initial velocity state ¥g(x,y) in the

beginning of an observation when ¢ = 0. Such condition can be formulated as

u =1ug at t =0,
(2.15)
1.1,:’50 attzO,

where symbol (-) denotes the time derivative.

However, it was mentioned in section 2.1 that the loading is assumed to be a periodic function in
time. Due to the damping of the structure, which always occurs in reality, the oscillations caused by
the initial conditions reduce significantly with increasing time. After a certain period they will have
negligible effect and only the oscillations caused by the periodic loading will play a role. Therefore,

the free vibration part of the solution is neglected and only the steady state solution is of interest.

2.3.7 Governing Differential Equation

To form the governing differential equation, previously mentioned sets of equations are combined

together. In particular, kinematic equations (2.5) are substituted into the material law (2.6), which
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is then inserted into equilibrium equations (2.3). The resulting equation is then expressed as
DkD*u—pii+b=0in V. (2.16)

Substituting all the already defined matrices and vectors into eq. (2.16) and assuming the Lamé

parameters are constant in the domain V', one obtains
A+ ) VVTu + uV?u — pii + b =0, (2.17)

where V = [0/0x 0/0y]T is the gradient and V? = VIV = 92/022 + 0%/0y? is the Laplace
operator. Eq. (2.16) expresses a system of two second order partial differential equations in time

and space and is referred to as the Lamé equation.

2.4 Frequency Domain Analysis

In the previous section, the governing system of partial differential equations was derived. As the
problem of interest is of dynamic nature, not only derivatives with respect to space coordinates
but also with respect to time coordinate appear, which makes the solution procedure even more
complex. Various numerical techniques and methods to deal with the time dependency are available,
e.g. modal analysis, explicit and implicit time integration methods or frequency domain analysis.
Depending on the analysed problem and type of excitation, some methods are more suitable than
others. In the scope of this thesis, the frequency domain analysis method will be adopted.

An essence of frequency domain analysis [Clough and Penzien 2003] is to transfer the problem
depending on space and time coordinates into a number of sub problems which however depend
on the space coordinates only. A mathematical procedure enabling such decomposition is named
Fourier series expansion. With its help the governing differential equation as well as all the field
equations and boundary conditions can be transformed into the frequency domain. The resulting

formulation becomes a starting point for the space discretization procedure.

2.4.1 Fourier Series Expansion

Any periodic function f(t) with period T can be decomposed into a sum of harmonic functions
with discrete frequencies, such decomposition is referred to as Fourier series. Using a complex

representation, it is expressed as [Serov et al 2017]

f(t) = i cx, exp(iwgt), (2.18)

k=—0o0

where wp = kw; are the discrete circular frequencies and wy = 27/T is the circular frequency of

function f(t). The coefficients ¢, can be calculated as

o = % /0 ") exp(—iwgt)dt. (2.19)
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2.4.2 Transfer to Frequency Domain

An excitation of a structure is driven by the prescribed boundary tractions tr(z,y,t), boundary
displacements ur(z,y,t) and body forces b(z,y,t), which are all for simplicity assumed to be periodic
functions in time. Due to this property, it is possible to perform a Fourier series expansion of the
related fields in a similar way as was described in eq. (2.18). However, in practice it is not feasible
to keep the infinite number of terms of the expansion, therefore only a finite number of terms 2K —1

is included in the series. This results in an approximation

K-1
tr(z,y,t) ~ trk(z,y) exp(iwgt), (2.20)
k=1-K
K-1
ur(egt) ~ Y urg(e.y) explivd), (2.21)
k=1-K
K-1
baut) ~ 3 bylay) expliit), (2.22)
k=1-K

where the coefficients tr g, ur and by are computed based on eq. (2.19) as

1 [T .
trp(zy) = f/o tr(z,y,t) exp(—iwgt)dt, (2.23)
1 (T .
urk(z,y) = T/o ur(x,y,t) exp(—iwgt)dt, (2.24)
1 T
br(x,y) = T/o b(x,y,t) exp(—iwgt)dt. (2.25)

Note that these coefficients are known, since the prescribed boundary values and body forces are
given.

As the loading and boundary conditions are periodic functions in time, one can assume that also
the response is periodic. This allows to perform a Fourier expansion of the unknown displacement,

traction, stress and strain fields, expressed as

K-1
u(z,yt) = Y ug(ey)explivgt), (2.26)
k=1-K
K-1
t(zyt) = Y tr(zy) exp(iwyt), (2.27)
k=1-K
K-1
U(.’Z‘,y,t) ~ O ($,y) eXp(iwkt)a (228)
k=1-K
K-1
e(wy,t) ~ ek (2,y) exp(iwyt). (2:29)
k=1-K

Coefficients ug(x,y), tp(z,y), or(z,y) and eg(z,y) are however unknown.

Due to the linearity of the problem, principle of superposition can be applied. This allows to
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calculate the response for each term in the sum separately and superpose the contribution of each
frequency afterwards. Substituting u = ug(x,y) exp(iwgt) and b = bg(x,y) exp(iwgt) into eq. (2.16)

and cancelling the exponential terms yields
DkD*uy, + wipup + b, =0for k={1-K2—-K,..., K —1}. (2.30)

Inserting the particular definitions of the matrices D and k, the previous equation can be reformu-
lated

A+ 1) VVTuy, + 5y V2up + wipup + by =0for k={1-K2—-K,..., K —1}. (2.31)

Eq. (2.31) is the governing differential equation of the system in the frequency domain, also
named spectral form of Lamé equation. For each k it represents a system of two coupled partial
differential equations depending on the space coordinates only.

Similarly, also equilibrium, kinematic and constitutive equations as well as the boundary condi-

tions can be expressed for a single harmonic excitation as

2.32
2.33
2.34
2.35
2.36
2.37

Doy, + w,%puk +br=0inV,
e = D*up in 'V,

o = kep in 'V,

ty = Nop on T,

up = up on I'y,

(2.32)
(2.33)
(2.34)
(2.35)
(2.36)
(2.37)

tk = tI‘,k on FU.

By the previously described procedure, a periodic elastodynamic problem can be decomposed
into 2K — 1 uncoupled sets of partial differential equations (2.30) with dependency on the space
coordinates only. After the solution is obtained for each of 2K — 1 circular frequencies wy, the final
response can be calculated based on egs. (2.26) to (2.29). The solution procedure of eq. (2.30) is the
main objective of this thesis and will be described in detail in chapter 3. For clarity, the subscript k&
in eqgs. (2.30) to (2.37) is omitted in the derivations presented in the subsequent chapters, however,

the individual symbols still denote the spectral representation of the related fields.

2.4.3 Arbitrary Excitation

So far the transformation of the equations into the frequency domain was discussed for periodic
functions in time. When an arbitrary excitation is to be analysed, the previously mentioned
procedure needs to be modified. It is no longer possible to express a function f(¢) in eq. (2.18) as a
series of harmonic oscillations with discrete circular frequencies, however, the frequency spectrum
becomes continuous in such case. To perform the transfer of the field variables to the frequency
domain, the Fourier transformation [Serov et al 2017] needs to be applied. Similarly, to reconstruct

the results in the time domain, the inverse Fourier transformation is used. Both of these procedures
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require solution of an integral which for most of the practical cases cannot be computed analytically.
Therefore, a numerical procedure named discrete Fourier transform was invented to approximate
the Fourier transform and the inverse Fourier transform. In the end, a finite number of equations
of similar form as eq. (2.30) is obtained. However, when discrete Fourier transform is used, certain
numerical issues, such as leakage, can occur, which one has to be aware of. As this goes beyond

the scope of this thesis, more detailed explanation is skipped.

2.4.4 Damping

Until now the relation between the stresses and strains was assumed to be linear elastic and in the
frequency domain it is described by eq. (2.34). Since the material matrix k contains real constants,
both stresses and strains oscillate in phase. However, in real situations this is usually not the case
and a phase shift between the stress and strain fields can be observed. This is a consequence of the
fact, that during the loading process, a portion of the mechanical energy is converted into thermal
energy and hence dissipated, which always occurs in reality.

In the scope of the frequency domain analysis, such behaviour can be modelled by assuming
the material constants contained in the material matrix k are complex numbers. The original
definitions (2.9), (2.7) and (2.8) of the material matrix and the Lamé coefficients remain valid, only

the Young modulus E is considered to be complex value defined as
E = Ey(1 +isgn(w)n), (2.38)

where 7 denotes the loss factor and E; stands for the so called storage modulus [Meyers and Chawla

2008], which represents the real part of the Young modulus.
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3 Hybrid-Trefftz Method

In the previous chapter the elastodynamic problem was introduced and the governing differential
equation in the frequency domain (2.30) was derived. As was already mentioned, eq. (2.30) is a set
of coupled partial differential equations depending on space coordinates only. For general boundary
conditions it is not possible to solve the system analytically and therefore numerical methods need
to be applied instead. This chapter discusses how an approximation of the solution of such equation
is obtained.

There is a wide range of numerical techniques designed to estimate the solution of such problem,
e.g. finite element method, boundary element method or a family of Trefftz methods. The main
focus of this thesis is placed on the so called hybrid-Trefftz method, which offers some significant
advantages compared to the standard FEM.

Similarly to FEM, also in the case of Trefftz methods the domain is discretized into a number
of finite elements, where a certain field is approximated by shape functions multiplied by unknown
coefficients. In standard FEM, these shape functions are polynomials. On the other hand, in the
case of Trefftz methods, the basis functions are restricted to satisfy the homogeneous part of the
governing differential equation. This requirement is also called the Trefftz constraint. As will be
discussed later, it is possible to obtain an infinite series of functions which fulfil such constraint,
but they violate the prescribed boundary conditions and therefore cannot directly be considered as
a solution of the whole problem. However, since the functions are linearly independent, they form
a complete basis. This implies that under certain restrictions, any function can be represented as a
linear combination of these basis functions and since they all satisfy the homogeneous differential
equation, also the linear combination will have this property. The idea of Trefftz methods is to
combine a finite number of such basis functions so that the boundary values of the resulting function
get closer to the prescribed boundary conditions.

The adjective hybrid indicates that more than one field is approximated simultaneously and
independently. There are various options regarding the choice of approximated fields. In the scope
of this thesis, the displacement field is approximated in the domain and the boundary traction field
is approximated on the Dirichlet boundary. In literature, when an element is formulated using such
approach, it is referred to as a displacement element. An alternative would be a stress element,
for which the stress field is approximated in the domain and displacements are approximated on
the boundary. However, only the former option is considered in this work. The purpose of the
boundary field approximation is to enforce the boundary conditions and the continuity between
adjacent elements.

The idea of restricting the basis functions to satisfy the governing differential equations was

firstly proposed in [Trefftz 1926] as an alternative to the Rayleigh-Ritz method. A formulation of
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general Trefftz elements was then reported in [Jirousek 1978], where four possibilities regarding
the enforcement of the inter-element continuity between hybrid-Trefftz elements were presented.
Mathematical fundamentals related to the construction of the complete bases were formulated by
I. Herrera and published in e.g. [Herrera 1980], [Gourgeon and Herrera 1981] and [Herrera and
Gourgeon 1982]. Subsequently, the method was applied to various engineering problems, such
as bending of plates, 3D solid mechanics, potential problems or heat conduction problems. An
overview of the individual formulations can be found e.g. in [Qin 2005]. Application of hybrid-
Trefftz method to analysis of elastodynamic media was mainly studied by the group of J. A. T.
Freitas. A formulation of the displacement element is presented e.g. in [Freitas 1997] or [Cismagiu
and Freitast 1998]. The approach is then extended for analysis of unbounded media in [Cismagiu
2000], [Freitas and Cismasiu 2003] and [Moldovan and Freitas 2006]. Furthermore, in [Moldovan
2008] a propagation in saturated porous media for bounded and unbounded domains in analysed
using the hybrid-Trefftz models.

It is important to note that the concept of nodal interpolation known from FEM is completely
omitted in subsequent derivations. The bases used to approximate both displacement field in the
domain and the traction field on the boundary are hierarchical and the coefficients correspond no
longer to nodal values but are rather called generalized quantities.

The chapter is structured in the following way. Firstly, a discretization of the complete domain
is introduced. Afterwards, an approximation of the domain displacement field is presented and the
basis is derived. This procedure involves a solution of the spectral Lamé equation. Subsequently, the
boundary traction approximation is mentioned and the finite element governing system of equations
is derived. The equilibrium equations, Dirichlet boundary condition and displacement inter-element
continuity conditions are enforced in a weak sense using the Galerkin weighted residual method.
On the other hand, the kinematic equations, material equations and traction boundary condition
are implicitly satisfied. At the end of the chapter a mixed boundary condition is discussed.

Equations (2.30) to (2.37) form a theoretical basis for the subsequent derivations. For clarity the
subscript k will be omitted.

3.1 Finite Element Discretization

The complete domain V is discretized into finite elements with domain V¢ and boundary I'¢ as is
illustrated in fig. 3.1. The element boundary is split into nonoverlapping parts, I';, and I', which
are the Dirichlet and Neumann boundaries respectively.

It was mentioned in the introduction of the chapter that the approximated fields are the dis-
placement field in the element domain and the boundary tractions on the Dirichlet boundary. To
be more precise, the boundary tractions need to be approximated also on the part of the boundary
shared by neighbouring elements. This is necessary for the enforcement of the continuity condition
between adjacent elements, which will be explained in section 3.4.6. As a result, the inter-element
section of the boundary will be considered as a part of the Dirichlet boundary I'¢,, as is also displayed

in fig. 3.1.
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Figure 3.1: Discretization of the domain into finite elements

The individual elements can be of arbitrary shape and also no restrictions are placed on the

number or edges of the individual elements.

3.2 Domain Approximation

As was stated in the introduction of the chapter, the first approximated field is the displacement

field in the element domain V¢, expressed as
u=UX + ug in V. (3.1)

Matrix U collects the basis functions, X is vector of unknown coefficients, also called generalized
displacements and ug is a vector of particular solutions.
The basis collected in matrix U is restricted to satisfy the homogeneous part of the spectral

Lamé equation (2.30), such constraint is expressed as
DkD*U + w?pU = 0 in V°. (3.2)
Vector ug is constructed as a particular solution to the prescribed body forces, hence relation
DkD*ug + w?pug +b=01in V° (3.3)

must hold.
In the case of the hybrid-Trefftz method, the strain field is restricted to directly satisfy the
kinematic equations. Applying eq. (2.5) on (3.1) yields

e=D'u=EX + ¢y, (3.4)

with the strain approximation basis E = D*U and €9 = D*ug. Note that F is not an independent
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basis, it is rather derived from basis U and therefore strain € is not an independently approximated
field.

To construct the displacement basis U and subsequently the strain basis F, it is necessary to
solve the homogeneous part of the spectral Lamé equation, which will be discussed in the following

subsection.

3.2.1 Solution of the Homogeneous Spectral Lamé Equation

The spectral Lamé equation for the considered 2D case was derived in the previous chapter and
is represented by eq. (2.31). Neglecting the body forces, a homogeneous part is recovered, which

results in
A+ ) VVTu + 4 V2u + wpu = 0. (3.5)

This equation is expressed in terms of the displacement field w and represents two coupled partial
differential equations. By the application of the Helmholtz decomposition, the previous equation
can be reformulated in terms of different unknown fields and decoupled into two independent
equations, which simplifies the solution procedure significantly.

The Helmholtz theorem [Arfken et al 2013c] states that any sufficiently smooth vector field can
be expressed in terms of a scalar dilatational potential ®, and a vector potential ®5. For the
2-dimensional case, it can be shown that the vector potential reduces to one component only,
therefore it becomes a scalar shear potential ®;. The relation can be expressed in matrix notation

as
u=Vo,+ Vo, (3.6)

= T
where V = [8/ dy —0/ (’*)x] is the curl operator in 2D.
Due to the linearity of the differential operators appearing in eq. (3.5), it is possible to investigate
contributions of each term in relation (3.6) separately.

Dilatational Part

Taking the dilatational part of the displacement vector, that is substituting uw = V&, into eq. (3.5),

one obtains
A+ ) VVE(VD,) + uV3(Ve,) + w?p(VD,) = 0. (3.7)
Using identities V2V = VV?2 and V'V = V2, equation (3.7) is rearranged as

A+ p)VV2®, + uVV2®, + w?pV o, =0
VA + p) V2@, + pV2®, + w?pd,] =0 (3.8)
VI[A+ 2u) V2P, + w2p<l>p] =0,
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which implies that

(A +2u) V2D, + w?p®, =Cy
P cy (3.9)

V20, + w? o, = ,
P A2 P N4 2u

where C] denotes an arbitrary constant. The particular solution of eq. (3.9)

Cy
b,,=— 3.10
is also constant and as the displacement field is obtained as gradient of the dilatational potential,
contribution of ®,,, to the displacement field vanishes. Therefore, in the upcoming derivations only
the homogeneous part of eq. (3.9) is studied.

Defining the pressure wave (p-wave) velocity as

At 2
cp = J; K (3.11)

and the wave number related to p-waves as k, = w/cp, eq. (3.9) is reformulated
V2@, + k@, = 0. (3.12)

Shear Part

In this section the part of the displacement related to shear potential is examined. The relation
u = V&, is substituted into eq. (3.5)

A+ ) VVT(VE,) + V2 (VE,) + w’p(VE,) = 0. (3.13)
As identities VIV = 0 and V2V = VV2 hold, the previous equation results in

MVQ%CI)S + wzp%‘bs =0

o (3.14)
V(uV2®, + w?pd,) =0.

Using the relation for a shear wave (s-wave) velocity

cs = \/g (3.15)

and the definition of the shear wave number ks = w/cs, eq. (3.14) implies that

&)

V20, 4 k20, = p (3.16)

with C being an arbitrary constant. Similarly to the p-wave case, the particular solution of eq.

(3.16) can be neglected and only the homogeneous part is of interest.
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By the use of the Helmholtz decomposition, system of two coupled partial differential equations
(3.5) in terms of displacement components u and v was transformed into two independent partial
differential equations (3.12) and (3.16) in terms of the dilatational potential ®, and the shear
potential 4. Both equations have a similar form and are denoted as the Helmholtz equation [Arfken
etal 2013d]. In the next section, a solution procedure of such equation is explained. Afterwards,
when the potentials are known, the displacement field can be recovered by the application of eq.
(3.6).

Solution of Helmholtz Equation

The solution of the previously derived Helmholtz equation will now be discussed. Consider a general

form of the homogeneous part of egs. (3.12) and (3.16)

V20, + k20, =0

9*®, 82<I>a+k2q) 0 (3.17)
Ox? oy? ate

where a = {p,s}. Eq. (3.17) can be solved both in Cartesian and polar reference frame, however,
only the latter will be explained in this section. In the polar coordinates, eq. (3.17) is expressed as
[Arfken et al 2013d]

2o, 100, 92®,

1 2
@a = ) '1
8?“2 r Or 7"2 892 ka 0 (3 8)

where r and 6 are the radial and angular coordinates respectively. Adopting the separation ap-

proach, the solution is sought in the form
O, = Wy (kar) exp(ind), (3.19)

where W, (kor) is so far unknown function defined in the radial direction and n is an integer.

Substituting the previous ansatz into eq. (3.18) yields

PW (kar) , 1 OWy (kar) , n? . 2 .

5 exp(inf) + T exp(inf) — ﬁWn(kar) exp(inf) + kW (kor) exp(inf) =0
PWy(kar) 1 0Wy(kar) 5 m?
or? + r or (ko = ﬁ)Wn(kar) =0
1 *Wy(kar) 1 10W,(kar) n?

—_— —_ 1-— n\Ral") =U.
k2 or2 + k2 r or + (kar)Q)W (kar) =0
(3.20)

Using a coordinate substitution ¢ = k,r, the previous equation can be reformulated as

O2W,(C)  10W,(C) n?

st e T @Wal@ =0, (3.21)
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Eq. (3.21) is known as the Bessel equation [Arfken etal 2013a]. Since it is a second order linear
differential equation, for each integer n there must exist two linearly independent solutions. In
addition, depending on the analysed problem, various formulations of these linearly independent
pairs may be adopted. In this thesis the following representations of the solutions W, ({) are

considered:
o Bessel function of the first and second kind J,(¢) and Y,,({)
o Hankel function of the first and second kind HT(LI)(C ) and a? €)

The Hankel functions can be expressed in terms of the Bessel functions as

=
—~
Iy
S~—
|
=
—~
Iy
SN—
+
~
%
—~
Iy
~—

i

(3.22)

2
—~
)
~—

I
S~
—~
I
~

|

~
<
—~
Iy
~—

n

For n being an integer, Bessel functions of the first kind take finite values at the origin, while
Bessel functions of the second kind are singular at ¢ = 0, therefore are suited for modelling of
singular stress fields. However, if non singular fields are of interest, the origin needs to be placed
outside of the element. Since the Hankel functions are constructed as a linear combination of two
of the Bessel function kinds, also these are singular at the origin. It can be shown that under
certain restrictions the Hankel functions satisfy the Sommerfeld radiation condition. This property
is advantageous when unbounded media are analysed, which is discussed in chapter 4. Bessel

functions of the first and second kind and orders n = 0,1,2 are plotted in fig. 3.2.
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Figure 3.2: Bessel functions of the first and second kind

The unknown dilatational and shear potentials ®, , and ®, ,, for a single order n were found as
a solution of the underlying Helmholtz equations (3.12) and (3.16) and are expressed by eq. (3.19).

Substituting the individual wave numbers, the relations are rephrased

Ppn = Wh(kpr) exp(ind), (3.23)
O, = Wy (ksr) exp(ind). (3.24)

)
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Any of the previously mentioned solutions of the Bessel equation can be adopted for the radial
component W,. Note that in general n € Z, therefore there is an infinite number of functions
satisfying the Helmholtz equations (3.12) and (3.16). The complete solution is then expressed as a

linear combination of all the terms

00
@) = Z CpnPpns (3.25)
n=—00
00
o, = Z Cs,nq)s,ny (326)
n=—00

where ¢, ,, and ¢, ,, are unknown coefficients. Using eq. (3.6), the displacement field can be recovered

o0
u=Vo,+ Vo = > (uVPpn+cnVPin). (3.27)
n=—oo
The coefficients ¢, , and c,, are found based on the given boundary conditions, but for most
of the practical cases it is an infeasible task. However, the individual parts V&, , and %@S,n are
constructed to satisfy the differential equation and in addition, form a complete basis for n € Z,

therefore they are suitable for construction of the displacement approximation matrix U.

