
Instructions

Analyze the current inner workings of the SCT library.

Analyze, redesign and reimplement the modular framework and take into account the current and

possible future compression algorithms and their logical chaining in implemented compression

methods.

Analyze, design and implement file format for storing compressed data for the current and possible

future methods and take into account the modular nature of the library from the previous step and the

ability to describe exact parameters of algorithms used during the compression for the purposes of

decompression.

Analyze, design and implement testing.

Electronically approved by Ing. Michal Valenta, Ph.D. on 19 February 2021 in Prague.

Assignment of master’s thesis

Title: Refactoring of modular library of compression methods SCT

Student: Bc. Filip Geletka

Supervisor: Ing. Radomír Polách

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2022/2023

Master’s thesis

Refactoring of modular library of
compression methods SCT

Bc. Filip Geletka

Department of Software Engineering
Supervisor: Ing. Radomı́r Polách

December 15, 2021

Acknowledgements

I want to thank my thesis supervisor Ing. Radomı́r Polách. The door to Mr
Polách’s office was always open whenever I ran into a trouble spot or had
a question about my research or writing. I must express my very profound
gratitude to my parents and my friends for providing me with unfailing support
and continuous encouragement throughout my years of study and through the
process of researching and writing this thesis. My accomplishments would not
have been possible without them. Thank you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on December 15, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Filip Geletka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Geletka, Filip. Refactoring of modular library of compression methods SCT.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Táto diplomová práca sa zaoberá analýzou, návrhom a realizáciou vylepšeńı
v knižnici kompresných algoritmov SCT. Knižnica SCT - Small Compres-
sion Toolkit je modulárna knižnica obsahujúca sadu kompresných algorit-
mov vyv́ıjaných v programovacom jazyku Java. Kompresné algoritmy boli do
knižnice pridávané postupne ako samostatné moduly, a ich celková integrácia
do knižnice SCT je značne obmedzená a nedokončená. Ciel’om týchto vylepšeńı
je plná integrácia existujúcich algoritmov do knižnice SCT s dôrazom na ich
vol’né ret’azenie a znovupoužitie. Patričný dôraz je kladený na ul’ahčenie im-
plementácie budúcich pŕıdavkov do knižnice SCT.

Kĺıčová slova kompresia, dekompresia, spracovanie dát, modulárna knižnica,
refaktoring, konfigurácia

Abstract

This thesis deals with the analysis, design and implementation of improve-
ments in the SCT library of compression algorithms. The SCT - Small Com-
pression Toolkit library is a modular library containing a set of compression
algorithms developed in the Java programming language. Compression algo-
rithms were gradually added to the library as separate modules, and their

vii

overall integration into the SCT library is limited and unfinished. The goal
of these improvements is the full integration of existing algorithms into the
SCT library with an emphasis on their free chaining and reuse. Due emphasis
is placed on facilitating the implementation of future additions to the SCT
library.

Keywords compression, decompression, data processing, modular library,
refactoring, configuration

viii

Contents

Introduction 1
Motivation . 1
Main goals . 2
Thesis structure overview . 2

1 Basic notions 3
1.1 Alphabet . 3
1.2 Symbol . 3
1.3 String . 3
1.4 Codeword . 3
1.5 Code . 4
1.6 Triplet . 4
1.7 Data compression . 4
1.8 Data decompression . 4
1.9 Compression algorithm . 5
1.10 Decompression algorithm . 5
1.11 Compression method . 5
1.12 Model . 5
1.13 Adaptive compression method 5
1.14 Semi-adaptive compression method 5
1.15 Context compression method 6
1.16 Dictionary compression method 6
1.17 Compression ratio . 6
1.18 Entropy . 6
1.19 Redundancy . 7
1.20 Corpus . 7
1.21 Module . 7

2 Analysis 9

ix

2.1 SCT library . 9
2.2 Associated theses . 10
2.3 Used technologies . 10
2.4 Data flow in the library . 11
2.5 Input and output handling . 12
2.6 Implemented algorithms . 14

2.6.1 BWT . 14
2.6.2 MTF . 14
2.6.3 RLE . 15
2.6.4 DCA . 15
2.6.5 Adaptive entropy coders 16

2.6.5.1 Adaptive Arithmetic coding 17
2.6.5.2 Adaptive Huffman coding 18

2.6.6 Triplet coders . 19
2.6.6.1 ACB . 19
2.6.6.2 LZ77 . 20
2.6.6.3 LZ78 . 21
2.6.6.4 LZW . 22
2.6.6.5 LZMW . 22
2.6.6.6 LZAP . 23
2.6.6.7 LZY . 24
2.6.6.8 LZFSE . 25
2.6.6.9 Zstandard . 26

2.6.7 Triplet processors . 27
2.6.7.1 Adaptive Arithmetic coding 28
2.6.7.2 Bit Array Composing 28
2.6.7.3 Finite State Entropy coding 29

2.7 Operational status of the implemented modules 30
2.8 Non-functional requirements . 31
2.9 Functional requirements . 31

3 Design and implementation 33
3.1 Unified module interface . 33

3.1.1 ChainWrapper . 35
3.2 Modular framework . 36

3.2.1 SCTConfig . 36
3.2.2 SCTParams . 38
3.2.3 SCTProvider . 38
3.2.4 ChainUtils . 39
3.2.5 SCTUtils . 40

3.3 Unified file format . 41
3.4 Client . 41
3.5 Testing . 43
3.6 Measurement tool . 43

x

4 Measurements and results 45
4.1 Overview . 45
4.2 Calgary corpus . 45
4.3 Canterbury corpus . 46
4.4 Prague corpus . 46
4.5 Average compression time . 46
4.6 Average compression ratio . 47
4.7 Summary . 47

Conclusion 51
Future work . 52

Bibliography 53

A Acronyms 57

B Contents of enclosed CD 59

xi

List of Figures

2.1 UML class diagram for the ChainBuilder, the ChainAdapter and
the Consumer. 12

2.2 UML class diagram for the FileIO. 13
2.3 UML class diagram for the BWT method. 14
2.4 UML class diagram for the MTF method. 15
2.5 UML class diagram for the RLE method. 15
2.6 UML class diagram for the DCA method. 16
2.7 UML class diagram for the adaptive entropy coders. 17
2.8 UML class diagram for the TripletCoder. 19
2.9 UML class diagram for the ACB method. 20
2.10 UML class diagram for the LZ77 method. 20
2.11 UML class diagram for the LZ78 method. 21
2.12 UML class diagram for the LZW method. 22
2.13 UML class diagram for the LZMW method. 23
2.14 UML class diagram for the LZAP method. 24
2.15 UML class diagram for the LZY method. 25
2.16 UML class diagram for the LZFSE method. 26
2.17 UML class diagram for the Zstandard method. 27
2.18 UML class diagram for the TripletToByteConverter, ByteToTriplet-

Converter and TripletProcessor. 27
2.19 UML class diagram for the Adaptive Arithmetic coding. 28
2.20 UML class diagram for the Bit Array Composing. 29
2.21 UML class diagram for the Finite State Entropy coding. 30

3.1 UML class diagram for the ByteBufferUtils. 34
3.2 UML class diagram for the reworked FileIO. 34
3.3 ChainWrapper’s design. 35
3.4 UML class diagram for the ChainWrapper. 36
3.5 UML class diagram for the SCTConfig. 37
3.6 UML class diagram for the SCTParams. 38

xiii

3.7 UML class diagram for the SCTProvider. 39
3.8 UML class diagram for the ChainUtils. 39
3.9 UML class diagram for the SCTUtils. 40
3.10 UML class diagram for the SCTClient. 42
3.11 UML class diagram for the SCTMeasure. 44

4.1 Average compression time per file for all of the files from the Cal-
gary, Canterbury and Prague corpora. 46

4.2 Average compression ratio per file for all of the files from the Cal-
gary, Canterbury and Prague corpora. 47

4.3 Average changes in compression time and compression ratio be-
tween the old implementation and newly implemented modular
framework. 48

xiv

Introduction

Motivation

Never before in the history of humanity has so much data been produced and
processed in such a short time. Computer data storage getting more affordable
and internet connection getting faster and more worldwide available directly
influences the volumes of these data. In order to be as efficient and as quick as
possible in storing and transferring these data, various compression algorithms
have been invented and implemented. However, only a few of them made
such an impact in the matter of compression speed, reliability and memory
efficiency that they became standardised and widely used in computer science.
Through the years, those compression algorithms became a subject of study
and further improvements for many individuals. The intention is to study,
analyse and understand them and discover new innovative ways of improving
them, or just take inspiration when designing completely new techniques of
compressing data.

In order to make a study of the fundamental compression algorithms as
digestible as possible for new students, a small collection of compression al-
gorithms is being developed and maintained. This collection, called a pro-
gramming library, aims to aid the teaching of the basic principles of data
compression for students engaged in this field of computer science. Interested
students can examine the exact behaviour of implemented algorithms, experi-
ment with them by changing essential parameters for their function, or extend
them to their liking.

However, this library has been subject to various changes and additions,
which often operate only in a closed environment and do not support unre-
stricted interconnections with other modules. This results in a rapidly growing
risk for the overall robustness and functionality of the library. This situa-
tion presents an opportunity to reevaluate original ideas and intentions for
the library and introduce a new approach to the library’s data flow, module
chaining, module integration, testing and facilitation of future expansions.

1

Introduction

Main goals

The main objective of this thesis is to redesign and implement the core func-
tionalities of the Small Compression Toolkit (SCT for short) library and add
new features that will make future additions easier to implement and inte-
grate. The SCT library is a collection of compression algorithms developed
at the Department of Theoretical Computer Science at the Faculty of Infor-
mation Technology at Czech Technical University in Prague [1]. The library
is developed in the Java programming language.

The first task is to analyze and understand the library’s current design and
implemented functionality. The excellent sources for this research are bach-
elor’s and master’s theses whose assignments were to add new compression
methods. Due to a poor emphasis on version control and regression testing,
many implemented modules are non-functioning. The part of the analysis is
to determine what components are inoperational and need a fix.

The next challenge is to redesign and implement changes to a module
chaining and data flow in the library and provide a unified interface to all
modules. Even though it is not a part of the assignment of this thesis, it makes
sense that a reasonable effort should be made to fix as many as possible of the
non-functioning algorithms. After that is done, a new dedicated file format
needs to be implemented to store the output from the SCT library.

The last task is to implement a unit, integration, regression and perfor-
mance testing. The performance measurements on the provided real-life data
shall be presented.

Thesis structure overview

This section briefly explains what is covered in particular chapters and what
information can be found in specific chapters.

Chapter 1 is devoted to defining basic notions important for further chap-
ters.

Chapter 2 focuses on the analysis of the SCT library, its contents, its cur-
rent operational status and the definition of the functional and non-functional
requirements.

Chapter 3 is dedicated to the implementation of required functionality,
with particular emphasis given to meet functional and non-functional require-
ments mentioned in Chapter 2. The end of the chapter focuses on new tools
for unit, integration and performance testing.

Chapter 4 focuses on performance testing. In this chapter, used corpora
are introduced, and compression time and compression ratio are measured on
them. Lastly, the newly implemented modular framework is compared to the
solution that it is deemed to replace.

2

Chapter 1
Basic notions

This chapter is dedicated to defining and explaining fundamental terms rele-
vant to the topics addressed in the following chapters of this thesis.

1.1 Alphabet

Alphabet is a finite set of distinguishable symbols. In the scope of this thesis,
the Extended ASCII table will be used. In this set of symbols, each symbol
is represented by a binary value. This extended version of the ASCII table
supports the representation of 256 different symbols. This is because the
Extended ASCII uses eight bits to represent a character as opposed to seven
in the standard ASCII table. All values of a symbol from the Extended ASCII
table can fit one byte in computer memory, thus making it a perfect candidate
for usage when working with raw data [2].

1.2 Symbol

Symbol is an element from the alphabet. In the scope of this thesis, one symbol
is equivalent to one byte, and since the size of one byte is eight bits, values
for a symbol ranges from 00000000 to 11111111 [3].

1.3 String

String is a finite sequence of symbols from the alphabet. In the scope of this
thesis, string refers to a finite sequence of bytes [3].

1.4 Codeword

Codeword is a sequence of bits. In other words, a codeword is a string over
the binary alphabet [4].

3

1. Basic notions

1.5 Code

Code is a system of rules to convert information, such as a symbol or string,
into another form or representation. Code substitutes string with codeword
from the binary alphabet for the purpose of converting the original information
[4].

1.6 Triplet

In the context of this thesis, the triplet is understood as an n-tuple - an order
set of n elements. Multiple algorithms discussed later in this thesis work with
different n-tuple, ranging from 1-tuple up to 3-tuple [5].

1.7 Data compression

Data compression or encoding is a process of transforming the input string
to the output string of a different format, which in most cases has a shorter
length. This can be very beneficial because it reduces the resources required to
store and transmit the data. Data compression can be lossless or lossy. Loss-
less compression allows the original data to be completely reconstructed from
the compressed data, while lossy compression reduces the size of compressed
data by omitting unnecessary or less important information [6].

Usage of lossless and lossy data compression varies mainly on the type of
the concerned data. For the images, video and audio data, lossy data compres-
sion is often preferred because it brings a significant decrease in compressed
data length, allowing faster data transfers and less use of computer storage.
On the other hand, for most of the other data types, such as text, for exam-
ple, lossless data compression is required because there is none or close to no
information available for the omission [7].

Data compression is subject to a space-time complexity trade-off. It in-
volves trade-offs among various factors, such as the degree of compression,
time complexity and the computational resources required to compress and
decompress the data [3].

