
Instructions

Explore current state-of-the-art in the field of automatic transfer of artistic style to 3D models [1, 2, 3,

4]. Implement the StyleBlit algorithm [3], which allows transferring artistic style from a physical

template to a 3D model in real-time. To capture the style, use the mobile device's rear camera, which

captures the template with the drawing, performs rectification, and transfers the style to the selected

3D model. The stylized model will appear on the display of the mobile device, where the user will

rotate it. Verify the developed algorithm's functionality on various 3D models and artistic styles, which

will be provided by the thesis supervisor.

 
[1] Bénard et al.: Stylizing Animation by Example, ACM Transactions on Graphics 32(4):119, 2013.

[2] Fišer et al.: StyLit: Illumination-guided Example-based Stylization of 3D Renderings, ACM

Transactions on Graphics 35(4):92, 2016.

[3] Sýkora et al.: StyleBlit: Fast Example-Based Stylization with Local Guidance, Computer Graphics

Forum 38(2):83–91, 2019.

[4] Hauptfleisch et al.: StyleProp: Real-time Example-based Stylization of 3D Models, Computer

Graphics Forum 39(7), 2020.

Electronically approved by Ing. Michal Valenta, Ph.D. on 15 February 2021 in Prague.

Assignment of master’s thesis

Title: Example-based Style Transfer to 3D Models using Mobile Device

Student: Bc. Marek Alexa

Supervisor: prof. Ing. Daniel Sýkora, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2022/2023

Master’s thesis

Example-based Style Transfer to 3D

Models using Mobile Device

Bc. Marek Alexa

Department of Software Engineering

Supervisor: prof. Ing. Daniel Sýkora, Ph.D.

January 6, 2022

Acknowledgements

First and foremost, I would like to wholeheartedly thank my supervisor for
his general support and helpful remarks. Another thanks goes to my friends
and family for moral support, in particular Lubomı́r, Tadeáš, and Štěpán.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic Ąnal thesis.

I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended,
in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 6, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Marek Alexa. All rights reserved.
This thesis is school work as deĄned by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without authorŠs permission is prohibited (with exceptions deĄned by the
Copyright Act).

Citation of this thesis

Alexa, Marek. Example-based Style Transfer to 3D Models using Mobile
Device. MasterŠs thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2022. Also available from: ⟨https://gitlab.fit.cvut.cz/

alexama1/styletransfer⟩.

https://gitlab.fit.cvut.cz/alexama1/styletransfer
https://gitlab.fit.cvut.cz/alexama1/styletransfer

Abstrakt

Tato práce představuje unikátńı kombinaci zážitku z rozš́ı̌rené reality, poč́ıtačově
podporované stylizace s akvizićı vzorového stylu a interakce s 3D modelem.
Práce nastiňuje přehled problému stylizace a r̊uzné př́ıstupy k němu, přičemž
některé z těchto metod jsou prozkoumány detailněji. Následně je vysvětlena
teorie za rozš́ı̌renou realitou a skenováńı stylu. Nakonec jsou uvedeny detaily
implementace. Výsledkem je aplikace s rozš́ı̌renou realitou pro OS Android,
která je schopna stylizace a źıskáváńı stylu v reálném čase.

Kĺıčová slova Rozš́ı̌rená Realita, Stylizace, 3D Modely, Unity, Android

Abstract

This thesis presents a unique combination of the augmented reality experience,
computer-assisted stylization with style exemplar acquisition, and 3D model
interaction. An overview of the stylization problem and various approaches is
outlined, while a few of these methods are explored more in-depth. Subsequently,
the theory behind augmented reality and style scanning is explained. Finally,
the implementation details are provided with the result being an augmented
reality application for the Android OS, capable of stylization and style acquisition
in real-time.

vii

Keywords Augmented Reality, Stylization, 3D Models, Unity, Android

viii

Contents

Introduction 1

Structure . 2

1 State-of-the-art 3

1.1 Pattern-based methods . 3

1.2 Filter-based methods . 4

1.3 Patch-based methods . 4

1.3.1 Image Analogies . 4

1.3.2 The Lit Sphere . 6

1.3.3 Stylizing Animation by Example 6

1.3.4 Recent improvements 8

1.4 Neural-based methods . 10

1.5 Summary . 11

1.5.1 Pattern-based methods 11

1.5.2 Filter-based methods . 11

1.5.3 Patch-based methods . 11

1.5.4 Neural-based methods 11

2 Background 13

2.1 StyLit: Illumination-guided Example-based Stylization of 3D
Renderings . 13

2.1.1 Light Path Expressions 14

2.1.2 Algorithm . 14

2.2 StyleBlit: Fast Example-Based Stylization with Local Guidance 15

2.2.1 Approach . 15

2.2.2 Brute force algorithm 16

2.2.3 Parallel algorithm . 16

2.2.4 Extensions . 17

2.3 Style exemplar acquisition . 18

ix

2.3.1 Projective transformation 18
2.3.2 Mapping . 20
2.3.3 Exemplar detection . 21

2.4 Augmented reality introduction and terms 22
2.4.1 Extended reality . 22
2.4.2 Augmented reality . 22
2.4.3 Virtual reality . 22
2.4.4 Mixed reality . 23

2.5 Augmented reality . 24
2.5.1 How it works . 24
2.5.2 Real world usage examples 25
2.5.3 ARCore . 27
2.5.4 ARKit . 27
2.5.5 AR Foundation . 27

2.6 Unity . 28
2.6.1 General information . 28
2.6.2 Installation . 29
2.6.3 Scenes . 29
2.6.4 GameObject . 30
2.6.5 Scripting in Unity . 30
2.6.6 Lifecycle . 31
2.6.7 Prefabs . 31
2.6.8 Assets . 32
2.6.9 Packages . 33
2.6.10 Shaders . 33
2.6.11 Shader example . 34

2.7 OpenCV . 35
2.7.1 ArUco . 36

3 Realisation 39

3.1 Application design . 39
3.2 Main Ćow . 40
3.3 GUI . 41
3.4 Style exemplar acquisition . 42

3.4.1 Corner detection . 42
3.4.2 Scanning Ćow . 43

3.5 Scenes . 45
3.5.1 StyleTransfer . 45
3.5.2 Testing scenes . 46

3.6 Scripts . 47
3.7 Used libraries . 48
3.8 Shader . 48
3.9 Performance . 50
3.10 Limitations . 51

x

3.11 Stylization comparison . 52

Conclusion 57

Further work . 57

Bibliography 59

A Acronyms 67

B Contents of enclosed CD 69

C Installation manual 71

xi

List of Figures

1 What this thesis tries to achieve: acquire a style input (left)), apply
it to a 3D model (middle) [1], and show the result in augmented
reality(right). 2

1.1 Stylized examples from Haeberli [2], Litwinowicz [3], and Hertzmann [4].
. 3

1.2 Stylized example outputs from XDoG [5] (Ąrst row) and an example
with source image by Lu [6] (second row). 4

1.3 Image Analogies output example [7]. 5

1.4 Stylized David model with corresponding hand-drawn spheres [8]. 6

1.5 Stylizing Animation by Example outputs. Top row: stylized animation;
bottom row: input shaded images. The two lateral frames are
keyframes painted by an artist. [9] 7

1.6 Stylizing Animation by Example heuristic diagram [9]. 8

1.7 A comparison from StyleBlitŠs article [1] between the StyleBlit,
StyLit, and The Lit Sphere methods. The StyleBlit approach
produces similar result quality while being orders of magnitude
faster when compared to StyLit. The Lit Sphere approach is
comparable in speed to StyleBlit but does not retain high-level
structure (directional brush strokes). 9

1.8 Results from StyleProp [10]. 9

1.9 A comparison of stylized example outputs from the STALP article [11].
Methods are shown in order are [11, 12, 13]. 10

2.1 StyLit outputs example using various style exemplars [14]. 13

2.2 Style exemplar with Light Path Expressions images used in StyLit [14].
. 14

2.3 How StyLit mitigates erroneous assignments [14] 15

2.4 Results from StyleBlit [1]. 15

2.5 A visualization of StyleBlitŠs patch-based approach [1]. 16

xiii

2.6 StyleBlitŠs multi-layered approach [1]. 18

2.7 A blank style exemplar used in StyleBlit [1]. 18

2.8 Projective transformation visualization from 3D and 2D perspectives [15].
. 19

2.9 An example of a forward-mapping scaling problem. Taken from a
web tutorial on what-when-how [16]. The input (a) is stretched to
a larger image (b), leaving holes. The third image (c) depicts the
correct transformation. 20