3.2.2 Domain Approximation Basis

In this subsection, previously derived solutions of the homogeneous Lamé equation are used to form
the displacement approximation basis U and consequently the strain basis E.

The displacement field was decomposed into dilatational and shear potentials based on the eq.
(3.6). This motivates to also separate the contributions of individual modes in the basis U. There-
fore, for a single order n, a submatrix U, collecting two basis functions for each displacement

component (one for each mode) has the following form:
Up= V3,  VOu| = |[V[Walkyr)exp(ind)]  V[Wy(ksr)exp(ind)]] . (3.28)

The first column includes the dilatational mode and the second column represents the shear mode.
To form the complete basis U, orders —N < n < N are considered and the submatrices are
combined as

U=[UnN Uy - Un|, (3.29)
where N is the chosen maximum order of the function W, also called the maximum degree of
p-refinement. Using this structure, there are 2N + 1 submatrices U, included in the complete
matrix U, each having two columns, one related to the dilatational mode and the other to the
shear mode. Therefore, the basis matrix U overall collects 2(2N + 1) approximation functions (for
each displacement component). The more terms are included in the basis the richer the element

gets. However, this comes with the cost of numerical issues, since high order Bessel functions take
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much smaller values compared to the lower order ones, when evaluated in the vicinity of the origin.
To a certain extent, this problem can be reduced by adopting a scaling procedure, which will be
explained in detail in chapter 6.

In the following, eq. (3.28) will be investigated in more detail and the exact form of matrix U,
will be derived. One can note the differential operators in eq. (3.28) are defined in the Cartesian
coordinates, however, the functions ®,, and ®,, depend on polar coordinates r and 6. One
could express the polar coordinates in terms of the Cartesian ones, substitute the expressions and
perform the differentiation in a software for symbolic calculations. However, a more elegant way is
to perform the differentiation in the polar reference system and afterwards transform the matrix

back to the Cartesian one, which can be illustrated as

0®,, 0Py, ) - 0®,, 10%,,
B ~ | oz ) _ |cosf —sin v "0
U’n, - [V(I)p,n V¢)37n] - 8@12771 . 8%{9771 - [Sin 9 cos 9 lg(ﬁ‘p’n iag&n - TUn .
oy ox r 00 or

(3.30)

The transformation matrix is denoted by T'. As was already discussed, matrix U, collects approx-
imation functions of the displacement components in  and y direction. Similarly, matrix ULY also
contains basis functions, which now approximate the displacement components in r and # direction.

It can be further developed as

oWy (kpr) —in
=1, or T exp(inf) =

()~ 0AT)

M . 2n
1 k;p(anl — Wn+1) stawn

-5 . 2n exp(int) =
2 zkpwwn ksWhi1 — Wy_1)

. 1 kp(anl - Wn+1) iks(anl + Wn+1) .
= exp(ind).
2 ka(Wn—l + Wn+1) ks(Wn—l—l - Wn—l)

(3.31)

In the previous manipulations, the relations

IWn(¢)
a¢

2 = Wn-1(¢) = Wn11(Q),

i?wn@) = Wo1(¢) + W1 (¢)

between the solutions of the Bessel equation for various orders n were used [Arfken et al 2013a].
The individual functions contained in the basis U,, are plotted in figures 3.3 and 3.4. The Bessel
functions of the first kind and of orders n = 0,1,2 are considered as the function W,,. They are
evaluated on a circular region centred at origin, the particular values of the wave numbers were
chosen as k, = 0.475 1/m and ks = 0.889 1/m. Fig. 3.3 displays the real part of the displacement
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components related to the p-wave solution for various orders n, therefore for a fixed n it represents
the evaluation of the first column of matrix U,. On the other hand, fig. 3.4 depicts the real part
of the displacement components associated to s-waves, hence these functions are contained in the

second column of basis Uy,.
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Figure 3.4: S-wave part of the displacement basis

Similar idea can now be applied for the derivation of the strain field basis E. In eq. (3.4) it is
defined as

E:’D*U:[E_NiméEn;meN}. (3.32)
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Analogously to the displacement basis ordering, also the strain basis can be built up from the
submatrices E,, which carry the basis functions approximating individual strain components in
Cartesian coordinate system for a single order n. To compute it, firstly matrix Ef;e collecting
functions approximating the strains in the radial and angular directions is calculated and afterwards

it is transformed to the original reference frame using strain transformation matrix T%.

0 0
gr | [PZon OPan
E,=D'U,= | 0 % agﬁn i ggw -
ﬁ v oy ox
oy Ox
0
cos? 0 sin? cosfsin 6 or 0 0%, 10%, (3.33)
= sin? 6 cos? 0 — cosfsin @ 0 %% 1 gﬁ)p " Cf?‘gs =
—2cosfsinf 2cosfsing cos?’d —sin?6] |1 0 g r 00 or
Py rof  Or g

ET°

=T.E"°.

This way, the formulas contained in the matrix Eﬁ’e can be easily computed analytically and

displayed in one line

9*®, 19%®,
Oor2 r 000
gro _ | 10°%, 1828<1>S _
mo — | - -
rZ §p2 r Orof

19°®, 1%, 0@,

rordd r? 062 or?

) k2(Wh—g = 2Wy + Wogo) k2 (Whoo — Wpya)

:Z —]fl%(Wn_Q +2W,, + Wiyi9) —ik’?(Wn_g — Whi2) exp(ind).

Qikg(Wn_Q — Wn+2) —2k§<Wn_2 + Wn+2)

(3.34)

From the ordering of the bases U and F also layout of the vector of unknown coefficients X can

be deduced. It can be visualized as
; } ; } T ; } } : T
X=Xy Xpl Xy ]| =[ X0y Xoyio i XD X3 XK Xy ], (335)

where the superscript p or s indicates if the component multiplies function related to the dilatational
or shear potential and the subscript specifies the order of the associated basis function. For a

specified maximum order N, there are 2(2/NV + 1) unknown coefficients collected in the vector X.
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3.3 Boundary Approximation

The second field to be approximated are the tractions on the Dirichlet boundary I',, which contains
not only the external part of boundary, where the displacements are prescribed, but also the inter-

element edges, where displacement continuity needs to be enforced. The relation reads
t=Zponl%, (3.36)

where Z is the matrix gathering the boundary approximation basis and p stands for vector of
unknown coefficients, also referred to as generalized tractions. The only restrictions placed upon
basis Z are linear independence and completeness. Note that if the Dirichlet boundary consists
of more parts (e.g. various edges with different displacement boundary condition or a connection
of more elements), the tractions on each part are approximated independently. In such case, eq.
(3.36) can be reformulated to

t=Zp;only, (3.37)

where ¢ = 1,2, ...,np with np being the total number of Dirichlet edges.
In this work the Chebyshev polynomials of type I are adopted for the basis Z. They are defined
for a side coordinate £ € (—1,1) as [Arfken etal 2013b)

Zm (&) = cos(m cos ! £), (3.38)

where m = 0,1,2,..., M denotes the order of the polynomial. The first four basis functions are
depicted in fig. 3.5.
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Figure 3.5: Traction approximation basis functions
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The individual components are then ordered in the complete matrix Z

Z, 0 Zo Zi - Zy i 0 0 oo 0
= ="~ M , (3.39)
0 Z, o o0 --- 0 12y Z1 -+ Zy
where Z,, = [ZO Z1 - Z M} is the basis approximating a single traction component. Therefore,

there are 2(M + 1) columns contained in the complete Z matrix. Consequently, the vector of

generalized tractions p can be expressed as

p= [pg p;‘ﬂT, (3.40)

where the subvectors p, and p, collect the unknown coefficients related to the individual traction
components t; and ¢, respectively.
From the layout of matrix Z and vector p one can note that the traction components ¢, and t,

are approximated independently using the same basis Z,. Such relation can be expressed as

ty =ZyPx, (341)
t, =Zypy. (3.42)

The traction vector t(z,y) is a function of Cartesian coordinates, however, the approximation
basis Z(€) is a function of the local edge coordinate £ € (—1,1). Therefore, for every Dirichlet edge,

T
there must exist a function h(§) mapping the coordinate £ to Cartesian coordinates [:c y] .

3.4 Finite Element System of Equations

Until this point, the approximation bases of both displacement field and boundary traction field
were introduced. In the following section the finite element system of equations is derived using
the Galerkin weighted residual method. Firstly, the equilibrium equations are weakly imposed, by
substitution of the material law and the kinematic relations the first set of finite element equations
can be formulated. Afterwards, Dirichlet boundary conditions and continuity equations are forced
to hold in a weak sense and combined to form the second set of the finite element system of
equations.

The governing system is firstly derived for a single finite element. To start with, it is assumed
that the displacement boundary condition is applied on a single continuous portion of the complete
boundary. Afterwards, generalizations including non continuous displacement boundary conditions

and domains discretized with multiple elements are discussed.

3.4.1 Equilibrium Equations

The equilibrium equation in the frequency domain was derived in eq. (2.32). It is required that

its residual form weighted by the domain displacement approximation basis U and integrated over
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the domain of the element is equal to zero

/ﬁT (Do +w?pu+b) dV° = 0. (3.43)
The symbol (\) denotes the complex conjugate. Plugging in the displacement approximation (3.1)
and splitting the integral yields

/ UTDo dV* + o’ / pOTU Ve X + / PO ug dV© + / TTbdve = 0. (3.44)
The first integral can be modified by applying integration by parts technique
. —~ ~\T
/ UTDodve = / U'Nodre — / (D'U) oave. (3.45)

Subsequently, the first term on the right hand side is reformulated by the substitution of the
boundary equilibrium equation (2.35)

/ UTDo dVe = / UTtdre — / (’D*ﬁ)TUdVe. (3.46)

The boundary integral can now be split into two integrals, one performed over the Dirichlet bound-
ary I'C and the other over the Neumann boundary I'S. Afterwards, on I'¢ the boundary traction
condition (2.37) can directly be inserted and on I'¢ the boundary traction approximation based on

eq. (3.36) is substituted. The previous equation then results in
~ ~ ~ ~\T
/ U'DodVe = / UTtpdre + / UTZdrép— / (D'U) odve (3.47)
Eq. (3.47) in now inserted back into eq. (3.44) and the terms are rearranged

*TT T e __ 73T e 73T e 2 7T e
/(D 0) oav _/U tdeU+/U ZdT p+w /,oU Udve X+
R N (3.48)
o / pU T ug dV + / TTbave.

3.4.2 Elasticity and Kinematic Equations

In this section the material law and the kinematic equations are substituted into eq. (3.48). Firstly,
the integral on the left hand side of eq. (3.48) is developed and afterwards the resulting expression
is back substituted.

Inserting the material law into the first integral of the previous equation and expanding the strain

vector based on eq. (3.4) results in
/ (DU odVe = / (D*U) ke dV* = / (D*U) kEdVE X + / (D*U) keodVe.  (3.49)

Subsequently, both integrals on the right hand side are individually integrated by parts and modi-
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fied. Starting with the first one

/ (D*U) kEdVE X = / UTNKEdI* X — / UTDKEAV® X =

R R (3.50)

= / U'NKEdIr© X — / U DkD'U dV°© X.
—

In section 3.2, it is explained that the domain approximation basis U has to satisfy the homogeneous
part of the governing Lamé equation, expressed by means of eq. (3.2). This equation can be

reformulated as
DkD*U = —w?pU in V©. (3.51)

One can note the the term on the left hand side of the previous equation can also be spotted in eq.
(3.50). Therefore, eq. (3.51) is substituted into eq. (3.50), which yields

/ (D*U)TkEdVE X = / UTNEEdI*® X + w? / pUTU AV X. (3.52)

Similar approach is also applied to the second integral on the right hand side of eq. (3.49), firstly
it is integrated by parts

/ (D*U) keo dV© = / UT Nkegdl — / UTDkeodV® =

_ _ (3.53)

= / UT NEkegdl® — / UT DkD*ug dV©.
N——_——

Vector ug is constructed as a particular solution to certain body forces b, therefore it directly
satisfies the particular part of the Lamé equation described by eq. (3.3). Reformulating this relation

as
DkD*ug = —w?pug — b in V° (3.54)
allows a direct substitution to eq. (3.53), where the same term appears. This procedure results in
/ (D*U) keodV® = / UT Nkeodl® + w? / pUTugdVe + / UTbave. (3.55)
Finally, egs. (3.52) and (3.55) can be inserted back into eq. (3.49), which yields

/ (DU odVe = / UTNKEdI® X + w? / pUTU dVe X +
N N N (3.56)
+ / UT Nkeodl + w? / pUTug dVe + / UTbdve.

The previous expression can then be substituted back into the left hand side of eq. (3.48). It
turns out that all the terms involving domain integrals cancel each other on both sides and only
integrals over the element boundary remain. This is a great advantage of Trefftz methods and a

result of the specific requirements placed on the domain approximation basis U and the vector of
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particular solution ug. The resulting equation develops as
/ UTNEEdI“ X — / UTZdrep = / UTtpdre — / U Nkeg dI™. (3.57)

Using definitions

D= / UTNKE dre, (3.58)
B = /ﬁTZdrg, (3.59)
Ir = / UTtpdre, (3.60)
ir, = / UT NkeodI®, (3.61)

eq. (3.57) can be abbreviated to a compact form
DX - Bp=tr—tr,. (3.62)

Note that in the previous equation the unknown quantities are collected in vectors X and p and
all the other vectors and matrices are known and can be computed. It is worth the effort to check
the dimensions of the individual matrices and vectors to compare the number of equations and the
number of unknowns. One can show that the dimensions of matrix D are 2(2N + 1) x 2(2N + 1),
dimensions of matrix B are 2(2N+1)x2(M+1), dimensions of vectors X and p are 2(2N+1)x1 and
2(M+1) x 1 respectively and dimensions of both vectors tr and tr, are 2(2N+1) x 1. This indicates
that eq. (3.62) represents a system of 2(2N + 1) algebraic equations with 2(2N + 1) + 2(M + 1)
unknowns. Therefore, there are still 2(M + 1) equations necessary so that the system can be solved.
These are obtained by enforcement of displacement boundary conditions, which will be described

in the following section.

3.4.3 Displacement Boundary Condition

The Dirichlet displacement boundary condition is as well enforced in a weak sense. The condition
(2.36) is weighted by the matrix Z collecting the boundary approximation basis and integrated

over the related portion of the boundary I,
/ZT (u —up) dT¢ = 0. (3.63)
Afterwards, the integral is split and the displacement approximation basis is inserted

/ Z'udre x = / ZTup dre — / Z Ty dre. (3.64)
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Using definitions

Ur = / ZTup dre, (3.65)

Ty = / ZTug dT (3.66)
and already existing relation (3.59), eq. (3.64) can be rewritten in compact notation
~B” X =ur, — ur. (3.67)

Eq. (3.67) represents 2(M + 1) algebraic equations with 2(2N + 1) unknown coefficients, which

were however introduced already in the first matrix equation (3.62).

3.4.4 Governing System of Equations

Combining egs. (3.62) and (3.67) results in the governing system of equations

5 -l

-BT o p ur, — ur

Based on the previous discussions, it can be concluded the system contains the same number of

equations as unknowns. As the material matrix k is symmetric, the matrix D and the complete

system (3.68) are Hermitian, which is an advantageous property when iterative solvers are applied.
The previous system was derived for a single element and assuming only one continuous bound-

ary I'Y and a single boundary I'C. In the next section a generalization regarding the complexity

of boundary conditions is introduced. To start with, one element is still assumed. Afterwards,

continuity conditions are enforced and modelling using more elements is described.

3.4.5 Generalization: Multiple Boundary Conditions

Assume the Dirichlet boundary of a single element I'{, is now partitioned into np nonoverlapping
parts I';., where ¢ = 1,2,...,np. Since only one element is still assumed, all the parts of the
Dirichlet boundary are related to prescribed displacements, because no inter-element edges appear

in such case. The displacement boundary condition is then expressed as

u = ur; on I}, . (3.69)
As was described in section 3.3, an independent traction approximation

t=Zp; on Ty, (3.70)

is assumed on each of the related parts of the Dirichlet boundary.

Similarly, also the Neumann boundary is divided into ny sections Fij, where j = 1,2,...,ny.
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The traction boundary condition then reads
t=tp; on Iy . (3.71)

Most of the previous derivations remain valid, only some modifications need to be performed.
The first difference can be spotted in eq. (3.47), where the integrals over the boundaries I, and I'¢,

need to be split into the individual sub boundaries. In this sense the equation is modified as
/ UTDo dVe = / UTtr dTS, + - + / UTtr,, dT, +
+/I7TZdF21 p1 +'--+/ﬁTZdFZnD Prp (3.72)
—/ (D°T) oave.
This results in the modification of the first of the governing equations (3.62)
DX —Bipy—---— By, pnp =tri + - +try, — try, (3.73)

where definitions

ir; = / U"tr; drs, (3.74)
B; = / U"zare, (3.75)
were used.

Another modification results from the fact that the displacement boundary condition needs to
be imposed separately for each portion of the Dirichlet boundary T';, . Therefore, eq. (3.67) turns

into np equations of the similar form

—E?X:Tni—fpi fori=1,2,...,np, (3.76)
where

Ury; = / ZTug dre, (3.77)

ur; = / ZTup, dT,. (3.78)

The finite element governing system of equations (3.68) can be symbolically expressed in a very

similar form

T

-B, 0

D -B,
pg ,u’].-‘(),g - qu

X] = [ br—1tr ] (3.79)
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where the global matrices are defined by

B, =[B, B B,|, (3.80)
pg=p] P} pZD}T, (3.81)
wr, = [ar! wrd ... wrl] . (3.82)
UTo,g = [UFMT Urgy - UFOZD}T7 (3.83)
tr =tr; +tro+ -+ troy (3.84)

Note that splitting the Neumann boundary into multiple sections was not necessary. The integral
JUTtdT¢ was just split into ny integrals which were computed separately and summed up after-
wards, which is described by eq. (3.84). On the other hand, splitting the integral [UTtdIl'¢ over
the Dirichlet boundary into multiple integrals was crucial, since the tractions are approximated

independently on each of these sub boundaries.

3.4.6 Generalization: Multiple Finite Elements

The procedure is now generalized for the case of more connected elements. Firstly, consider a
hypothetical example where no connection between elements is introduced. For such case, the first
matrix equation of the finite element system of equations (3.79) could be independently imposed
for each element i,; = 1,2, ..., n.;, where ng; is the number of finite elements. This can be expressed

in matrix notation as

D¢ —Bg] [if,a] = [tre — trog) - (3.85)
G
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where relations

DD 0o ... 0
0 D® ... o0
Dg=| . , : (3.86)
: : 0
.0 0 0 D)
B,V 0 0
o B, 0
B = . : (3.87)
: : . 0
) 0 0 Bg(nez)
ro_ T @T (nel)T}T (3.88)
PG = Py Pg ... Dg ) .
Xe=[x0" x@" X<"ez>T]T, (3.89)
I T
frg = [Eu)T T CL E(nezﬂ’} , (3.90)
T T — o T1T
tFO,G = |:tro(1) tI‘O(2) tFo( el) i| (391)

hold. The superscript indicates belonging to a certain element. Note that some of the sub matrices
of the individual B!(]iEZ) matrices result from an integration over the inter-element part of the
boundary I'{, since also on this portion the boundary the tractions are approximated.

Until this point, all the elements are separated and have no connection between each other.
To correct this statement, one needs to consider the traction continuity requirement on the inter-
element boundary. When an edge lies between two elements, the traction approximation is shared
by both elements. This implies that the unknown p coefficients related to this inter-element edge
are common for both elements. However, this was not considered in the above definition. The way
P vector was defined, it contains some additional unknowns, since for the inter-element edges the
unknown p vector related to that edge is contained in more pg“) vectors.

Discussion made in the previous paragraph is now explained in more detail. Assume all the
inter-element edges are labelled with index h = 1,2, ..., ny, where n; stands for the overall number
of inter-element edges. For every h there is a pair of adjacent elements k and [ sharing the common

edge. The traction continuity
t*) +¢@ =0 on %, (3.92)

between the two elements is strongly satisfied. Substituting the traction approximation and ma-

nipulating the expression, the previous equation results in

Zpglk) + Zpgll) =0

(3.93)
Z(p) +p})) =0.
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From eq. (3.93) the relation
k l
pé) _ —pé) (3.94)

between the vectors of generalized tractions can be deduced.
(iel)

The previous formula can be substituted into definitions of the individual pg®’ vectors contained
in eq. (3.88). As a consequence, the number of unknown generalized tractions is reduced and the
B{; matrix is modified. In the end, the individual B matrices related to the common edge will
appear in the same column in the global matrix By, however, with different sign. As a result, the
block-diagonal structure of By, is lost, which makes the system of equations coupled.

So far only the first equation of the complete finite element system of equations was discussed for
the case of multiple elements. The second equation results from an imposition of the displacement
boundary condition, which could be performed in a similar manner as was discussed in section 3.4.5.
However, this will not generate final system with enough equations as unknowns. The reason is
that these equations are by definition only enforced on the outer part of the Dirichlet boundary I'¢,
where the displacement boundary condition is prescribed, not on the inter-element edges. On the
other hand, as was discussed in the first part of this subsection, in the first equation (3.85), there
appear unknown vectors p and matrices B which result from an integration over the inter-element
boundary. To counteract this mismatch, the displacement continuity condition needs to be enforced

additionally.