1.8 Data decompression

Data decompression or decoding is the process of reversing data compres-
sion. This action transforms compressed data to its initial uncompressed
form. When lossy compression is applied, it is impossible to entirely recon-
struct original data because some information was omitted when initial data
compression happened [6].

4

1.9. Compression algorithm

1.9 Compression algorithm

Compression algorithm or encoding algorithm is a finite sequence of steps
required for data compression [3].

1.10 Decompression algorithm

Decompression algorithm or decoding algorithm is a finite sequence of steps
required for data decompression [3].

1.11 Compression method

Compression method is a name used to label a specific compression algorithm
together with its associated decompression algorithm [8].

1.12 Model

Model is an internal structure used by compression method which contains
information about currently processed input data. For the decompression to
be successful, it must use the identical model as was used for the compression.
Otherwise, it won’t be able to output the matching string as was on the input
for the compression [8].

1.13 Adaptive compression method

Adaptive compression method adapts the data model used during compression
in accordance with the input data. The compressed data must not include the
data model. The decoder builds the same model as the encoder. The encoder
and decoder begin with a default model, yielding poor initial data compres-
sion, but performance improves as they acquire more information about the
processed data. The encoder compresses the next data block first and then
adapts the model in accordance with this block. This order enables the de-
coder to produce an identical model. If the encoder modifies the model before
it compresses the block, the decoder can not decompress the data because the
next block is compressed using an unknown data model [8].

1.14 Semi-adaptive compression method

Semi-adaptive compression method adapts the data model in accordance with
the input data. The compressed data must include the data model. The
decoder restores the model first and then decompresses the data using this
model. Semi-adaptive methods are mostly two-pass compression methods.

5

1. Basic notions

The first pass is used to build the data model, and in the second pass, the
data are compressed using information from the first pass [8].

1.15 Context compression method

Context compression method uses the information about the context of the
input block during compression. The result of compression is dependent on
surrounding blocks [8].

1.16 Dictionary compression method

Dictionary compression method uses a dictionary of phrases during the com-
pression. The dictionary is initialized at the beginning of the compression.
During the compression and decompression, the new phrases are added to the
dictionary. Dictionary compression methods are adaptive compression meth-
ods, and the compressed data includes indices of the phrases in the dictionary
[8].

1.17 Compression ratio

Compression ratio measures the relative reduction in the size of data repre-
sentation produced by a data compression algorithm. This compression ratio
is a ratio of the length of compressed data to the original size of data (Formula
1.1) [9].

Compression ratio = Length of compressed data
Length of original data (1.1)

For instance, the compression ratio of 0.75 means that the compression
algorithm was able to reduce the compressed file size to 75% of its original
size. If the result of this equation is greater than 1, it means compression of
the input data resulted in negative compression. This outcome can often be
observed when using compression algorithms on small files. Many algorithms
need to store necessary information, such as a model, in the compressed data
during the compression. The size of these supporting structures, combined
with the size of the compressed data, can even surpass the size of the initial
input data, thus making the usage of the compression algorithm counterpro-
ductive and unnecessary.

1.18 Entropy

Entropy in data compression means the randomness of the data that are sub-
jected to the compression. The higher the entropy, the worse the compression

6

1.19. Redundancy

ratio. That means the more random the data are, the less effective the com-
pression is going to be [10].

1.19 Redundancy

Redundancy is the existence of additional and unnecessary information in the
data in the sense that if it were dropped, the data would still be essentially
complete, or at least could be completed. Redundancy is related to the de-
gree to which it is possible to compress the data. Lossless data compression
reduces the number of bits used to encode data by identifying and eliminating
statistical redundancy.

The more redundancy there is in data, the more predictability we have,
which means less entropy per encoded symbol and hence the higher compress-
ibility. Since the repeated patterns have been eliminated during the compres-
sion, compressed data are less predictable, and the unwanted redundancy has
been reduced or entirely eliminated [11].

1.20 Corpus

Corpus is a collection of files commonly used for comparing compression meth-
ods. The intend of their usage is to benchmark lossless compression methods
to enable researchers to evaluate and compare them [12]. Among the primary
attributes which are measured are compression ratio, compression time and
decompression time.

1.21 Module

In the scope of this thesis, a module is understood as an independent unit
responsible for a specific task, for example, a compression algorithm, a de-
compression algorithm, a data input and output handler or a logger.

7

Chapter 2
Analysis

This chapter focuses on the analysis of the SCT library, its contents, its cur-
rent operational status and the definition of the functional and non-functional
requirements.

The first couple of sections briefly introduce the SCT library and its pur-
pose, examine the library from the point of view of the used technologies, look
at the data input and output handling, explain data flow in the SCT library
and closely analyse implemented compression methods. Each compression
method and utility from the library is briefly described and accompanied by a
UML class diagram. These diagrams were generated with the IntelliJ IDEA.
IntelliJ IDEA is IDE developed by JetBrains. Integrated development envi-
ronment (IDE for short) is a handy tool for software development that can
provide many valuable utilities to make work more productive, such as inte-
grated VCS, UML class diagram generator or built-in build automation tool
like Apache Maven [13].

The next section assesses the operational status of the implemented mod-
ules.

The last two sections of this chapter focus on specifying functional and non-
functional requirements resulting from the assignment of this thesis. Emphasis
will be given on application requirements and explain what is required and
expected from the final product.

2.1 SCT library

As mentioned in the introduction of this thesis, the SCT library is a collection
of compression algorithms developed at the Department of Theoretical Com-
puter Science at the Faculty of Information Technology at Czech Technical
University in Prague [1]. SCT is an initialism of Small Compression Toolkit.
Its primary intention is to help students interested in data compression with
their learning and provide a playground for their experiments. The library is
developed in the Java programming language. Java was chosen as the main

9

2. Analysis

programming language of this library because of its platform independence,
easiness to learn and use, and because the implementation of the first algo-
rithm, ACB, was not available in Java at that time [5].

2.2 Associated theses

As of today, two master’s and four bachelor’s theses contributing to the SCT
library have been published. The following list briefly introduces them. All
implemented algorithms in these theses will be covered in the following sec-
tions. This master’s thesis is not included in the mentioned count nor in the
following list.

• Implementation of the ACB compression method improvements
in the Java language - This master’s thesis, written by Jǐŕı Bican in
2017, laid the foundation for the SCT library and added the ACB com-
pression method as the first of many to come. Core utilities of the SCT
library still used to this day have been designed and added as a part of
this thesis [5].

• Implementation of the DCA compression method in the Java
language - This bachelor’s thesis, written by Jakub Novák in 2018,
contributed by adding the DCA compression method [14].

• Implementation of the LZ77, LZ78 and LZW compression meth-
ods in the Java language - This bachelor’s thesis, written by Ladislav
Zemek in 2018, contributed by adding the LZ77, LZ78 and LZW com-
pression methods [15].

• Implementation of the LZY, LZMW and LZAP compression
methods in the Java language - This bachelor’s thesis, written by
Ján Bobot in 2019, contributed by adding the LZY, LZMW and LZAP
compression methods [16].

• Implementation of BWC compression method and its variants
in Java programming language - Filip Geletka wrote this bachelor’s
thesis in 2019. Additions include BWT, MTF and RLE compression
methods and Arithmetic and Huffman adaptive entropy coders [17].

• Finite State Entropy Coder for SCT library - This master’s thesis
was written by Ladislav Zemek in 2021. Its implementation includes
LZFSE and ZStandard compression methods and FSE triplet coder [18].

2.3 Used technologies

This section lists used technologies in the SCT library and emphasises the
benefits of their use.

10

2.4. Data flow in the library

• Git - Git is software used for tracking changes and new additions to any
set of files. It is a type of version control system (or VSC for short) used
during the software development cycle, enabling better cooperation with
other team members and bringing new robustness levels to the product.
The SCT library uses GitLab, which is a web-based Git repository [19].
It is hosted at the Faculty of Information Technology at Czech Technical
University in Prague [1].

• Apache Maven - Apache Maven is a software project management
and comprehension tool that can manage a project’s build, reporting,
documentation and testing [20].

• Apache Commons CLI - This library provides an API for parsing
command line options passed to the SCT library. It’s also able to print
help messages detailing the options available for a command line tool.
Commons CLI supports different types of options and is highly cus-
tomizable [21].

• Apache Log4j 2 - This utility is one of the most widely used log-
ging frameworks used in the Java programming language. This tool is
inspired by existing logging solutions, such as predecessor Log4j 1 or
java.util.logging. Compared to printing debug information to the stan-
dard streams, it allows to change logging level and enables fast and
efficient management of the logging files [22].

• JUnit 5 - JUnit 5 is the 5th major version of the programmer-friendly
testing framework for Java and the JVM. The goal is to create an up-
to-date foundation for developer-side testing on the JVM. This includes
focusing on Java 8 and above, as well as enabling many different styles
of testing. JUnit features include assertions for testing expected results,
test fixtures for sharing common test data and test runners for running
tests [23].

2.4 Data flow in the library

The SCT library uses the chain-of-responsibility design pattern for data pro-
cessing. Each compression and decompression algorithm is implemented as
an independent module, which can be freely reused for its task. The mod-
ule chaining is performed by the ChainBuilder class, which creates, ex-
tends and ends the data flow chain with the help of the ChainAdapter class.
ChainAdapter class implements the Chainable interface, which extends Java’s
Consumer interface. The Consumer interface is a functional interface repre-
senting an operation that accepts a single input argument and returns no
result [24].

11

2. Analysis

There are currently two ways of how a chainable module can be imple-
mented. Either the whole class implements the Chainable interface, or one
method from a class has such parameters that it can be chained using Chain-
Builder. In the first case, the input data are passed via the overridden method
accept, which accepts the given input data, processes them, and forwards
them to the Consumer. The second case is more suitable if multiple input
formats can be processed. There are multiple methods in a class that can be
chained. All of the chainable methods from a class has to provide an interface
such that the first parameter of the method is an input object, and the second
parameter is the Consumer.

The primary requirement for a module to be added to the data flow chain
using the ChainBuilder is to take the output from the preceding module as
its input and provide an output that the following chain segment is able to
process.

The UML class diagram for the ChainBuilder, the ChainAdapter and the
Consumer is shown in Figure 2.1.

Figure 2.1: UML class diagram for the ChainBuilder, the ChainAdapter and
the Consumer.

Consumer<U>consumer

Chainable<T, U>

voidaccept(T)

Consumer<T>andThen(Consumer<? super T>)

Consumer<T>

Chainable<T, U>process

Consumer<V>firstProcess

ChainBuilder<U, R, V>chain(BiConsumer<U, Consumer<R>>)

ChainBuilder<U, R, V>chain(Chainable<U, R>)

ChainBuilder<T, U, T>create(BiConsumer<T, Consumer<U>>)

ChainBuilder<T, U, T>create(Chainable<T, U>)

Consumer<V>end(Consumer<U>)

ChainBuilder<T, U, V>

BiConsumer<T, Consumer<U>>biConsumer

Consumer<U>uConsumer

voidaccept(T)

Consumer<U>consumer

ChainAdapter<T, U>

2.5 Input and output handling

Input and output of data to and from the library are handled by FileIO class.
For the compression, instances of this class need only one parameter - the

size of a block. This parameter specifies how big the chunks of loaded data
should be in bytes. FileIO reads chunks of bytes from the specified input
file, wraps them into the ByteBuffer and sends them down the chain for
further processing. While the input file is being processed, the compressed
data chunks are stored in a temporary object in the memory in the form of

12

2.5. Input and output handling

List<byte[]>. After the whole file is processed, this object is written in the
output file at once.

For the decompression, instances of FileIO class do not need any addi-
tional information. All of the data are loaded from the compressed file into the
memory in the form of List<byte[]>. This object is then passed down the
chain for further processing. The first method in the chain parses this object
into smaller ByteBuffers and decompresses them one by one. Decompressed
data are stored in the output file as they are processed, using SaveParsedSin-
gleton class. Singleton design pattern was chosen because it simplifies output
stream handling and makes writing multiple chunks of data into the output
file safer.

In conclusion, memory management is pretty ineffective. When compress-
ing a file, the data are read in chunks, but they are not written in the output
file as they are processed, which means unnecessary memory usage. Due to
this design, the decompression also has to load the whole object into the
memory and only then can it process the data in parts.

The UML class diagram for the FileIO is shown in Figure 2.2.

Figure 2.2: UML class diagram for the FileIO.

SaveParsedSingletoninstance

OutputStreamoutputStream

voidclose()

SaveParsedSingletonget(Path)

voidwrite(ByteBuffer)

SaveParsedSingleton

Loggerlogger

intbufferUnit

voidlogAfterSave(List<byte[]>, Path)

voidopenArray(Path, Consumer<List<byte[]>>)

voidopenObject(Path, Consumer<List<byte[]>>)

voidopenParallel(Path, Consumer<ByteBuffer>)

voidopenParse(Path, Consumer<ByteBuffer>)

voidsaveArray(List<byte[]>, Path)

voidsaveObject(List<byte[]>, Path)

voidsaveParsed(ByteBuffer, Path)

ExecutorServiceexecutorService

FileIO

13

2. Analysis

2.6 Implemented algorithms

This section focuses on already implemented compression methods. More
information, including things such as pseudocodes and usage examples, can
be found in the thesis associated with the particular compression algorithm
as described in Section 2.2.

2.6.1 BWT

The Burrows-Wheeler transform (BWT from now on) is a compression method
used to prepare data for use with data compression techniques such as the
Huffman and the Arithmetic coding. It was invented and described by Michael
Burrows and David Wheeler in 1994. It is based on a previously unpublished
transformation discovered by Wheeler in 1983 [25].