2.10 Visualization of the nearest neighbor and bilinear interpolation
resampling techniques. Here I∗ are points from the source image,
and dx with dy are weights based on proximity [17]. 21

2.11 Examples of different Ąducial markers [18]. 22

2.12 The extended reality spectrum [19]. 23

2.13 An example of mixed reality based in the real world [19]. 23

2.14 An example of mixed reality based in the virtual world [20]. The
Ąrst image is from the real world, while the second shows how the
mixed reality presented to the user looks. 24

2.15 An example of marker-based application of augmented reality from
the userŠs perspective [21]. 24

2.16 Promotional picture for IKEA place [22]. 26

2.17 Promotional picture for Instagram face Ąlters [23]. 26

2.18 Augmented reality helmet for F-35 Lightning II Ąghter jet [24]. . 27

2.19 The Unity Hub with different versions of the Editor installed. . . 29

2.20 Vastly simpliĄed script lifecycle overview. Full version available in
the Unity documentation [25]. 32

2.21 An example of a generated 6× 6 ArUco marker [26]. 36

2.22 An example of detecting ArUco markerŠs pose and visualizing the
axes [26]. 37

3.1 A mockup of the proposed design, showcasing two toggle groups
and a switch for style scanning. The 3D golem is taken from
StyleBlitŠs article [1]. Made with the Balsamiq wireframing tool [27].
. 40

3.2 The main Ćow, visualized in screenshots. The images show in order:
plane detection, 3D model placement, selection of different models
and styles, and manipulation of the model. 41

3.3 Screenshots from the StyleTransfer application showing the GUI. 41

3.4 StyleTransferŠs style exemplar template ArUco markers for easy
scanning [1]. 42

3.5 StyleTransferŠs style exemplar template with pre-Ąlled style and
ArUco markers moved to the border of the template. 43

3.6 The scanning Ćow is demonstrated in three steps from left to right:
(1) place an object, (2) click the plus button, and (3) make sure
all four markers are visible. 44

xiv

3.7 Screenshots from the ScannerTest scene (see subsection 3.5.2), showing
extreme conditions for the scanner Ű the camera is far away (top),
and the camera is at an angle (bottom). 45

3.8 A screenshot from the ScannerTest scene, demonstrating the scannerŠs
functionality. The bottom-left corner shows the result of the perspective
transformation. 46

3.9 A screenshot from the MaterialExample scene, showcasing the StyleBlitŠs
algorithm on a large 3D model. 47

3.10 Screenshots from the MaterialExample scene, showcasing individual
passes of the StyleBlitŠs shader on a large 3D model, where (a) is
an input to the shader, (b) is the model with normal texture, (c)
output from StyleBlitŠs algorithm as coordinates, and (d) is the
output from a full render. 49

3.11 Performance graphs of the OnePlus Nord (top) and Google Pixel 3a
XL (bottom) devices from the Unity ProĄler [28]. The graphs show
the application going through a simple scenario: detect surface,
place 3D model, and enlarge the 3D model so that it takes up
most of the screen. The individual steps are clearly noticeable in
the graphs as they cause a signiĄcant drop in the frames per second
(FPS) measure (the measure increases from top to bottom in the
graph). The OnePlus device performs measurably better, but both
devices dip into single-digit framerate in the worst-case scenario.
Note: the graph is labeled as CPU Usage. This is because Unity reports GPU usage as

CPU usage in mobile devices. 51
3.12 A performance graph illustrating the performance impact of active

style exemplar scanning. No 3D model is being rendered in this
scenario. After a successful scan, the subsequent transformation
of the style exemplar and thumbnail generation of the 3D models
causes no measurable effect in terms of performance. The scanning
is successful at the last performance spike and it is indistinguishable
from the previous spikes. Measured on the OnePlus Nord device.
Note: the graph is labeled as CPU Usage. This is because Unity reports GPU usage as

CPU usage in mobile devices. 51
3.13 Known limitations of the StyleBlit [1] method. The Ąrst image

(left) shows the inability to reproduce a texture that contains
structure. The second image (right) shows the repetition of patches
when there is little surface variation. 52

3.14 This Ągure compares seven different styles rendered by the application
with the original StyleBlit [1] algorithm. The poses are not exactly
aligned but are sufficient for comparison. 56

xv

List of Tables

2.1 A list of AR-related features that the speciĄc platforms used in AR
Foundation support. Sourced from the AR Foundation manual [29].
. 28

xvii

Introduction

Art, speciĄcally painting, is often regarded as one of the most fascinating
manifestations of the human spirit. The play of colors, light, and darkness
has enthralled humankind for millennia. A stylized view of the real world can
help emphasize the authorŠs feelings.

Until recently, art has been the exclusive domain of mankind. With the
advent of computing technology, a question arose if there is a possibility
that a machine could mimic the art produced by humans. There have been
efforts to simulate speciĄc painting techniques since the 1980s [30]. While
these algorithms have impressive results, the images are easily recognizable as
artiĄcial.

The next step came with a method called Image Analogies [7], which
suggested using the style as one of the inputs. Nothing brings the feeling
of awe as seeing your creation replicated in a completely different scenario.
As the years progressed, so did the techniques. Nowadays, we can achieve
authentic-looking stylization of images, 3D models, or even videos with some
techniques even being able to operate in real-time. However, there is always a
compromise between the quality of the stylization and performance, with the
goal being to achieve both.

Recently, there has been an effort to bring the world of stylization closer
to ordinary people. May it be with face Ąlters [23], or through an augmented
reality experience [31]. This thesis joins this effort as it brings a previously
unrealized amalgamation of style exemplar acquisition and interactive
manipulation of the result, all within an augmented reality experience. The
ingredients used in this thesis are depicted in Ągure 1.

1

Introduction

Figure 1: What this thesis tries to achieve: acquire a style input (left)), apply
it to a 3D model (middle) [1], and show the result in augmented reality(right).

Structure

The Ąeld of computer-assisted stylization is outlined in the Ąrst chapter.
The second chapter describes everything that is required to understand the
inner workings of the project, with the project itself being covered in the
third chapter. Finally, the last chapter summarizes the project and indicates
possible improvements.

2

Chapter 1

State-of-the-art

1.1 Pattern-based methods

Paul Haeberli [2], was the Ąrst to explore computer-assisted stylization, which
is about trying to convert an image into a stylized artistic painting. There are
multiple approaches [32] to this problem. One of the more popular is using a
set patterns like pen contours [33, 34], hatch [35] or brush strokes [3, 36, 37]
to stylize either 2D or 3D inputs. These patterns are placed repeatedly on the
output image in order to produce a stylized version of the input with their
combinations. The placement of the patterns can be guided either locally [2]
or globally [4]. The user can generally provide their set of patterns, allowing
for customization. However, this approach can output only a limited number
of style variations, as it is bounded by the predeĄned algorithm and the set of
patterns unless the algorithm and patterns are hand-crafted for every target
style. A few examples from this branch of stylization are displayed in Ągure 1.1.

Figure 1.1: Stylized examples from Haeberli [2], Litwinowicz [3], and
Hertzmann [4].

3

1. State-of-the-art

1.2 Filter-based methods

Filter-based methods refer to a process that composes various Ąltering and
processing of the input image. These methods are commonly found in photo
editing software. A simple example (while not strictly speaking a stylization)
of a Ąlter is the Gaussian blur [38]. A number of methods in this category
perform edge detection by the difference of Gaussians method [39], for example,
XDoG [5] uses it to produce various stylizations. Another example of this
approach is trying to mimic pencil drawing by combining the tone and stroke
structures [6]. See Ągure 1.2 for a visualization.

Most of the Ąlter-based methods can be adapted to run parallelly or even
on the GPU, making them suitable for real-time usage.

Figure 1.2: Stylized example outputs from XDoG [5] (Ąrst row) and an
example with source image by Lu [6] (second row).

1.3 Patch-based methods

1.3.1 Image Analogies

Image Analogies [7] introduces a new approach to stylization, as it generalizes
the stylization problem by making the desired style one of the inputs of the
algorithm. The exemplar input consists of two images Ű unĄltered and Ąltered.
The approach is patch-based with guidance based on color. It matches pixels
from the target image to the unĄltered input and copies the look from the
Ąltered input. Due to its patch-based nature and reliance on color, this method
can produce visible seams and cannot yield correct illumination.