Displacement Inter-element Continuity Condition

Again assume h is an index running over the inter-element edges and superscripts k and [ represent

two neighbouring elements to that edge. The displacement inter-element continuity equation
u® — 4 =0 on re, (3.95)

between these two elements is weakly imposed in a similar way as the Dirichlet boundary condition.
Also it this case the boundary traction basis is used as a weighting matrix, however, this time the

product is integrated over the inter-element part of the boundary only

/ z" (u® —u) arg, =o. (3.96)
Introducing the displacement approximation, the previous equation is modified

/ ZTu®arg, x® - / ZTuare, xO = / ZTuy) dare, — / ZTul? are, . (3.97)

Using the already stated definitions, eq. (3.97) can be abbreviated as

—T —T

B x® _ B xO — g, _ g, (3.98)

Eq. (3.98) needs to hold for every inter-element edge h.
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For completeness, also the equations (3.76) resulting from an imposition of the displacement

boundary condition are introduced once more with slight modification. For every element i, =
(iel)

1,2,...,n¢ there are ny"’ prescribed displacement boundary conditions, therefore, equation
—Bl) xGe) = g ) _qgplied) for j =12l (3.99)

must hold for every i, and i (i being the index running over individual displacement boundary

conditions within element).

Complete Governing System of Equations

Finally, the complete governing system of equations can be formed. Modified eq. (3.85) is combined
with egs. (3.98) and (3.99), resulting in

[ D¢ —BG] [XG] _ [tl"c_troc] _ (3.100)

7
—Bg 0 PG urg

Definitions (3.86), (3.89), (3.90) and (3.91) for Dg, Xg, tre and tr, ., respectively, remain still
valid. Defining the Bg matrix for a general case is rather complex task, therefore, guidelines of
the construction will be provided instead.

()

Consider a general matrix B;”’ evaluated at an edge 7 and belonging to an element j. The ma-
trices are evaluated at all Dirichlet edges, including both outer edges where displacement boundary
condition is applied as well as the inter-element edges. Note that if the edge is an inter-element one,
two matrices are evaluated, sharing the same index i but differing with index j. The individual
matrices Bi(j ) are ordered in the following way into the complete Bg matrix: j index corresponds
to the row in which the matrix is located and the ¢ index corresponds to the column. Therefore,
in the case of an inter-element edge, individual matrices will be located in the same column, since
both share the same index i, however, both will appear in a different row since the element index
j varies. What is more, to fulfil the continuity condition (3.98), the sign of both matrices need to
be opposite.

The formation of the global vector of generalized tractions pg can be explained in a similar
manner. As was discussed in the previous sections, for every Dirichlet edge i (including the inter-
element edges) there exists an associated vector of unknown generalized tractions p;. The index i
corresponds to the row in the global vector of generalized tractions pg.

The last undefined quantity is the vector ur,. It needs to collect the right hand sides of egs.
(3.98) and (3.99). If the edge of interest 7 is part of the Dirichlet boundary where the displacement
boundary condition is applied, the component of the vector ur, at position ¢ will be the right hand

side of eq. (3.99), meaning term

On the other hand, if the edge i is part of the inter-element boundary, the ith component of the
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global vector Tty is the right hand side of eq. (3.98), that is

¥ — ),
where k C j and [ C j are the adjacent elements to the common edge <.

In the following, some comments regarding the number of equations and unknowns in the system
(3.100) are made. The unknown generalized displacements are collected in global vector X¢. The
individual unknown vectors X (et) corresponding to each element are strictly element dependent,
therefore the matrix Dg preserves the block diagonal structure. Following the discussion from the
previous sections, for each element, there are 2(2/NV + 1) unknown coefficients collected in vector
X et) where N is the maximum degree of p-refinement. Therefore, for all elements the overall
number of displacement degrees of freedom is 2ne (2N + 1).

From the previous derivations it turned out that the length of the global vector of unknown gen-
eralized tractions pg, and therefore the number of related static degrees of freedom, is proportional
to the overall number of Dirichlet edges rather then to number of elements. In addition, as was
also stated before, tractions on each edge belonging to the Dirichlet boundary are approximated
separately. Each vector p; stores 2(M + 1) unknown coefficients, which indicates that the overall
number of unknown generalized tractions is 2np(M + 1), with np being the number of Dirichlet
edges and M the maximum polynomial order of the boundary approximation basis.

The single matrix DU is of size 2(2N + 1) x 2(2N + 1). Due to the block diagonal structure of
the global matrix, size of D¢ is therefore 2ne (2N + 1) x 2ng(2N + 1). Furthermore, dimensions
of the single B; matrix are 2(2N + 1) x 2(M + 1). Following the guidelines for construction of the
global matrix Bg, its size results 2n¢ (2N +1) x 2np(M +1). To conclude, there is the same number

of equations as number of unknown components in the final finite element system of equations.

3.4.7 Mixed Boundary Conditions

Until this point it was assumed that the boundary conditions were strictly of displacement or
traction character, respectively. It means that both of the components of the related fields were
assumed to be prescribed simultaneously on the corresponding portion of the boundary. However,
to simulate wider range of problems, it is desired to model also mixed type of boundary conditions,
where certain displacement component is prescribed while the other one is unknown. To be more
precise, mixed boundary condition means that on a certain portion of boundary I';,, displacement
component is prescribed in a certain direction, while in the perpendicular direction a traction
component is given. The modification of the system equations is described for the case of a single
element with a single Dirichlet boundary. This set up is modified and a continuous mixed boundary
I'¢, is added. A generalization for multiple elements is straightforward. To start with, simplified
situation where the prescribed components are strictly in x or y direction is considered. An example
of such support can be horizontal or vertical sliders. Afterwards, a more general case, in which the

components tangential and normal to the boundary are prescribed, is investigated.
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Simplified Case

Firstly, assume that components u and ¢, are prescribed on I'j,. The opposite case can be directly

deduced from the following one. The mixed boundary condition then reads

u =ur,
on I, (3.101)
ty =tr y.

First modification arises in eq. (3.47), where also integral over the mixed boundary pops up
/ﬁTDa dve = /ﬁTtp dare +/t7TZ are p + /ﬁTt are, — / (D*ﬁ)TadVe. (3.102)
The displacement basis consists of two rows
v-=[ur vl

each approximating one displacement component. The size of vectors U, and Uy is 1 x 2(2N +1).

Furthermore, the traction vector ¢ on the mixed boundary I'¢, has components

t=[t. ] =[t try] .

where the traction part of the boundary condition (3.101) was inserted. The complete traction
approximation was introduced in eq. (3.36).

In section 3.3 it was also mentioned that the individual traction components are approximated
independently and can be expressed by relations (3.41) and (3.42). As a reminder, they are also

reproduced here

ty =ZyPx, (3103)
ty :vay. (3.104)

Using the provided equations, the integral over the mixed boundary appearing in eq. (3.102) can

be reformulated
7T e 77T e T e 77T e 7T e
/U tdly, = /Um te dFm+/Uy tr, dI, = /Uw Zy dFmpm+/tp7yUy dre,. (3.105)
Therefore, the first equation of the governing system of equations (3.57) results in
77T e 7T e T e 7T e
/U NEEdT X—/U ZdFup—/Ux ZvdFmpm:/U tp dTC 4
(3.106)

o 7T e T e
UTNkeodl® + [ tr,U, dI%,.

The symbol for the the unknown vector p, was replaced with p,, to stress the belonging to the
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mixed boundary condition. In an abbreviated notation the previous equation reads

DX—Bp—Bmpm:E_E+tFm7 (3.107)
where
—T
By~ [ U, Z,dr, (3.108)
R —T
frm = / tr, Uy dI,. (3.109)

Note that the dimensions of the matrix By, are 2(2N + 1) x (M + 1) and the length of the vector
of unknown generalized tractions related to the mixed boundary condition is (M + 1). This implies
that the number of unknown coefficients related to the mixed boundary condition is half of the
unknowns of the usual displacement boundary, since only tractions in one direction need to be
approximated.

To obtain a solvable system, besides the standard displacement boundary condition also the
displacement part related to the mixed boundary condition (3.101) needs to be imposed. Since the
condition is enforced for a single component, only the related part of the basis Z is used as the
weighting function. Following the discussion in the first part of this subsection the basis of interest

is Z,. The weakly imposed equation reads
/zg’ (ug —ur) dTS, = 0. (3.110)
The displacement approximation of the single component
Uy = Up X + g2
is inserted into eq. (3.110) and the expression is rearranged
—/ZUTUx dre, X = /zfuow dre, — /ZEUF dre,. (3.111)

Symbol ug, denotes the component of the vector of particular solutions ug. Using the stated

definitions and relations

UTmg :/quo,x dry, (3.112)

UTm :/ZUTup dre (3.113)
eq. (3.111) can be written in compact notation
—T
—Bm X = UT'mg — UT'm- (3.114)

Equations (3.107) and (3.114) combined with the displacement boundary condition, expressed by

eq. (3.67), form the set of equations describing the problem of mixed boundary condition. In the
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case when the prescribed components are v and ¢, the only differences are that in definitions (3.108)
and (3.109) Uy is used instead of U, and vice versa, in eq. (3.112) ug, is replaced by g, and in
eq. (3.113) ur is replaced by wp.

A generalization for the case of multiple boundary conditions and multiple elements can be
derived in a similar way as before. Edges belonging to the mixed boundary I'{, are in a way treated
as both Dirichlet and Neumann ones. In the procedure of assembling of the Bg matrix, individual
Bi(j ) matrices are ordered into the global one. If the edge ¢ belongs to the mixed boundary, BZ-(j ) is
only replaced by Bml(j ), Similarly, in such case a component of the global pg vector is replaced by
Pm; and the component of the vector ur, is changed to Urmg; — Urm;. Formation of the global
vector tr, is described by egs. (3.90) and (3.84). Modification appears only in the latter one, where

vector try,; needs to be added for every mixed boundary.

General Case

As a general case of the mixed boundary condition it is assumed that the displacement component
is prescribed in the direction normal to the boundary and the traction component is given in the
tangential direction or vice versa. This formulation allows to consider meaningful mixed boundaries
of arbitrary curved shape. An example of such boundary can be fixed zero displacement in normal
direction and zero tractions in the tangential direction, a slider of arbitrary shape.

On the boundary of the domain, the Cartesian components of the displacement and traction vec-
tors can be transformed into components normal and tangential to the boundary. The transformed

’ T / T 3
vectors u’ = [un ut} and t' = [tn tt} are obtained as

w =T7Tu, (3.115)
t' =TTt (3.116)
where
T _ [@sa —sina] (3.117)
sinae  cosa

is the transformation matrix and « is the angle between x axis and the normal vector to the

boundary. Due to the orthogonality of the T" matrix, the inverse transformation reads

u =T, (3.118)
t=Tt (3.119)

For further development it is worth the effort to substitute the displacement approximation (3.1)
into eq. (3.115)

W =T u=TT'UX + T uo = U'X + u). (3.120)

Matrix U’ = TTU can be viewed as the approximation basis of the displacements normal and
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tangential to the boundary and vector ug = TTug as the particular solution for the body forces
expressed in normal and tangential components. Similarly as was discussed in the previous section,

also basis U’ consists of two rows
T
’ T T
U= \u" U],

each approximating the normal or the tangential displacement components respectively.

The boundary condition for the general case is then expressed as

Un =UT n,

on I'¢, (3.121)
tt :tF,t-

The key concept is that on the mixed boundary of this type, normal and tangential tractions are
approximated instead of the tractions in Cartesian directions. Therefore, the traction approxima-

tion is modified for the mixed boundary and reads as
t'=ZponT¢,. (3.122)

All the properties and form of the basis Z remain unchanged, therefore also in this case, individual
components can be expressed independently as Z,p,,. Using the previously stated relations, the

integral over the mixed boundary popping up in eq. (3.102) can be reformulated
7T e 77T gt e 3L 4 e =T e /\/T e
v'tdly, = o' Tt'dl;, = | U t'dl';, = | U}, t,dl;, + | U{ t.dI%,. (3.123)

Furthermore, the traction part of the boundary condition (3.121) and the approximation of the

normal traction component is inserted

—T —~T —T —~T
/ U7, dre, + / Ul t,dre, = / UL Z, AT, pom + / tr U] dre,. (3.124)
Defining
—T
B!, = / U’ Z,dre,, (3.125)
_ —~T
= / tr U] dre,, (3.126)

eq. (3.107) is modified as
DX — Bp— B],pm =tr — tr, +tr,,- (3.127)

In the following, the displacement part of the boundary condition (3.121) is imposed. As it

contains only one component, vector Z, is used as the weighting function

/ZZ (un — ur ) dI', = 0. (3.128)
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The normal component of the displacement vector can now be expressed as
Uy = U,'lX + ug’n,

where uj ,, is the normal component of the vector of particular solution ug. Substituting the

previous definition into eq. (3.128) yields
- / zZI'u! dre, x = /qugm dre, — /qurm dre,. (3.129)

Using the abbreviations

vy = / ZIup, dTe,, (3.130)

U Ty = / Zlup, dT, (3.131)

and already mentioned definitions, eq. (3.129) can be reformulated as

EI\TX 7 7
—Pm = UTmg — Upyy,: (3.132)

Comparing the final equations (3.127) and (3.132) of the general case with egs. (3.107) and (3.114)
derived for the simplified one, the only difference arises in definitions of the matrix B}, and vectors

t/

I'm>

' and ©'rmy. For the general case, the rows of the displacement approximation basis and
of the vector of particular solution are transformed into the normal and tangential components.
One also needs to keep in mind that on the mixed boundary, normal and tangential tractions are
approximated instead of the original traction vector in Cartesian coordinates. The procedure of
generalization for the case, when multiple elements are used, is completely the same as for the

simplified case.

3.5 Post-processing

In the previous section the finite element system of algebraic equations (3.100) was derived. The
unknown coefficients related to the domain displacement and boundary traction approximations
are collected in vectors X¢g and pg, respectively. As both approximation bases are hierarchical,
the coefficients no longer have the meaning of nodal values of the corresponding field. After the
system is solved, a post-processing phase is necessary so that the displacement, stress and strain
fields are recovered.

Firstly, coefficients X (%e!) for each element i, are extracted from the global vector X¢. After-
wards, the displacement field evaluated at a certain position (z,y) within element i.; is obtained
with the use of eq. (3.1). The basis functions collected in U (z,y) and vector of particular solution
ug(x,y) are also evaluated at position (z,y).

The strain field is evaluated in a similar way. The coefficients X () are plugged into eq. (3.4),

where the approximation of the strain field is introduced. Again, the basis E(z,y) and vector
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eo(z,y) are evaluated at the desired location (x,y). The stress field is then obtained by application
of eq. (2.34), which means that the previously evaluated strain field is just multiplied by the material
matrix k.

The tractions on the boundary are computed based on the boundary equilibrium (2.35). This
indicates that firstly, the stress field at the location (z,y) € I is evaluated as was discussed in the
previous paragraph. Subsequently, the matrix of unit normals IN(x,y) at the investigated location
at the boundary is computed and inserted into eq. (2.35). Note that the boundary tractions are
not evaluated based on the boundary traction approximation stated in eq. (3.36). Therefore, the
coefficients collected in vector pg are not directly used in the post-processing phase. However,
eq. (3.36) can serve as a measure of quality of the results. On the Dirichlet boundary I'‘¢, the
boundary tractions can be evaluated using both the domain stress field as well as the boundary

traction approximation basis and compared afterwards.

The previous section concludes the chapter dedicated to the hybrid-Trefftz method. As the basis
functions are required to satisfy the homogeneous governing differential equation, the submatrices
and subvectors appearing in the final system of equations are computed based on integrals over the
element boundary. Therefore, on the element level the dimensionality of the problem is reduced,
which makes the integration procedure computationally faster. This property also enables usage
of elements with arbitrary shape and number of edges. Both domain and boundary approximation
bases are constructed hierarchically, therefore an optional number of terms can be included in the
individual bases. Combination of both previous properties allows modelling using very few but rich

elements.
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4 Unbounded Media

In many practical situations the domain of the investigated problem may be very large, in some
cases it may even extend to infinity. An often considered example of such structure is a loaded
half space. Applying the so far explained method, it is not possible to model an infinite structure.
Therefore the domain must be truncated at a certain distance from the source and artificial bound-
ary conditions need to be introduced. However, such approach would result in spurious reflections
of the travelling waves and consequently in a meaningless solution. To limit such undesired be-
haviour, few techniques [Tsynkov 1998] were developed so that the analysis of unbounded media can
be performed. These consist of e.g. modelling using infinite elements or introduction of absorbing
boundary condition.

It was briefly mentioned in section 3.2 that if the Hankel function is chosen as the radial compo-
nent W, of the solution of the underlying Helmholtz equation, not only that the resulting displace-
ment basis satisfies the governing differential equation but also the Sommerfeld radiation condition
is implicitly fulfilled. This property is a key concept in both of the aformentioned methods. In
the case infinite elements are used, the principle is that the displacement approximation basis is
constructed using the Hankel functions as the radial component W,,. This ensures the Sommerfeld
radiation condition is satisfied. As a consequence of such formulation, integrals over a boundary
placed at infinite distance from the origin need to be computed, which however can be performed an-
alytically. In this thesis only the absorbing boundary condition was investigated and implemented,
therefore, details regarding the infinite elements are not discussed any more.

Various techniques regarding the formulation of the absorbing boundary condition were developed
over the years. The one applied in this thesis in referred to as the Dirichlet-to-Neumann mapping
method [Keller and Givoli 1989]. It can be shown that if the displacement basis functions satisfy the
Sommerfeld radiation condition, a linear mapping between the displacement and traction vectors
exists at infinite distance from the source. The essence of absorbing boundary condition is to enforce
such relation at a finite distance. In such case, the previous imposition results in an approximation.
An advantage of this approach is that any of the solution of the Bessel equation can be adopted

for the radial component W,,. In the following sections the procedure is described in detail.

4.1 Domain Modification

Assume the structure to be analysed is a loaded quarter-space depicted in fig. 4.1. As can be
seen, the domain extends to infinity in the direction of positive z-axis and negative y-axis. When
the absorbing boundary condition is applied for the analysis of unbounded medium, the domain

is divided into an internal region V and an external part V.,;. All the loading and geometrical
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irregularities need to be placed in the internal region. The external domain is discarded from
the analysis and only the internal sector is considered. The borderline between the sectors is
named absorbing boundary on which the absorbing boundary condition is imposed. The rest of the
boundary of the internal domain is partitioned in the same way as was described in the previous

chapters.

Figure 4.1: Domain modification

In the process of discretization, the internal domain V' is divided into finite elements similarly
as was done for bounded domains. The boundary I'® of the element located in the vicinity of the
absorbing boundary will additionally contain part I'¢, which stands for a portion of the absorbing

boundary I'.

4.2 Absorbing Boundary Condition

It was already indicated in the introduction of the chapter, that there exists a linear relation
between the Sommerfeld-compliant displacement field u™® and the corresponding traction vector
t™? when the radius r tends to infinity. The superscripts 7,0 indicate the components are expressed
in radial and angular directions. Generally, such Dirichlet-to-Neumann mapping can be expressed

as
t™? = Cu™? for r — oo, (4.1)

where C' denotes matrix of constants.

The previous equation represents the actual absorbing boundary condition, which is subsequently
weakly imposed on the absorbing boundary I'¢. Note that eq. (4.1) holds only infinitely far from
the origin, when enforced in the finite distances, it results in an approximation and some reflections

occur.
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In the following sections the Sommerfeld radiation condition is introduced and the exact form of
eq. (4.1) is derived.

4.2.1 Sommerfeld Radiation Condition

The Sommerfeld radiation condition states that energy must be radiated from a source towards
infinity and no waves are allowed to come from infinity. The condition is expressed for the solutions
of the Helmholtz equation. It was described in section 3.2 that the Lamé equation expressed in terms
unknown displacement components can be decomposed into two uncoupled Helmholtz equations in

terms of potentials ®, and ®,. The radiation condition then reads [Sommerfeld 1912]

Tlggoﬁ (8§a — ika¢a> =0, (4.2)
where a = {p,s}. Therefore, the solutions expressed by eqs. (3.23) and (3.24) of the underlying
Helmholtz equation are now restricted by eq. (4.2). It was already mentioned that the radiation
condition is satisfied only if the Hankel functions are chosen as the radial component W, of the
solution for ®,. This statement is now explained in detail.

For a general argument k,r, Hankel functions (as well as all the solutions of the Bessel equation)
are defined by a series expansion. However, for large arguments, an asymptotic form of Hankel
function is found [Arfken et al 2013a]

HM (kor) =

n

exp ((—1)h+1i (kar —(2n+ 1)%)) , (4.3)

kot

where h = {1,2} denotes the kind of the Hankel function and n stands for its order. The first two

derivatives with respect to r are then expressed as

8H7(1h) 2 h+1; 4 < hily, o L )
or \/ wkar P <(_1) ’ <kar —(n+ 1)Z>> (=)™ kot - 2r)

=M ((—1)h+1kaz’ - 21r> , (4.4)
o2 ( ki 3 >
Yom g [ 2 _ g b1 v
5o =HI (ke — ()M ). (4.5)

The solutions (3.23) and (3.24) of the Helmholtz equation for a single order n

O, = Wy (kor) exp(ind) (4.6)

)

are now inserted into eq. (4.2). The asymptotic form (4.3) of the Hankel function is considered as

the radial component W,,. Since the radiation condition is expressed for r — oo, this approach is
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valid. The limit is then reformulated

lim W(@(Wn exp(inf)) — ik Wy, exp(inf > =0
r—00 or
oHM A
Hm, v ( r ) -

-0 (4.7)

r—00

lim /r (H}P ((—1)h+1kaz’ - —) — ko H
T—>00

)
lim /7rH" (( DM i — — —kaz) =0

lim rH ((~1)"! = 1) kai — lim —H ) =0.

7—00

Note that the exponential term in the asymptotic expression (4.3) for the Hankel function can be

split as

HM = exp ((—1)h+1ikar) exp ( (=1)"Li(2n + 1)4) (4.8)

wkar

where the second exponential is a constant. With the use of this property the second limit in eq.