The transform is done by creating a table of all the circular shifts of data
bytes, followed by lexicographical sort and by extracting the last column and
the index of the original data in the set of sorted permutations. The remark-
able thing about the BWT is not that it generates a more easily encoded
output, an ordinary sort would do that, but that it is reversible, allowing the
original data to be reconstructed from the transformed data [17].

The implementation uses the ByteBuffer class both at the input and at
the output. The UML class diagram for the BWT and the InverseBWT is shown
in Figure 2.3.

Figure 2.3: UML class diagram for the BWT method.

voidaccept(ByteBuffer)

Consumer<ByteBuffer>consumer

BWT

voidaccept(ByteBuffer)

Consumer<ByteBuffer>consumer

InverseBWT

2.6.2 MTF

The Move-to-front transform (MTF for short) is a compression algorithm used
to improve the performance of compression techniques by decreasing informa-
tion entropy [26]. It doesn’t compress the data by itself but instead transforms
the input data to help following algorithms, such as RLE, with more efficient
compression [8].

As the name suggests, this compression algorithm uses a list of possible
symbols and modifies this list at every cycle (moving one symbol, the last
used). Long sequences of identical symbols are replaced by as many zeros,
whereas when a symbol has not been used in a long time, it is replaced with
a large number. Thus at the end, the data is transformed into a sequence of
integers. If the data shows a lot of local correlations, then these integers tend

14

2.6. Implemented algorithms

to be small. This algorithm is designed to improve the performance of entropy
encoding techniques [27, 17].

The implementation uses the ByteBuffer class both at the input and at
the output. The UML class diagram for the MoveToFrontEncoder and the
MoveToFrontDecoder is shown in Figure 2.4.

Figure 2.4: UML class diagram for the MTF method.

byte[]alphabetOrder

voidaccept(ByteBuffer)

Consumer<ByteBuffer>consumer

MoveToFrontDecoder

byte[]alphabetOrder

voidaccept(ByteBuffer)

Consumer<ByteBuffer>consumer

MoveToFrontEncoder

2.6.3 RLE

The Run-length encoding (RLE from now on) is a simple and widely used data
compression algorithm that offers excellent compression ratios with the data
that contain lots of redundant symbols [28]. The output of the MTF algorithm
is a perfect example of such data with lower entropy and high redundancy and
thus, making it suitable for use with the RLE algorithm [26].

This algorithm converts consecutive long sequences of identical symbol
runs into a code consisting of the symbol and the number marking the length
of the run. The longer the run, the better the compression ratio [29].

The implementation uses the ByteBuffer class both at the input and
at the output. The UML class diagram for the RunLengthEncoder and the
RunLengthDecoder is shown in Figure 2.5.

Figure 2.5: UML class diagram for the RLE method.

voidaccept(ByteBuffer)

Consumer<ByteBuffer>consumer

RunLengthEncoder

voidaccept(ByteBuffer)

Consumer<ByteBuffer>consumer

RunLengthDecoder

2.6.4 DCA

Data Compression using Antidictionaries (DCA for short) is a semi-adaptive
context compression method using the binary alphabet. The coding of every
symbol (a bit in this case) is dependant on the surrounding symbols, thus
making the DCA a context method. During the compression, DCA uses the
so-called antidictionary - a data structure that holds strings that do not occur
in the input data. Since the antidictionary is specific for every input and needs
to be built independently before the actual compression takes place, the DCA

15

2. Analysis

needs two passes over the input data to compress them. The construction of
the antidictionary is the most time and memory consuming operation of the
DCA method. It is also important to note that the input specific antidic-
tionary needs to be attached to the compressed data after the compression for
the decompression to be possible [14].

The implementation uses the ByteBuffer class both at the input and at
the output. The UML class diagram for the DCA, DCACoder, Antidictionary
and AntidictionaryBuilder is shown in Figure 2.6.

Figure 2.6: UML class diagram for the DCA method.

Loggerlogger

AntidictionaryBuilderADBuilder

DCAParamsparams

Antidictionaryantidictionary

DCACodercoder

booleancompressFirst

booleandecompressFirst

voidcompress(ByteBuffer, Consumer<ByteBuffer>)

voidcompressByPartitions(ByteBuffer, Consumer<ByteBuffer>)

voidcreateAntidictionary(ByteBuffer)

voiddecompress(ByteBuffer, Consumer<ByteBuffer>)

DCA

Loggerlogger

AntidictionaryNodestartNode

AntidictionaryNodecurNode

AntidictionaryNodeprevNode

LinkedList<Integer>bitSequence

List<AntidictionaryNode>forbiddenNodes

booleanendOfBuffer

voidaddWord()

voidbuildAD(ByteBuffer)

Deque<Integer>constructWord(AntidictionaryNode)

voidgetMinimalForbiddenWords(List<ForbiddenWord>)

voidmakeSuffixLink(AntidictionaryNode)

voidprepareFactorTree(AntidictionaryNode)

voidprepareNextWord(BitInputStream)

voidreset()

Antidictionaryantidictionary

List<ForbiddenWord>minimalForbiddenWords

DCAParamsparams

AntidictionaryBuilder

Loggerlogger

EncodingTransducerencoder

DecodingTransducerdecoder

longfileSize

BitOutputStreamWriterwriter

ByteBufferdecode(ByteBuffer)

ByteBufferencode(ByteBuffer)

DCACoder

booleanempty

List<ForbiddenWord>minForbiddenWords

intsize

Antidictionary

2.6.5 Adaptive entropy coders

Two adaptive arithmetic entropy coders are implemented in the SCT library.
These two adaptive compression methods are Adaptive Arithmetic Coding
(Adaptive AC from now on) and Adaptive Huffman Coding (Adaptive HC
from now on). Each of them is closely described in dedicated subsections.

Both of the adaptive compression algorithms use ByteBuffer at the input,
and List<byte[]> at the output. Their associated decompression algorithms
use List<byte[]> at the input, and ByteBuffer at the output. Abstract
classes CoderBWC and DecoderBWC serve as wrappers for both of these coders,
and every new coder added to the SCT library has to implement these two
abstract classes to be sufficient for further use in the library [17].

16

2.6. Implemented algorithms

An open-source library developed by Nayuki outsources both Adaptive
AC and Adaptive HC. [30, 31]. Classes AdaptiveArithmeticEncoder, Adap-
tiveArithmeticDecoder, AdaptiveHuffmanEncoder and AdaptiveHuffman-
Decoder, implement already mentioned abstract classes CoderBWC and De-
coderBWC and slightly adjust data before forwarding them to the external
library for further processing [17]. The associated UML class diagram for
both entropy coders is shown in Figure 2.7.

Figure 2.7: UML class diagram for the adaptive entropy coders.

voidaccept(List<byte[]>)

ByteBufferdecode(byte[])

Consumer<ByteBuffer>consumer

DecoderBWC<T>

List<byte[]>output

voidaccept(ByteBuffer)

byte[]encode(ByteBuffer)

Consumer<List<byte[]>>consumer

CoderBWC<T>

ByteBufferdecode(byte[])

AdaptiveArithmeticDecoder

byte[]encode(ByteBuffer)

AdaptiveArithmeticEncoder

byte[]encode(ByteBuffer)

AdaptiveHuffmanEncoder

ByteBufferdecode(byte[])

AdaptiveHuffmanDecoder

2.6.5.1 Adaptive Arithmetic coding

Arithmetic coding (AC for short) is a form of entropy encoding used in lossless
data compression that allows each symbol to be coded with a non-whole num-
ber of bits (when averaged over the entire data), thus improving the compres-
sion ratio. Arithmetic coding represents the current data as a range, defined
by lower and upper bounds and encodes the whole data into a single number
from this interval, an arbitrary-precision fraction n where 0 ≤ n < 1. Start-
ing with the interval ⟨1, 0), each interval is divided into several subintervals,
which sizes are proportional to the current probability of the corresponding
symbols of the alphabet. The subinterval from the currently coded symbol is

17

2. Analysis

then taken as the interval for the next symbol. The output is a number from
the interval of the last symbol [32].

Adaptive AC is an adaptive compression method that starts with flat prob-
abilities of symbols and updates them after each symbol is processed, thus
making it reflect the statistics of the data being compressed [30]. When the
coder encodes the data, it counts the frequencies of the symbols that have
occurred so far in order to obtain a model of the probabilities for the future
symbols. The coder is called adaptive because the model evolves gradually
while the coder processes its input [17].

2.6.5.2 Adaptive Huffman coding

Huffman coding (HC for short) is a form of entropy encoding based on the
probabilities of the symbols occurring in the alphabet from the input string.
HC encodes symbols into variable lengths, depending on the probability of
each symbol. The symbols which appear more frequently occupy fewer bits
than symbols with less frequency. First, the algorithm counts frequencies
and probabilities of all individual symbols from the alphabet in the input
string. According to these frequencies, it then generates a binary tree, which
has edges with values 0 or 1, and in its leaf nodes, there are symbols from
the input alphabet. It follows the principle that the higher the probability
of symbol, the nearer is the appearance of a node to the root of the tree.
Then these symbols are replaced with binary code, which corresponds to the
concatenation of values of edges, which are passed on the way from the root to
the desired leaf node. Since one of the values 0 or 1 always appears on edges
leading to the right successor (the other to the left successor) and symbols
from the input alphabet are located only in leaf nodes, the resulting code is
a prefix. It is necessary to attach this tree or at least the information about
frequencies of appearance of single symbols in input data to the resulting
output binary sequence. Then the decompression is possible [8].

Adaptive HC is an adaptive compression method that calculates the prob-
abilities dynamically based on recent actual frequencies in the sequence of
symbols from the input alphabet and changes the coding tree structure to
match the updated probability estimates. The coder is called adaptive be-
cause the binary tree is changing simultaneously with the processed input
data in order for the coder to remain optimal for the current probability esti-
mates. Since it permits building the code as the symbols are being processed,
having no initial knowledge of source distribution, only one pass over the data
is required. Another benefit of the one-pass procedure is that the source can
be encoded in real-time [8, 17].

18

2.6. Implemented algorithms

2.6.6 Triplet coders

Triplet coders are modules that produce triplets from the given input data
during the compression and accept triplets and convert them to the original
data during the decompression. Triplet coders are always paired with triplet
processors that accumulate and encode triplets during the compression and
decode the given data into triplets during the decompression.

Each triplet coder must implement the TripletCoder interface. During
the compression, each implementation accepts the ByteBuffer class at the
input and produces triplets at the output. During the decompression, it is the
other way around. The UML class diagram for the TripletCoder is shown in
Figure 2.8.

Figure 2.8: UML class diagram for the TripletCoder.

DecodeFlagdecode(TripletProcessor)

voidencode(Consumer<TripletSupplier>)

TripletCoder

2.6.6.1 ACB

Associative Coder of Buyanovsky (ACB from now on) is an adaptive context
dictionary compression method that substitutes substrings of the string to be
processed with fixed-length indices into a dictionary. The indices, of course,
must be shorter than the substrings it replaces for compression to occur. The
dictionary is not attached to the output of the ACB compression but is built
in the same way during the decompression [33].

During the compression, the current context is compared with items in
the dictionary (with their context part, comparison from right to left) and
the actual content is compared with contents in the dictionary (comparison
from left to right). The ACB then produces triplet (d, cnt, s), where d is
the distance between the best context and the best content, cnt is a number
of matched symbols, and s is the first unmatched symbol in the look-ahead
buffer. The dictionary is then updated, and the look-ahead buffer is shifted
cnt + 1 positions to the right [8].

The UML class diagram for the ACB implementation is shown in Fig-
ure 2.9.

19

2. Analysis

Figure 2.9: UML class diagram for the ACB method.

TripletCodergetCoder(ByteSequence, Dictionary)

DictionarygetDictionary(ByteSequence)

OrderStatisticTree<T>getOrderStatisticTree(Comparator<T>)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

ACBProvider

intdistanceBits

intlengthBits

DictionaryProviderdictionary

TripletCoderProvidercoder

TripletToByteConverterProvidert2bConverter

ByteToTripletConverterProviderb2tConverter

OrderStatisticTreeProviderorderStatisticTree

TripletCodergetCoder(ByteSequence, Dictionary)

DictionarygetDictionary(ByteSequence)

OrderStatisticTree<T>getOrderStatisticTree(Comparator<T>)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

ACBProviderImpl

ACBProviderprovider

booleanfirst

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

voidprint(int, ByteSequence, int, int, int, Dictionary)

voidprintInfo(int, int, int, int, Dictionary)

voidprintSeq(int, ByteSequence)

ACB

2.6.6.2 LZ77

LZ77 is an adaptive dictionary compression method, first introduced in 1977
by Abraham Lempel and Jacob Ziv. Method’s name is derived from the first
letters of the authors’ surnames and the year it was first introduced. It uses
a sliding window divided into search buffer and look-ahead buffer. During
the compression, the sliding window moves from the left to the right of the
input data, and its size is crucial for the method’s effectiveness. Due to its
significantly faster decompression than compression, LZ77 is suitable for usage
in situations when the data are compressed once and then decompressed many
times over [8, 15].

First, the longest prefix of a look-ahead buffer that starts in the search
buffer is found. This prefix is then encoded as triplet (i, j, s) where i is the
distance of the beginning of the found prefix from the end of the search buffer,
j is the length of the found prefix, and s is the first symbol after the prefix in
the look-ahead buffer. The number of bits written to the output data depends
on the used encoding of numbers [8].

The UML class diagram for the LZ77 implementation is shown in Fig-
ure 2.10.