There are two stages: a design phase, where a pair of training images is
provided, and an application phase, in which the learned relation (Ąlter) is

4

1.3. Patch-based methods

applied to a new image in order to create an analogous result. The method
is based on multi-scale autoregression. An output example from the original
article [7] can be seen in Ągure 1.3.

Figure 1.3: Image Analogies output example [7].

To understand Image Analogies more in-depth, a description of the used
algorithm follows.

1 func t i on CreateImageAnalogy (A, A′, B) :
2 Compute Gaussian pyramids f o r A, A′, and B
3 Compute f e a t u r e s f o r A, A′, and B
4 I n i t i a l i z e the search s t r u c t u r e s (e . g . , f o r ANN)
5 fo r each l e v e l l , from c o a r s e s t to f i n e s t , do :
6 f o r each p i x e l qϵB′

l , in scan−l i n e order , do :
7 p← BestMatch (A, A′, B, B′, s, l, q)
8 B′

l(q)← A′
l(p)

9 sl(q)← p
10 return B′

L

Where A and AŠ are the mentioned pair of training images (original and Ąltered
respectively) and B is the target image (to be stylized).

The BestMatch function, shown in listing 1.3.1, compares the approximate
nearest neighbor search (ANN) with the best coherence match. For its
breakdown, please see the following pseudocode:

1 func t i on BestMatch (A, A′, B, B′, s, l, q)
2 papp ← BestApproximateMatch (A, A′, B, B′, l, q)
3 pcoh ← BestCoherenceMatch (A, A′, B, B′, s, l, q)
4 dapp ← ♣♣Fl(papp)− Fl(q)♣♣2

5 dcoh ← ♣♣Fl(pcoh)− Fl(q)♣♣2

6 i f dcoh ≤ dapp(1 + 2l−Lκ) then
7 return pcoh

8 e l s e
9 re turn papp

Where Fl(p) is used to denote the concatenation of all feature vectors
within the neighborhood (5x5 or 3x3) of both images A and A′ and also both
the current l and l− 1. Similarly, Fl(q) is the concatenation of feature vectors
for images B and B′. κ is a simple coherence parameter, where the larger the
value, the more is coherence favored.

5

1. State-of-the-art

The Image Analogies [7] framework was further extended to handle 3D
renders [14] or animations [9], but these proved to be too computationally
demanding for real-time use.

1.3.2 The Lit Sphere

The Lit Sphere is not a patch-based method, but the idea of using normals as
a local guiding channel is extended upon in the following methods.

In parallel to Image Analogies [7] (described in subsection 1.3.1), a technique
called The Lit Sphere, proposed by Sloan [8], was developed. The method
tries to leverage vertex normals of a 3D model to create correctly illuminated
outputs, also known as environment mapping [40]. The user provides a stylized
(shaded) sphere as an exemplar. An example from the original article is shown
in Ągure 1.4. The approach can handle only a simple shading scenario where
the target and exemplar scenes have the same lighting environment and often
leads to stretched-texture artifacts. Please see Ągure 1.7 to see the limitations
of this approach.

Figure 1.4: Stylized David model with corresponding hand-drawn spheres [8].

1.3.3 Stylizing Animation by Example

The Stylizing Animation by Example [9] method is mainly focused
on animation, where an artist provides painted keyframes and the algorithm
tries to calculate the in-betweens while maintaining temporal coherence. An
output of this method can be found in Ągure 1.5.

6

1.3. Patch-based methods

Figure 1.5: Stylizing Animation by Example outputs. Top row: stylized
animation; bottom row: input shaded images. The two lateral frames are
keyframes painted by an artist. [9]

The algorithm shares its core with Image Analogies [7] (subsection 1.3.1).
The goal function Gt serves as an evaluation for different offsets of individual
pixels. The algorithm tries to minimize the goal function.

Gt(p) =
∑

∆p∈Ω

w(∆p)g(p, ∆p)

Where p is a point in Ŝ, Ω represents a set of vectors from p to its
neighbors, and w(∆p) are weights for given vectors. The weights have Gaussian
fall-off in a 9 x 9 neighborhood. The overall goal function is a sum of four
main goals:

g(p, ∆p)) = woutgout(p, ∆p) + wingin(p, ∆p)

+wscgsc(p, ∆p) + wtcgtc(p)

+whgh(p) + wdtgdt(p)

The weights w are meant to be manipulated by a user and are not important
in this explanation. These six goal functions can be explained as follows:

• gout Ű make each local neighborhood of output image Î look like
a neighborhood from exemplar style output image Ŝ

• gin Ű make each local neighborhood of input image I look like
a neighborhood from exemplar style input image S

• gsc Ű make mapping p→Mt(p) spatially continuous

• gtc Ű prevent sudden color changes caused by motion

• gh Ű penalize repeated patterns with a histogram of offsets

7

1. State-of-the-art

• gdt Ű maintain painterly stroke styles

The solution space has O(TN) dimensions for T frames and N pixels per
frame, so an optimization with a heuristic is needed. To arrive at convergence
earlier, the method uses coarse-to-Ąne synthesis with multiple
forward-backward sweeps at each level with parallel PatchMatch [41] as the
core of the optimization. In a sweep, a new frame t is generated by randomly
merging the previous frame t− 1 with frame t from the previous level l− 1 of
coarseness. Diagram 1.6 shows the described heuristic.

Figure 1.6: Stylizing Animation by Example heuristic diagram [9].

1.3.4 Recent improvements

The Lit Sphere [8] (subsection 1.3.2) approach was extended, where instead
of using normals as guidance, UV coordinates are used [31]. This allowed the
artist to draw a stylized 2D image of a 3D model and use that as an input
exemplar. The style is then transferred using texture mapping. While this
approach works in real-time, it distorts high-frequency details. The StyLit [14]
approach (described in more detail in the Background chapter 2.1) resolves the
issue by utilizing both local guidance and textural coherence. However, this
improvement came with higher computational demand, making it unusable in
real-time applications.

Recently, Styleblit [1] has come with a solution that is on-par with the
mentioned methods when it comes to the quality of the outputs but has
lowered the computational requirements by multiple orders of magnitude,
making it suitable even for mobile devices. StyleBlit is described in more
detail in the Background chapter 2.2. To visualize the mentioned methods, a
comparison between them is shown in Ągure 1.7.

8

1.3. Patch-based methods

Figure 1.7: A comparison from StyleBlitŠs article [1] between the StyleBlit,
StyLit, and The Lit Sphere methods. The StyleBlit approach produces similar
result quality while being orders of magnitude faster when compared to StyLit.
The Lit Sphere approach is comparable in speed to StyleBlit but does not
retain high-level structure (directional brush strokes).

Further building on the StyLit [14] approach, StyleProp is a method of
rendering 3D models from different angles with only a single hand-drawn
exemplar. The method achieves real-time performance with a pre-calculated
set of sparse samples. The algorithm uses the StyLit [14] method for patch-
based synthesis. At Ąrst sight, the StyleProp method, visualized in Ągure 1.8,
might seem similar to the Stylizing Animation by Example 1.3.3. However,
the difference is that the Stylizing Animation by Example technique maintains
coherence only in one dimension Ű in time. In this scenario, consistency across
all possible dimensions is required.

Figure 1.8: Results from StyleProp [10].

9

1. State-of-the-art

1.4 Neural-based methods

Figure 1.9: A comparison of stylized example outputs from the STALP
article [11]. Methods are shown in order are [11, 12, 13].

Another branch of style transfer based on a deep convolutional neural network
(DCNN) pre-trained for object recognition [42] was originally proposed by
Gatys [12] and became popular thanks to publicly available implementations
and seemingly impressive results. A downside to this approach is that it cannot
reproduce Ąne details from the original style exemplar [14]. This downside
can be mitigated with a combination of patch-based synthesis and the neural-
style transfer [43]. However, these approaches are not suitable for real-time
applications.

The problem of style transfer can also be solved by using generative
adversarial neural networks (GANN) [44]. These can be used for both
image [45] and video [46] stylization. Some techniques use an encoder-decoder
scheme using a single network [47]. While these approaches can be employed
in real-time applications, they require a large database of training data.

Subsequent work building upon [12] produced many methods, including
a recent method named Style Transfer by Relaxed Optimal Transport and
Self-Similarity [13]. This method focuses on stylizing videos by deĄning a
sophisticated loss function and manages to produce results that are coherent
in time while also maintaining the style.