(4.7) can be reformulated

lim 2\1/;H7§h) = Jim 5 ﬂir exp ((=1)"ikar) exp (—(=1)"i(2n + 1)1) - o
:;\/Eexp ( (=) i(2n + 1) 4) Jim % exp ((—1)h+1z’ka7’) . |
In general, the wave number k, is a complex number and can be expressed as
ko = Re(kqa) +iIm(ky). (4.10)
The limit appearing in the second row of eq. (4.9) is analysed next
Jim % exp (( 1)Lk, r) = lim % exp (( )" (Re(ka) + i Tm(ka)) r) = )
~ Jim % exp ((—1)" 17 Re(ka)r) exp (—(—1)"  Im(ka)r) .

The first exponential term in the previous relation represents a harmonic function, since an imagi-
nary unit appears in the exponent. On the other hand, the second term is exponentially increasing
or decaying function, depending on the sign of the imaginary part Im(k,) of the wave number and
the kind of the Hankel function, which is represented by symbol h. In the case of Hankel function
of the first kind (h = 1), the imaginary part of the wave number needs to be positive (Im(kq) > 0)
so that the exponential term is a decaying function and the limit is zero. Contrary, if the Han-
kel function is of second kind (h = 2), imaginary part of the wave number needs to be negative

(Im(kq) < 0) so that the limit is finite and zero. If the imaginary part of the wave number is zero,
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only the harmonic part remains in the expression. However, due to the hyperbolic factor 1/r the
limit is zero any way. For all these cases, the limit in eq. (4.11) is zero and therefore the limit in
eq. (4.9) is also zero.

In the following, the first term in eq. (4.7) is investigated. It can be developed as

. (h) ((_1\h+1 _ S
Tim rH ((-1) 1) kqi =

2

wkaor
= ((—1)"+1 - 1) Koy | 7r2k‘a exp (—(—1)h+1i(2n + 1)%) rlggo exp ((—l)hHikQT) .

The previous expression is always equal to zero if Hankel function of the first kind is adopted, since

=Jr exp ((—1)h+1ikar) exp (—(—1)h+1i(2n + 1)%) ((—1)thl - 1) kot = (4.12)

the relation
(-t —1=0for h=1 (4.13)

holds. For the Hankel function of the second kind, it is necessary that the imaginary part of the
wave number is negative (Im(ky) < 0) so that the limit in the previous equation is zero. This
could be derived in the same way as was described in the previous paragraph. However, if the wave
number is real (Im(k,) = 0), the limit in the last row of eq. (4.12) does not exist and the whole
expression is zero only for the Hankel functions of the first kind due to eq. (4.13).

For convenience the previous derivations are now summarized. It was shown that the asymp-
totic form of the Hankel function for large arguments satisfies the Sommerfeld radiation condition,
however, under constraint placed on the chosen Hankel function kind. This restriction is ensured
for the following cases: If the imaginary part of the wave number is positive, Hankel function of
the first kind must be chosen. On the other hand, if the imaginary part of the wave number is
negative, Hankel function of the second kind must be adopted. If the wave number is real, only

Hankel function of the first kind satisfies the radiation condition.

4.2.2 Far-field Propagation

In the previous section, it was shown that under some restrictions, the asymptotic form of Hankel
functions for large arguments fulfil the Sommerfeld radiation condition. This motivates to also use
the asymptotic expression for the derivation of the exact form of the displacement, strain, stress
and traction fields in the large distances from the origin.

To start with, the displacement field approximation was defined in eq. (3.1), considering only the

homogeneous part, it may be expanded as
N N
u=UX= > UXpn= > up. (4.14)
n=—N n=—N

In the previous equation the layout of the basis U and vector X introduced in egs. (3.29) and

(3.35) was inserted, which allows to represent the matrix-vector product as a sum of sub products
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un = UpX,. If the basis U contains functions for all orders n, meaning N = oo, eq. (4.14)
represents the exact solution for arbitrary boundary conditions. Vector w, denotes a part of the
complete homogeneous solution related to a single order n. Components of the vector w, are
displacements in Cartesian directions, however, for further derivations it is more convenient to
work with vector uf;e, whose components are displacements in radial and angular directions. The

relation between both vectors reads
ul =TTy, = TTU, X, = U’ X,, (4.15)

where T is the transformation matrix and Uf{’g is the matrix collecting basis functions approxi-
mating displacements in radial and angular direction, which were defined in egs. (3.30) and (3.31)
respectively. The definition of the matrix Ur? is developed next considering the asymptotic ex-

pression of the Hankel function as the radial component W,

i | M ‘
- MWallar) Ty (o (i) O ) 10 ) ) (int)
n = lin OW (kgr) | PV = OHM (kyr) e =
| Waller) ——5— L
H (kyr) <(—1)h+17ﬁvZ - 5) 7H7(L (ksr)
_ in o - - 1 exp(inf) = (4.16)
*Hn _Hn s -1 + S._7>
_ " 5 (k) (kar) (-1 i — o
r 1 n
VAl s L s
_ (( DA 2r> r HT(Lh)(kpr) ;
_ ) 1 (h) exp(ind).
m _ ((—1)h+1k‘i— 7) 0 Hy" (ksr)
L r s 2r

For large radius r, the terms including 1/r can be neglected since their contribution is much smaller

compared to the other parts. With this assumption, the previous equation yields

‘ ky 0 | [H (k) 0 ‘ ,
Ur? =i(—1)h+t [Op _kJ [ 0 P HT(Lh)(k:Sr) exp(ind) = U, H,, exp(ind), (4.17)
where
k 0
U, =i(-1)" |7 , 4.18
i(-1) [0 _kj (419
(h)
Hy7 (k
H, — (Fkpr) (h)o (4.19)
0 Hy” (ksr)

In figures 4.2 and 4.3 the components of the displacement basis Uﬁ’o are plotted considering
the original definition of the basis as in eq. (3.31) or in the first line of eq. (4.16). The Hankel
function of the first kind and order n = 1 was adopted for the function W,. Note that the original
form of the Hankel function is used in the mentioned plots, not the asymptotic simplification. The

basis functions are evaluated on a circular domain centred at origin. However, a portion of the
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region in the vicinity of the center is excluded, since the derived displacement shapes are singular
when 7 — 0. The particular values of the wave numbers were chosen as k, = 0.475 1/m and
ks =0.889 1/m.

In fig. 4.2 the real parts of the displacements in radial and angular direction are visualized
considering the p-wave part of the solution. It can be seen that for large radii, the displacement
component in angular direction tends to zero much faster compared to the radial one. In fig. 4.3 the
s-wave part of the displacement solution is plotted. On the other hand, in latter figure the radial
component of the displacement field tends to zero for large radii. Both of the previous findings
correspond to the diagonal form of the simplified basis U? defined in eq. (4.17), where the part
associated to p-waves has only displacement contribution in radial direction and the s-wave part

generates displacement in angular direction only.
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Figure 4.2: P-wave part of the displacement basis U7’
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Figure 4.3: S-wave part of the displacement basis Uy 6

Similar ideas can now be applied also for the derivation of the strain far field. The strain solution

expressed in the polar reference frame for a single order n is given as

en? — En0X,, (4.20)



50 4 Unbounded Media

where matrix Eﬁ’g, collecting the strain basis functions for a single order n, is defined in eq. (3.34).

Inserting the asymptotic form of the Hankel function for the radial component W,,, eq. (3.34) is

modified

0*®, 10%9,
or? r 000r
Er,@ _ l82<1>p _16 (I)s _
" r2 062 r Orol
19°0, 100, 09,
rordd r?2 002 or?
[ 925" (k1) in OH (kyr)
oz o
) h
_ &2 (h) _m 8H§)(ks7“) exp(inf) =
r2- " (kpr) r or P
Lin OH (k) n® G 7a)_(921LLS’”(1<:57~)
L™ p or P2 or? —
[ (k) <_ 2 [ h+1@ i) @ (h) (_1 h+1 _i) 1
Hy" (kypr) k:p2 (—1) . +4r2 an (ksr) | (—1)" " kgi 5
_ n” (k) A (h) <_ htl ._1> ooy
= Tan (kpr) an (l;:sr) (—1)" ki o exp(inb)
in o (h) ( htl .1> 0 (n 2 qyht1Fst 3)
i QTHn (kpr) | (—=1)" ki . n (ksr) 3 kz —(-1) . 7))
i ki 3 mn 1 T
1.2 _1h+1l v 7(_1h+1 s._i)
kp = (=1) 27’+4r2 r (=1 ki 2r )
B n . ,_1) H (k,yr) 0 -
= 3 T (( 1) kgt 5y [ 0 Hr(Lh)(ksr) exp(inb).
L N ~_i> Mo qyhekst 3
_2r (( DA 2r r2+k8+( D r 4r2 |
(4.21)

The terms including 1/ and 1/r? are again neglected since for large r their influence is minor. The

previous equation then results in

hy 0 H(h)(k: T)
Ef—|0 o0 [ n - \kp H(h)(k: r)] exp(inf) = E.H,, exp(ind), (4.22)
0 k;z n S
where
2
~k; 0
E.,=| 0 0 (4.23)
0 k2

By the application of the material equations, the stress far-field solution 0',2’0 with components

in radial and angular directions can be easily obtained from the already derived strain solution

o’ =ke? = kE° X, = S50 X,

(4.24)
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. 0 . . . . . .
Matrix Sy,° contains the stress basis for a single order n and its exact form is derived as

A2 A 0] [-K2 0
T,0 r,0 8 P HT(Lh) (k’pT) 0 .
S, =kE;" = A A+2u 0 0 0 (h) exp(inf) =
5 Hy (kgr)
0 0 w0 &
) (4.25)
—ks(A+2 0
p( ; 1) Héh)(k‘pr) 0 . |
= —k A 0 () exp(inf) = Sy Hy exp(ind),
9 0 Hy" (ksr)
0 ks
where
—k2(A+2u) 0
_ 2
Se=| —k2A 0. (4.26)

0 kin

The last field to be investigated are the tractions evaluated at a circular boundary located
sufficiently far from the origin so that the asymptotic expression of the Hankel functions can be
applied. Boundary tractions can be computed based on the boundary equilibrium expressed by eq.
(2.35). The exact form of matrix N was introduced in eq. (2.14), however, since all the derivations
in this section are perform in the polar reference frame, the components of the matrix IN also need

to be expressed in such coordinate system. Therefore, matrix

0
N™ — [n ”9] (4.27)
0 ng n,

is used instead, n, and ng are the polar components of the outward unit normal at the boundary.

The desired boundary traction field is then computed as
trf = N"Port = NOSTOX, = TP X,, (4.28)

where T stands for the matrix collecting boundary traction functions derived from the solution

0 .
uy’ for a single order n

—k2(A+2p) 0
—k:]%)\ 0 | Hyexp(inf) =
0 k2

S

T =N™8™0 = N™0 8, H,, exp(inf) = [
0 ng n,

n, 0 n9]

—npk2(\+2 k2
- " il 2+ H mokip H,, exp(inf) = T\ H,, exp(inh).
—ngkpA nek2p

(4.29)

As was mentioned, the boundary at which the tractions are evaluated is assumed to be circular.
This implies that the the angular component ng of the outward normal is zero and the radial

component n, = 1, since the normal vector has a unit length. Using these findings, the relation for
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T, can be simplified

T, =

—n, k2 2 k2 —k2 2

—ngkg)\ nek2p 0 k2u

To conclude, main points of this section are summarized. The general form of the basis functions,
which solve the governing differential equation in terms of displacements, was discussed in section
3.2. Each of these displacement solutions has the associated strain, stress and boundary traction
fields, which can be derived based on the relations stated in chapter 2. In this part of the thesis,
the aim was to find the exact relations for the associated fields evaluated in large distances from the
origin. The matrices UR?, ER?, S7% and T/ collecting the individual basis functions for a single
order n were derived. The rows of the matrices are associated with the individual components of
the field, for which the polar reference frame was considered. The columns of the matrices represent

the contribution of the pressure and shear waves respectively.

4.2.3 Dirichlet-to-Neumann Mapping

The solutions of the homogeneous Lamé equation for the individual fields in a sufficiently large dis-
tance from origin are now used to form the Dirichlet-to-Neumann map (4.1). Matrix Ty appearing

in the expression for the traction basis in eq. (4.29) can be reformulated as

T* _ [—k‘g(A‘FQ,U) 0 ] :i(—l)h+1 kp()‘+2:u) 0 ] ’i(—l)h+1 [kp 0 ] — CU*, (431)

0 k2u 0 Kt 0 —ks
where
kp(N\ + 2 0
C = i(—pyrt | B+ 20) (4.32)
0 ksp

is the matrix of constants connecting matrices U, and Tx. Eq. (4.31) implies that the traction
and displacement bases evaluated at a circular boundary in large distance from origin are related

through a matrix of constants, which can be shown as
T"% = T, H,, exp(inf) = CU,H,, exp(inf) = CU~Y. (4.33)

Furthermore, the complete solution can be recovered by including matrices collecting basis functions
for all orders —oo < n < oo multiplied by unknown coeflicients collected in vector X. Therefore,
the complete traction solution evaluated on a circular boundary sufficiently far from the origin is

expressed as

=3 tf= > TrXx,= > cuyfx,=C Y UX,=cCu"’

tr,@ :Cur,e
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This equation shows that on a circular boundary in large distance from the source of excitation
and irregularities, the boundary tractions and the displacements are connected through a matrix

of constants. This statement holds for arbitrary loading and boundary conditions.

4.2.4 System Modification

The essence of the absorbing boundary technique is that the Robin-type relation, expressed by
eq. (4.34), is weakly imposed on the boundary I'¢ located at finite distance from the source of
excitation. As the asymptotic form of the Hankel function was used for the derivation of the
relation (4.34), it is only valid when the boundary is infinitely far from origin. Therefore, this
imposition results in an approximation and some spurious reflections may occur in the vicinity of
the boundary. Moreover, the assumption of a circular boundary was considered in the previous
section. Consequently, enforcing eq. (4.34) on a non circular boundary may result in an additional
source of error.

The finite element system modification is now described. Firstly, the changes are presented
for the case of a single element with one continuous Dirichlet boundary and only one absorbing
boundary. Afterwards, a generalization for multiple elements is discussed.

Similarly to the Dirichlet boundary, also on the absorbing boundary I' the boundary traction

field is approximated
t = Zgpg on I (4.35)

Matrix Z, collects the approximation basis functions and vector p, contains the related unknown
coefficients. In this work, the same basis was chosen to approximate the boundary tractions on the
Dirichlet as well as on the absorbing boundary, which implies that Z, = Z.

As was already mentioned, eq. (4.34) is weakly enforced while the boundary traction basis Z, is
used as the weighting matrix. For convenience, eq. (4.34) is firstly inverted so that the displacements

are expressed in terms of boundary tractions
u™? = 1m0, (4.36)

Moreover, the components of the displacement and traction vectors appearing in the previous
relation are in radial and angular directions. However, the boundary traction approximation as
well as the displacement approximation is expressed for components in Cartesian directions, as can
be noted from egs. (3.1) and (4.35). Consequently, the relation (4.36) needs to be transformed.

Using the transformation matrix T, defined in eq. (3.30), and the formulas

u™ =TTu, (4.37)
t™? =17t (4.38)
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eq. (4.36) is reformulated

ur,@ :Cfltr,B

TTu =C~'T"t

TTTw =TC1T7¢ (4.39)
u=C"Y"1¢,
where
c*Y =TCT". (4.40)

Note that egs. (4.39) and (4.34) represent the same relation, just using a different formulation.

Finally, eq. (4.39) can be weakly imposed on I'¢
/ z] (u—Cc®v't) drg = o. (4.41)

Inserting the domain displacement and boundary traction approximations, the previous equation

is rephrased
— / zI'udre x + / Zrcev=1Z,dré p, = / ZIygdre. (4.42)

Using definitions

By = / U"Z,dre, (4.43)
D, = / zI'c*v-1z,dre, (4.44)
o = [ ZEuodr, (4.45)

eq. (4.42) is abbreviated as
—T
—By X +Dgpg =g, (4.46)

Another modification of the system arises in eq. (3.47), since the integral over the complete
boundary now contains a portion related to the absorbing boundary I';. Hence, the equation is
modified

—~ ~ —~ ~ ~\T
/ U'Dodve = / Ultpdre + / UTzdrep+ / UTZ,dre p, — / (D*U) o dVe. (4.47)
Consequently, the first equation (3.62) of the governing system is changed as
DX — Bp— Bupa = tr — ry. (4.48)

Considering both modifications, the finite element system expressed in eq. (3.68) is reformulated
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D -B, —-B|[X tr —tr,

T
-B, D, 0 Pa| = Uq, . (4.49)
-B" o o]|lp Ur, — Ur,

A generalization for the case of multiple finite elements is straightforward. Since the individual
absorbing boundary edges cannot be shared by two elements, the coefficients p, are related to one
element only. The global system defined in eq. (3.100) can be modified analogously as the single

element system, which results in

D¢  —Buse —Ba| [Xg trg — try o
T L)
_Ba,G Da,G 0 pa,G = uao’c 9 (450)
—T S—
_BG 0 0 pG uFG
where
D,; 0 ... 0
0 Dg ... O
Do =| . o : (4.51)
: : 0
0 0 0 D,
T
Pac =[pal Py ... pal] (4.52)
T
Baoe = |TUag] Tagy --- Tagh| - (4.53)
The additional subscript ¢, = 1,2, ..., n, indicates indexing related to individual absorbing bound-

ary edges with n, denoting the number of all absorbing boundary edges. The individual Baz(-zd)

matrices evaluated for element j.; and at absorbing edge i, are sorted in the global B, ¢ matrix
in the following way: index j.; corresponds to the row and subscript i, to the column in the final
global matrix. As some elements may have no absorbing boundary, the global matrix B, g may
contain rows with zeros only.

As the matrix Dg g is symmetric, also the resulting system preserves this property. Due to the
fact that the Robin-type relation is explicitly enforced, arbitrary solutions of the Bessel equation
can be adopted for the formulation of the displacement basis U. The exact forms of the bases
derived using the asymptotic form of the Hankel function were only used to obtain the matrix C

connecting the displacements and tractions at infinity.

This chapter describes the modelling procedure of infinite domains by an application of the absorb-
ing boundary condition method. The Sommerfeld radiation condition constitutes the fundamental
constraint for the previous derivations. In the beginning, it is shown that if the Hankel functions
are used as the radial component W, for the construction of the basis functions, the solution is also

Sommerfeld-compliant. These findings are then applied for the derivation of the exact forms of the
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solution basis of the individual fields in large distances from origin. From the resulting expressions,
the linear mapping is found between the displacement and the traction fields evaluated at the cir-
cular boundary at infinity. Afterwards, this relation is weakly enforced at the absorbing boundary
located at finite distance from origin, which results in an approximation of the real behaviour.
Simultaneously, the tractions are approximated on the absorbing boundary. The resulting system
of equations is modified, additional equation as well as structural degrees of freedom emerge. An
advantage of the described concept is the freedom of choice of the Bessel solution functions used
for the generation of the displacement approximation basis. On the other hand, the main draw-
backs are the artificial wave reflections occurring due to the insufficient distance of the absorbing

boundary from the origin of excitation or because of the inclination of the absorbing boundary.
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5 Introduction to Wave Based Method

It was mentioned in the introduction that to validate the implemented hybrid-Trefftz method, the
obtained results are compared to those acquired with the wave based method (WBM). Even though
the wave based method modelling technique is not the main part of this thesis, a short chapter is
dedicated to a brief introduction of it. Afterwards, main features of both methods are summarized
and compared.

The application of the WBM on the steady-state elastodynamic problem is described in [Deckers
etal 2012] and [Van Genechten etal 2010]. Both publications served as the reference for the

presented theoretical aspects.

5.1 Basic Principle

Similarly to the hybrid-Trefftz method also WBM belongs to the family of Trefftz methods. This
implies that the basis functions selected for the approximation of a certain field within the element
domain are chosen to satisfy the governing differential equation. The individual basis components
implicitly fulfil the governing equation, however, for a general case they violate the prescribed
boundary conditions. Therefore, a finite number of such functions is combined so that the error
between the true and approximated boundary conditions is decreased. What distinguishes both
mentioned methods is the way how the boundary conditions as well as the inter-element continuity
conditions are enforced. In the case of WBM, no additional field needs to be approximated, how-
ever, the boundary and the inter-element continuity conditions are weakly imposed on the element
boundary with the use of the Galerkin weighted residual method. The necessary condition ensuring
convergence of the method to the analytical solution is convexity of the element domain.

The set of equations (2.31) to (2.37) describing the elastodynamic problem in the frequency
domain derived in chapter 2 form the starting point for the upcoming derivations. For clarity the
subscript k related to the time discretization is omitted.

The workflow of the method procedure can be divided in the following parts. Firstly, the domain
of the structure is discretized into a number of convex finite elements. Inside each element domain
the displacement field is expanded in terms of shape functions multiplied by unknown participation
factors. As was already stressed, the basis functions are selected as solutions of the underlying
differential equation. Afterwards, the prescribed boundary conditions as well as the continuity
between adjacent elements are weakly imposed. Subsequently, the system of algebraic equations
is formed with the participation factors being the unknowns. After the solution is obtained, the
unknown fields need to be recovered during a post-processing phase. The individual steps are

described in detail in the following sections.
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5.2 Domain Discretization

It was already indicated that to ensure the convergence to the analytical solution, the analysed
domain must be of convex shape. In case this property is not fulfilled, the domain V needs to
be partitioned into n.; convex subdomains V(id), where i,; = 1,2,...,n¢. The element boundary
['(iet) can subsequently be divided into non-overlapping parts r ‘“‘l), ) and nge”jd). The first
two symbols stand for the Dirichlet and Neumann boundaries where the displacement components
and the boundary tractions are prescribed. I‘(Im Jet) denotes the inter-element boundary between
two adjacent elements i and j.

The displacement and traction boundary conditions can be formulated in normal and tangential
directions to the boundary. In residual form they are expressed as

R(iel) :u(iel) — UF,TL — 0’

U, n

. 4 on Fq(jﬁl)
Rl(l,ltd) :ulEZEL) —upy = 0’ -
R(’iel) :t(iel) _ tF — 0 ( ) )

tn n i " on F((jel)

Rgel) :tgiel) _ tF,t — O7

where ur ,,, ury, tr, and tp; are the prescribed displacement and traction components.