Figure 2.10: UML class diagram for the LZ77 method.

LZ77ProviderParametersparam

booleanfirstCompress

booleanfirstDecompress

TripletFieldIdheaderField

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

LZ77

20

2.6. Implemented algorithms

2.6.6.3 LZ78

LZ78 is an adaptive dictionary compression method, first introduced in 1978
by Abraham Lempel and Jacob Ziv. Same as with the LZ77, the method’s
name is derived from the first letters of the authors’ surnames and the year
it was first introduced. LZ78 works by entering phrases into a dictionary and
then outputting the dictionary index instead of the phrase when a repeated
occurrence of that particular phrase is found. Every step LZ78 will send a
triplet (i, s) to the output, where i is an index of the phrase into the dictionary,
and s is the next symbol following immediately after the found phrase. The
dictionary is represented like the trie with numbered nodes. If we go from
the root to a particular node, we will get the phrase from the input text. In
each step, LZ78 looks for the longest phrase in the dictionary corresponding
to the unprocessed part of the input data. Index of this phrase, together with
the symbol, which follows the found part in the input data, are then sent to
the output. The old phrase extended by the new symbol is then put into the
dictionary. This new phrase is numbered by the smallest possible number.
The coding will start with a tree that has only one node, which represents an
empty string [8].

Unlike LZ77, the time complexity for the compression and the decom-
pression is asymptotically the same, meaning it is fitting for usage when the
compression and the decompression happen about as often [15].

The UML class diagram for the LZ78 implementation is shown in Fig-
ure 2.11.

Figure 2.11: UML class diagram for the LZ78 method.

byte[]addToMap(int, byte)

intmaxDept

DecodeDictionary

intcountOfNodes

List<DecodeNode>listOfNodes

byte[]addToMap(int, byte)

byte[]copyOfPrefix(byte[], byte)

voidprintBytes(byte[])

intcount

intmaxDept

DecodeList

intcountOfNodes

List<DecodeNode>listOfNodes

intborderOfNodes

byte[]addToMap(int, byte)

voidreconstruct(DecodeNode, byte[])

intcount

intmaxDept

DecodeTree

LZ78ProviderParametersparam

booleanfirst

booleanfirstDec

TripletFieldIdheaderField

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

LZ78

EncodeNoderoot

EncodeNodeactual

intcountOfNodes

Consumer<TripletSupplier>output

TripletFieldIdnodeFieldId

TripletFieldIdcharacterFieldId

intborderOfNodes

booleanisByteInMap(byte)

voidprocessByte(byte, boolean)

voidset(Consumer<TripletSupplier>, TripletFieldId, TripletFieldId)

EncodeDictionary

21

2. Analysis

2.6.6.4 LZW

LZW is an adaptive dictionary compression method published by Terry Welch
in 1984 as an improved modification of the LZ78 method published by Lempel
and Ziv in 1978. Its name is derived from the first letters of the authors’
surnames (Lempel, Ziv, Welch). The LZW method outputs triplet (i), where
i is an index of the phrase into the dictionary and, unlike the LZ78 method,
does not need to include the next symbol following immediately after the
found phrase in the output triplet. This, however, causes rapid growth of the
count of entries in the dictionary [15].

The LZW method provided a better compression ratio in most applica-
tions than any well-known method available up to that time and, due to this
advantage, it became the first widely used universal data compression method
on computers. It is used in PDF and GIF file formats [8].

The UML class diagram for the LZW implementation is shown in Fig-
ure 2.12.

Figure 2.12: UML class diagram for the LZW method.

EncodeNoderoot

EncodeNodeactual

intcountOfNodes

intactDept

intmaxDept

Consumer<TripletSupplier>output

TripletFieldIdnodeFieldId

intborderOfNodes

booleanisByteInMap(byte)

voidprintCount()

voidprintMaxDept()

voidprocessByte(byte, boolean)

voidset(Consumer<TripletSupplier>, TripletFieldId, int)

EncodeDictionary

intcountOfNodes

List<DecodeNode>listOfNodes

intprevNode

byteprevB

intborderOfNodes

byte[]addToMap(int)

voidreconstruct(DecodeNode, byte[])

intcount

intmaxDept

DecodeDictionary

LZWProviderParametersparam

booleanfirst

TripletFieldIdheaderField

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

LZW

2.6.6.5 LZMW

LZMW is an adaptive dictionary compression method published by Victor
Miller and Mark Wegman in 1985 as an improved modification of the LZW
method. Its name is derived from the first letters of the authors’ surnames
(Lempel, Ziv, Miller, Wegman). Like the LZW method, the LZMW outputs
triplet (i), where i is an index of the phrase into the dictionary [16]. The

22

2.6. Implemented algorithms

LZW’s problem is that it is slow to adapt to its input since phrases in the
dictionary become only one symbol longer at a time. The LZMW method
overcomes this problem with the principle that it searches the input for the
longest string already in the dictionary (the ”current” match) and adds the
concatenation of the previous match with the current match to the dictionary.
Thus, the dictionary phrases can grow by more than one symbol at a time.
This implies that the LZMW’s dictionary generally adapts to the input faster
than the LZW’s dictionary, usually providing better compression ratios [9].

The UML class diagram for the LZMW implementation is shown in Fig-
ure 2.13.

Figure 2.13: UML class diagram for the LZMW method.

LoggerLOGGER

LZMWProviderprovider

LZMWProviderParametersparams

booleanfirst

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZMW

List<Node>nodes

intmax

intminLength

intminLengthMax

LoggerLOGGER

Nodeadd(Node, byte, boolean)

NodegetNode(int)

voidinitialize()

booleanfull

intlength

LZMWDecodeDictionary

Node[]roots

intmax

intnodeCount

intnextId

intminLength

intminLengthMax

LoggerLOGGER

intINVALID

Nodeadd(Node, byte, boolean)

Node?getNewNode(Node, byte, boolean)

voidinitialize()

Nodesearch(Node, byte)

intavailableID

booleanfull

intlength

LZMWEncodeDictionary

intindexBits

intpartitionSize

booleanvariableIndexSize

TripletCoderProvidercoder

TripletToByteConverterProvidert2bConverter

ByteToTripletConverterProviderb2tConverter

VariableTripletFieldIdindexField

TripletCodergetCoder(ByteSequence)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZMWProviderImpl

TripletCodergetCoder(ByteSequence)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZMWProvider

2.6.6.6 LZAP

LZAP is an adaptive dictionary compression method published by James
Storer in 1988 as an improved modification of the LZMW method. AP in
the method’s name stands for ”All Prefixes”. Instead of adding just the con-
catenation of the previous match with the current match to the dictionary,

23

2. Analysis

as the LZMW does, add the concatenations of the previous match with each
initial substring of the current match [34].

The LZAP method adapts to its input fast, like the LZMW method does,
but eliminates the need for backtracking, a feature that makes it faster than
LZMW. The LZAP adds more phrases to its dictionary than the LZMW does,
so it takes more bits to represent the position of a phrase. At the same time,
the LZAP provides a more extensive selection of dictionary phrases as matches
for the input string, so it ends up compressing slightly better than the LZMW
while being faster (because of the simpler dictionary data structure, which
eliminates the need for backtracking) [9]. Like the LZW and the LZMW
methods, the LZAP method outputs triplet (i), where i is an index of the
phrase into the dictionary [16].

The UML class diagram for the LZAP implementation is shown in Fig-
ure 2.14.

Figure 2.14: UML class diagram for the LZAP method.

LoggerLOGGER

LZAPProviderprovider

LZAPProviderParametersparams

booleanfirst

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZAP

List<Node>nodes

intmax

intminLength

intminLengthMax

LoggerLOGGER

Nodeadd(Node, byte)

Node?getNewNode(Node, byte)

NodegetNode(int)

voidinitialize()

booleanfull

intlength

LZAPDecodeDictionary

Node[]roots

intnodeCount

intmax

intminLength

intminLengthMax

intage

intnodeCountSinceAgeUp

LoggerLOGGER

Nodeadd(Node, byte)

voidageUp()

Node?getNewNode(Node, byte)

voidinitialize()

Nodesearch(Node, byte)

booleanfull

intlength

LZAPEncodeDictionary

TripletCodergetCoder(ByteSequence)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZAPProvider

intindexBits

intpartitionSize

booleanvariableIndexSize

TripletCoderProvidercoder

TripletToByteConverterProvidert2bConverter

ByteToTripletConverterProviderb2tConverter

VariableTripletFieldIdindexField

TripletCodergetCoder(ByteSequence)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZAPProviderImpl

2.6.6.7 LZY

LZY is an adaptive dictionary compression method published by Dan Bern-
stein, and it is an improved modification of the LZAP method. Y in the
method’s name stands for ”Yabba”, which came from the input string origi-

24

2.6. Implemented algorithms

nally used to test the algorithm. The LZW and the LZAP methods preserved
the dictionary’s structure in the state that if any phrase is chosen at any step
during the algorithm, it is also possible to find all phrases’ prefixes in the
dictionary. The LZY method follows the same principle but also ensures that
all of the phrases’ suffixes can be found in the dictionary. Like the LZW, the
LZMW and the LZAP methods, the LZY method outputs triplet (i), where i
is an index of the phrase into the dictionary [16].

The UML class diagram for the LZY implementation is shown in Fig-
ure 2.15.

Figure 2.15: UML class diagram for the LZY method.

LoggerLOGGER

LZYProviderprovider

LZYProviderParametersparams

booleanfirst

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZY

List<Node>nodes

intmax

intminLength

intminLengthMax

LoggerLOGGER

Resultadd(Node, byte)

Node?getNewNode(Node, byte)

NodegetNode(int)

voidinitialize()

Nodesearch(Node, byte)

booleanfull

intlength

LZYDecodeDictionary

Node[]roots

intnodeCount

intmax

intminLength

intminLengthMax

intage

intnodeCountSinceAgeUp

LoggerLOGGER

Resultadd(Node, byte)

voidageUp()

Node?getNewNode(Node, byte)

voidinitialize()

Nodesearch(Node, byte)

booleanfull

intlength

LZYEncodeDictionary

TripletCodergetCoder(ByteSequence)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZYProvider

intindexBits

intpartitionSize

booleanvariableIndexSize

TripletCoderProvidercoder

TripletToByteConverterProvidert2bConverter

ByteToTripletConverterProviderb2tConverter

VariableTripletFieldIdindexField

TripletCodergetCoder(ByteSequence)

ByteToTripletConverter<?>b2TConverter

TripletToByteConverter<?>t2BConverter

LZYProviderImpl

2.6.6.8 LZFSE

LZFSE is a compression method developed by Apple and first published in
2015. It is composed of two parts, the frontend part and the backend part. The
frontend part produces triplets, while the backend part encodes the triplets
themselves. From now on, in the scope of this thesis, the LSFSE method is

25

2. Analysis

understood as the frontend part of the original method published by Apple,
while the backend part is referred to as the Finite State Entropy triplet proces-
sor [18]. This naming convention was proposed by the method’s implementer
into the SCT library, Ladislav Zemek, simply because the frontend part of the
LZFSE method does not have an official dedicated name, while the backend
part can be referred to by its functionality - Finite State Entropy encoding
triplet processor, which will be discussed in the next section dedicated to the
triplet processors. So, in conclusion, the LZFSE method and Finite State En-
tropy encoding triplet processor from the scope of this thesis combined give
us the LZFSE method developed by Apple.

The LZFSE is a method similar in functionality to the LZ77. It also oper-
ates with a sliding window divided into search buffer and look-ahead buffer.
Compared to the LZ77 method, the main difference is that if it fails to find
the prefix longer than the method’s parameter K, the LZFSE then skips this
prefix and remembers how big the skipped part was. If a sufficiently long
prefix is subsequently found, the method produces a triplet (l, s, i, j), where
l is the length of s, s is a string of skipped symbols, i is the length from the
beginning of the search buffer to the beginning of the prefix and j is the length
of the prefix [18].

The UML class diagram for the LZFSE implementation is shown in Fig-
ure 2.16.

Figure 2.16: UML class diagram for the LZFSE method.

LZFSEProviderParametersparam

booleanfirstCompress

booleanfirstDecompress

TripletFieldIdheaderField

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

LZFSE

2.6.6.9 Zstandard

Zstandard is a compression method developed by Yann Collet at Facebook and
published in 2015. Same as the LZFSE method, it is composed of two parts,
the frontend part and the backend part. The frontend part is represented by
the LZ77 method, and the Finite State Entropy triplet processor represents
the backend part [18].

In the scope of this thesis, the LZ77 and the Zstandard triplet coders have
the same functionality, and the Zstandard triplet coder differs in only a few
lines of code, such as the logger messages.

The UML class diagram for the Zstandard implementation is shown in
Figure 2.17.

26

2.6. Implemented algorithms

Figure 2.17: UML class diagram for the Zstandard method.

LoggerLOGGER

LZ77ProviderParametersparams

booleanfirstCompress

booleanfirstDecompress

TripletFieldIdheaderField

voidcompress(ByteBuffer, Consumer<TripletSupplier>)

voiddecompress(TripletProcessor, Consumer<ByteBuffer>)

ZStandard

2.6.7 Triplet processors

Triplet processors are modules that accept triplets passed from the triplet
coders during the compression and encode them. During the decompression,
they decode the given data into triplets and pass them to the triplet coders.