A current state-of-the-art method in the neural-based branch is the STALP:
Style Transfer with Auxiliary Limited Pairing [11] method. The training
process is a combination of two objectives Ű minimize the loss on (stylized
and original) keyframes and also minimize loss between the output images
and artist-created style images in the same domain. An output from STALP
and other mentioned neural-based methods can be found in Ągure 1.9.

10

1.5. Summary

1.5 Summary

Multiple branches of stylization methods were explored. A brief summary of
each follows.

1.5.1 Pattern-based methods

The pattern-based methods were among the Ąrst to tackle computer-assisted
stylization, but even with recent developments are not suitable for our use-case
due to limited stylization variations and computational
requirements.

1.5.2 Filter-based methods

A common example of stylization, the Ąlter and image processing methods can
have great performance but also suffer from a limited stylization variability.

1.5.3 Patch-based methods

The patch-based methods have greatly expanded on the Image Analogies and
The Lit Sphere methods. Using various guiding channels in a patch-based
synthesis led to producing state-of-the-art stylizations. These methods suffer
from high computational demands. However, the method StyleBlit manages
to perform stylization in real-time with guidance based on normals.

1.5.4 Neural-based methods

While the results are comparable in quality to patch-based methods, the
neural-based methods require training and thus cannot be employed in real-
time applications when the style exemplar is acquired at run-time.

11

Chapter 2

Background

The goal of this thesis is to merge the stylization of a 3D model and the
acquisition of an exemplar into an augmented reality experience. To achieve
the goal, this thesis explores two related stylization methods in detail, how
the style can be acquired, and the augmented reality concept. Background
information for Unity and OpenCV is also provided.

2.1 StyLit: Illumination-guided Example-based

Stylization of 3D Renderings

The main difference between the StyLit [14] method and the previously
mentioned methods is that the stylization is based on light propagation in
the scene, not colors. As the name suggests, the process is example-based.
This means that an artist has to provide a style exemplar (usually a sphere
on a table) with global illumination effects. The exemplar is then aligned
to a simple 3D scene, which allows the algorithm to synthesize renderings of
complex new scenes with the visual style of the exemplar. Sample outputs are
displayed in Ągure 2.1. The StyLit method can handle any guiding channels
including normals, although they produce subpar results.

Figure 2.1: StyLit outputs example using various style exemplars [14].

13

2. Background

2.1.1 Light Path Expressions

In addition to the classic schema from Image Analogies [7] of exemplar, stylized
exemplar and, target scene as inputs, the method can also leverage multiple
images obtained by a technique known as Light Path Expressions (LPE) [48].
These images (Ągure 2.2) contain illumination information from 3D scenes
that helps guide the synthesis algorithm.

Figure 2.2: Style exemplar with Light Path Expressions images used in
StyLit [14].

2.1.2 Algorithm

The method uses the following optimization scheme, which minimizes energy:

∑

q∈B

min
p∈A

E(A, B, p, q, µ)

Here A = ¶A, A′♢, B = ¶B, B′♢, where A is exemplar scene with LPE
channels, A′ denotes stylized exemplar aligned to the exemplar scene, B is
target scene with LPE channels, and B′ is a new target image. p and q are
pixels from A′ and B′ respectively. µ represents a weight that controls the
inĆuence of guidance.

The algorithm uses multiple iterations from coarse to Ąne resolution:

1 func t i on StyLit (A, A′, B, B′
k)

2 f o r each p i x e l q ∈ Bk do
3 NNF (q) = argminp∈AE(A, B, p, q, µ)
4
5 f o r each p i x e l q ∈ Bk do
6 B′

k+1(q) = Average(A, NNF, q)
7
8 re turn B′

k+1

Where B′

k contains current pixel values and B′

k+1 the updated values. NNF
is an abbreviation for Nearest Neighbor Field Ű mapping of a source patch to
each target patch.

14

2.2. StyleBlit: Fast Example-Based Stylization with Local Guidance

To mitigate the problematic wash-out effect of this approach, the solution
encourages uniform source patch use, while at the same time leveraging the
idea of reversed NNF retrieval [49]. This allows the algorithm to predict cases
of erroneous assignments ahead of time, estimating an error budget T . The
algorithm is then altered to maximize the number of used source patches
♣A∗♣, while keeping the sum of the energy function less than T . The reasoning
behind this mitigation strategy is depicted in Ągure 2.3.

Figure 2.3: How StyLit mitigates erroneous assignments [14]

2.2 StyleBlit: Fast Example-Based Stylization

with Local Guidance

The StyleBlit [1] method tries to achieve both high-quality stylized renderings
and real-time performance. The approach is patch-based with local guidance.
The StyleBlit method is inspired by StyLit but uses normals as local guidance
to avoid computationally expensive optimization, which makes it vastly faster
than other competing methods. It seeks large coherent chunks of style
exemplarŠs regions directly using pixel-level operations. A demonstration of
this method can be seen in Ągure 2.4, where the Ąrst row is the source exemplar
and the second row is the stylized result.

Figure 2.4: Results from StyleBlit [1].

2.2.1 Approach

The core idea behind StyleBlit is visualized in Ągure 2.5, where (b) is a
randomly selected pixel from the target image and (a) is a location in the
source exemplar that is found using (b)′s guidance value. The patch (c)
consists of all neighboring pixels of (b) with their guidance value difference

15

2. Background

below a user-deĄned threshold. Then, all pixels from the chunk are copied to
the target image (d). These steps are repeated until all patches are determined
(e).

Figure 2.5: A visualization of StyleBlitŠs patch-based approach [1].

2.2.2 Brute force algorithm

The simplicity of StyleBlitŠs approach is demonstrated in the following
pseudocode:

1 func t i on S t y l e B l i t (CS , GS , GT , t)
2 f o r each p i x e l p ∈ CT do
3 i f CT [p] i s empty then
4 u∗ = argminu♣♣GT [p]−GS [u]♣♣
5 f o r each p i x e l q ∈ CS do
6 i f CT [p + (q − u∗)] i s empty then
7 e = ♣♣GT [p + (q − u∗)]−GS [q]♣♣
8 i f e < t then
9 CT [p + (q − u∗)] = CS [q]

10 re turn CT

Where CS is style exemplar, GS are source guides, GT represent target guides
and t is the error threshold.

While easy to implement, the algorithm suffers from its sequential nature
and redundant querying of target pixels that have already been assigned in a
patch.

2.2.3 Parallel algorithm

To avoid redundant visiting of target pixels and allow for parallelization,
algorithm 2.2.3 uses a hierarchy of target seeds with different levels
of granularity. The levels are traversed in order and the nearest seed is found
on each. The algorithm checks if the guidance error e is below a speciĄed
threshold t. If the condition passes on any level, the value mapped from CS

is copied to CT and the search stops. The nearest seed search is randomly
offset using the RandomJitterTable that contains values between 0 and 1.

16

2.2. StyleBlit: Fast Example-Based Stylization with Local Guidance

Outside of the levels hierarchy, the parameters are the same as in the brute
force version 2.2.2.

1 func t i on NearestSeed (p i x e l p , seed spac ing h)
2 b = ⌊p/h⌋
3 j = RandomJitterTable[b]
4 re turn ⌊h ∗ (b + j)⌋
5
6 func t i on NearestSeed (p i x e l p , seed spac ing h)
7 d∗ =∞
8 f o r x ∈ −1, 0, +1 do
9 f o r y ∈ −1, 0, +1 do

10 s = SeedPoint(p + h ∗ (x, y), h)
11 d = ♣♣s− p♣♣
12 i f d < d∗ then
13 s∗ = s
14 d∗ = d
15
16 func t i on P a r a l l e l S t y l e B l i t (p i x e l p , CS , GS , GT , t)
17 f o r each l e v e l l ∈ (L, ..., 1) do
18 ql = NearestSeed(p, 2l)
19 u∗ = argminu♣♣GT [ql]−GS [u]♣♣
20 e = ♣♣GT [p]−GS [u∗ + (p− ql)]♣♣
21 i f e < t then
22 CT [p] = CS [u∗ + (p− ql)]
23 break

2.2.4 Extensions

When needed, the algorithm can be modiĄed to apply linear blending for the
seams between patches. This is achieved by replacing the copying of colors
with pixel coordinates from the source exemplar. The Ąnal color is determined
as the average color of neighboring pixels from source patches that intersect
the target pixel.