There are four continuity conditions which need to be weakly imposed between the neighbouring

elements i.; and j.;. Two are expressed in terms of displacement components ug‘”) and ugid) and

(iel)

two in terms of traction components ¢, "’ and t,(f“). The conditions can be written in residual form

as

—

R(ielzjel) :u(iel) +u jel) — 0’

Un, n n

(iel:jel) — (iel) (jel) —
Rut ug U 0, on F(iez,jez) (5.2)
(ietsdel) _4Gier) _ 1(er) — I '
Ry'evIe) =lie) _ ¢lde) =,
Rt(ielvjel) :tgiel) _ tijel) — 0
. .
To formulate a well posed problem, exactly two boundary conditions need to be enforced on each
point of the boundary. Therefore, the inter-element displacement continuity conditions are imposed
on one of the two adjacent elements while the traction continuity condition is enforced on the second

element.

5.3 Displacement Field Expansion

As was indicated earlier, the basis functions are restricted to satisfy the homogeneous part of the
governing differential equation (2.31). The solution procedure was already described in detail in
section 3.2.1. It was shown that by the application of the Helmholtz decomposition (3.6), the
system can be decoupled into two independent Helmholtz equations (3.12) and (3.16) in terms of
dilatational and shear potentials ®, and ®,. Afterwards, the solution of the individual Helmholtz

equations was obtained in polar reference. An alternative procedure is adopted in this section,
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which consists of solving the Helmholtz equations directly in the Cartesian reference frame.

For clarity, a general form of the Helmholtz equation is reproduced

9*°®, 00,
Ox? Oy?

d, =0, (5.3)

where a = {p,s} and k, denotes the related pressure or shear wave number. The following wave

function sets can be considered as solutions of the previous equation

W3 () = sin (ke o) exp ik ).
W (z,y) :cos(k%ax) exp (zky ay), (5.4)
Ve (z,y) = exp(zk;am) sin(k‘;ay),
Ul (z,y) =exp (zkx oﬂ?) cos(kz ay)

In order the wave functions satisfy the Helmholtz equation (5.3), relations

(o) + (a)” = (122) + (K0) = (k)" + (a) = (ko) + () =K (5.5)

between the individual wave numbers must hold.
It can be noted that there is infinite number of possibilities regarding the choice of the individual

wave number pairs. An often proposed option selects the wave numbers as

o ko) = (nzﬂi\/m> e =0,1,2,.... M,

kz,av ya) - (anﬂ- + k2 (kg’a)2> , My = 0,1,2, .. .,Mb

2 MeT
](Iz,a? ya) - (:I: k2 (k;a) ’[/y> , Me = (),1727 L. 7Mc
k’acon ) <:|: k‘2 (kg’a)2’%) , md:0;1>27---,Md
Y

Symbols L, and L, denote the lengths of the smallest bounding box to the related element. The

(ks
(
(
(

upper limits M,, My, M. and M, are selected according to the chosen truncation rule.
Based on the previous discussion, the potentials ®, can be expanded in terms of the wave
functions sets defined in eq. (5.4). As only a finite number of terms is included, this procedure

results in an approximation

M, Mb M. Md
Do Y wh VL4 > wh, Wl + > wh, e+ Y wi, vl (5.7)
me=1 mp=1 me=1 mg=1

The coefficients w} are the unknown participation factors related to a single element. Note that
the previously described expansion is performed for each element separately.
The displacement field components can be obtained from the approximated potentials ®, and

®, by application of eq. (3.6). Subsequently, the boundary tractions are acquired with the use
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of egs. (2.33) to (2.35). Moreover, both quantities need to be transformed to the normal and
tangential directions with respect to the element boundary, since also the boundary conditions (5.1)
as well as the inter-element continuity conditions (5.2) are expressed in terms of these components.
Symbolically, the individual displacement and traction components, denoted by symbol a, can be

T
expressed in terms of vector [q)p @S} as

a=~L, F”] , (5.8)

where L, is the specific differential operator and a = {uy,us, ty,t:}. The individual operators £,

have the form

Lo =l a1l
tu=l5 ol
2 52 (5.9)
Ly, = _2,LLW + AV? 2u8n8t] )
r 2 2 2
=g (5 5) )

0 0
Symbols — and — represent the normal and tangential derivative.

on ot

5.3.1 Construction of the System of Equations

The system of algebraic equations is obtained by weak imposition of the boundary as well as the
inter-element continuity conditions defined in egs. (5.1) and (5.2). For each element i.; the residuals
are multiplied by weighting functions @ and integrated along the related boundary

ﬁ(iel)Rgiel) + ﬁgiel)Rt(jel)dI‘_i_

Fo_iel) n

/F flien) R 1 i) plie qr

e T
Tel ~( )
7 (e belrJe Lel bel Je
+ Z /F(idyjd) g l)Rq(fnl Jet) 4 Rl(ftl] Ddr+

Jer=1,jerFie * 1 (5.10)

Nel ) ) ' ' '
_ Z /F(iel’jd) agel)REzelﬂel) + ﬂElEZ)REZEl’JEZ)dF _ O

jel:]-vjel#iel I

The first integral is related to the imposition of the displacement boundary condition while the
second one is associated to enforcement of the traction boundary condition on element 4. Fur-
thermore, integrals along the edges which are shared with neighbouring elements j.; are considered.
On each inter-element edge of element 4., either the displacement residuals or the traction residuals
are weakly enforced, the remaining option is then imposed on the neighbouring element j;.

The individual weighting functions denoted by @ are expanded in terms of the same wave function
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sets as the original fields

a=L, Fp] : (5.11)

with
O~ Y, WE 4+ > wb W+ e, UL+ Y wd, vl (5.12)
Mq mp mMe mgq

The final system of algebraic equations is generated as follows: Firstly, the residuals in egs.
(5.1) and (5.2) are expressed in terms of unknown participation factors w}, which is done by
substitution of egs. (5.4), (5.7), (5.8) and (5.9). Afterwards, the residuals are substituted into
eq. (5.10). Similarly, by combination of egs. (5.11) and (5.12) also the weighting functions are
expanded in terms of coefficients W} and substituted into eq. (5.10). Performing such procedure for
all the elements i.; and considering that the coefficients related to the weighting functions may be
arbitrary, the system of algebraic equations is formulated with unknowns being the contribution
factors of all elements. The resulting global system matrix has complex components and is generally
nonsymmetric.

The individual system submatrices are constructed by integration along a portion of the element
boundary. As the integrals cannot be evaluated analytically, numerical quadrature needs to be
applied. Since the integrands are highly oscillatory functions, large number of quadrature points
need to be considered so that the resulting approximation is sufficiently accurate.

After the system of equations is solved, the unknown contribution factors of each wave function
for each element are obtained. To reconstruct the desired fields, a post-processing phase is necessary.
Within each element, firstly the dilatational and shear potential fields are evaluated at the desired
locations by substitution of the related coefficients w} into eq. (5.7). Afterwards, the displacement
fields can be obtained with the help of eq. (3.6) and the associated stress field is then acquired by
application of egs. (2.33) and (2.34).

5.4 Comparison of Wave Based and Hybrid-Trefftz Methods

In the following section both wave based and hybrid-Trefftz methods are compared in various
categories.

Domain discretization: In the case of both methods the aim is to discretize the investigated
structure into small number of large elements. As for both techniques the system matrices are
constructed by integration along the element boundary, it is advantageous to keep the length of
all element boundaries as small as possible, which is accomplished by reduction of the number
of elements. Moreover, in the case of both methods, the complexity of the resulting system of
equations is reduced when p-refinement techniques are adopted instead of the h-refinement ones.
This means that to achieve the desired accuracy of the results, it proves to be more efficient to

increase the number of functions in the approximation basis rather than increase the number of
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elements. However, in the case of the hybrid-Trefftz method, when the elements are too large, and
hence for a sufficient accuracy a large number of basis functions needs to be included, the resulting
equation system turns out to be ill-conditioned. To overcome such issue, h-refinement technique
needs to be applied.

Domain complexity: When complex shapes are modelled, the domain needs to be partitioned in
many elements, which results in an increase of the inter-element boundary length as well as of the
number of degrees of freedom. Overall, the computational cost of both methods is too large for
such cases and perhaps different modelling strategy should be adopted instead. Furthermore, in
the case of WBM, the necessary requirement for the method to converge is the element convexity.
Therefore, some domain shapes, such as structures with circular holes, even cannot be divided into
convex subdomains. This property makes to method even less applicable for modelling of complex
domains.

Approzimated fields and basis functions: In the case of both methods the displacement field is
approximated inside the element domain. Moreover, the basis functions are required to satisfy
the governing differential equation. The functions contained in the WBM basis are constructed
as solutions of the Helmholtz equation expressed directly in Cartesian coordinates. On the other
hand, the basis for the hybrid-Trefftz method is obtained by solving the Helmholtz equation in
polar reference frame. Furthermore, in the case of the hybrid-Trefftz method, the tractions on
the Dirichlet and inter-element boundary are additionally approximated. The basis for the such
approximation is constructed using the Chebyshev polynomials.

Construction of the system of equations: In the case of WBM, the system of equations is con-
structed by weak imposition of the boundary as well as the inter-element continuity conditions.
The displacement and traction residuals are multiplied by weighting functions and integrated along
the related portion of the boundary. In the case of hybrid-Trefftz method, the finite element system
of equations is generated as follows: The equilibrium equations are weakly imposed in the element
domain, while the material law and the kinematic equations are satisfied strongly. Furthermore,
the traction boundary approximation and the traction boundary conditions are substituted. All
the equations are combined and the first matrix equation of the final system is formed. The second
one is constructed by weak imposition of the displacement boundary and inter-element continuity
conditions, while the boundary traction approximation basis is used as the weighting matrix. The
individual submatrices in the case of both methods are constructed by integration of highly oscil-
latory functions along the element boundary, hence a large number of quadrature points must be
considered so that the integrals are approximated accurately.

Resulting system of equations and number of degrees of freedom: The resulting global system
matrices have complex components for both compared methods. The matrix associated to the
hybrid-Trefftz method is Hermitian, which is an advantageous property, when iterative solvers are
applied during the solution procedure. The number of degrees of freedom, and hence the size of
the system of equations, related to both methods is generally small when compared to systems
obtained with other methods, such as FEM. In the case of the hybrid-Trefftz method, additional
degrees of freedom are introduced for the approximation of the boundary tractions. Therefore, the

size of the resulting system is larger compared to the one acquired with WBM, when the number
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of domain basis functions is kept the same. For both methods, the unknown coeflicients represent

the contribution factors of the related basis functions to the final solution. This implies that to

recover the desired field of interest, post-processing is required, in which the basis functions are

evaluated at the investigated locations and multiplied by the computed coefficients.

The main points are summarized in tab. 5.1.

|

| WBM

‘ Hybrid-Trefftz method

Approximated fields in
element domain

Displacements

Displacements

Domain basis functions

Satisfy the Lamé equation, solved
in Cartesian reference frame

Satisfy the Lamé equation, solved
in polar reference frame

Approximated fields on
element boundary

None

Tractions

Construction of the sys-
tem of equations

Prescribed boundary and continu-
ity conditions weakly enforced on
element boundary

Weak imposition of the equilib-
rium equations in element domain,
substitution of the material law,
kinematic equations, traction ap-
proximation and traction bound-
ary condition, weak enforcement
of the displacement boundary and
continuity conditions on element
boundary

System matrices evalua-
tion

Integration along element bound-
ary

Integration along element bound-
ary

Degrees of freedom

Contribution factors of the indi-
vidual wave functions in each el-
ement

Contribution factors of the indi-
vidual basis functions in each ele-
ment and coefficients related to the
boundary traction approximation

ments

Properties of the system || Complex Complex, Hermitian
of equations
Element shape require- || Convex None

Table 5.1: Comparison of WBM and hybrid-Trefftz method
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6 Implementation

Most of the theoretical aspects related to the analysis of loaded elastodynamic media were described
in the previous chapters. The hybrid-Trefftz finite element system of equations was derived using
the weighted residual method and the modification of the system for unbounded problems was
introduced. The following chapter is dedicated to the implementation of the previously discussed
theoretical concepts.

The programming aspects of the Trefftz finite element method are discussed in [Qin and Wang
2008], where the implementation is described for potential problems as well as for plane elasticity.

Firstly, the topic of numerical integration is introduced, since it is a necessary mathematical tool
enabling an efficient implementation of the described method. Subsequently, implemented elements
are mentioned and relations for description of the element geometry are derived. The third and
last section of the chapter is devoted to a detailed description of the implemented code and its

structure.

6.1 Numerical Integration

All the system matrices and vectors appearing in the governing system of equations (4.49) are
defined as integrals over the element boundary or a portion of it. For elements of a general shape it
is infeasible to perform the integration analytically and therefore numerical quadrature rules need
to be applied instead.

Let s be the coordinate running along a single element edge and [ be the length of the edge.

Integral of an arbitrary function g(z,y) over the single edge is approximated as

/Olg(l‘,y) ds = > wig(ek), (6.1)

k=1

where ¢ denotes the order of the quadrature, (xj,yx) are the quadrature points and wy are the
corresponding quadrature weights. As quadrature rules are defined in terms of the normalized

coordinate £ € (—1,1), the previous equation is modified

l 1 s q
[ onas= [ 96@©u6) Fae~ Y- wgle() w6 (62

k=1

where & denotes the quadrature points in 1D normalized reference frame. In the previous equa-
tion the integral over the single edge was transformed to integral performed over the normalized

coordinate &, which was done by expanding the differential segment ds using the chain rule. The
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term ds/d¢ is referred to as the Jacobian J. The mapping between the side coordinate & and the
spatial coordinates z(§) and y(§) needs to be defined based on the particular element boundary
shape.

To evaluate the Jacobian, the differential boundary segment ds is firstly expressed in terms of the
differential Cartesian segments dx and dy, which are then with the use of the chain rule expanded

in terms of the coordinate &

ds = y/dz? + dy? = \/(jzdg)Q + (ji{dg)Z = \/(jzf + (j‘z)ng. (6.3)

Therefore the Jacobian results in

=g () () (6.4

The exact relation for the Jacobian hence depends on the shape of the boundary and the specific

form of the mapping between the side coordinate and the Cartesian reference frame.

In this work the Gauss-Legendre quadrature rule is chosen. For ¢ integration points a polynomial
of order 2¢ — 1 is integrated exactly. The integration points and weights can be obtained by the
application of the Golub-Welsch algorithm [Golub and Welsch 1969].

6.2 Implemented Elements

In this section the implemented element types are discussed and the particular form of the mapping
between the side coordinate £ and the Cartesian coordinates x and y of the points on the element
edge is introduced. Subsequently, the derivative of such mapping is derived so that the Jacobian
defined in eq. (6.3) can be computed. In addition, components of the unit normal at the point on
the boundary are expressed, since such information is necessary for computation of some of the
system matrices.

In chapter 3 it was mentioned that elements of arbitrary shape and with optional number of
edges can be used. However, for simplicity, in this work only elements with straight or circular

edges were implemented. In the following subsections both formulations are explained in detail.

6.2.1 Element with Straight Edges

Assume index ¢ = 1,2, ..., ny,, runs over the element nodes with n,, being the number of element
nodes. Since a straight edge is completely defined be two neighbouring nodes, number of edges
Neq corresponds to the number of nodes, therefore n.q = n,,. In the case of straight edge, the

geometry can be described using the linear shape functions. Therefore, an arbitrary point on the
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edge between nodes ¢ and ¢ + 1 can be obtained as

<[5 L)
I o0

where (x;,y;) are the coordinates of ith node. For the computation of the Jacobian, the derivatives

with respect to £ coordinate need to be expressed as well

il )
il

T
Components of the outward unit normal vector n = [nx ny] are then calculated as

L _dy _dyde 14y
Tds  déds  JdE’
_d:z:_ dzd¢§  1dw

ds ~  dfds  JdE

(6.9)

ny:

It is important to stress that the concept of nodal interpolation is only applied for the description
of the geometry of the element. As was mentioned in chapter 3, the domain displacement and
boundary traction approximation bases are strictly hierarchical and their exact form was derived

earlier.

6.2.2 Element with Circular Edges

The situation gets more complex when a circular edge is considered. In such case, not only co-
ordinates of the two neighbouring nodes are sufficient to define the geometry of the edge, but
additional information regarding the coordinates of the center (z. ;,y. ;) of the circular edge needs
to be provided. Index j runs over all circular edges belonging to a certain element. To define the
mapping from the coordinate £ to the Cartesian coordinates of points on the edge, the radius r,
starting angle a9 and ending angle a; need to be calculated first. ag indicates the positive angle
between the z-axis and the position of node i. Similarly, oy stands for the positive angle between
x-axis and the position of node i + 1. The geometry of a single edge j is depicted in fig. 6.1. The

formulas for calculation of the mentioned parameters read as

r=\ (@~ weg)? + Wi ves)s (6.10)
ag =atan2(y; — Yej,Ti — Zeyj), (6.11)

a1 =atan2(Yiy1 — Ye,jsTitl — Lej)- (6.12)
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Figure 6.1: Circular edge geometry

Afterwards, for the given coordinate &, the position of a point on the edge is calculated as

1
T =Tcj + rcos(ao + %g(al — a0)>, (6.13)
. 1+
Y =Yej T rsm(ozo + Tg(al — a0)>. (6.14)

To obtain the derivatives of the spatial coordinates with respect to the side coordinate, the previous

relations are differentiated

dr a1 —ap . ( 1+¢ >

& r——— sin{ ag + 5 (o1 — ) |, (6.15)
dy a1 —ag < 1+4+¢ )

- — -~ - ) 1
i r——g— cos{ag + —5 (o1 — ap) (6.16)

The Jacobian can subsequently be calculated using eq. (6.4), which results in

=) () =

The components of the outward normal are expressed by eq. (6.9), substituting the individual terms

yields
1 1
b :Jfé = cos{on + 5o - o)),
(6.18)
__ldr n( +i(a —a)>
T Jag DT\ T e e,

The previously derived formulas completely define the mapping between the normalized side co-

ordinate ¢ and the Cartesian coordinates of points located at the element edge. Therefore, the
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system matrices can be approximated using the numerical quadrature rule by the application of
eq. (6.2). For the case of a straight edge, only coordinates of the two end nodes are the necessary
input. For a circular edge, coordinates of the center needs to be provided additionally. The number
of element edges may be arbitrary. In the thesis only elements with four edges are implemented,
however, generalization for optional number of edges is straightforward.

So far no comments were placed regarding the position of the Cartesian reference frame used for
the derivation of above formulas. Two options are implemented in this work. One possibility is to
consider the xy-reference frame as the global one and formulate the relations for all elements in
terms of this single coordinate system. In such case, the coordinates (x;,y;) of nodes of a single
element also correspond to their global coordinates.

The other option is to consider the zy-reference frame as the local coordinate system placed at
the element center. For such case, assume there exists a different global reference frame with axis
2% and y“. In addition, (z§,y%) are the coordinates of the nodes of a single element and (xfz,yCGl)
are the global coordinates of the center of the circular edges. The position of the geometrical center

of the element is calculated as

1 Nno
G G
Leentre :n Z Ly (6'19)
"0 =1
1 Nno
G G
Ycentre :TL Z Yi - (620)
no j—1

Subsequently, the element nodal coordinates in the local reference frame are obtained as

G G
Ti = Xy — Leenires (621)
Yi = yzG - yccfentre' (622)

Similarly, when a circular edge is considered, the coordinates of the center of the edge are expressed

as

- ‘rg;ntrev (623)
G G
Yei = yc,i ~ Yeentre- (624)

_ .G
Lei = xc,i

Note that such transformation has no influence on the value of the Jacobian or on the components
of the unit normal, it only affects the location of points on the element boundary, which are now
shifted by the position of the element center.

The application of the second option together with incorporation of scaling procedures of the
final system of equations often results in reduction of the numerical error caused by ill-conditioned

global system matrix.
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6.3 Program Structure

The program is implemented in software MATLAB. The reason for the choice of interpretive pro-
gramming language is the wide range of inbuilt functions and commands, which makes the pro-
gramming and visualization process faster and easier compared to compiled languages such as C
or C++. On the other hand, this comes with a cost of greater run time. However, for the objective
of this thesis such drawback is acceptable.

The program workflow can be divided into the following sections: data input, computation of the
system matrices, solution of the system of equations and post-processing and visualization. Each

of these procedures is described in detail in the subsequent sections.

6.3.1 Data Input

All the necessary data are input from a text file. It needs to contain information related to
material properties, geometry, loading, boundary conditions, approximation bases and number of
Gauss points.

The material properties consist of the Young modulus, Poisson’s ratio, loss factor and the mass
density. The Lamé parameters can then be calculated based on the formulas provided in chapter 2
and subsequently, the wave velocities can be evaluated.

It is assumed that the domain of interest is already discretized into finite elements and therefore
the meshing procedure is skipped. In the input file, for each element, indices of the related nodes
need to be provided and also Cartesian coordinates of each node are given. By default it is assumed
that the element edges are straight. Additionally, a list of circular edges is included in the input
file, containing the indices of the related end nodes and Cartesian coordinates of the centres of the
circular edges. Furthermore, as was mentioned in the previous section, information regarding the
choice of the reference frame for the evaluation of points on the boundary is attended.

The loading is defined by a list of loaded edges. For each loaded edge, index of the related
element together with indices of the edge end nodes are provided. Only distributed loading varying
linearly is implemented, hence it can be completely defined by the values of the loading at the end
nodes of the edge. This information is also given for each edge in the list. Moreover, the frequency
of excitation needs to be mentioned in the input file so that the wave numbers can be computed.

Constrained edges are defined in a similar way as the loaded edges. In the list of constrained
edges, related element index as well as indices of the end nodes are mentioned. For each constrained
edge, values of the prescribed displacements are included. In addition, if the constrained edge is of
mixed type, the fixed degree of freedom is marked. In the case an unbounded domain is analysed,
a list of edges on which the absorbing boundary condition is considered needs to be given. The
edges are again defined by the index of the related element and by indices of the end nodes.