Each triplet processor is split into two parts, the encoder, which is used
during the compression, and the decoder, which is used during the decompres-
sion. Every encoder extends the abstract class TripletToByteConverter, and
every decoder extends the abstract class ByteToTripletConverter. Both of
these abstract classes implement the TripletProcessor interface. During
the compression, each triplet processor accepts triplets at the input and pro-
duces the ByteBuffer class at the output. During the decompression, it is the
other way around. The UML class diagram for the TripletToByteConverter,
ByteToTripletConverter and TripletProcessor is shown in Figure 2.18.

Figure 2.18: UML class diagram for the TripletToByteConverter, Byte-
ToTripletConverter and TripletProcessor.

Map<Integer, T>map

List<byte[]>bytes

intsegmentSize

voidaccept(List<byte[]>)

TcreateNew(TripletFieldId, List<byte[]>)

intdecompress(T)

intread(TripletFieldId)

intread(TripletFieldId, CodingInfo)

intreadInt(T)

voidwrite(TripletFieldId, int)

voidwrite(TripletFieldId, int, CodingInfo)

Consumer<TripletProcessor>consumer

intsize

ByteToTripletConverter<T>

Map<Integer, T>map

intsegmentSize

voidaccept(TripletSupplier)

voidcompress(T, int)

TcreateNew(TripletFieldId)

byte[]getArray(T)

intread(TripletFieldId)

intread(TripletFieldId, CodingInfo)

voidterminate()

voidwrite(TripletFieldId, int)

voidwrite(TripletFieldId, int, CodingInfo)

Consumer<List<byte[]>>consumer

intsize

TripletToByteConverter<T>

intread(TripletFieldId)

intread(TripletFieldId, CodingInfo)

voidwrite(TripletFieldId, int)

voidwrite(TripletFieldId, int, CodingInfo)

intsize

TripletProcessor

27

2. Analysis

2.6.7.1 Adaptive Arithmetic coding

Adaptive Arithmetic coding triplet processor utilises the same algorithm as is
used in the triplet coder Adaptive Arithmetic coding. Also, the same open-
source library developed by Nayuki is used in both the triplet coder and the
triplet processor [5, 30]. While the Adaptive Arithmetic coding triplet coder,
discussed in Subsection 2.6.5.1, encodes the input data as a whole, its triplet
processor counterpart chooses a different approach. It creates a separate coder
instance for every element of triplet, allowing Adaptive Arithmetic coding
triplet processor to have a separated frequency table for each alphabet, thus
achieving better compression [5].

During the compression, the AdaptiveArithmeticEncoder class encodes
the triplet’s elements, while the AdaptiveArithmeticDecoder class is used
during the decompression. The UML class diagram for the Adaptive Arith-
metic coding triplet processor is shown in Figure 2.19.

Figure 2.19: UML class diagram for the Adaptive Arithmetic coding.

Collection<Runnable>onTerminate

int[]lengthFreq

voidcompress(AdaptiveArithmeticCompress, int)

AdaptiveArithmeticCompresscreateNew(TripletFieldId)

byte[]getArray(AdaptiveArithmeticCompress)

voidterminate()

voidwrite(TripletFieldId, int)

voidwrite(TripletFieldId, int, CodingInfo)

AdaptiveArithmeticEncoder

int[]lengthFreq

AdaptiveArithmeticDecompresscreateNew(TripletFieldId, List<byte[]>)

intdecompress(AdaptiveArithmeticDecompress)

intread(TripletFieldId, CodingInfo)

intreadInt(AdaptiveArithmeticDecompress)

AdaptiveArithmeticDecoder

Loggerlogger

ByteArrayOutputStreambyteOut

BitOutputStreambitOut

ArithmeticEncoderenc

FrequencyTablefreq

inteof

byte[]array()

voidcompress(int)

voidterminate()

FrequencyTablefreqeuencyTable

AdaptiveArithmeticCompress

Loggerlogger

FrequencyTablefreq

inteof

ArithmeticDecoderdec

intdecompress()

FrequencyTablefreqeuencyTable

AdaptiveArithmeticDecompress

2.6.7.2 Bit Array Composing

Bit Array Composing takes the triplet value and stores it into a byte array,
buffering and aligning bits. It does not compress the given triplets and simply
accumulates them behind each other into the output byte array. This triplet
processor was implemented for comparison with Adaptive Arithmetic coding,
to see how much more efficient it is than using no coding at all [5].

During the compression, the BitArrayComposer class encodes the triplet’s
elements, while the BitArrayDecomposer class is used during the decompres-

28

2.6. Implemented algorithms

sion. The UML class diagram for the Bit Array Composing triplet processor
is shown in Figure 2.20.

Figure 2.20: UML class diagram for the Bit Array Composing.

ByteArrayOutputStreamarrayOutputStream

BitStreamOutputStreambitOutputStream

booleandoReturn

voidcompress(BitArrayComposerInner, int)

BitArrayComposerInnercreateNew(TripletFieldId)

byte[]getArray(BitArrayComposerInner)

voidterminate()

BitArrayComposer

BitStreamOutputStreamoutputStream

intbitSize

voidwrite(int)

BitArrayComposerInner

ByteArrayInputStreambais

BitStreamInputStreambsis

ByteArrayDecomposerInnercreateNew(TripletFieldId, List<byte[]>)

intdecompress(ByteArrayDecomposerInner)

intreadInt(ByteArrayDecomposerInner)

BitArrayDecomposer

BitStreamInputStreaminputStream

intbitSize

intread()

ByteArrayDecomposerInner

2.6.7.3 Finite State Entropy coding

Finite State Entropy (FSE from now on) coding triplet processor is a member
of the family of Asymmetric numeral systems (ANS for short) entropy encod-
ings introduced by Jaros law Duda. ANS combines the compression ratio of
arithmetic coding (which uses a nearly accurate probability distribution) with
a processing cost similar to that of Huffman coding [18].

The basic idea of ANS is to encode information into a single natural num-
ber, x. In the standard binary number system, we can add a bit s of infor-
mation to x by appending s at the end of x, which gives us x′ = 2x + s.
For an entropy coder, this is optimal if P (0) = P (1) = 1/2. ANS generalizes
this process for arbitrary sets of symbols with an accompanying probability
distribution. Instead of using multiplication, an operation quite costly on pro-
cessing resources, Finite State Entropy coding triplet processor constructs a
finite-state machine to operate on a large alphabet, thus achieving excellent
compression ratio and compression and decompression times. The finite-state
machine used by the FSE is often represented as a table, so the FSE is some-
times called table ANS (tANS) [35].

During the compression, the FSEEncoder class encodes the triplet’s ele-
ments, while the FSEDecoder class is used during the decompression. The
UML class diagram for the Finite State Entropy coding triplet processor is
shown in Figure 2.21.

29

2. Analysis

Figure 2.21: UML class diagram for the Finite State Entropy coding.

Loggerlogger

ByteArrayOutputStreambyteOut

BitOutputStreambitOut

FSEEncoderenc

Stack<Integer>dataStore

Stack<Integer>compressedDataReverse

Map<Integer, FSEEncoderEntry>encodeTable

Map<Integer, FSEDecoderEntry>decodeTable

FSEFrequencyTablefreq

inteof

intcompressBuffer

intbitCount

longallBits

byte[]array()

voidcompress()

voidcomputeDecodeTable()

voidcomputeEncodeTable()

voidincrement(int)

voidterminate()

voidwrite(int, int)

voidwriteDecodeTable()

voidwriteInt(int)

voidwriteStraight(int, int)

FrequencyTablefreqeuencyTable

FSECompress

BitOutputStreamoutput

Collection<Runnable>onTerminate

int[]lengthFreq

voidcompress(FSECompress, int)

FSECompresscreateNew(TripletFieldId)

byte[]getArray(FSECompress)

voidterminate()

voidwrite(TripletFieldId, int)

voidwrite(TripletFieldId, int, CodingInfo)

FSEEncoder

BitStreamInputStreaminput

FSEDecompresscreateNew(TripletFieldId, List<byte[]>)

intdecompress(FSEDecompress)

intread(TripletFieldId, CodingInfo)

intreadInt(FSEDecompress)

FSEDecoder

Loggerlogger

Map<Integer, FSEDecoderEntry>decodeTable

Queue<Integer>dataStore

inteof

BitStreamInputStreamdec

intL

intnbK

intnbSymbols

intnbDelta

intactualState

intsizeOfDecodeTable

intsizeOfUncompressedData

voiddecodeAllData()

intdecompress()

voidreadDecodeTable()

intreadInt()

FSEDecompress

2.7 Operational status of the implemented
modules

During the library’s lifetime, countless new additions have been implemented.
A lot of them have not only added new modules but also modified the existing
ones. These modifications have often not been sufficiently tested due to ne-
glected tests, and some of them have quietly brought errors into the codebase.
The following list lists discovered non-functioning modules in the SCT library.

• ACB - The use of the LZW module can sometimes result in an error.
The method functions as expected if used on regular plain text files but
fails if used on more complex data, such as a picture or an audio file.

• DCA - The use of the DCA module results in an infinite loop during
the decompression.

30

2.8. Non-functional requirements

• LZAP - The use of the LZAP module results in an error if the input
file is bigger than the specified size of the working buffer. This means
that the LZAP module works correctly only if it can process the whole
input file in one chunk.

• LZW - The use of the LZW module results in an error during the
decompression.

2.8 Non-functional requirements

Non-functional requirements refer to constraints and behavioural properties of
the system. They specify criteria that can be used to judge the operation of a
system rather than specific behaviours. A typical non-functional requirement
contains a unique name and number and a brief summary. This information
is used to understand better why the requirement is needed and can be used
to track the requirement through the development of the system.

• N1 SCT library - Implementation has to be done as a part of the
Small Compression Toolkit library.

• N2 Java programming language - Implementation has to be done
in Java programming language which is the programming language used
to develop SCT library.

• N3 Documentation - Implementation has to be appropriately and
sufficiently documented, and this documentation has to be compliant
with documentation standards for Java programming language.

• N4 Readability - The created source code has to be easily readable
and has to follow Java programming language conventions.

• N5 Extensibility - Implementation has to be done in a way that future
extensions could easily be developed and utilised in systems without
losing existing capabilities.

• N6 Testability - Implementation has to be done in a way that it can
be easily tested so the chance of finding faults in the library is high.

2.9 Functional requirements

Functional requirements specify a function that a system or system component
must be able to perform. They refer to services that the system should provide.
A typical functional requirement contains a unique name and number and
a brief summary. This information is used to understand better why the
requirement is needed and can be used to track the requirement through the
development of the system.

31

2. Analysis

• F1 Unified module interface - Implement a unified module interface
that will be used by all of the implemented modules in the SCT library.
The unified module interface shall allow random and free chaining of the
implemented modules without any constraints.

• F2 File format - Implement a unified file format that will be used for
the whole SCT library, and all of the implemented modules will work
with it. The file format has to be easily expandable to support future
additions to the library.

• F3 Modular framework - Implement a new modular framework for
the SCT library that will use the new unified module interface and save
a processed file under the unified file format.

• F4 Client - Implement a client which can be used to run the application
from the command-line interface. The functionality of this client can be
controlled by parameters or a configuration file.

• F5 Tests - Implement automated tests which can be run in order to
assess the functionality and reliability of the library.

• F6 Measurement tool - Implement a measurement tool that can be
used to compare compression algorithms on the same input. Input can
be a file or a folder, and in the case of a folder, all subfolders shall
be processed recursively. The output of this measurement tool shall be
saved in the standard and familiar file format for better future processing
of the results.

32

Chapter 3
Design and implementation

This chapter is dedicated to the implementation of required functionality, with
particular emphasis given to meet functional and non-functional requirements.
The assignment of this thesis was to redesign and implement the SCT library’s
modular framework and take into account the current and possible future
modules. This chapter deals with this process and explains the steps needed
to fulfil the assignment.

The first section is dedicated to designing and implementing the unified
module interface. The second section shows the design and integration of the
new unified interface into the SCT library and the implementation of the new
modular framework. The third section deals with the implementation of the
unified file format for the files produced by the SCT library. The fourth section
is dedicated to implementing the command-line client for the SCT library
together with a run configuration file for this client. The penultimate section
introduces tests to the SCT library, and the last section shorty introduces the
new measurement tool that will be used to measure compression algorithms’
performance.

3.1 Unified module interface

The crucial task when designing the unified interface for the modules is to
make sure that the interface is simple to understand, easy to use and that it
makes sense in the context of the library. The SCT library works with raw
data read from files as bytes. As shown in the Chapter 2 of this thesis, there
are currently three different interfaces between modules - triplets, ByteBuffer
and List<byte[]>.

First of all, let’s deal with the List<byte[]>. The list of byte arrays is used
as the output of the TripletToByteConverter class, which is used during the
compression to encode triplets, and the input of the ByteToTripletConverter
class, which is used during the decompression to decode data into triplets.
This is by triplet’s design and can not be changed. The easiest and most

33

3. Design and implementation

straightforward way of how to get rid of the List<byte[]> is to implement a
simplistic converter. This converter is implemented in ByteBufferUtils class
and is called after the triplets are encoded during the compression or before
the decoding of the triplets takes place during the decompression. The UML
class diagram for the ByteBufferUtils class is shown in Figure 3.1.

Figure 3.1: UML class diagram for the ByteBufferUtils.

LoggerLOGGER

List<byte[]>byteBufferIntoListOfByteArrays(ByteBuffer)

ByteBufferlistOfByteArraysIntoByteBuffer(List<byte[]>)

ByteBufferUtils

Since the lists of byte arrays are not used by the TripletToByteConverter
and ByteToTripletConverter classes anymore, there is only one place left
where they are used - FileIO class. The author of this class decided to
use them because, at the time of the initial implementation of the FileIO
class, there was no need for a more robust solution. However, during the
SCT library’s lifecycle, many new extensions have been added to the library,
and the authors of those additions chose the easiest way of integrating to
the library - modifying interfaces of their modules to match those used by
the FileIO class, instead of completely redesigning the FileIO class. This
technical debt can be finally taken care of, and the UML class diagram for the
reworked FileIO class is shown in Figure 3.2.