While this method is suitable for stochastic exemplars, it does not work
well with exemplars that feature both smooth gradients and high-frequency
features. This can be mitigated by separating the input exemplar into a
smooth base and high-frequency detail layer using a Gaussian Ąlter and its
subtraction from the exemplar. The base layer is stylized with the Lit Sphere
algorithm [8]. The detail layer is stylized by StyleBlit. Lastly, both layers are
put together. This approach can be observed in Ągure 2.6, where (a) denotes
the source exemplar, (b) is the result of the non-layered approach, (c) is the
base layer with the corresponding result (e), (d) is the detail layer with the
corresponding result (f), and Ąnally, (g) is the sum of both layers.

17

2. Background

Figure 2.6: StyleBlitŠs multi-layered approach [1].

2.3 Style exemplar acquisition

The application needs to be capable of capturing a template drawing. To
achieve this, the application has to detect the exemplar and perform
a perspective transformation to align the scanned image with a pre-set scene.
A blank style exemplar is shown in Ągure 2.7.

Figure 2.7: A blank style exemplar used in StyleBlit [1].

2.3.1 Projective transformation

Because the camera that will be scanning the template drawing will most
likely be hand-held, the captured image containing the style exemplar needs
additional processing to be correctly aligned. This means detecting the four
corners of the exemplar in 3D space and transforming the cut-out into a 2D
rectangle with predeĄned dimensions. A visualization of this transformation
from both 2D and 3D perspectives can be seen in Ągure 2.8.

From a mathematical point of view, the transformation is a function that
maps one vector space into another, which can be done by multiplying a matrix
consisting of pixel coordinates and 1 with the following matrix:

18

2.3. Style exemplar acquisition

Figure 2.8: Projective transformation visualization from 3D and 2D
perspectives [15].

a1 a2 b1

a3 a4 b2

c1 c2 1

Where:

•

(

a1 a2

a3 a4

)

is called a rotation matrix. This matrix deĄnes the

transformation to be performed (scaling, rotation).

•

(

b1

b2

)

B is the translation vector. It moves pixels on the x and y axes.

•

(

c1 c2

is the projection vector.

So we get the following equation:

a1 a2 b1

a3 a4 b2

c1 c2 1

×

x
y
1

=

x′

y′

1

(2.1)

19

2. Background

Here, x and y are coordinates of a pixel that need to be transferred. x′

and y′ are the corresponding target coordinates. Equations for both can also
be formulated:

x′ =
a1x + a2c + b1

c1x + c2y + 1

y′ =
a3x + a4c + b2

c1x + c2y + 1

2.3.2 Mapping

The equation 2.1 described in the previous subsection (2.3.1) is doing what is
called a forward mapping Ű it goes through every pixel in the original image
and transforms it to a target pixel. The inherent problem using this approach
is that when the scaling factor is smaller than 1, then it maps multiple pixels
from the source image to the same coordinations in the target image, and
when the scaling factor is greater than 1, it can leave unmapped ŤholesŤ in
the target image. An example of this problem can be observed in Ągure 2.9.

Figure 2.9: An example of a forward-mapping scaling problem. Taken from
a web tutorial on what-when-how [16]. The input (a) is stretched to a
larger image (b), leaving holes. The third image (c) depicts the correct
transformation.

To solve these issues, a technique called backward mapping needs to be
used. The technique goes through every target pixel and applies a reverse
transformation to it to get the source coordinates.

Both forward and backward mapping have a problem in that the resulting
coordinates are not integers, but Ćoating-point numbers. The solution to this
issue is a technique called resampling [17] and has two simple approaches. The

20

2.3. Style exemplar acquisition

Ąrst is a nearest-neighbor approach Ű round the Ćoating-point numbers to get
an integer. The second, more sophisticated way to resolve the problem is to
take pixel values from the four surrounding pixels and average their values
based on their proximity to the calculated coordinates. This is equivalent to
bilinear interpolation [50]. Both approaches are shown in Ągure 2.10.

Figure 2.10: Visualization of the nearest neighbor and bilinear interpolation
resampling techniques. Here I∗ are points from the source image, and dx with
dy are weights based on proximity [17].

2.3.3 Exemplar detection

The last and most important piece of the puzzle the application needs to be
capable of is detecting the style exemplar with the deviceŠs camera. This
discipline is called object recognition, more speciĄcally image recognition and
there are two branches of approaches.

The Ąrst, older branch is the non-neural approach, which consists of two
steps: deĄne features (keypoints) with one of the algorithms, then identify
features in a captured image and compare these new features with the deĄned
ones. Algorithms from this branch include Scale Invariant Feature
Transform [51], Speeded Up Robust Features [52], KAZE features [53] and
Binary Robust Invariant Scalable Keypoints [54].

The second branch is based on convolutional neural networks (CNN) [55]
and also has two steps: training of the CNN on a (large) dataset, with the
second step being the classiĄcation of the target image. This approach is
more general because it is independent of prior knowledge in feature extraction
and does not need human intervention. Notable approaches of building these
networks include R-CNN [56], Single Shot MultiBox Detector [57] and You
Only Look Once [58].

While these approaches are the state-of-the-art of image recognition, they
are not suitable to the speciĄc use-case of recognizing the style exemplar,
because the exemplar can be stylized arbitrarily. This causes the style exemplar
to have unknown feature points, rendering both techniques unusable. Instead,
the application can use easily recognizable (from the applicationŠs perspective)
Ąducial markers [18]. These markers can serve as a point of reference, measure,
and orientation (pose). The biggest advantage of this marker-based approach

21

2. Background

is the speed of detection and the precision of alignment with the pre-set
scene. On the other hand, using markers can somewhat degrade the user
experience and cause confusion. How these Ąducial markers can look is shown
in Ągure 2.11.

Figure 2.11: Examples of different Ąducial markers [18].

2.4 Augmented reality introduction and terms

The augmented reality concept falls into a broader category of immersive
technologies and often gets confused for others. There are a few terms that
need to be deĄned in order to have a clear idea of what augmented reality
refers to.

2.4.1 Extended reality

Extended reality (XR) is an emerging term that represents a superset of all
immersive technologies with arbitrary combinations of both real and virtual
environments in human-computer interactions. XR encompasses all terms
deĄned in this section. The XR spectrum is visualized in Ągure 2.12.

2.4.2 Augmented reality

The concept of augmented reality (AR) is a process of adding virtual objects
into a camera feed from a real device before displaying the feed to the user.
This enables an attractive relay of information to a user interactively. As this
thesis focuses mainly on AR, there is a whole section (2.5) dedicated to it.

2.4.3 Virtual reality

Situated on the other end of the XR spectrum, virtual reality (VR) presents a
simulated Ąctional world. The user is wearing a headset that is fully blocking
their view and captures their movement. VR is mainly known for games, but
it is also used in more practical use-cases, for example a Ćying simulator in
the military.

22

2.4. Augmented reality introduction and terms

Figure 2.12: The extended reality spectrum [19].

2.4.4 Mixed reality

A step between augmented reality and virtual reality, mixed reality (MR) can
be based in either the real world or the virtual world.

• Based in the real world Ű There are virtual objects with which the
user can interact. The user usually wears a headset with built-in cameras
and sensors that capture the environment. This form of mixed reality is
often considered an advanced form of AR. See Ągure 2.13 for an example
usage.

• Based in the virtual world Ű The virtual world is intertwined with
the real one. This means that while the user is completely immersed
in virtual reality, they can see representations of walls and objects that
have a counterpart in the real world. To see how the worlds are mixed
together, see Ągure 2.14.

Figure 2.13: An example of mixed reality based in the real world [19].

23

2. Background

Figure 2.14: An example of mixed reality based in the virtual world [20].
The Ąrst image is from the real world, while the second shows how the mixed
reality presented to the user looks.

2.5 Augmented reality

This section brieĆy describes the technical side behind AR, showcases some
applications of AR, and explores different options for its implementation.

2.5.1 How it works

Augmented reality can be divided into two categories based on how they
are tracking the real world. The Ąrst category is marker-based AR. As the
name implies, it uses Ąducial [18] markers for better environment tracking,
allowing it to place virtual objects with precision. This is useful for multiplayer
applications or when precise placement of virtual content is required. A
visualization of how the marker-based AR can look from the userŠs point of
view is shown in Ągure 2.15.

Figure 2.15: An example of marker-based application of augmented reality
from the userŠs perspective [21].