Information related to the approximation bases need to contain the length of both domain dis-
placement and boundary traction bases. Moreover, the type of the Bessel solution function needs
to be indicated. The number of terms contained in the domain approximation basis is calculated
from the maximum order N of the Bessel solution function W,,, which is discussed in section 3.2.1.

Therefore, maximum order of the Bessel solution function is included in the input file. Similarly,
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the length of the boundary approximation basis can be deduced from the maximum order M of

the polynomial included in the basis, which is hence provided as the input.

6.3.2 System Matrices Computation

After the necessary data are obtained, the process of building the system of equations may start.
All the matrices and vectors which appear in the global system of equations (4.50) are gradually
assembled. This procedure is discussed in detail in the following sections.

For the implementation, it is assumed no body forces are applied on the analysed structure. This
implies that the vector of particular solution ug, appearing in eq. (3.1), vanishes. Consequently,
also vectors ﬁ and Ug, o, Which are included in the right hand side of the governing system
of equations (4.50), have zero components only. Furthermore, in the definition of vector ur, all
the terms TFOZ(-j ) are neglected. Moreover, in the case the mixed boundary condition is applied,
it is assumed that the prescribed traction component is zero, hence also the vectors tp,, or E

appearing in egs. (3.107) and (3.127) vanish.

Global D Matrix

The global D¢ matrix is composed from the local DUet) matrices evaluated for each element in the
way described by eq. (3.86). Therefore, in the code there is a loop over all elements, in which the
individual DUe) matrices are computed and afterwards assembled to the allocated D¢ matrix.
The single DUet) matrix is evaluated based on the definition in eq. (3.59). The integration
needs to be performed over the whole element boundary, however, the integral can be split into
multiple integrals over the individual edges. The edge integrals are then approximated using the
Gauss-Legendre quadrature of the given order ¢, which is expressed by eq. (6.2). This procedure

is illustrated as

P Ned lj P Ned 4 P
D= /UTNk:EdFe = Zl/o U'NKE ds; ~ ZlkzlwkUT(gk)N(gk)kE(gk)Jj(gk), (6.25)
J J=lk=

where j is an index running over the element edges, s; denotes an individual edge coordinate, [; is
the length of the edge j and J; stands for the Jacobian related to the particular edge.

The implemented function for the computation of the individual D) matrices consists of two
nested loops, one running over the element edges and the second one over the number of integra-
tion points. Firstly, for each integration point k the related weight wy and point coordinate &g
are obtained. Afterwards, Cartesian coordinates of the associated Gauss point together with the
components of the unit normal and value of the Jacobian are acquired. These values are calculated
based on the formulas derived in sections 6.2.1 and 6.2.2. It is however necessary to firstly check,
if the current evaluated edge is circular, so that the correct formulation is chosen. Moreover, if
the local reference frame was chosen for the evaluation of points on the boundary, the global nodal
coordinates as well as the global positions of the center of the circular edges need to be transformed
to the local coordinate system, which is described by egs. (6.19) to (6.24).
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Subsequently, when the Cartesian coordinates of the quadrature points are known, the displace-
ment and strain bases U (z(&),y(&x)) and E(z(&x),y(&k)) can be evaluated by implementation of the
formulas mentioned in section 3.2.2. The number of terms contained in the basis strictly depends
on the chosen maximum order N of the Bessel solution function.

The material matrix k has constant components and therefore can be evaluated outside of both
loops. Afterwards, as all the required terms are known, the contribution of a single gauss point
to the complete integral appearing in eq. (6.25) can be calculated and next iteration may proceed.
This scheme is repeated until all the edges and integration points are considered. The overall

procedure of evaluation of the matrix D¢ is illustrated by the following pseudocode:
1. Allocate D¢

2. Loop over all elements iy
a) Obtain nodal coordinates
o If local reference frame is chosen — transform the nodal coordinates
b) Compute D)
i. Allocate D)
ii. Compute material matrix k
iii. Loop over element edges
A. Loop over integration points k

o Evaluate position of the Gauss point, the components of the unit normal and

the Jacobian
o Evaluate bases U (x(&x),y(&x)) and E(x(&x),y(&k)) at the Gauss point location

e Compute the contribution of the integration point and add it to the existing
matrix: DUe) = Dliet) 4 wka\TNkEJj

¢) Assemble DUe) to Dg

When choosing the reference frame for evaluation of the element matrices, one needs to be aware
that the Bessel function of the second kind or any of the Hankel functions are singular at the origin.
Therefore, if any of the aforementioned Bessel solution functions is chosen for the radial component
W,, appearing in the definition of the bases U or E, the origin of the chosen reference frame needs
to be placed outside of the element. This implies that in such case only the option of the global
reference frame needs to be adopted, since the local one is placed at the center of the element.

As is evident from the previous discussion, the individual D) matrices are approximated by the
sum of weighted evaluations of the integrand multiplied by the Jacobian. This procedure contains
evaluation of the bases U (z,y) and E(z,y), and therefore evaluation of the Bessel solution functions
at positions on the boundary. As the Bessel functions of the first kind and of high orders n tend
to get flatter in the vicinity of origin, some components of the evaluated bases are almost zero,

when large number of terms is considered in the approximation basis and the evaluation position is
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located close to the origin of the reference frame. As an outcome, matrices D) and consequently
the global D¢ matrix collect components of varying orders of magnitude, which results in badly
conditioned system of equations. Such outcome motivates to apply certain scaling procedures of
the final system of equations in order to diminish the resulting numerical error.

To a certain extend, the condition number of the matrix D¢g could be reduced by placing the
global reference frame sufficiently far from all elements. However, for such case the implemented
scaling of the final system of equations does not improve the condition number as much. Overall,
it turns out that the combination of using the Bessel functions of the first kind with local reference
frame and applying the scaling procedure described in section 6.3.3 results in the system of equations

with the lowest condition number of all the considered options.

Global B Matrix

As was discussed in section 3.4.6, the global Bg matrix is assembled from the individual B](-iel) ma-

trices evaluated for edge j belonging to element i.;. All edges on which the displacement boundary
condition is applied together with the inter-element edges are considered for the evaluation. In the
implemented algorithm, firstly the list of all the mentioned edges containing the related element
index is obtained and then the matrix Bg is allocated. Subsequently, loop over the listed edges
is performed, in which the individual B (Ger)

J
matrices are assembled to the global one, the element index i.; corresponds to the row and the edge

matrices are evaluated. Afterwards, the individual

index j to the column in the resulting global matrix.
The single BJ(-ZEZ) matrix is computed using the definition in eq. (3.75). By the application of the
numerical quadrature rule, the integral is approximated as

lj ——T

; —T e . =T
B! ez>:/U(zez) Zdry, = | Ut Zde%I;wkU(’d) ((&k)y(Er)) Z (&k) (), (6.26)

where s; denotes the coordinate running along the single edge j and [; stands for the length of the
edge.

The function for computation of the single B](iel) matrix contains a loop over the integration
points k. For each Gauss point the coordinates in the chosen reference frame are calculated as well
as the value of the Jacobian. Afterwards, the displacement basis U (z(&x),y(&k)) can be evaluated
at the position of the quadrature points. In addition, also the boundary approximation basis Z (&)
is evaluated, since it is defined in terms of the coordinate &, the position of the Gauss point & can
directly be inserted. Subsequently, the contribution of the single integration point to the overall
sum appearing in eq. (6.26) can be computed.

It was mentioned in section 3.4.6 that for the inter-element edges, two BJ(iEZ) matrices are eval-
uated, sharing the same edge index j but differing with the element index .. In the assembly
process, the sign of those two matrices must be the opposite, which results from enforcement of
the displacement continuity condition. Therefore, in the algorithm it needs to be checked, if the
matrix for the common edge was already evaluated for the neighbouring element, and if yes, the

second matrix needs to be multiplied by the minus sign.
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In the case the mixed boundary condition is applied on the current edge j, matrix B (et) peeds to

‘ j
be replaced by Bmgzd), which was defined in eq. (3.108). A way of implementing such modification

is to discard half of the columns of the matrix Z related to the unconstrained degree of freedom.

In addition, in the general case of mixed boundary condition, when the displacement is fixed in

) js replaced by matrix B;nye’), which is defined in eq.

(3.125). In such situation the only difference compared to the previous case is that the components

normal or tangential direction, the matrix Bj(.i

of the displacement approximation basis need to be transformed to normal and tangential directions,
which is described by eq. (3.120). Otherwise the procedure is identical.

The algorithm for computation of the Bg matrix can be summarized by the following pseudocode.
1. Obtain list of all Dirichlet (constrained and inter-element) edges
2. Allocate Bg matrix

3. Loop over all Dirichlet edges j
a) Get related element index i.; and corresponding nodal coordinates
o If local reference frame is chosen — transform the nodal coordinates
b) Compute Bj(iel)
i. Allocate B](ie’)
ii. Loop over integration points k

A. Evaluate position of the Gauss point, the components of the unit normal and

the Jacobian
B. Evaluate bases U (z(&),y(&k)) at the Gauss point location &

o If the general case of mixed boundary condition is applied — transform the
basis as: U = TTU

C. Evaluate bases Z (&) at the Gauss point location

o If only one displacement component is prescribed — keep only half of the

matrix Z

D. Compute the contribution of the integration point and add it to the existing
matrix: B](-Zel) = B](Ze’) + wklA]TZJj

o If the edge was already evaluated for the neighbouring element — multiply to
Gauss point contribution by the minus sign: B](M) = Bj(»Ze’) —w,UTZ J;

c¢) Assemble BJ(.ie’) to Bg

Global D, ¢ and B, ¢ Matrices

The matrices D, ¢ and Bg g, related to the absorbing boundary condition, are defined in section
4.2.4. Both are assembled from the individual D,;, and Bagffl) matrices evaluated for absorbing

boundary edges j,. The algorithm therefore contains a loop over all edges j,, on which the absorbing
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boundary condition is applied. For each edge, firstly the element index and the associated nodal

coordinates are obtained. In the case the local reference frame is adopted, the coordinates are
(iel)

transformed. Afterwards, individual Dg;, and B, i/ matrices are computed and assembled to
their global counterparts.
The single Dgj, matrix is defined in eq. (4.44). The integral over the absorbing edge is approxi-

mated using the numerical quadrature rule

lia a
Doy, = [ ZEC™ Z,ars, = [ 21001 Z,ds;, = Y w 2L (6O 6) Za(60) T3, (60
k=1
(6.27)

where s;, denotes the coordinate running along the single absorbing edge j, and [;, stands for the
length of the edge. The function for computation of the single D, matrix therefore consists of a
loop over all integration points. For each Gauss point, the Jacobian and components of unit normal
are expressed together with the basis Z4(&x). Matrix C*Y is calculated based on eq. (4.40), in
which the matrix C (defined in eq. (4.32)) is transformed. As C has constant components, it can
be evaluated outside of the loop. Symbol h, appearing in definition of matrix C', represents the
kind of the Hankel function for which the Dirichlet-to-Neumann map was derived. The sign of the
imaginary part of the wave numbers is the decisive factor for the choice of the Hankel function
kind h, which is thoroughly discussed in section 4.2.1. After all the matrices are computed for
the current Gauss point, its contribution to the complete sum can be evaluated and the code may

proceed to the next iteration.

(iel)
Ja

, which is described above. Since the absorbing boundary edges cannot be shared

The process of computation of the single matrix Bg

(ier)

. 7
matrix Bj el

is very similar to the evaluation of

by two elements and no mixed boundary condition is applied there, the function for evaluation of
Bag-f:‘l) is simplified.

The algorithm for computation of the global system matrices related to absorbing boundary
edges can be summarized by the following pseudocode.

1. Allocate matrices Dy g and Bg g

2. Loop over all edges j, on the absorbing boundary
a) Get related element index i.; and the corresponding nodal coordinates
o If local reference frame is chosen — transform the nodal coordinates
b) Compute Dy,
i. Allocate Dy;,
ii. Compute matrix C
iii. Loop over integration points k

A. Evaluate components of unit normal and the Jacobian at the current Gauss

point
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B. Evaluate bases Z, (&) at the Gauss point location &
C. Calculate matrix C*™¥ and invert it

D. Compute the contribution of the integration point and add it to the existing
matrix: Dgj, = Dgj, + wngCw’yAZana

c¢) Compute Baﬁd)
i. Allocate Bag-ff’)
ii. Loop over integration points &
A. Evaluate position of the Gauss point and the Jacobian
B. Evaluate bases U (z(&),y(&)) at the Gauss point location &
C. Evaluate bases Z, (&) at the Gauss point location
D

. Compute the contribution of the integration point and add it to the existing
matrix: Bq' = Bo\" + wyU” ZaJ),

d) Assemble Dy, to Do
e) Assemble BagiEl) to Bg,c

Global Vector tr

The global vector #r, is assembled from the individual E(iel) load vectors evaluated for each element
using eq. (3.90). The single E(id) vector is defined in eq. (3.60). The integral over the complete
Neumann boundary associated to a certain element can be split to multiple integrals performed
over the edges where non-zero tractions are prescribed. The parts of the Neumann boundary where
the tractions are zero can be discarded from the integration, since the integrand vanishes in such
case.

Assume that all the loaded edges are labelled by index jy = 1,2,...,ny with ny being the
overall number of loaded edges. Furthermore, assume a set SUet) collects the indices jn related to
(ter)

a certain element i.;. Under such considerations, loading vector tp* ", related to a single element,

can be split into integrals evaluated over the individual edges contained in the set S(et)

In -
Zel) Z tFn — Z UTt]_"n dsn. (628)
nES(’el> neS(iel) 0

In this equation s,, denotes the coordinate running along a single edge n and [,, means the length
of such edge. Vector tr,, contains functions describing the distributed loading on the current edge
n. Furthermore, the contributions related to a single edge are approximated using the numerical

quadrature

Ly ~
iy = [ Ot dsyy ~ ZwkUT ()t (66) i (6. (6:29)
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The implemented code is structured in the following way. It contains a loop over all loaded
edges jny. After the element index i, associated to the current edge is obtained, the related
nodal coordinates are extracted. In the case of local reference frame, they need to be transformed
afterwards. Subsequently, vector tr;, is evaluated and assembled to the global vector tr, according
to the related element index i,;.

In the function for computation of the single r;, vector, firstly the components of the loading at
the end nodes are extracted from the input data. Subsequently, a loop over the integration points
k is entered and the position of the Gauss point, components of the unit normal and Jacobian
are evaluated. As was mentioned before, the loading is assumed to be linear along the edge,
hence the corresponding value of the loading function at the quadrature points can be obtained
with the use of the linear shape functions. Therefore, also the shape functions are evaluated and
afterwards the loading intensity at the current point can be calculated. As the input loading
components are expressed in normal and tangential directions, they need to be transformed to
Cartesian components eventually. Then the basis U (z(&),y(&k)) is expressed at the Gauss point
location and the contribution of the current integration point to the complete integral is evaluated.

In the following pseudocode the main points of the algorithm implemented for evaluation of the

vector tr,, are recapitulated.
1. Allocate tr,

2. Loop over edges jy where non-zero tractions are prescribed
a) Get element index i.; and the corresponding coordinates of the element nodes
o If local reference frame is chosen — transform the nodal coordinates
b) Compute tr;,
i. Allocate tr
ii. Obtain normal and tangential components of the loading at the end nodes
iii. Loop over integration points k

A. Evaluate position of the Gauss point, the components of the unit normal, the

Jacobian and the value of the shape functions

B. Compute the loading components at the current integration point multiplying

the end values by shape functions
C. Transform the components to Cartesian directions
D. Evaluate bases U (x(&x),y(€xk)) at the Gauss point location

E. Compute the contribution of the integration point and add it to the existing
vector: tpj, = tr;, + wkﬁTterJjN

¢) Assemble tr;, to tr, based on the element index i
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Global Vector ur,

The construction procedure of the vector ur, described in section 3.4.6 is simplified, when no
body forces are acting on the structure. The length of the global vector ur, depends on the
number of all Dirichlet edges j (including both constrained and inter-element ones). However, non-
zero components only appear in the rows related to the edges, where the displacement boundary
condition is applied. For these edges vector —W§iel) is evaluated based on eq. (3.65) and added to
the global vector according to index j.

The integral appearing in the definition of the single 'LTrg-i‘“‘l) vector is approximated using the

quadrature rule

. q

ur ) = /0 ? ZTur ds; = 3 w27 (€)ur, (6. (6.30)
k=1

Vector ur; collects the prescribed displacement components on the current edge j, which are

constant functions.

Assume a set S, collects the indices j related to the constrained edges, hence indices associated to
the inter-element edges are omitted. In the algorithm a loop over the indices n € S, is performed.
Inside the loop the individual —uirgf"”) vectors are evaluated and assembled to the global vector
ur, based on the edge index n.

The function for computation of the single Tp%el) vector contains a loop over the integration
points. Inside the loop the Jacobian J, (&) and the basis Z(&) are evaluated. Afterwards, the
contribution of one Gauss point to the complete sum appearing in eq. (6.30) is calculated. If the
constrained edge is of mixed type, and therefore only one degree of freedom ur,, is prescribed, the
product Z7(&)ur,, in eq. (6.30) is replaced by Z!' (& )ur,. Vector Z, is a part of the complete
matrix Z and was defined in section 3.3.

The following list of procedures sums up the implemented algorithm for computation of the

vector Urg.
1. Allocate ur, vector

2. Loop over all constrained edges n € S,
a) Get related element index i and corresponding nodal coordinates
e If local reference frame is chosen — transform the nodal coordinates

b) Compute Tpgﬁl)

i. Allocate uirgd)
ii. Loop over integration points &
A. Evaluate the Jacobian
B. Evaluate bases Z () at the Gauss point location &

C. Compute the contribution of the integration point and add it to the existing

vector: TF%EZ) = uirgfel) + wi Z ur, J,
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o If only one degree of freedom is prescribed — uirgf et) —

¢) Assemble Tpgﬁl) to urg

apo) + wp ZEur, J,

6.3.3 System Solution and Scaling

The final governing system of equations is constructed by combining all the previously derived
global matrices and vectors, which is described by eq. (4.50). In short notation, the system can be

expressed as

Az =1b, (6.31)

A=|-B,¢ D.c o |, (6.32)
T
—Bg 0 0
T
x = [Xg paT’G pg} , (6.33)
. T
b=ltre’ 07 wrg’| . (6.34)

The condition number of the matrix A as well as the resulting numerical error can be reduced by

the application of a system scaling procedure. Eq. (6.31) can be reformulated as

STASS 'z = STb

- (6.35)

8

where A = §TAS, Z =Sz and b = STb. The term S denotes a diagonal scaling matrix. The
previously described modification preserves the symmetry property of the original matrix A.

The idea of the scaling procedure is to modify the system so that the diagonal terms of A are
of similar magnitude and close to unity. Therefore, the diagonal components of the scaling matrix
collect inverted square roots of the diagonal terms appearing in the matrix A. In the case the
diagonal component of A is zero, the associated term in the scaling matrix is taken as one. Hence

the components S; ; on the diagonal of matrix S can be expressed as

LA A0
Sii = A (6.36)
1, if A;; =0,

where A;; denotes the diagonal components of A. Symbol ¢ stands for the row index of the related
matrix.

The modified system in eq. (6.35) is solved by the application of the MATLAB inbuilt function
mldivide, which chooses a suitable solver according to the properties of the matrix A. After the

scaled solution vector T is computed, the original vector of unknown coefficients « is obtained as
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r=ST.

6.3.4 Post-processing and Visualization

As was mentioned in section 3.5, vectors X@a, ps,g and pg collect the generalized quantities
and therefore a post-processing phase is necessary so that the values of the fields of interest are
obtained. These consist of the displacement, strain and stress field, which are all derived from the
the approximated displacement field within an element.

In the post-processing part of the algorithm, a loop over all elements is implemented. Inside the
loop indices of the Dirichlet edges j as well as the absorbing edges j, related to the particular element
are obtained. Subsequently, the coefficients X (ie1) agsociated to the displacement approximation of
the element are extracted from the global vector X¢. Similarly, also the coefficients p; and pa;,
linked to the Dirichlet and absorbing edges at the current element are pulled out from the global
vectors pg and pg,g. Afterwards, the function for evaluation of the fields on a single element is
called.

Inside the function a grid of points (z¢,y.) belonging to the investigated element is calculated.
Subscript e denotes the index of the point. A loop over those evaluation locations is performed,
for each, the bases U (x¢,y.) and E(z¢,y.) are computed and values of the displacement and strain
fields are calculated based on egs. (3.1) and (3.4). The stress field can then be evaluated by the
application of the material law expressed by eq. (2.34).

The tractions on the Dirichlet and absorbing boundary can be computed using two approaches.
The first option is to use the boundary traction approximation introduced in eq. (3.36), where the
related p; or pg;, coeflicients are inserted. The second way is to directly compute the tractions from
the stress field evaluated based on the domain displacement approximation. In fact, the second
option represents the tractions associated to the computed displacement field and therefore these
are of main interest. However, comparing them with the tractions, which were computed based on
the boundary traction approximation, can serve as a measure of quality of the results.

Based on the discussion in the previous paragraph, also normal and tangential tractions on the
Dirichlet and absorbing edges are evaluated in the field evaluation function. Therefore, a second
loop over the aforementioned edges is implemented. Inside the loop the normalized locations of the
points & € (—1,1) are generated and a loop over those is entered. Subscript [ stands for the index
of the point. Subsequently, for each point on the boundary, the tractions derived from the domain
displacement field are evaluated. This procedure consists of mapping the normalized boundary
coordinate & to the chosen Cartesian reference frame and evaluation of the matrix of unit normals
at the current point. Then the strain basis E(x(&;),y(&;)) is calculated and the stresses are expressed
by application of egs. (3.4) and (2.34). The Cartesian components of the boundary tractions are
then computed with the use of the boundary equilibrium based on eq. (2.35). As the components
in normal and tangential directions are of interest, the tractions need to be transformed eventually.