Figure 3.2: UML class diagram for the reworked FileIO.

LoggerLOGGER

intbufferSize

voidopenParallel(Path, Consumer<ByteBuffer>)

voidopenParse(Path, Consumer<ByteBuffer>)

voidreadByteBufferFromFile(Path, Consumer<ByteBuffer>)

SCTParams?readSCTHeaderFromFile(String)

voidsaveByteBufferIntoFile(ByteBuffer, Path)

voidsaveByteBufferIntoFile(ByteBuffer, Path, SCTParams)

voidsaveParsed(ByteBuffer, Path)

ExecutorServiceexecutorService

FileIO

SaveByteBufferIntoFileSingletoninstance

booleanwriteHeader

FileOutputStreamfileOutputStream

DataOutputStreamdataOutputStream

SCTParamsparams

voidclose()

SaveByteBufferIntoFileSingletonget()

SaveByteBufferIntoFileSingletonget(Path)

SaveByteBufferIntoFileSingletonget(Path, SCTParams)

voidwrite(ByteBuffer)

SaveByteBufferIntoFileSingleton

34

3.1. Unified module interface

This change leaves only triplets and the ByteBuffer class as modules’
interfaces. Since triplets are exclusively used only between triplet coders and
triplet processors, the simple wrapper can wrap these two module types and
provide a unified module interface to the outside environment. This wrapper
is implemented in the ChainWrapper class and is presented in the following
subsection. This last necessary change leaves only one last interface type in
the SCT library - the ByteBuffer class, and thus the unified module interface
is finally achieved. Due to its simplicity, the ByteBuffer class is an excellent
solution for the foreseeable future. It wraps raw bytes into a Java class and
provides useful operations upon them.

3.1.1 ChainWrapper

ChainWrapper, the same as any other module which wants to be part of the
processing chain, implements the Chainable interface. This module encap-
sulates two succeeding chain links that exchange triplets between them, the
triplet coder and the triplet processor, and provides a unified interface that
operates with the ByteBuffer class. ChainWrapper’s design is illustrated in
Figure 3.3.

Figure 3.3: ChainWrapper’s design.

triplets ByteBufferByteBuffer

ChainWrapper

Triplet
coder

Triplet
processor

ChainUtils class, responsible for adding new links to the chain and dis-
cussed later, recognises that two succeeding chain links exchange triplets and
calls the wrapTwoChainLinks method, which returns desired instance of the
ChainWrapper class. This instance is then added to the chain in the same way
as any other module from the SCT library. During the compression and the
decompression, the ChainWrapper forwards data to the two modules encapsu-
lated in the ChainWrapper. The ChainWrapper class is implemented with an
emphasis on its extensibility, and if any new triplet coder or processor is added
to the SCT library, very minor and simple adaptations have to be made to its
implementation. The UML class diagram for the ChainWrapper is shown in
Figure 3.4.

35

3. Design and implementation

Figure 3.4: UML class diagram for the ChainWrapper.

LoggerLOGGER

ChainAdapter<ByteBuffer, TripletSupplier>firstModuleCompression

TripletToByteConverter<?>secondModuleCompression

ByteToTripletConverter<?>firstModuleDecompression

ChainAdapter<TripletProcessor, ByteBuffer>secondModuleDecompression

List<byte[]>data

voidaccept(ByteBuffer)

ChainWrapperwrapTwoChainLinks(AlgorithmIdentifiers, AlgorithmIdentifiers, SCTProviderImpl)

ChainWrapperwrapTwoChainLinksCoderProcessor(AlgorithmIdentifiers, AlgorithmIdentifiers, SCTProviderImpl)

ChainWrapperwrapTwoChainLinksProcessorCoder(AlgorithmIdentifiers, AlgorithmIdentifiers, SCTProviderImpl)

Consumer<ByteBuffer>consumer

ChainWrapper

Consumer<U>consumer

Chainable<T, U>

voidaccept(T)

Consumer<T>andThen(Consumer<? super T>)

Consumer<T>

3.2 Modular framework

All modules now have the same interface at the input and the output. How-
ever, the SCT library does not currently have any framework that would allow
free chaining of all modules. Up to now, every new extension to the library
was implemented in a separate package, and every one of them has an individ-
ual client, parameter class and provider class. This approach is unsustainable
and highly limits the modules’ usability and extensibility.

The newly implemented modular framework solves all of the limitations of
the old solution and is designed to ease adding future extensions to the library.
The following few subsections of this section are dedicated to describing all of
the essential classes that together make up the new modular framework that
is supposed to bring robustness and clarity to the SCT library.

3.2.1 SCTConfig

This class contains all necessary enumerations needed for the correct con-
figuration of the SCT library for the compression and decompression needs.
The SCTConfig class also specifies the extensions for the files compressed and
decompressed by the SCT library.

Enumeration AlgorithmIdentifiers defines constants that are used to
identify compression methods within the modular framework itself. Every
new compression method to the library must be added to this enumeration.

36

3.2. Modular framework

If the new addition is either a triplet coder or triplet processor, then it must
be appropriately marked as such in AlgorithmIdentifiers enumeration.

Enumeration PredefinedChains contains processing chains that were part
of the library even before of the implementation of the new modular frame-
work. This enumeration exists purely for legacy reasons, and every one of
these predefined chains covers one compression method implementation that
was part of one of the library’s associated theses. This enumeration comes in
handy when comparing different compression methods that are part of this
library on the same input data, such as corpora.

The new modular framework can also be configured with the configuration
file. File sct default.conf contains default configuration, such as the size of
the block. Each constant from enumeration ConfigFileKeys from the SCT-
Config class specifies keys that can be used to configure compression methods
from the library.

The UML class diagram for the SCTConfig class is shown in Figure 3.5.

Figure 3.5: UML class diagram for the SCTConfig.

StringextensionDecompressed

StringdefaultConfigFileName

StringextensionCompress

StringextensionDecompress

SCTConfig

BLOCK_SIZE

MEASURE_STATS

COMPRESS

VALIDATE_COMPRESS

LOGGER_LEVEL

PATH

CHAIN

LZ77_DISTANCE

LZ77_LENGTH

LZ77_L

LZ78_DISTANCE

LZAP_LENGTH

LZFSE_DISTANCE

LZFSE_LENGTH

LZFSE_LENLITERALS

LZFSE_MINNUMOFLITERALS

LZFSE_L

LZMW_LENGTH

LZW_DISTANCE

LZY_LENGTH

ZSTD_DISTANCE

ZSTD_LENGTH

ZSTD_L

DCA_MAXMFWLENGTH

DCA_BITLENGTH

DCA_COMPRESSBYPARTITIONS

ACB_DISTANCE

ACB_LENGTH

ACB_INTERNALTRIPLETCODER

ACB_ORDERSTATISTICTREE

ConfigFileKeysvalueOf(String)

ConfigFileKeys[]values()

ConfigFileKeys

ACB

ARI

BWT

DCA

HUF

LZ77

LZ78

LZAP

LZFSE

LZMW

LZW

LZY

MTF

RLE

TAAC

TBAC

TFSE

TITB

ZSTD

booleanisDefinedAlgorithmIdentifier(String)

booleanisTripletCoder(AlgorithmIdentifiers)

booleanisTripletProcessor(AlgorithmIdentifiers)

AlgorithmIdentifiersvalueOf(String)

AlgorithmIdentifiers[]values()

StringfullName

AlgorithmIdentifiers[]tripletCoders

AlgorithmIdentifiers[]tripletProcessors

AlgorithmIdentifiers

ACB

BWC

DCA

LZ77

LZ78

LZAP

LZFSE

LZMW

LZW

LZY

ZSTD

PredefinedChainsvalueOf(String)

PredefinedChains[]values()

AlgorithmIdentifiers[]algorithmIdentifiers

PredefinedChains

37

3. Design and implementation

3.2.2 SCTParams

This class holds all parameters necessary for the correct functionality of the
modular framework, such as for creating an instance of the SCTProvider class.
These parameters are set by the user via command-line interface or config file
and used when compressing and decompressing files. Since the SCTParams
class aggregates all of the essential variables used by the compression methods
during the compression, it is attached to the compressed file as a header that
is later parsed and used during the decompression.

The UML class diagram for the SCTParams class is shown in Figure 3.6.

Figure 3.6: UML class diagram for the SCTParams.

LoggerLOGGER

ACBProviderParametersACBParams

DCAProviderParametersDCAParams

LZ77ProviderParametersLZ77Params

LZ78ProviderParametersLZ78Params

LZAPProviderParametersLZAPParams

LZFSEProviderParametersLZFSEParams

LZMWProviderParametersLZMWParams

LZWProviderParametersLZWParams

LZYProviderParametersLZYParams

ZStandardProviderParametersZStandardParams

intblockSize

AlgorithmIdentifiers[]chainLinks

booleancompress

StringfileName

LevelloggerLevel

booleanmeasureStats

Stringpath

booleanvalidateCompress

SCTParams

3.2.3 SCTProvider

The idea behind this component is to decouple initialization logic from exe-
cution logic, so the compression and the decompression run solely with con-
figured modules and are not delayed by initialization during the runtime.
SCTProvider interface is a form of data provider that accepts specified run
configuration in the form of the SCTParams instance, initializes modules’ con-
structors using these parameters, and provides them under a unified interface.
Class SCTProviderImpl implements the SCTProvider interface and is instan-
tiated using the passed parameters during the compression and the decom-
pression.

38

3.2. Modular framework

The UML class diagram for the SCTProvider interface is shown in Fig-
ure 3.7.

Figure 3.7: UML class diagram for the SCTProvider.

ChainWrappergetWrapper(AlgorithmIdentifiers, AlgorithmIdentifiers)

ACBACB

BWTEncoderBWT

DCADCA

LZ77LZ77

LZ78LZ78

LZAPLZAP

LZFSELZFSE

LZMWLZMW

LZWLZW

LZYLZY

ZStandardZStandard

Decoder<?>arithmeticDecoder

Encoder<?>arithmeticEncoder

Decoder<?>huffmanDecoder

Encoder<?>huffmanEncoder

BWTDecoderinverseBWT

MoveToFrontEncodermoveToFront

MoveToFrontDecoderrevertMoveToFront

RunLengthDecoderrunLengthDecoder

RunLengthEncoderrunLengthEncoder

ByteToTripletConverter<?>tripletAdaptiveArithmeticDecoder

TripletToByteConverter<?>tripletAdaptiveArithmeticEncoder

ByteToTripletConverter<?>tripletBitArrayComposingDecoder

TripletToByteConverter<?>tripletBitArrayComposingEncoder

ByteToTripletConverter<?>tripletFSEDecoder

TripletToByteConverter<?>tripletFSEEncoder

ByteToTripletConverter<?>tripletIntegerToBitsDecoder

TripletToByteConverter<?>tripletIntegerToBitsEncoder

SCTProvider

3.2.4 ChainUtils

ChainUtils class provides essential methods used to build compression and
decompression chains from given parameters using the SCTProvider. An in-
stance of the SCTParamaters class, passed to the addChainLinksCompress
and addChainLinksDecompress methods, holds desired chain configuration
that specifies what modules shall be linked to the chain.

The UML class diagram for the ChainUtils class is shown in Figure 3.8.

Figure 3.8: UML class diagram for the ChainUtils.

LoggerLOGGER

ChainBuilder<?, ByteBuffer, Path>addChainLinksCompress(ChainBuilder<?, ByteBuffer, Path>, SCTParams, SCTProvider)

ChainBuilder<?, ByteBuffer, Path>addChainLinksDecompress(ChainBuilder<?, ByteBuffer, Path>, SCTParams, SCTProvider)

ChainUtils

39

3. Design and implementation

3.2.5 SCTUtils

This class aggregates important utilities used by the new modular framework
in the SCT library. The most essentials are compress, decompress and par-
seConfigFromConfigFile class methods.

The parseConfigFromConfigFile method from the SCTUtils class is re-
sponsible for parsing the run configuration from the given configuration file.
It firstly verifies if the passed configuration file is valid. Then, common pa-
rameters such as the size of the block are parsed. After all of the common
parameters are parsed, method-specific parameters are loaded from the con-
figuration file. If all of the parsings went smoothly, the parsed configuration
in the form of the instance of the SCTParams class is returned.

The compress method from the SCTUtils class is called with the instance
of the SCTParams class that holds the whole configuration for the run. This
class method is responsible for creating an output file and compression chain,
execution of the compression chain and for performance measurement of the
execution.

The decompress method from the SCTUtils class firstly parses the header
from the compressed file. This is necessary to gather information such as the
size of the block or what chain configuration was used during the compression
of the file that is supposed to be decompressed. Then the output file and
decompression chain are created. The decompression chain is then executed,
and its performance is measured.

The UML class diagram for the SCTUtils class is shown in Figure 3.9.

Figure 3.9: UML class diagram for the SCTUtils.