The second category of augmented reality is markerless. It generally works
by tracking the position of the device in the real world. This is achieved by a
combination of readings from the deviceŠs sensors (gyroscopes

24

2.5. Augmented reality

and accelerometer) and tracking feature points in time using the deviceŠs
camera. The real-world representation is often supplemented with Ćat surface
detection and light estimation. With the representation in hand,
the application is then able to place objects or other information into the
real world.

A set of distinct features [29] related to AR has emerged over time, they
can be summarized in the following list:

• Device tracking: Track position of the device in the real world.

• Plane detection: Detect surfaces.

• Point clouds: Track surrounding environment with feature points.

• Anchor: A user-chosen position that is being tracked by the engine.

• Light estimation: Intensity and color correction based on guesssed
light in environment.

• Environment probe: Able to simulate reĆections of placed objects
(cube mapping).

• Face tracking: Detect and track faces and their regions.

• 2D image tracking: Detect and track 2D images in the real world.

• 3D object tracking: Detect and track real 3D objects.

• Meshing: Generate a mesh that reĆects the real world.

• Body tracking: Track a person in the physical environment.

• Colaborative participants: Share data about environment between
multiple devices running the same application.

• Raycast: Determine if a ray, deĄned by an origin and direction, intersects
a registered object.

• Pass-through video: Use camera feed as background for AR content.

• Occlusion: Objects are shaded with (ambient) occlusion.

2.5.2 Real world usage examples

IKEA was one of the Ąrst companies to realize ARŠs potential and has developed
a mobile application1 that can place pieces of furniture into the real world, thus
allowing the customer to get an idea of how the product will Ąt (both physically

1Currently, the app is only available for iOS, though an Android version was brieĆy
available.

25

2. Background

and visually) into their environment. Figure 2.16 shows a promotional picture
with a usage example. [22]

Figure 2.16: Promotional picture for IKEA place [22].

One of the most common uses of AR nowadays are so-called face Ąlters.
Popularized by Facebook and Instagram, these Ąlters allow the user to add
objects (e.g. a crown, bunny ears) to their face in a humorous manner. An
example of these Ąlters can be seen in Ągure 2.17.

Figure 2.17: Promotional picture for Instagram face Ąlters [23].

AR also has applications in the military. For example, it helps pilots of
Ąghter jets by projecting vital information on see-through displays in their
helmets (Ągure 2.18).

26

2.5. Augmented reality

Figure 2.18: Augmented reality helmet for F-35 Lightning II Ąghter jet [24].

2.5.3 ARCore

ARCore [59] is a set of SDKs for building augmented reality applications.
The platform was released in 2018 as an answer to AppleŠs ARKit (described
in 2.5.4), is developed by Google, and is open-source Ű licensed under the
Apache license version 2 [60]. ARCore can be used with both Android2

and iOS. The platform can also be used with popular game engines Unity
and Unreal engine. This enables cross-platform cooperation through ARCore
Cloud Anchor [61].

On Android, which is the focus of this thesis, the devices need to be
certiĄed by Google to have the ARCore APK available. The market share of
these certiĄed devices is estimated to be at 41 % [62]. A list of all supported
device models is available at the ARCore documentation page [63].

2.5.4 ARKit

Released in 2017 with iOS 11, ARKit [64] is the Ąrst widely used SDK for AR
development. Developed by Apple, ARKit was able to maintain its position
at the forefront of AR SDKs. Apple has also built a framework RealityKit [65]
that makes the development of AR applications signiĄcantly simpliĄed.

Arguably, the biggest downside of ARKit is that it is only available for
iPhones (starting with 6S) and iPads (starting with the iPad Pro). However,
when compared to ARCore (subsection 2.5.3), ARKit has a few additional
substantive features, for example, 3D object tracking and human segmentation.

2.5.5 AR Foundation

AR Foundation [66] is a package that is used to build multi-platform AR
applications in Unity. It does not implement any AR features itself, instead,
it presents a uniĄed interface for developers to use. Under the hood, AR

2It is worth mentioning that Android is by far the most used platform of those supported
by ARCore.

27

2. Background

Foundation uses both ARCore (subsection 2.5.3) and ARKit (subsection 2.5.4)
for mobile applications, and Magic Leap and HoloLens, which are used with
their respective AR glasses. These four platforms all have a different set of
features, which forces the developer to use only those features that the targeted
platforms share in common. A list of the features can be seen in table 2.1.

Feature ARCore ARKit Magic Leap HoloLens

Device tracking ✓ ✓ ✓ ✓

Plane tracking ✓ ✓ ✓

Point clouds ✓ ✓

Anchors ✓ ✓ ✓ ✓

Light estimation ✓ ✓

Environment probes ✓ ✓

Face tracking ✓ ✓

2D Image tracking ✓ ✓ ✓

3D Object tracking ✓

Meshing ✓ ✓ ✓

2D & 3D body tracking ✓

Collaborative participants ✓

Raycast ✓ ✓ ✓

Pass-through video ✓ ✓

Occlusion ✓ ✓

Table 2.1: A list of AR-related features that the speciĄc platforms used in AR
Foundation support. Sourced from the AR Foundation manual [29].

AR Foundation unites the main SDKs used on mobile platforms and
therefore is a clear choice of this analysis.

2.6 Unity

2.6.1 General information

Formerly known as Unity3D, Unity is a multi-platform game engine developed
by Unity Technologies with its Ąrst release in 2005 [67]. Thanks to its large
community and detailed documentation, Unity is the most popular game
engine with some reports stating that 61 % of game developers are using
Unity [68]. It comes with an IDE called Unity Editor [69] for managing scenes,
assets, and builds. The Unity Editor is supported on all major platforms Ű
Windows, macOS, and the Linux platform.

Unity has a yearly subscription service model, but has a free version for
students and personal use, as long as the revenue is less than $100K in the
last 12 months [70].

28

2.6. Unity

At the time of writing, Unity supports targeting 19 different platforms [71]:

• Mobile Ű Android, iOS, and tvOS

• Console Ű PlayStation 4 and 5, Xbox One and Series X, Nintendo
Switch, and Google Stadia

• Desktop Ű Windows (7, 10, and 11), Universal Windows Platform,
macOS, and Linux

• Web Ű WebGL

• Extended reality Ű Oculus, Windows Mixed Reality, Magic Leap,
ARCore, and ARKit

2.6.2 Installation

The recommended way of installing the Unity Editor is through the Unity
Hub [72]. The Unity Hub is a management tool for Unity projects, Editor
installations, and Unity license. It lets the user select which target platformsŠ
build support should be installed along with the Editor installation, while also
supporting multiple Editor installations. This is shown in Ągure 2.19. The
Unity Editor can also be downloaded directly through the Unity download
archive page [73].

Figure 2.19: The Unity Hub with different versions of the Editor installed.

2.6.3 Scenes

A Unity project is divided into scenes. Scenes can be thought of as separate
screens, each with its own objects and settings. Screens can represent the
main menu, settings page, or individual levels. A scene is where the user can
create and manipulate content. Every object (camera, 3D model, button) in
a scene is a GameObject. GameObjects are organized in a tree hierarchy with
the scene being the root.

29

2. Background

2.6.4 GameObject

A GameObject can be seen as a container for components. The only component
all GameObjects have is the Transform component, which deĄnes the position,
rotation, and scale. The attached components deĄne how the GameObject
looks, how it updates, and how it reacts to input. There are many components
provided by the Unity Editor. However, the user can write their own
components (subsection 2.6.5).

2.6.5 Scripting in Unity

The programming language of choice is C# and the recommended IDE for
writing the code is Visual Studio or Visual Studio Code [74]. While it is
possible to get substantial work done in Unity without needing to handle code,
understanding the code opens up a lot more possibilities. This subsection
describes the basics of writing code, which is called scripting in the Unity
lingo [75].

All newly created scripts (see listing 2.1) with the Unity Editor inherit
from a class called MonoBehaviour, which provides methods that will be
called according to the Unity lifecycle. Inheriting from MonoBehaviour allows
the script to be attached to a GameObject as a component. Without an
attachment to an active GameObject, none of the code in the script will
be executed. When the script is attached as a component, all of its public
variables are visible and modiĄable in the Unity Editor. Other components
or whole GameObjects can be linked through those public variables, allowing
for interaction between scripts.

us ing UnityEngine ;
us ing System . C o l l e c t i o n s ;

pub l i c c l a s s MainPlayer : MonoBehaviour ¶

// Use t h i s f o r i n i t i a l i z a t i o n
void Star t () ¶

♢

// Update i s c a l l e d once per frame
void Update () ¶

♢
♢

Listing 2.1: The initial contents of a newly created script Ąle.