Computation of the boundary tractions based on the boundary approximation can be performed
in the same loop over the locations &. The boundary approximation basis Z(&;) can directly be

evaluated at the point location & and multiplied by the corresponding coefficients p; or pg;, . In
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the case the current Dirichlet edge j is the inter-element one, it needs to be checked, if in the
assembly process of By the related B](-Z"‘l) matrix was considered with the minus sign. In the case it
was, the associated p; vector needs to be multiplied by the minus sign as well, which results from

the traction continuity condition and eq. (3.94).
After all the fields are evaluated for the investigated points in the domain and on the boundary

of the element, the stored results can be visualized. The previously described procedure is then
repeated for all elements.

The post-processing procedure is recapitulated in the following pseudocode.
1. Loop over all elements i
a) Get nodal coordinates related to the current element
o If local reference frame is chosen — transform the nodal coordinates

b) Obtain indices j and j, of the Dirichlet and absorbing edges related to the current
element

c¢) Extract the vectors of coefficients X (ier), p; and pg;, associated to the current element

d) Evaluate the displacements, strains and stresses in the element domain and tractions on
the boundary

i. Compute the material matrix k
ii. Create a grid of points (z.,y.) inside the element
iii. Loop over the evaluation points
A. Evaluate bases U(z¢,ye) and E(x.,y.) at the current point
B. Compute the displacement, strain and stress components at the current point
iv. Loop over the Dirichlet and absorbing edges
A. Generate boundary evaluation points & in the normalized space £
B. Loop over the points &
e Compute the tractions derived from the displacement field

— Map the points to the Cartesian coordinates in the chosen reference frame

and obtain components of the unit normal

— Evaluate the strain basis E(x(§),y(§)) and subsequently the vector of
strain components

— Compute the stress vector and the derived traction components
e Compute tractions from the boundary traction approximation
— Evaluate basis Z(&;)

— Compute the boundary tractions by multiplying the basis Z (&) with the
coefficients p; or pq;,

e Transform the boundary tractions to normal and tangential components
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v. Plot the evaluated fields in the element domain and on the element boundary

The overall program structure is summarized in the flowchart in fig. 6.2.

. Loop over
D C te D
[ ata input ] D lements ompute
A Loop over
Bg Dirichlet edges Compute B
Generate the system of| Compute Loop over Compute
. D,c&B, ¢ - D & B
equations absorbing edges a a
— Loop over _
fro loaded edges Compute 7
Solve the system of = Loop over Compute -
equations re constrained edges P r

Post-processing & Loop over |  Evaluate and plot the
visualization elements |displacements and stresses

Figure 6.2: Program structure
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7 Results

In the following chapter the implemented method is tested on various examples and the results are
presented and summarized.

As the first example, bounded domain is analysed and the results are compared to the known
analytical solution. The convergence process is studied in detail while both p-refinement and h-
refinement strategies are applied. In the second test case the implemented approach for modelling
of infinite domains is validated. Also for this example the simulation outcome, which was obtained
for various meshes and for approximation bases including various numbers of terms, is compared
to the true reference solution. Furthermore, the effect of the distance from the origin at which the
infinite domain is truncated is investigated. As the last example, wave propagation in a loaded half
space is examined and the results are compared to those obtained using the wave based method.

In the first section of the chapter the quantity chosen as the measure for comparison of the

obtained results is introduced.

7.1 Global Comparison Quantity

To compare the approximated results to the reference solution, it is advantageous to introduce
a single scalar quantity which reflects the properties of the obtained vector fields. The chosen

quantity, denoted by FE, is defined as
1 1 [~
E= 5/aTecW—5/{fpudv. (7.1)

The first term in the previous equation denotes the potential energy related to the deformed body
averaged over one period T' = 27/w. The second term in eq. (7.1) represents the kinetic energy
averaged over the period T, therefore the meaning of the quantity F is the difference between
average potential and kinetic energies associated to the investigated domain. The reason why
measure F is used instead of the average mechanical energy, which is expressed as the sum of
both mentioned energies, is the simplicity of its evaluation. As will be shown, eq. (7.1) can be
reformulated into convenient expression, which can be evaluated by the product of the vector of
coefficients X and already computed matrix Dg.

The velocity field u(x,y), appearing in eq. (7.1), can be expressed in terms of the displacement

field u(z,y) as
W = iwu, (7.2)

which follows from the spectral representation of the individual fields discussed in chapter 2. Sub-



84 7 Results

stituting the previous expression into eq. (7.1), the quantity E can be reformulated to
E:§/U st—i/zwu pzwudei/a st—iw /u pudV. (7.3)

In the subsequent sections, this equation is further developed and manipulated and exact formulas
for its evaluation based on both analytical solutions as well as on the results obtained using hybrid-

Trefftz method are expressed.

7.1.1 Analytical Expression

The solution procedure of the spectral Lamé equation was thoroughly discussed in section 3.2.
The solution functions are ordered in the displacement and strain approximation bases U and E.
For a single order n, the components in radial and angular directions are collected in matrices
UR? and ER°, which are expressed in eqs. (3.31) and (3.34). The functions associated to p-waves
are collected in the first column and the ones related to s-waves appear in the second column.
The quantity F related to these individual modes can be obtained by substitution of the basis
components into eq. (7.3).

For the particular 2D case of interest, the volume integral in eq. (7.3) turns to a surface integral
multiplied by the thickness of the structure, which is assumed to be unitary. Furthermore, to
simplify the resulting expression, the shape of the body is assumed to be circular section defined
by the inner and outer radii rg and r; and starting and ending angles 6y and 6;. The integration

is then performed in polar coordinate system, therefore eq. (7.3) is modified as

1 R R 1 [m o1 N R
E== / (o-Te — wQUTpu) dV = 7/ / (O'T€ — WZUTPU> rdodr. (7.4)
2 2 ro J0o

In the following, this expression is expanded individually for the p-wave and s-wave solution func-

tions.

P-wave Solution

The displacement components in polar coordinates associated to the p-wave solution can be ex-

tracted from the expression (3.31) and read as

0 1 W1 (kpr) — Wh (kpr)

u = -k
P2 W (kpr) 4 iWi (1)

exp(inf). (7.5)
Similarly, the strain components associated to p-waves are taken from eq. (3.34) and are expressed

as
Wi—2(kpr) — 2Wy(kpr) + Wiy (kpr)

1
el = Zkﬁ ~Wha(kpr) — 2Wi(kpr) — Wypa(kpr) | exp(ind). (7.6)
2i(Wn—2(kpr) — Wiga(kpr))
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The related stress field is obtained by the application of the material law (2.6). Substituting the
previous expressions for the displacement, strain and stress components into eq. (7.4), the relation
can be reformulated. After some symbolic manipulations, the individual products appearing in the

integrand result in

1 — .
5"e =k (2W WX+ 1) + 1 (W2 Wiz + Wi g2 Wing2) ) (7.7)
_ 1 oo ——
quu :ipkg (Wn_1Wn_1 + Wn+1Wn+1) . (7.8)

One can note that both of the previous terms are independent of angular coordinate 6 and hence

the associated integral in eq. (7.4) can be computed separately and the expression is then simplified

1m0, N 1 o ~
E :f/ / (aTs - wQUTpu) rdfdr = = (61 — o) / (a'Ts - wQUTpu) rdr, (7.9)
2 0 0o 2 70
where the products &7 e and %! pu are expressed by eqs. (7.7) and (7.8). The integral appearing in
the previous equation cannot be computed analytically for an arbitrary type of the Bessel solution
function W, and therefore the resulting value is approximated by the application of numerical

integration techniques.

S-wave Solution

The quantity E related to the displacement shapes associated to s-waves is obtained in the sim-
ilar way as was described in the previous subsection. The related displacement and strain basis

components are extracted from expressions (3.31) and (3.34)

Wh—1(ksr) + iWyp1(ksr)
W1 (ksr) — Wi—1(ksr)
iWn—o(ksr) — iWyta(ksr)
el :%k? iWhnio(ksr) — iWn_o(ksr) | exp(ind). (7.11)
—2(Wp—a(ksr) + Wyia(ksr))

exp(inf), (7.10)

n,s

1 .
ur,e :iks 7

The products appearing in the integral in eq. (7.4) can subsequently be simplified to

~ 1 —— ——

5'e =5 uk! (Wa—2aWn 2 + WaraWnya), (7.12)
~ 1 — ———
al pu :§pk§ (Wn_lVVn_l + Wm_anH) . (7.13)

Also in the case of s-wave solution, the integrand turns out to be independent of the angular

T

coordinate # and hence the expression for FE is simplified to eq. (7.9), where the terms o e and

u” pu are formulated in eqs. (7.12) and (7.13).
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7.1.2 Finite Element Approximation

Substituting the domain displacement and strain field approximations defined in egs. (3.1) and (3.4)
into expression (7.3), the relation for the finite element approximation Epp of the true quantity
E can be obtained. To simplify the derivation, the terms related to the particular solution are

omitted. Firstly, the approximation F%, associated to a single element is expressed as

1 /. 1 ~
E%E :i/UTEdVe — §(JJ2/'U,Tp'U,dV€ =

1 T 1 —T
=3 / (kD*UX) EXdV® — §w2 / (UX) pUX dV°¢ = (7.14)

1 . 1 .
:5?/(D*U)Tk:Edvex - 5WQEET/UTpUc'Wex.

Subsequently, the first integral in the previous equation is modified using the integration by parts
technique and the property (3.2) of the displacements basis U is applied. Similar procedure was
also used for the derivation of eq. (3.52), which can now be substituted into eq. (7.14)

1 . 1 - 1 .
E%p :53(\T/UTNI<;E are X + §w25(\T/UTpU dve X — 5w?)?T/UTpU Ve X =

Ly [ 1 (7.15)
=5 X /UTNkE dr'x = XD X.
The definition (3.58) of the matrix D was substituted into the previous equation.
The approximation Erg for all elements is then expressed as
Nel () 1 Nel /BT () () 1/\T
Erp=) EtpgW ==Y X DWXW=_-Xs DgXg. 7.16
FE ; FE 9 ; 9 G G AG ( )

7.2 Example 1: Comparison with Analytical Solution

To validate the implemented code, the obtained results are compared with the known analytical
solution. The quantity F, defined in the previous section, is chosen as the measure used for
comparison of the analytical and approximated solutions.

For this test case, the domain shape was chosen as the quarter of a hollow circle with inner radius
ro = bm and outer radius 71 = 25m. The scheme of the investigated structure is depicted in fig.
7.1a.

The assumed material properties and excitation frequency f = w/2w are listed in tab. 7.1, where

also the derived wave numbers are mentioned.

| EN/w?| | v | plkg/m’] | [ [He] | n [ kyp [1/m] | & [1/m] |
| 26000000 | 0.3 | 2000 | 10 [0] 0475 | 0.889 |

Table 7.1: Material properties, Example 1

Firstly, the analytical solution is introduced and subsequently the results of the numerical sim-

ulation are presented.
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(a) Domain scheme (b) Finite element meshes

Figure 7.1: Example 1

7.2.1 Analytical Solution

The displacement shapes satisfying the Lamé equation were derived in section 3.2 and for a single
order n are collected in matrix U, defined in eq. (3.30). The functions associated to p-waves are
stored in the first column of the matrix and the s-wave terms appear in the second column. These
basis functions are directly considered as the analytical solution to which the approximated solution
obtained with the implemented method is compared.

The Hankel function of the first kind was chosen as the function W appearing in the matrix U,.
The origin for the evaluation of the displacement shapes corresponds to the origin of the Cartesian
coordinate system visualized in fig. 7.1a. The order n = 4 was selected for the investigated case.
In fig. 7.2 the shapes of the displacement field components associated to the p-wave solution are

visualized. Similarly, in fig. 7.3 both components of the s-wave displacement solution are plotted.

real(u) [m]
real(v) [m]

20 10 -20 10

y [m] 30 o 2 [m] y [m] 30 0 2 [m]

(a) Displacement component u (b) Displacement component v

Figure 7.2: Analytical displacement solution of Example 1, W = H™"), n = 4, p-wave contribution

Due to the special choice of the shape of the investigated domain, the simplified expression

(7.9) for the measure E, which is derived in section 7.1.1, can be used for its evaluation. For the
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real(u) [m]
real(v) [m]

25

y [m] 30 o0 ° z [m] y [m] 30 o0 z [m]

(a) Displacement component u (b) Displacement component v

Figure 7.3: Analytical displacement solution of Example 1, W = H® n = 4, s-wave contribution

particular case, values g = —m/2 and 6; = 0 are substituted into eq. (7.9). The products e and
u” pu appearing in the integrand are expressed in eqgs. (7.7) and (7.8) for the p-wave solution and
by egs. (7.12) and (7.13) for the s-wave solution. The integral is then approximated by the inbuilt
MATLAB function integral.

The shown displacement shapes have certain associated strain fields, which can directly be ob-
tained from the basis E,, defined in eq. (3.33). Afterwards, the related stress fields can be acquired
by application of the material law. Subsequently, using the boundary equilibrium equation (2.35),
the tractions on the boundary of the investigated domain can be recovered. When the problem is
modelled using the hybrid-Trefftz method, these tractions derived from the analytical solutions are

applied as the boundary condition. Further details are discussed in the next section.

7.2.2 Approximated Solution

As was outlined in the previous paragraph, the boundary tractions obtained from the analytical
solution are applied as the loading when the structure is modelled using the implemented method.
Therefore the whole boundary of the domain is considered as the Neumann boundary, which is also
visualized in fig. 7.1a. Firstly, the boundary tractions associated to the p-wave solution, which is
displayed in fig. 7.2, are applied on all the outer edges and the results are compared to the analytical
solution. As the second test case, the boundary tractions derived from the s-wave solution (see fig.
7.3) are considered as the traction boundary condition. For both cases, expression (7.16) is used
for evaluation of the comparison measure F.

The structure is analysed using three different finite element meshes, which discretize the domain
into one, two and four finite elements. The individual meshes are visualized in fig. 7.1b. For each
mesh and each test case (p-wave or s-wave case) simulations for various orders N and M, which
determine the number of terms contained in the domain displacement and boundary traction bases,

are performed. The total number of degrees of freedom, which defines the number of unknowns in
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the final system of equations, can be calculated as
npor = 2ne (2N + 1) + 2np(M + 1). (7.17)

Symbol np denotes the overall number of Dirichlet edges, meaning both inter-element ones as well
as the edges, where the displacement components are prescribed. As all the outer edges are part
of the Neumann boundary for this test case, np stands directly for the number of inter-element

edges. For each mesh the number of Dirichlet edges is listed in tab. 7.2.

Nel 1124
np [0]1]4

Table 7.2: Number of Dirichlet edges for Example 1

The Bessel function of the first kind is chosen as the function W appearing in the definition of the
basis U,,. For the evaluation of the system matrices, local reference frame placed to the geometrical
center of the related element is considered. The number of Gauss points used for the numerical
integration along the individual edges was set to ¢ = 250. Perhaps even fewer quadrature points
would be sufficient, however, the aim was to reduce the error caused by the numerical integration
as much as possible.

The convergence plots for the case, when the domain is discretized using a single element, are
depicted in fig. 7.4. As for this case there are no Dirichlet edges, all the degrees of freedom are
related to the coefficients X multiplying the domain approximation functions. The simulation was
performed for the displacement basis of maximum orders N = 16,17, ..., 30. The total number
of degrees of freedom is then calculated using formula (7.17) and plotted on the x-axis. On the

y-axis, the ratio Epg/FE is plotted.

T — = = — = =

091

08

Erg/E
I
Erp/E

06

0.5

L L L L L L L L L L L 075 L L L L L L L
70 75 80 8 90 95 100 105 110 115 120 70 75 80 8 90 95 100 105 110 115 120

0.4

Npor nNpor
(a) P-wave case (b) S-wave case

Figure 7.4: Example 1: Comparison to the analytical solution, 1 element

It can be seen that for increasing number of terms contained in the displacement basis the

approximated solution converges to the analytical one. For the p-wave case, when N = 24, and
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therefore npor = 98, the error is less than 5%. For the s-wave case, order N = 22, which
corresponds to npor = 90, is required to achieve results with error smaller than 5%.

When the structure is discretized using two finite elements, the boundary tractions are approx-
imated on the single inter-element edge. The convergence plots for both p-wave and s-wave cases
are visualized in fig. 7.5. The analysis is performed for maximum orders M = 7,9,11, 13 of the
polynomial contained in the boundary traction basis. For each order M, the number of terms
contained in the displacement basis is increased, orders in range from N = 10 to N = 21 are
considered. Therefore the individual lines illustrate an increase of the number of terms contained
in the domain displacement basis while the length of the traction basis is fixed. The total number

of degrees of freedom, which is plotted on the x-axis, is calculated using the relation (7.17).

1
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(a) P-wave case (b) S-wave case

Figure 7.5: Example 1: Comparison to the analytical solution, 2 elements

From fig. 7.5a for the p-wave case, it can be noted that for all the considered maximum orders
M, the approximated results tend towards the reference solution, when the length of the domain
approximation basis is increased. Such results indicate that the analytical tractions evaluated at
the inter-element boundary can be sufficiently well approximated by the polynomials with all the
considered maximum orders M. However, this statement does not hold any more when the s-wave
case is analysed. From fig. 7.5b it can be seen that for M = 7 the results converge to value which
is significantly different compared to analytically evaluated one. As the s-wave analytical solution
is more oscillatory compared to the p-wave one, the polynomial of maximum order M = 7 cannot
approximate the related tractions evaluated at the inter-element edge sufficiently well.

In fact, the same behaviour can be observed even for the p-wave case, only in much larger
scale. In fig. 7.6 the results evaluated for domain basis with orders between N = 21 and N = 25
are visualized. One can note that the lines for orders M = 7 and M = 9 also tend towards
values which are larger compared to the analytical solution. However, the error is negligible in
such case, since the analytical tractions are well captured by the polynomial of the related orders.
Nevertheless, the exact value of the analytical solution can be recovered only when both orders N
and M tend to infinity.
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Figure 7.6: Example 1: Comparison to the analytical solution, 2 elements, p-wave case, large scale

From the convergence plots in fig. 7.5 it can be concluded that for the p-wave case, sufficiently
accurate results, that is with error smaller than 5%, are achieved for basis orders M = 7 and
N = 13 and hence for npor = 124. For the s-wave case, similar accuracy is obtained for M = 9
and N = 13, which means npor = 128.

As the last investigated case, the domain is discretized using four finite elements. Results for
both p-wave and s-wave cases are shown in fig. 7.7. The maximum polynomial orders M contained
in the boundary traction basis are M = 4,6,8. Simultaneously the displacement basis dimension

is increased, the maximum included orders vary from N =9 to N = 15.
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(b) S-wave case

Figure 7.7: Example 1: Comparison to the analytical solution, 4 elements

For the p-wave case, it can be concluded that for all the considered boundary traction basis

lengths with maximum orders M, the approximated results converge to values sufficiently close to
the analytical expression. For M = 4 and N = 10, which corresponds to npor = 208, the error is
smaller than 5%.
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For the s-wave case, noticeable mismatch occurs for traction basis with M = 4, however, the
resulting error of the converged value is smaller then 5%, which is acceptable. Already for M = 4
and N = 9, and therefore for npor = 192, the difference compared to the analytical solution is
smaller than 5%.

To give a reader an idea, how the approximated displacement shapes look like, in the following
figures they are visualized for the four-element mesh with bases constructed for orders N = 10 and

M = 4. In fig. 7.8 the p-wave case is shown and in fig. 7.9 the s-wave one is depicted.
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(a) Displacement component (b) Displacement component v
Figure 7.8: Example 1: Approximated displacement shapes, p-wave case, 4 elements, N = 10, M =4
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Figure 7.9: Example 1: Approximated displacement shapes, s-wave case, 4 elements, N = 10, M =4

From the briefly summarized results for the individual meshes and cases, certain trend regarding
the required number of terms included in both domain displacement and boundary traction bases
can be observed. For increasing number of elements, the individual bases need to have less terms to
achieve similar accuracy as was obtained with the coarser mesh. This is an expected behaviour, since

the approximated fields evaluated in smaller domains tend to have less oscillations and therefore
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smaller number of basis functions is necessary for their sufficient approximation. On the other
hand, the total number of degrees of freedom required for a certain accuracy is larger for the finer
meshes. This motivates to model the analysed domain using only few elements but bases with many
terms. However, a drawback of such approach are the numerical difficulties which result in badly
conditioned system of equations. The reason for such behaviour is that high order Bessel functions
tend to get flatter in the vicinity of origin. Therefore, the domain approximation basis U evaluated
at the given location contains values which are due to limited computer precision regarded as zero.
A possible remedy could be the introduction of the scaling of the individual Bessel functions. This
way it could be ensured that the basis functions of all orders have similar maximum amplitudes
within the element domain. However, as this approach was not implemented in the code, for some
cases it is necessary to include more elements in the mesh to decrease the error caused by high
condition number of the global system matrix.

In all the provided plots the approximated measure EFrg tends to converge to a certain value,
when the boundary traction basis order M is fixed and the number of terms contained in the domain
basis is increased. However, as was already discussed, for the finite traction approximation order
M there exists a mismatch between the converged value and the analytically evaluated one. A nice
visualization of such convergence process can be obtained by plotting the inter-element tractions.
These can be derived directly from the stress field associated to the displacement solution. Note
that since the inter-element edge is shared by two elements, two variants of the common tractions
exist. Moreover, as the inter-element tractions are independently approximated based on eq. (3.36),
also such representation of the tractions is available. In fig. 7.10 the normal tractions evaluated at
the inter-element edge are plotted for the case the domain is discretized using two finite elements.
The tractions are evaluated for the s-wave case, the boundary basis order M = 9 is chosen and the
domain approximation basis order is increased from N = 10 to N = 16 with step of two orders.
The associated convergence plot can be found in fig. 7.5b, where it is represented by the red line.
In fig. 7.10 the individual lines correspond to tractions evaluated from the obtained displacement
solution for both adjacent elements, to the approximated boundary tractions and to the analytical

solution. Radius r is plotted on the x-axis.
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Figure 7.10: Example 1: Inter-element normal tractions for varying order IV, s-wave case, 2 elements, M =9

From fig. 7.10a it is apparent that there is a significant deviation between the tractions obtained
from the displacement solution and the ones evaluated from the boundary approximation. In addi-
tion, non-negligible mismatch can be spotted between the tractions associated to the approximated
solution and the analytical ones. From figures 7.10b and 7.10c one can see that for increasing order
N of the domain displacement basis the tractions computed from the boundary approximation and
those related to the obtained displacement solution tend to be more similar to each other and closer
to the analytically evaluated ones. In fig. 7.10d all the representations are in a good agreement,
which indicates the associated orders M and N are sufficient.