LoggerLOGGER

SCTMeasure?compress(SCTParams)

longdecompress(SCTParams)

longdecompress(SCTParams, File, SCTProvider, File, SCTParams)

voidgenerateDefaultConfigFile()

voidparseACBParams(Properties, SCTParams)

BooleanparseBoolean(String, String)

AlgorithmIdentifiers[]parseChainFromString(String)

SCTParamsparseConfigFromConfigFile(InputStream)

SCTParamsparseConfigFromConfigFile(String)

voidparseDCAParams(Properties, SCTParams)

voidparseLZ77Params(Properties, SCTParams)

voidparseLZ78Params(Properties, SCTParams)

voidparseLZAPParams(Properties, SCTParams)

voidparseLZFSEParams(Properties, SCTParams)

voidparseLZMWParams(Properties, SCTParams)

voidparseLZWParams(Properties, SCTParams)

voidparseLZYParams(Properties, SCTParams)

voidparseZStandardParams(Properties, SCTParams)

voidtrimWhitespacesFrontEnd(Properties)

longvalidateCompress(SCTParams, File, File, SCTProvider)

voidvalidateKeys(Properties)

SCTUtils

40

3.3. Unified file format

3.3 Unified file format

Up to now, every new compression method added to the library used its own
file format to store data processed by it. The only way to find out which
compression method was used to process the file was to take a look at the
file extension and, based on that, call appropriate decompression algorithm.
At the beginning of each compressed file, each method used its own header
to store crucial information needed for the decompression. This approach is
unsustainable for further use.

The newly implemented modular framework uses the same file format for
all of the processed files regardless of the used compression methods. The
SCTParams class, described in Subsection 3.2.2, aggregates all of the neces-
sary methods’ configurations that were used during the compression and that
are essential to know for the proper decompression to happen.

Before the first write of the compressed data to the prepared output file
happens, the instance of the SCTParams class is serialized into the JSON file
format, and it is written at the begging of the output file as a header.

JSON is a well-known lightweight data-interchange file format used to
transmit and save data. It is easy for humans to read and write and for
machines to parse and generate, thus being a perfect candidate to serialize
configuration into the header of the processed files [36].

To serialize an object means to convert its state to a byte stream so that
the byte stream can be reverted back into a copy of the object. A Java ob-
ject is serializable if its class or any of its superclasses implements either the
java.io.Serializable interface or its subinterface, java.io.Externali-
zable. Deserialization is the process of converting the serialized form of an
object back into a copy of the object [37]. The Gson library was chosen for
this task. It is a Java library that can be used to convert Java Objects into
their JSON representation and to convert a JSON string to an equivalent Java
object [38].

The SCTParams class can be easily serialized and stored as a JSON string,
and the FileIO class does this job. This approach ensures that no header
processing changes will be needed when future extensions to the SCT library
are added as long as the SCTParams class stays serializable.

3.4 Client

Important and much-needed functionality of the SCT library is the ability
to be run compression and decompression from the command-line interface.
Class SCTClient implements this functionality. It is an executable program
that can be run from the command-line interface, and its behaviour can be
altered via parameters. Only common parameters, such as the size of the

41

3. Design and implementation

block, can be configured via parameters. Method-specific parameters can
only be configured via the run configuration file.

The UML class diagram for the SCTClient class is shown in Figure 3.10.

Figure 3.10: UML class diagram for the SCTClient.

LoggerLOGGER

intEXIT_CODE_OK

intEXIT_CODE_FATAL

intEXIT_CODE_HELP

Optionsoptions

voidmain(String[])

SCTParamsparseCommandLine(CommandLine)

voidprintHelp()

intrun(String[])

SCTClient

The SCTClient class is built by running the mvn clean install com-
mand. It can then be run with the java -jar sct-RELEASE.jar command.
The following text summarizes the usage of the implemented SCTClient class.
This help message is printed if any error occurs while parsing parameters from
the command line or can be purposely printed with the -h parameter.

usage: java -jar sct-RELEASE.jar input [options]
input - input file
-b,--blocksize <block> size of blocks in bytes -

default size is 1 MB
-c,--config <config> configuration file (if set,

other options are ignored and
config file is preferred)

-cg,--confgen generate default configuration
file to the given path

-ch,--chain <chain> compression chain in following
format: XXX-XXX-XXX-... XXX is
a abbreviation of supported
algorithm - supported algorithms
are: [ACB, ARI, BWT, DCA, HUF,
LZ77, LZ78, LZAP, LZFSE, LZMW,
LZW, LZY, MTF, RLE, TAAC, TBAC,
TFSE, TITB, ZSTD]

-de,--decompress decompress input (default is to
compress)

-h,--help print help

42

3.5. Testing

-l,--loglevel <loglevel> sets logging level of
the application

-m,--measure measure time and compression
ratio and print to standard
output

-v,--validate decompress compressed file and
compare in to the original input

3.5 Testing

A vital part of every software development project is testing. A proper test-
ing framework can discover and prevent many bugs that can occur during
the software development cycle. Up to now, the SCT library did not contain
appropriate tests that would cover the most common but also the bordering
cases that could occur during the file processing. This often led to undiscov-
ered bugs that were indirectly caused by changes to the widely used utilities in
the library, such as the FileIO class. Some of these problems were discovered
during the work on this thesis, and they were discussed in Section 2.7.

The newly implemented testing framework for the SCT library contains 69
unit and integration tests. As of today, 2 of these 69 tests are failing. Those
two are tests for the DCA method and for the LZW method. These two
methods were already mentioned in Section 2.7 of this thesis as the known
problems, and it was not possible to fix them in a reasonable time. All of
the other known issues discussed in Section 2.7 were fixed, and the newly
implemented testing framework shall prevent them from occurring again.

However, the two failing tests introduce a new problem for the compilation
of the library. As it stands today, using the mvn clean install command
to build the library’s code will automatically stop the build if any test failure
occurs. The best temporary solution for this problem is to run the mvn clean
install -Dtest=!DCATest,!LZWTest command that excludes known failing
tests that would otherwise block the build process.

3.6 Measurement tool

The idea behind the implementation of the measurement tool is to create a
handy tool that can be used to compare the different compression methods
on the same provided input. It shall accept either one input file or a whole
folder that contains multiple files for processing, which is convenient when
benchmarking implemented algorithms on different files from corpora.

The newly implemented benchmarking tool measures compression ratio,
compression time and decompression time. These performance testing results

43

3. Design and implementation

are saved in the CSV file format - a well-known data format that other tools
can easily process later.

Class SCTMeasure implements this measuring tool, and its UML class di-
agram is shown in Figure 3.11.

Figure 3.11: UML class diagram for the SCTMeasure.

LoggerLOGGER

AlgorithmIdentifiers[]chain

voidmain(String[])

voidwriteToCSV(List<SCTPair<Path, SCTMeasure>>)

doublecompressionRatio

longcompressionTime

longdecompressionTime

SCTMeasure

44

Chapter 4
Measurements and results

4.1 Overview

This chapter is dedicated to the performance testing of the already created
implementations. The predefined processing chains, implemented in previous
theses and discussed in Subsection 3.2.1, are tested on multiple corpora and
time, and the compression ratio is measured. The average time and average
compression ratio for all of the files from the corpus are measured. For the
purpose of evaluating the capabilities of the implementations, the default block
size of 1 megabyte is used. Basic overviews of the used corpora are defined
in dedicated sections, followed by performance testing results. Since many
other processes can affect the platform’s performance, the measurements were
performed multiple times, and a result with the lowest time consumed was
used as a result of the measurement.

All measurements are done on the Windows 10 platform with the following
configuration:

• CPU - Intel Core i7 8750H 2,2 GHz hexa-core,

• RAM - 32 GB DDR4.

4.2 Calgary corpus

The Calgary corpus is a collection of text and binary data files, commonly
used for comparing data compression algorithms. It was created by Ian Wit-
ten, Tim Bell and John Cleary from the University of Calgary in 1987 and
was commonly used in the 1990s. In 1997 it was replaced by the Canterbury
corpus, based on concerns about how representative the Calgary corpus was,
but the Calgary corpus still exists for comparison and is still useful for its orig-
inally intended purpose. It contains 18 files of 9 different types with complete
size 3,266,560 bytes [17, 39].

45

4. Measurements and results

4.3 Canterbury corpus

The Canterbury Corpus was published by Ross Arnold and Tim Bell in 1997.
The aim was to replace outdated Calgary Corpus and to provide more relevant
testing for new compression algorithms. The files were selected based on their
ability to provide representative performance results. In its most commonly
used form, the corpus consists of 11 files, selected as ”average” documents
from 11 classes of documents, totalling 2,826,240 bytes [12, 17].

4.4 Prague corpus

The Prague corpus is specific because of its diversity. In order to keep the cor-
pus up to date, a methodology for regular updates of the corpus was designed.
Being the largest of those three corpora, this corpus contains 30 files of a total
size of 58,265,600 bytes. The main intention for the creation of the Prague
corpus was to create a better benchmarking tool and set the bar higher for
the compression algorithms [17, 40].

4.5 Average compression time

Figure 4.1 shows how different predefined chains compare in average compres-
sion time per file for all of the files from each of the corpora.

Figure 4.1: Average compression time per file for all of the files from the
Calgary, Canterbury and Prague corpora.

[A
CB-T

A
AC]

[B
W

T-M
TF-R

LE-A
RI]

[L
Z77-T

A
AC]

[L
Z78-T

FSE]

[L
ZA

P-T
BAC]

[L
ZFSE-T

FSE]

[L
ZM

W
-T

A
AC]

[L
ZY

-T
A

AC]

[Z
STD

-T
FSE]

2,000

4,000

6,000

8,000

30
0.

78 1,
02

9.
83

10
5.

61

1,
58

1.
56

22
.0

6

47
2.

17

35
.4

5

51
.1

1

23
1.

39

39
8.

09

1,
60

1.
73

14
1.

09

1,
38

2.
36

29
.4

5

50
6.

36

50
.4

5

77
.1

8

23
3.

09

6,
39

7.
6

6,
46

6.
7

1,
33

0.
8

2,
14

0.
37

35
6.

93

3,
56

6.
83

54
9.

43

78
5.

93 1,
46

4.
97

Predefined chain links

T
im

e
[m

s]

Calgary
Canterbury

Prague

46

4.6. Average compression ratio

4.6 Average compression ratio

Figure 4.2 shows how different predefined chains compare in average compres-
sion ratio per file for all of the files from each of the corpora.

Figure 4.2: Average compression ratio per file for all of the files from the
Calgary, Canterbury and Prague corpora.

[A
CB-T

A
AC]

[B
W

T-M
TF-R

LE-A
RI]

[L
Z77-T

A
AC]

[L
Z78-T

FSE]

[L
ZA

P-T
BAC]

[L
ZFSE-T

FSE]

[L
ZM

W
-T

A
AC]

[L
ZY

-T
A

AC]

[Z
STD

-T
FSE]

2

4

6

8

10

12

14

0.
4

0.
35 0.
51

4.
78

0.
52

2.
87

0.
47

0.
49

1.
76

0.
42

0.
37 0.
5

12
.8

1

0.
55

7.
3

0.
51

0.
53

4.
2

0.
46

0.
41 0.
51

6.
7

0.
61

3.
91

0.
52

0.
54

2.
36

Predefined chain links

T
im

e
[m

s]

Calgary
Canterbury

Prague

4.7 Summary

From Figure 4.1, it can clearly be observed that the main intention for the
creation of the Prague corpus was successfully fulfilled and that the compres-
sion algorithms struggle to keep up the compression speed on the given data
and often end up with several times worse performance than they achieved on
Calgary and Canterbury corpora.

Another interesting observation emerges from Figure 4.2. Processing chains
that utilise the LZFSE triplet processor apparently lag behind those that do
not. An interesting topic for discussion would be to locate the source of this
issue.

47

4. Measurements and results

Another apparent topic for discussion is the change in the compression
method’s performance after the implementation of the new modular frame-
work. Figure 4.3 shows how compression ratio and compression time changed
compared to the old implementations available in the SCT library - an average
of all files from all corpora, best result from few measurements.

Figure 4.3: Average changes in compression time and compression ratio be-
tween the old implementation and newly implemented modular framework.

[A
CB-T

A
AC]

[B
W

T-M
TF-R

LE-A
RI]

[L
Z77-T

A
AC]

[L
Z78-T

FSE]

[L
ZA

P-T
BAC]

[L
ZFSE-T

FSE]

[L
ZM

W
-T

A
AC]

[L
ZY

-T
A

AC]

[Z
STD

-T
FSE]

−2

−1

0

1

2

3

1.
46

−
0.

52

1.
33

−
0.

34

1.
52

2.
43

−
0.

97

0.
98

−
0.

66

0.
17

0.
13

0.
1 0.
16

0.
15 0.
23

0.
19

0.
17

0.
16

Predefined chain links

C
ha

ng
e

[%
]

Time
Ratio

A small and insignificant change in the compression ratio was expected due
to the new header added to the beginning of each file. This header has a length
of around 1 kilobyte (length can vary based on the length of the parameters’
values in the header). The processed files from the provided corpora or in
real-life situations usually have sizes many times larger, and therefore, the
added header has a negligible effect on the final compression ratio. Usually,
the header at the beginning of a compressed file takes up several hundredths
of a percent of the total file size. However, this percentage can, for extremely
small files, often present in the corpora, go up to one-quarter of the total
file size, thus giving us higher average compression ratios, as are presented in
Figure 4.3.

Compression time was also expected to worsen a little bit in general due
to additional overhead added to the library. Few hardcoded lines for each
compression method in previous implementations can easily be faster than
the newly implemented and complex modular framework. However, it is still
a small performance tradeoff for the robustness and clarity that it introduces

48

4.7. Summary

to the library.
Surprisingly, few measurements show that better results can be achieved

with the modular framework, even though it introduces additional overhead
to the file processing. This is attributed to the file caching in the computer
memory and the fact that many other processes ran on the testing machine.
The performance testing would have to be performed hundreds or even thou-
sands of times for the more bulletproof results, instead of just a few times
like it was performed now. However, the current results are sufficient for the
need of this thesis and demonstrate that the performance of the implemented
modules in the SCT library does not significantly worsen after the addition of
the new modular framework.