30

2.6. Unity

2.6.6 Lifecycle

As mentioned in the Scripting in Unity subsection (2.6.5), scripts that inherit
from the MonoBehaviour class gain access to a number of lifecycle methods.
A full list is available in the Unity documentation [25]. A list of methods
that are important for understanding the Unity project accompanied by a
diagram 2.20 follows:

• Awake Ű Called when a script instance is being loaded. Mainly used
in place of a constructor to set up references between scripts. Awake is
called on all active GameObjects before any Start method calls.

• OnEnable Ű Called every time the object becomes enabled. Ideal place
for subscriptions.

• Start Ű Called after the script is enabled (on the same frame) and
before any Update method calls. The programmer can assume other
components have been initialized.

• OnMouseXXX Ű This particular method does not exist and is used
as a placeholder for all methods that can be called based on the userŠs
interaction.

• Update Ű Called every frame. Is the most commonly used method for a
game script. Typical usage is a calculation that needs to be done every
frame, for example, a rotating object that needs to update its pose every
frame.

• OnDisable Ű Called when the object becomes disabled. Can be used
to cancel any subscriptions.

• OnDestroy Ű Called when the object is being destroyed. Clean-up
should be done here.

2.6.7 Prefabs

As the name suggests, prefabs are essentially blueprints for creating
GameObjects. The main usage of prefabs is creating complicated GameObjects
at run time, for example, spawning a building as a reaction to a button click.
They are also useful when there is a need for using multiple same GameObjects
in a scene, for example, to ensure that all the buttons look the same. When
used in a scene as a GameObject, editing it will also edit every other instance
in the scene.

31

2. Background

Figure 2.20: Vastly simpliĄed script lifecycle overview. Full version available
in the Unity documentation [25].

2.6.8 Assets

Every item that can be used in a Unity project is called an asset. Assets may
include music, scripts, 3D models, textures, or color gradients and can be
grouped into multiple separate bundles. This allows the project to load and
unload them when needed. These bundles can also be distributed to the cloud
and downloaded only when needed [76], cutting down on initial download time
and saving valuable space.

32

2.6. Unity

2.6.9 Packages

A Unity package is a Ąle that contains a collection of assets and scenes, which
can be imported into an existing unity project. A package can be created
by exporting from a unity project. The exported package will include all
dependencies of selected assets or scenes so that no errors will be introduced
by importing it.

Unity has its own asset store [77], which is a marketplace that is connected
with the Unity Editor. The assets are bundled together in a Unity package.
Both Unity Technologies and the community can create and publish assets to
the store. Using the asset store can greatly accelerate project development.
The store offers anything from textures to entire project samples. Assets can
either be free or paid.

2.6.10 Shaders

Writing hand-crafted shaders is not considered basic Unity knowledge, but it
is necessary to implement the StyleBlitŠs [1] algorithm. Shaders are stand-
alone programs that can run on the GPU. In Unity, shaders are divided into
three categories [78]:

1. Shaders that are part of the graphics pipeline3

2. Compute shaders

3. Ray tracing shaders

The shader that needs to be written will output individual pixels, so it
falls into the Ąrst category. Other categories will not be described here.

A Shader object is a Unity-speciĄc way to work with shaders [79]. It can
contain multiple shader programs, settings for the GPU, and information for
the Unity Editor. Anatomy of a Shader object is visualized with the following
nested list, where each level describes the contents of the higher-level item:

3Graphics pipeline is a set of steps that takes a 3D scene as an input and outputs a 2D
image.

33

2. Background

• Shader object

Ű Information about itself

Ű Optional fallback shader

Ű One or more SubShaders

∗ Information about compatibility with hardware, render
pipelines, and runtime settings

∗ SubShader tags

∗ One or more Passes

· Pass tags

· Instructions for changing the GPU settings

· Shader programs

In the Shader objectŠs context, tags are reffering to key-value pairs that
provide information about the SubShader (e.g., ŤQueueŤ = ŤGeometryŤ) or
Pass (e.g., ŤLightModeŤ = ŤAlwaysŤ).

The recommended language for writing shaders is the High-level shader
language (HLSL) developed by Microsoft for the Direct3D 9 [80]. Unity
originally used the Cg shading language [81], which is very similar and was
developed alongside HLSL.

2.6.11 Shader example

To better understand what a shader looks like and how it is written, a basic
unlit shader (listing 2.2) will be described.

The Properties block deĄnes shader variables that are visible in the Material
Inspector [82]. In the example, there is a single texture property. This texture
is then accessed in the Pass block with a sampler.

There are two shader programs in this example Ű the vertex shader and the
fragment shader. The vertex shader runs on each vertex of the 3D model. In
this example, it is projecting a 3D coordinate into a 2D window. The fragment
shader runs on each visible pixel of the 3D model and takes the output of the
fragment shader as input. In this case, the fragment shader looks up the pixel
value from the main texture. The directive #pragma is used to deĄne the
name of the respective shader function.

The code also demonstrates how to use multiple variables contained in
structs (appdata and v2f) as inputs and outputs of functions.

34

2.7. OpenCV

Shader Ť U n l i t / SimpleUnl itTexturedShader Ť
¶

P r o p e r t i e s
¶

[NoSca leOf f set] MainTex (Ť Texture Ť , 2D) = Ť white Ť ¶♢
♢
SubShader
¶

Pass
¶

CGPROGRAM
// use Ť v e r t Ť f u n c t i o n as the v e r t e x shader
#pragma v e r t e x v e r t
// use Ť f r a g Ť f u n c t i o n as the p i x e l (fragment) shader
#pragma fragment f r a g

// v e r t e x shader in p u t s
s t r u c t appdata
¶

f l o a t 4 v e r t e x : POSITION ; // v e r t e x p o s i t i o n
f l o a t 2 uv : TEXCOORD0; // t e x t u r e c o o r d i n a t e

♢ ;

// v e r t e x shader outputs (Ť v e r t e x to fragment Ť)
s t r u c t v2f
¶

f l o a t 2 uv : TEXCOORD0; // t e x t u r e c o o r d i n a t e
f l o a t 4 v e r t e x : SV POSITION ; // c l i p space p o s i t i o n

♢ ;

// v e r t e x shader
v2f v e r t (appdata v)
¶

v2f o ;
// transform p o s i t i o n to c l i p space
// (mult ip ly with model∗ view ∗ p r o j e c t i o n matrix)
o . v e r t e x = mul (UNITY MATRIX MVP, v . v e r t e x) ;
// j u s t pass the t e x t u r e c o o r d i n a t e
o . uv = v . uv ;
r e t u r n o ;

♢

// t e x t u r e we w i l l sample
sampler2D MainTex ;

// p i x e l shader ; r e t u r n s low p r e c i s i o n (Ť f i x e d 4 Ť type)
// c o l o r (Ť SV Target Ť semantic)
f i x e d 4 f r a g (v2f i) : SV Target
¶

// sample t e x t u r e and r e t u r n i t
f i x e d 4 c o l = tex2D (MainTex , i . uv) ;
r e t u r n c o l ;

♢
ENDCG

♢
♢

♢

Listing 2.2: A simple unlit shader example. Taken from the Unity
documentation page [83].

2.7 OpenCV

OpenCV [84] is a cross-platform library for real-time computer vision. With
the Ąrst alpha release in 2000, it was originally developed by Intel and is free
to use under the open-source Apache 2 license [85]. The library includes more

35

2. Background

than 2500 algorithms related to computer vision [86] and machine learning.
The main language used in OpenCV is C++ and it has additional interfaces

for Python, Java, and MATLAB. The library is extensively used with thousands
of community members and over 23 million downloads [87].

2.7.1 ArUco

ArUco [26] is a minimal library for came pose estimation using markers. It
is a module in the OpenCVŠs so-called contrib repository [88]. The OpenCV
contrib repository is not part of the official OpenCV distribution.

The creators of StyleBlit [1] that this application is meant to implement
have devised a way to scan the exemplar by using ArUco markers. ArUco
markers are Ąducial markers that are designed to be used in computer vision
applications. An example of an ArUco marker is shown in Ągure 2.21.

Figure 2.21: An example of a generated 6× 6 ArUco marker [26].

ArUco markers can have arbitrary (square) dimensions starting from 4×4
(plus border). The dimensionality affects:

• How many markers can be generated.