The situation, when the maximum order M is not sufficiently high to capture the behaviour
of the real boundary tractions, can be observed for the two-element mesh case for order M = 7.

In fig. 7.5b the related convergence plot is visualized with blue color. For order N = 21, which
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corresponds to npor = 188, the resulting solution seems to be already converged. The normal

tractions evaluated on the inter-element boundary are depicted in fig. 7.11.

43<106

tn [N /m?]

// — — —=Domain, el. 1
o *‘\ J Domain, el. 2
W.?” Boundary approx.
—— Analytical
-8 L L L !
5 10 15 20 25
7 [m]

Figure 7.11: Example 1: Inter-element normal tractions, s-wave case, 2 elements, M =7, N = 21

One can see that the lines representing tractions derived from the displacement solution and
those obtained from the traction approximation have very similar shapes. This implies that for the
given boundary basis order M, the domain basis order N is sufficient. However, from fig. 7.11 it
is obvious that these shapes are remarkably different from the true solution. Further increase of
order N would not solve this issue. In such situation it is necessary to enlarge the boundary basis

order so that the true tractions can be approximated more accurately.

7.3 Example 2: Absorbing Boundary Condition Validation

In this example the implemented absorbing boundary condition approach is validated.

The aim of the absorbing boundary condition technique is to approximate the solution in an
infinite domain by analysing only a finite region. The domain is truncated at certain distance
from the origin of excitation and the absorbing boundary condition is applied on the associated
boundary. The investigated domain for this test case is very similar to the one analysed in Example
1, only the outer radius r; tends to infinity. Moreover, at the radius r, from the origin the absorbing
boundary is placed. The scheme of such structure is depicted in fig. 7.12. The specific values of
the radii are ro = 5m and r, = 25 m.

As was discussed in section 4.2.1, when the Hankel function is used as the function W for the
generation of the displacement basis, the resulting solution also satisfies the Sommerfeld radiation
condition. Therefore, the displacement basis functions considered as the analytical solution in
Example 1 are not only solutions of the governing differential equation but as well fulfil the radiation
condition in infinity. Therefore, they are also considered as the reference solution for this test case.

The procedure of obtaining the approximated solution is similar to the one adopted in Example
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Figure 7.12: Example 2: Domain scheme

1. From the analytical solution, which is the same for both examples, the tractions on the outer
boundary are derived and applied as the loading to the numerical model. However, in this test case,
the Neumann boundary does not include the edge, at which the infinite domain is truncated. This
one is considered as the absorbing boundary and the absorbing boundary condition is enforced
there. In fig. 7.12 the Neumann edges, where the traction boundary condition is applied, are
denoted by I', and the absorbing boundary is marked by symbol I';. In the case the absorbing
boundary is located sufficiently far from origin, the approximated displacement shapes should be
similar to the analytical solutions plotted in figures 7.2 and 7.3.

The quantity F is again chosen as the measure for comparison of the approximated and analytical
solutions. Its reference value can be evaluated using eq. (7.9). The aim is to compare both solution
shapes within the interior domain, therefore the upper limit for the integration in eq. (7.9) is now
replaced by 7,. The finite element approximation Erg is obtained using eq. (7.16).

The considered material properties and the loading frequency are identical to those used in
Example 1 and are listed in tab. 7.1. The simulations are again performed for single-element,
two-element and four-element meshes, which are depicted in fig. 7.1b. The Bessel function of the
first kind is used for the construction of the domain basis and local reference frame located at the
element center is chosen for the evaluation of the system matrices. Also in this example the number
of integration points is set to ¢ = 250.

For each of the p-wave and s-wave test cases and each mesh, simulations for various dimensions of
the domain displacement and boundary traction bases are performed. The number of total degrees
of freedom serves as the measure of complexity of the resulting system of equations and can be

calculated as
nDOF:2nel(2N+1)+2(nD+na)(M—|—1), (718)

where n, denotes the overall number of absorbing edges in the finite element system. Note that when
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absorbing boundary condition is applied, the boundary tractions are additionally approximated on
the related absorbing edges. Therefore the related degrees of freedom need to be included in the
formula. In the single-element mesh, there is one absorbing edge and for both two- and four-element
meshes, two absorbing edges appear in the system.

In figures 7.13, 7.14 and 7.15 the convergence plots for all the considered meshes and for both
p-wave and s-wave cases are presented. The individual lines denote results for the fixed maximum
order M of the polynomial included in the boundary traction basis while the order NV of the domain
basis is increased. For each combination of orders N and M the number of degrees of freedom is
calculated and plotted on the x-axis.

The considered orders N and M are the same as for the cases in Example 1. As the boundary
approximation needs to be applied also in the case of the single-element mesh in this example,

multiple lines for orders M = 4, 6, 8 can be spotted in fig. 7.13.

P : - - - ; . 11

095
0.9
Q) 0.85 R
~ ~
& 3
M o8t &3
0.75 M—=4
M =6 09 M =6
07} M=8 |] M=38
— — - Analytical — — - Analytical
0.65 — ‘ ‘ ‘ ‘ ‘ 0.85 — ‘ ‘ ‘ ‘ ‘
80 90 100 110 120 130 140 80 90 100 110 120 130 140
Npor Npor
(a) P-wave case (b) S-wave case

Figure 7.13: Comparison to the analytical solution, unbounded domain, 1 element

From the provided results, one can note that for the p-wave case, the approximated quantity
Erg tends to converge to value which is very close to the analytically evaluated one, this holds
for all the investigated meshes and all the considered orders M. The plots 7.14a and 7.15a are
very similar to their finite counterparts presented in Example 1. One can note that in fig. 7.13a
the lines for all orders are almost the same. This indicates that the tractions evaluated at the
absorbing boundary might be sufficiently approximated also by the polynomial of lower order than
those considered. Based on the given results one can conclude that for the p-wave case the selected
distance r,, where the infinite domain is cut, is adequately large.

In the case of s-wave solution, the approximated results tend to converge to value which is 3.7%
larger than the analytically evaluated one. Such behaviour can be seen for all the meshes and for
most of the considered orders M. Only for the single-element mesh the order M = 4 and for the
two-element mesh the order M = 7 are insufficient to capture the behaviour of the approximated
boundary tractions. The reason for such overestimation are the spurious reflections, which occur

due to the imposition of the absorbing boundary condition in the finite distance from the origin.
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Figure 7.14: Comparison to the analytical solution, unbounded domain, 2 elements
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Figure 7.15: Comparison to the analytical solution, unbounded domain, 4 elements

Recall that the enforced relation (4.36) between the displacements and tractions only holds when
evaluated in infinity. When imposed in finite distances, it results in an approximation. The resulting
error depends on the characteristics of the target solution. As the s-wave displacement shape is
more oscillatory compared to the p-wave one, truncation of the domain at the same distance r,
yields more severe errors.

The effect of varying distance r,, at which the absorbing boundary is placed, on the resulting
energy is studied next. The four-element mesh is chosen and computations for domains with
various distances r, are performed. The number of terms included in the domain displacement and
boundary traction bases is chosen such that the the convergence is reached and further increase
in orders N and M has negligible impact on the approximated solution. The outcome of the

simulations is depicted in fig. 7.16.
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Figure 7.16: Effect of the distance r, on the approximated solution of Example 2

One can clearly see that as the distance of the absorbing boundary from the origin is increased,
the difference between the analytical and approximated solutions is diminished. Such results are

in agreement with the expected behaviour.

7.4 Example 3: Comparison to Wave Based Method

In the previous two examples the results obtained using the hybrid-Trefftz method were compared
to the known analytical solutions. In both of the cases the approximated solutions were in a good
agreement with the reference one. In this section a more realistic test case is analysed, which is an
infinite half-space loaded by a distributed load gq. The scheme of the domain is visualized in fig.
7.17, where also the dimensions are stated. One can note that in certain distance from origin the

infinite space is truncated and the absorbing boundary is introduced.
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Figure 7.17: Example 3: Domain scheme

In this example also the damping of the structure is considered, the loss factor n together with
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other material and loading parameters are listed in tab. 7.3.

L EINm? | v [plkg/m®] | f[Hz [ g [N/m?] | n |
| 26000000 [ 03] 2000 [ 30 [ 1 [oO.1]
Table 7.3: Material properties, Example 3

Firstly, a number of simulations for various orders of the approximation bases is performed and
the convergence of the results towards a stationary value is checked. Both maximum orders N
and M are increased until the resulting value Frg stabilizes, such procedure enables to estimate
the required number of terms, which need to be considered in the approximation bases. The
approximated displacement shapes associated to the converged values are then compared to the
results obtained with the wave based method. The already existing MATLAB program, developed
at the Chair of Structural Mechanics at Technical University of Munich, was provided for the WBM

simulations.

7.4.1 Hybrid-Trefftz Method Results

For the analysis using the implemented hybrid-Trefftz method, the domain is discretized into ten

finite elements. The mesh is visualized in fig. 7.18.

Figure 7.18: Hybrid-Treffz method mesh for Example 3

For the assessment of the required number of terms, which need to be included in the approx-
imation bases, simulations for orders N = 24,26, ...,42 and M = 13,15, ...,21 were performed.
The resulting approximated quantity EFrp related to each combination of N and M is visualized
in fig. 7.19. The individual lines correspond to the fixed order M of the boundary traction basis
while the order N of the domain displacement basis is increased and plotted on the x-axis. Due to
inclusion of the damping of the structure, the approximated comparison quantity Erg is complex
value, hence the plots for both real and imaginary parts are depicted in figs. 7.19a and 7.19b.

From the shown convergence plots the following statements can be deduced. Firstly, one can note
that the imaginary part varies only marginally for almost all the considered orders M and N. For
orders M = 15,17,19,21 the converged value is almost identical. From the plots for the real part
of Erg, it can be seen that for high order NV the difference between the evaluated lines for all the
considered orders M is only marginal. Hence one can assume that even polynomial of maximum
order M = 13 is able to approximate the boundary tractions sufficiently well. Moreover, as the

convergence rate is higher for the boundary basis of the lower maximum order, accurate results
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Figure 7.19: Example 3: Convergence of Erg, 10 elements

can be obtained also already for smaller number of terms included in the domain approximation
basis. Therefore, it can be concluded that for the highest considered orders, which are M = 21
and N = 42, the most accurate results are obtained. However, in comparison with results for
orders M = 13 and N = 36 the benefit of the additional number of degrees of freedom is minor.
Therefore, the latter orders are assumed to produce sufficiently accurate results and are considered
for the further assessment. The associated number of degrees of freedom is computed using formula
(7.18), where the number of Dirichlet edges is np = 15 and number of absorbing edges is n, = 4.
Therefore, the resulting number of degrees of freedom in the system is 1992. A significant reduction
of the unknowns in the system could be achieved by discretizing the domain with smaller number
of elements. However, without incorporation of further scaling procedures, the system of equation
gets ill-conditioned and the quality of the results for coarser mesh is compromised.

The approximated displacement shapes are depicted in fig. 7.20. In fig. 7.20b, where the v dis-
placement component is visualized, clear wave pattern travelling in the y-direction can be spotted.
Similar displacement shape could be expected from the given loading, therefore the approximated

solution seems to be plausible.

7.4.2 Wave Based Method Results

As was already mentioned, to validate the results of Example 3, the solution obtained using the
implemented hybrid-Trefftz method is compared with the one acquired with the wave based method.
To model the wave propagation in the infinite domain, coupling with integral transform method
is introduced. Therefore, the infinite half-space sketched in fig. 7.17 is divided into the external
and internal regions, the separating boundary coincides with the absorbing boundary I';. In the
internal region, wave based method is used to simulate the wave propagation, while in the external
part the integral transform method is applied. Subsequently, coupling at the circular boundary

(denoted by T',) is enforced. A short introduction into the wave based method modelling together
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Figure 7.20: Example 3: Approximated displacement shapes obtained with hybrid-Trefftz method

with the comparison of both WBM and hybrid-Trefftz method is provided in chapter 5. As was
mentioned previously, an already existing code is provided for the WBM analysis.

The internal region is discretized into three finite elements, the resulting mesh is depicted in fig.
7.21. As this test case was taken from the model examples provided with the WBM code, the
simulation parameters are assumed to be tuned so that the results are sufficiently accurate. The
overall number of degrees of freedom associated to the coupled system of equations is 3324. For

the numerical integration along the boundary edges 102 quadrature points were used.

Figure 7.21: WBM mesh for Example 3

The resulting displacement shapes are shown in fig. 7.22. From the visual comparison with the
solution acquired with the hybrid-Trefftz method, which is depicted in fig. 7.20, strong similarity
can be noticed. Further analysis of the error between both approximations is described in the next

section.

7.4.3 Results Comparison

In this section the difference between the displacement fields obtained with both methods is studied.
Firstly, to get an idea about the similarity of the approximations, the results are displayed in the
same figure. To make the graphs more illustrative and clear, the displacement fields are evaluated
at various vertical sections and plotted afterwards. The z-coordinates xs of the evaluation sections

are chosen as xs = —7, —10, —13, — 16 m. In fig. 7.23 the real part of the v displacement component
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Figure 7.22: Example 3: Approximated displacement shapes obtained with wave based method

associated to both WBM and hybrid-Trefftz method (HT) is visualized for each investigated section.
The y-coordinate of the evaluated point at the vertical line is plotted on the z-axis.

It can be seen that for the sections located at x4 = —7 m and x; = —10 m the vertical dis-
placement components v evaluated using both methods are almost identical. A notable mismatch
can be spotted for the sections located further from the loading and closer to the left boundary.
Nevertheless, also for £z = —13 m and x; = —16 m both methods produce similar results.

In fig. 7.24 the horizontal displacement component u evaluated at the same vertical sections is
visualized. Also for this case both approximations are in a very good agreement, larger deviations
can be noted only at the very left section with 3 = —16 m.

As for the practical cases the displacements at the surface are perhaps the most important
outcome, also these are presented. In fig. 7.25 both components evaluated at the horizontal line
located at ys = 0 m are depicted. As can be seen, also at the surface the approximated displacement

fields look alike, non negligible deferences are apparent in the vicinity of the left absorbing boundary.

The so far discussed results served mainly for the qualitative assessment of the solutions obtained
using both methods. In the following, the mismatch between the displacement shapes is computed
for the whole surface and visualized in fig. 7.26. The absolute error measure is chosen and is
computed as the difference between real parts of the displacement component evaluated using
hybrid-Trefftz method and the one computed with WBM. Hence it is expressed as

Err(u) =real(ugr — uwpwm), (7.19)

Err(v) =real(vgr — vwpm),

where ugr(x,y), var(z,y) and uw gy (,y), vwpam (z,y) denote the displacement components eval-
uated using hybrid-Trefftz method and wave based method.
The already stated conclusions regarding the error distribution can be deduced also from fig.

7.26. The largest deviations occur near the left side of the absorbing boundary, which is located
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Figure 7.23: Example 3: Comparison of the vertical displacement component v evaluated at various vertical sections

close to the source of excitation. Possible reason for this mismatch might be the insufficient distance
between the position of the absorbing boundary and the loading, which may cause spurious wave
reflections. The potential remedy could be to increase the radius at which the absorbing boundary
is located and hence diminish the resulting deviations. However, one has to be aware that in this
example the results are not compared to the true analytical solution, but to the different numerical
approximation. Therefore, the mismatch between both displacement shapes does not imply that
one of the methods produce such error, but rather that the error of both approximations combined
together generates the mentioned deviations.

The average error for each displacement component, which is calculated as the mean of absolute
value of Err(u) or Err(v), is evaluated in tab. 7.4. Furthermore, the maximum of the absolute value

of the individual displacement components evaluated using WBM is also stated and the ratio of the
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average error and the maximum displacement is computed. As can be seen, for both components

‘ f H mean(abs(Err(f))) [m] ‘ max(abs(fwpn)) [m] ‘ mean(abs(Err(f)))/max(abs(fwpsar)) ‘
U 8.6972 e-11 9.3159 e-09 0.0093
v 8.3992 e-11 2.1047 e-08 0.0040

Table 7.4: Example 3: Error evaluation

the average difference between the results obtained with individual methods is less than 1% of the
maximum displacement.

Overall, it can be concluded that both approximated solutions are in a good agreement. The
number of total unknowns in the system for the considered simulation parameters is significantly
larger in the case of the wave based method. However, no basis refinement study was performed
for the WBM results, perhaps similar accuracy could be achieved even for lower number of degrees
of freedom. Therefore, no conclusions regarding the comparison of the computational efficiency of
both methods are stated.
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8 Conclusion

In the thesis the hybrid-Trefftz method is applied as the numerical technique for approximation of
the solution of the spectral form of Lamé equation. The distinctive feature of the method is the
special choice of the shape functions, which are used for approximation of the displacement field
inside the element domain. The basis functions are chosen as the solutions of the governing differ-
ential equation. Therefore, due to the fact that the approximation functions reflect the mechanical
features of the modelled phenomenon, the domain can be discretized into only a few elements. In
addition, the number of required elements is independent of the excitation frequency, which makes
the method applicable even for higher frequencies.

To obtain more accurate results, the number of terms included in the domain basis is increased
instead of refining the element mesh. Such p-refinement technique proves to produce equation
systems with a relatively low number of degrees of freedom compared to conventional methods.
Even local singularities can be modelled without mesh refinement by including special singular
functions in the approximation basis. Moreover, the resulting system matrices appearing in the
final system of equations are constructed by integration along the element boundary instead along
the element domain as is common in e.g. FEM. As a consequence, elements of arbitrary shape and
number of edges may be used for the analysis. In addition, numerical error arising due to mesh
distortion is practically avoided.

What distinguishes the hybrid-Trefftz approach from other subclasses of the Trefftz family is the
way how the boundary conditions and the inter-element continuity conditions are enforced. For this
purpose, the boundary tractions are additionally approximated at the element boundary. Compared
to e.g. wave based method, for which the inter-element and boundary conditions are directly weakly
imposed without introduction of additional degrees of freedom, such approach results in certain
benefits as well as disadvantages. The obvious drawback is the additional number of degrees of
freedom and hence a larger resulting system of equations for the same number of domain basis
functions. On the other hand, the element convexity requirement is completely relaxed, which
makes the method applicable even for more complex domains.

From the obtained results it can be concluded that the quality of the approximated solution
is determined by the number of basis functions included in both the domain displacement as
well as in the boundary traction basis. Moreover, the required number boundary approximation
functions strongly depends on the character of the target solution. The maximum order of the
polynomial contained in the boundary traction basis needs to be high enough so that the shape
of the true inter-element and boundary traction fields is well captured. If this condition is not
fulfilled, even for increasing number of terms contained in the domain displacement basis the

approximated displacement solution does not converge to the true one but rather to a different
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artificial displacement shape. The theoretical convergence to the analytical solution is only reached
when the number of terms contained in both bases tends to infinity.

Even though the efficiency of the method lies in coarse discretization with elements containing a
large number of basis functions, for certain cases this approach yields non-converging results. The
reason is that for large elements both domain and boundary bases need to contain many terms so
that the fields are approximated accurately. As the high order Bessel functions of the first kind
tend to get flatter near the origin, some components of the evaluated displacement basis are close
to zero. As a consequence of the limited computer precision, the final system of equations turns out
to be badly conditioned and therefore producing non-negligible numerical error. Such issue may
be overcome by applying a mesh refinement strategy in order to decrease the number of required
basis functions. Alternatively, scaling of the individual functions based on the dimensions of the
element might improve the numerical stability.

The absorbing boundary condition strategy adopted for modelling of infinite domains implicitly
results in an approximation, when enforced at finite distance from the source of excitation. The
required distance for generation of acceptably accurate results depends on the dissipative nature of
the true displacement shape. The advantage of the absorbing boundary condition approach lies in
the non-restricted choice of the displacement basis functions, which may be constructed from any
of the mentioned solutions of the Bessel equation. When e.g. infinite elements are used for analysis
of unbounded media, the related approximation functions need to implicitly satisfy the radiation
condition and hence their choice is limited.

Based on the comparison of the results with analytical solutions for both bounded and unbounded
domains, the implemented code is considered to be validated. The results are also in a good
agreement with those obtained with the wave based method, which was shown for the example of a
loaded half-space. From the analysis of the error between the approximations acquired using both
methods, it may be observed that the largest deviations occur near the absorbing boundary located
in the closest distance to the loading. Such outcome implies that perhaps the radius at which the
absorbing boundary is placed should be enlarged, in order to decrease the mismatch between both
solutions.

Regarding the possibilities of future extensions of the implemented code, there are many potential
generalizations which may be introduced. A simple and straightforward modification might be
implementation of elements with an arbitrary number of edges, which would enable a user to model
more complex domains without the need of mesh refinement. The second idea for generalization is
to incorporate non-linear material models, since the so far included material law has only limited
applicability. Another possible direction for the future work is the introduction of coupling of the
method to other structural systems, such as Euler-Bernoulli beam. Such extension would enable to
model e.g. wave propagation in the soil under a loaded foundation of a building more accurately.
This idea could be generalized to coupling of the method with the finite element method. This
way the parts of the structure with complex geometry could be analysed using FEM, while the
hybrid-Trefftz method could be applied in large interior regions.

Overall, the hybrid-Trefftz method represents an efficient solution procedure of various engineer-

ing problems and offers some significant advantages compared to other deterministic approaches.
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Nevertheless, one has to be aware of the limitations of its application, since for domains of complex

shapes the preferable efficiency is compromised.
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