49

Conclusion

This thesis aimed to analyze the Small Compression Toolkit library, design
a new modules’ interface and implement a new modular framework together
with a new file format to store processed data. Maximum effort was given to
fulfil this goal, and the SCT library now possesses the new modular framework
and other mentioned functionalities. A completely new testing framework
was added, which shall, hopefully, prevent a repetition of the same errors
previously made during the library’s software development cycle, such as the
fact that the new changes to the library’s common utilities cause malfunction
previously correctly working modules.

The product of this thesis fulfils all the functional requirements and sat-
isfy all non-functional requirements, with particular emphasis on adequately
documenting the source code. All relevant elements were implemented and
underwent technical measurements aimed at compression efficiency and time.
The implemented functionality can be used mainly for study purposes, aiding
the addition of the new extensions, but with a bit of optimization, it can also
be used in real-life scenarios.

Some imperfections still exist in the current implementation. As was men-
tioned in the Analysis chapter, some of the implemented modules does not
work correctly. It is believed that these problems were mainly caused by a
nonexisting testing framework in the library when implementors of the new
extensions to the library did not perform regression tests to find out if their
changes to the code do not break something important used by other modules.
The fact that the project does not use git’s tools, such as branching, certainly
does not help the case. Even though it was not part of the assignment of
this thesis, a reasonable effort was made to fix malfunctioning modules in the
library. Nevertheless, the DCA and the LZW modules still remain inopera-
tional.

51

Conclusion

Future work

While working on this thesis, multiple new ideas for further improvements
emerged. One of them would be parallel data processing. The newly imple-
mented modular framework was designed with potential parallel processing in
mind. This creates a significant opportunity for finally introducing parallelism
into the SCT library.

Another possible future extension to the library would be a graphical user
interface (GUI for short). The current implementation of the modular frame-
work enables quite simple and straightforward implementation of GUI since it
would be possible just to gather configuration specified by the user in the GUI
and then call a particular method that would create and execute the defined
processing chain.

The last and quite obvious possible future improvement would be to fix
all of the previously implemented methods and try to keep them that way.

52

Bibliography

[1] Small Compression Toolkit. 2016. Available from: https:
//gitlab.fit.cvut.cz/polacrad/sct

[2] Data representation - Extended ASCII. 2021, [Cited 2021-11-13].
Available from: https://www.bbc.co.uk/bitesize/guides/zscvxfr/
revision/4

[3] Nelson, M. The Data Compression Book. Wiley, second edition, 1995,
ISBN 1558514341.

[4] Code. 2021, [Cited 2021-11-13]. Available from: https:
//en.wikipedia.org/wiki/Code

[5] Bican, J. Implementation of the ACB compression method improvements
in the Java language. Master’s thesis, Czech Technical University in
Prague, Faculty of Information Technology, 2017.

[6] Data compression. 2021, [Cited 2021-11-13]. Available from: https://
en.wikipedia.org/wiki/Data_compression

[7] Jain, A.; Patel, R. An Efficient Compression Algorithm (ECA) for Text
Data. In 2009 International Conference on Signal Processing Systems,
2009, pp. 762–765, doi:10.1109/ICSPS.2009.96.

[8] Data Compression Applets Library. 2021, [Cited 2021-11-13]. Available
from: http://stringology.org/DataCompression/index_en.html

[9] Salomon, D. A Concise Introduction to Data Compression. Springer Lon-
don, illustrated edition, 2008, ISBN 1848000715.

[10] Fossum, V. Entropy, Compression, and Information Content. Information
Sciences Institute, 2013.

53

https://gitlab.fit.cvut.cz/polacrad/sct
https://gitlab.fit.cvut.cz/polacrad/sct
https://www.bbc.co.uk/bitesize/guides/zscvxfr/revision/4
https://www.bbc.co.uk/bitesize/guides/zscvxfr/revision/4
https://en.wikipedia.org/wiki/Code
https://en.wikipedia.org/wiki/Code
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Data_compression
http://stringology.org/DataCompression/index_en.html

Bibliography

[11] Dollors. What is Information? Part 2a - Information Theory.
Cracking the Nutshell, 2013, [Cited 2021-11-13]. Available from:
https://crackingthenutshell.org/what-is-information-part-2a-
information-theory/

[12] Powel, M. The Canterbury corpus. 2001, [Cited 2021-11-13]. Available
from: https://corpus.canterbury.ac.nz/index.html

[13] IntelliJ IDEA. [Cited 2021-11-17]. Available from: https:
//www.jetbrains.com/idea/

[14] Novák, J. Implementace kompresńı metody DCA v jazyce Java. Mas-
ter’s thesis, Czech Technical University in Prague, Faculty of Information
Technology, 2018.

[15] Zemek, L. Implementace kompresńıch metod LZ77, LZ78, LZW v jazyce
Java. Master’s thesis, Czech Technical University in Prague, Faculty of
Information Technology, 2018.

[16] Bobot, J. Implementace kompresńıch metod LZY, LZMW a LZAP v
jazyce Java. Master’s thesis, Czech Technical University in Prague, Fac-
ulty of Information Technology, 2019.

[17] Geletka, F. Implementation of BWC compression method and its variants
in Java programming language. Master’s thesis, Czech Technical Univer-
sity in Prague, Faculty of Information Technology, 2019.

[18] Zemek, L. Finite State Entropy Coder for SCT library. Master’s thesis,
Czech Technical University in Prague, Faculty of Information Technology,
2021.

[19] What is GitLab? [Cited 2021-11-17]. Available from: https://
about.gitlab.com/what-is-gitlab/

[20] Apache Maven Project. [Cited 2021-11-17]. Available from: https://
maven.apache.org/

[21] Apache Commons. [Cited 2021-11-17]. Available from: https://
commons.apache.org/proper/commons-cli/

[22] Apache Log4j 2. [Cited 2021-11-17]. Available from: http://
logging.apache.org/log4j/2.x/

[23] JUnit 5. [Cited 2021-11-17]. Available from: https://junit.org/
junit5/

[24] Interface Consumer. [Cited 2021-11-20]. Available from: https:
//docs.oracle.com/javase/8/docs/api/java/util/function/
Consumer.html

54

https://crackingthenutshell.org/what-is-information-part-2a-information-theory/
https://crackingthenutshell.org/what-is-information-part-2a-information-theory/
https://corpus.canterbury.ac.nz/index.html
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://about.gitlab.com/what-is-gitlab/
https://about.gitlab.com/what-is-gitlab/
https://maven.apache.org/
https://maven.apache.org/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
https://junit.org/junit5/
https://junit.org/junit5/
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html
https://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

Bibliography

[25] Burrows, M.; Wheeler, D. A Block-sorting Lossless Data Compression
Algorithm. Systems Research Center, 1994. Available from: https://
www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

[26] Zalik, B.; Lukac, N. Chain code lossless compression using move-to-front
transform and adaptive run-length encoding. Sig. Proc.: Image Comm.,
volume 29, 2014: pp. 96–106.

[27] Liu, Y.; Goutte, R. Lossy and lossless spectral image compression us-
ing quaternion Fourier, Burrows-Wheeler and Move- to-Front transforms.
2012 IEEE 11th International Conference on Signal Processing, volume 1,
2012: pp. 619–622.

[28] RLE compression. 2009, [Cited 2021-11-17]. Available from: https://
www.prepressure.com/library/compression-algorithm/rle

[29] Murray, J. D.; vanRyper, W. Encyclopedia of Graphics File Formats (2Nd
Ed.). Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1996, ISBN 1-
56592-161-5.

[30] Nayuki. Reference arithmetic coding. Project Nayuki, 2018, [Cited
2021-11-17]. Available from: https://www.nayuki.io/page/reference-
arithmetic-coding

[31] Nayuki. Reference Huffman coding. Project Nayuki, 2018, [Cited
2021-11-17]. Available from: https://www.nayuki.io/page/reference-
huffman-coding

[32] Witten, I. H.; Neal, R. M.; et al. Arithmetic Coding for Data Com-
pression. Commun. ACM, volume 30, no. 6, June 1987: pp. 520–540,
ISSN 0001-0782, doi:10.1145/214762.214771. Available from: http://
doi.acm.org/10.1145/214762.214771

[33] Lambert, S. Implementing Associative Coder of Buyanovsky (ACB) Data
Compression. Montana State University–Bozeman, 1999. Available from:
https://books.google.cz/books?id=K7LPNwAACAAJ

[34] Lempel–Ziv–Welch. 2021, [Cited 2021-11-25]. Avail-
able from: https://en.wikipedia.org/wiki/
Lempel\OT1\textendashZiv\OT1\textendashWelch

[35] Asymmetric numeral systems. 2021, [Cited 2021-11-28]. Available from:
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems

[36] Introducing JSON. [Cited 2021-12-09]. Available from: https://
www.json.org/json-en.html

55

https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.prepressure.com/library/compression-algorithm/rle
https://www.prepressure.com/library/compression-algorithm/rle
https://www.nayuki.io/page/reference-arithmetic-coding
https://www.nayuki.io/page/reference-arithmetic-coding
https://www.nayuki.io/page/reference-huffman-coding
https://www.nayuki.io/page/reference-huffman-coding
http://doi.acm.org/10.1145/214762.214771
http://doi.acm.org/10.1145/214762.214771
https://books.google.cz/books?id=K7LPNwAACAAJ
https://en.wikipedia.org/wiki/Lempel\OT1\textendash Ziv\OT1\textendash Welch
https://en.wikipedia.org/wiki/Lempel\OT1\textendash Ziv\OT1\textendash Welch
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://www.json.org/json-en.html
https://www.json.org/json-en.html

Bibliography

[37] Serializable Objects. [Cited 2021-12-09]. Available from: https://
docs.oracle.com/javase/tutorial/jndi/objects/serial.html

[38] Gson. [Cited 2021-12-09]. Available from: https://github.com/google/
gson

[39] Calgary corpus. 2021, [Cited 2021-12-13]. Available from: https://
en.wikipedia.org/wiki/Data_compression

[40] Holub, J.; Reznicek, J.; et al. Lossless Data Compression Testbed: Ex-
Com and Prague Corpus. In Lossless Data Compression Testbed: ExCom
and Prague Corpus, 03 2011, p. 457, doi:10.1109/DCC.2011.61.

56

https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://github.com/google/gson
https://github.com/google/gson
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Data_compression

Appendix A
Acronyms

AC Arithmetic coder

ACB Associative Coder of Buyanovsky

ANS Asymmetric numeral systems

API Application programming interface

ARI Arithmetic coder

ASCII American Standard Code for Information Interchange

BWC Burrows-Wheeler compression

BWT Burrows-Wheeler transform

CLI Command-line interface

CPU Central processing unit

CSV Comma-separated values

DCA Data Compression using Antidictionaries

FSE Finite State Entropy

GIF Graphics Interchange Format

GUI Graphical user interface

HC Huffman coder

HUF Huffman coder

IDE Integrated development environment

JSON JavaScript Object Notation

57

A. Acronyms

JVM Java virtual machine

LZ77 Lempel-Ziv 1977

LZ78 Lempel-Ziv 1978

LZAP Lempel-Ziv All prefixes

LZFSE Lempel-Ziv Finite State Entropy

LZMW Lempel-Ziv-Miller-Wegman

LZW Lempel-Ziv-Welch

LZY Lempel-Ziv-Yabba

MTF Move-to-front transform

OS Operating system

PDF Portable Document Format

RAM Random-access memory

RLE Run-length en-coding

SCT Small Compression Toolkit

UML Unified Modeling Language

TAAC Triplet Adaptive Arithmetic coding

TBAC Triplet Bit Array Composing

TFSE Triplet Finite State Entropy coding

TITB Triplet Integer To Bits coding

VCS Version control system

ZSTD Zstandard

58

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes
text..the thesis text directory

DP Geletka Filip 2021.pdf...........the thesis text in PDF format
src the directory of LATEX source codes of the thesis

59

	Introduction
	Motivation
	Main goals
	Thesis structure overview

	Basic notions
	Alphabet
	Symbol
	String
	Codeword
	Code
	Triplet
	Data compression
	Data decompression
	Compression algorithm
	Decompression algorithm
	Compression method
	Model
	Adaptive compression method
	Semi-adaptive compression method
	Context compression method
	Dictionary compression method
	Compression ratio
	Entropy
	Redundancy
	Corpus
	Module

	Analysis
	SCT library
	Associated theses
	Used technologies
	Data flow in the library
	Input and output handling
	Implemented algorithms
	BWT
	MTF
	RLE
	DCA
	Adaptive entropy coders
	Adaptive Arithmetic coding
	Adaptive Huffman coding

	Triplet coders
	ACB
	LZ77
	LZ78
	LZW
	LZMW
	LZAP
	LZY
	LZFSE
	Zstandard

	Triplet processors
	Adaptive Arithmetic coding
	Bit Array Composing
	Finite State Entropy coding

	Operational status of the implemented modules
	Non-functional requirements
	Functional requirements

	Design and implementation
	Unified module interface
	ChainWrapper

	Modular framework
	SCTConfig
	SCTParams
	SCTProvider
	ChainUtils
	SCTUtils

	Unified file format
	Client
	Testing
	Measurement tool

	Measurements and results
	Overview
	Calgary corpus
	Canterbury corpus
	Prague corpus
	Average compression time
	Average compression ratio
	Summary

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