• How easy it is to detect markers.

• How distinguishable are the markers from each other. This is measured
in hamming distance [89].

• How fast is the recognition.

The markers are organized into sets that are called dictionaries [26] and
they have a unique id based on order within those dictionaries. Though it
is recommended to generate a new dictionary for every application, there are
several predeĄned dictionaries in the library.

The detection process is also able to identify the markerŠs rotation and pose
in the real-world relative to the camera, which is demonstrated in Ągure 2.22.

36

2.7. OpenCV

Figure 2.22: An example of detecting ArUco markerŠs pose and visualizing
the axes [26].

37

Chapter 3

Realisation

The resulting application, named StyleTransfer, provides a unique blend of
stylization and exemplar acquisition within an AR experience. StyleTransfer
was developed in the Unity game engine and runs on Android devices that
both support ARCore [63] and their system version is 7.0 (API level 24) or
newer4. The application also requires the camera permission for apparent
reasons.

3.1 Application design

The use-cases from the userŠs perspective are not complicated. The user needs
to be able to:

• Scan a style exemplar.

• See a stylized 3D model (within AR) and rotate it.

The simplest solution would be to have two screens Ű one for exemplar
acquisition and the other for interaction with the 3D model. However, they
can be combined into a single screen with a toggle for state switching.

Given that obtaining an exemplar template, stylizing it, and Ąnally scanning
it requires a signiĄcant effort from the user, the application will contain
multiple prearranged style exemplars to showcase the StyleBlit [1] method.
The user will be able to switch between the exemplars as they will be organized
into a toggle group. The exemplar acquired by scanning the style template
will also need to be a part of this toggle group.

The application will also contain several 3D models to facilitate testing of
the stylization algorithmŠs functionality. These models can also be organized
into a separate toggle group. Having two separate toggle groups will allow for
testing arbitrary combinations of the exemplar and the 3D model.

4Over 90 % of Android devices that have been active in the last month have system
version 7.0 or newer worldwide [90].

39

3. Realisation

To visually distinguish between the two toggle groups, they will be separated
by the scanning button. The proposed design is presented as a mockup in
Ągure 3.1.

Figure 3.1: A mockup of the proposed design, showcasing two toggle groups
and a switch for style scanning. The 3D golem is taken from StyleBlitŠs
article [1]. Made with the Balsamiq wireframing tool [27].

3.2 Main Ćow

With the Ąrst application start, the application asks for the camera permission.
After granting the permission, the user is presented with a camera feed
overlayed with GUI. At this point, the underlying AR framework is trying
to identify horizontal planes (see section 2.5 for an explanation of how this
works), which can be helped by the user slowly moving their device. Once
a plane is detected, it is marked by transparent white circles. The plane
visualization is visible in the Ąrst image of Ągure 3.2.

With a plane detected, the user can place a (stylized) 3D model onto
the plane by either tapping it or clicking the place button. The model can
be scaled with a scale gesture and rotated with a twist gesture [91]. Both
gestures require two touchpoints. The user can choose from the selection
of 3D models and style exemplars with the changes happening in real-time.
A visualization of the whole main Ćow is shown in Ągure 3.2.

40

3.3. GUI

Figure 3.2: The main Ćow, visualized in screenshots. The images show in
order: plane detection, 3D model placement, selection of different models and
styles, and manipulation of the model.

3.3 GUI

As proposed in the Application design section 3.1, the GUI (shown in Ągure 3.3)
is separated into three distinct rows. The bottom row displays six stylized
exemplars. The exemplars form a toggle button group. The active button is
indicated with a green circle. Similarly, the Ąrst row consists of Ąve 3D models
organized into a toggle button group with the green circle marking the active
button. The thumbnails preview how the model looks with applied stylization
and are generated anew with each style exemplar change. To avoid mistaking
the exemplars and 3D models for each other, they are visually separated with
the middle row.

Figure 3.3: Screenshots from the StyleTransfer application showing the GUI.

The middle row has three buttons. The Ąrst one is just another style
exemplar toggle button. It is meant to be replaced when a new style is
successfully scanned. The middle button with a plus sign activates style

41

3. Realisation

scanning when pressed. Style exemplar scanning is further explained in
section 3.4. The last button, depicting a cube being placed down, serves
for moving the 3D model to a different location. When pressed, the model is
moved to the middle of the screen, if there is a detected plane at that location.
This button was added because the userŠs gestures for interacting with the 3D
model were often mistaken as an intention to relocate the model.

When using a development build, the GUI also displays an FPS counter
in the top-right corner (visible in Ągure 3.2).

3.4 Style exemplar acquisition

The application must be able to perform scanning of the style exemplar in
the real world. This is done by detecting the four corners of the exemplar
and performing a perspective transformation to align the sphere with pre-
calculated normals.

3.4.1 Corner detection

With the goal being an identiĄcation of the four corners of the exemplar
template, the creators of StyleBlit [1] have simply surrounded the template
with four ArUco [26] markers (ArUco markers are described in subsection 2.7.1),
aligning them with the corners. This is shown in Ągure 3.4. With the
knowledge of the markerŠs real-world size and the order they were generated,
the identiĄcation of the templateŠs corners is straightforward with one exception.
There is a slight gap between the markers and the templateŠs borders, but this
can be resolved using the knowledge of the markerŠs real-world size and the
size of the gap.

Figure 3.4: StyleTransferŠs style exemplar template ArUco markers for easy
scanning [1].

The markers used for the style template scanning are from a pre-generated
dictionary containing 250 markers with 6×6 dimensions and they are organized
in order starting from the top-left and continuing clockwise. While the choice

42

3.4. Style exemplar acquisition

of the dictionary is not the best for this use case, the advantages of using a
better-suited one are negligible.

To simplify things, the StyleTransfer application uses a style template that
does not have a gap between the ArUco markers and the style exemplar. This
allows it to substitute the appropriate corner of a marker for the corner of the
style exemplar, eliminating an inherently inaccurate calculation. The modiĄed
template With this modiĄcation, the application does not need to know the
markerŠs real-world size beforehand.

Figure 3.5: StyleTransferŠs style exemplar template with pre-Ąlled style and
ArUco markers moved to the border of the template.

3.4.2 Scanning Ćow

The scanning is activated by pressing the plus sign button (see the GUI
section 3.3). When active, the application grabs a picture from the camera
feed every 10 frames. The picture is then searched for the ArUco markers (see
subsection 2.7.1 for more details about ArUco) with the detectMarkers [92]
function in OpenCVŠs ArUco module. This function performs marker detection
on the input image and returns ids and corners of all detected markers from the
speciĄed dictionary. If exactly four markers are detected, they are identiĄed
by their ID (0-3) and sorted. Then, a correct corner of each marker is selected.
The corners start from 0 in the top-left and increase counting clockwise.

Now that the application knows the aforementioned four points of the
style exemplarŠs corners, it can carry out the transformation. First, the
perspective transformation matrix is calculated with the OpenCVŠs
getPerspectiveTransform [93] function from the image processing module.

The function takes two sets of four points Ű the Ąrst set (source) consists of the
detected corners and the second set (destination) can be constructed based
on the desired dimensions of the exemplar (600× 456 in this case). For more
background information about the concept of a projective5 transformation,

5Every perspective transformation is a projective transformation, but a projective
transformation is not necessarily a perspective transformation.

43

3. Realisation

Figure 3.6: The scanning Ćow is demonstrated in three steps from left to
right: (1) place an object, (2) click the plus button, and (3) make sure all four
markers are visible.

please see subsection 2.3.1.
With the perspective transformation matrix, the application calls the

OpenCVŠs warpPerspective [94] function to Ąnally transform the image into
a style exemplar. The resulting style exemplar is then assigned to the Ąrst
button in the middle row of the GUI and the button is selected, effectively
turning the scanning off. Please see Ągure 3.6 to get an idea of the user
experience regarding the whole scanning Ćow.

The scanning can function under unfavorable conditions, but the quality
diminishes with distance and camera angle. The distance problem is intuitive
Ű the camera is far away, and thus unable to capture details in the exemplar,
causing a smooth appearance. With an increasing angle, the exemplar is
scanned at, less information is available for the perspective transformation,
resulting in a distorted image. The distance and angle problems are shown in
Ągure 3.7. Lighting also affects the captured style, but this is not an issue of
the scanning process.

44

3.5. Scenes

Figure 3.7: Screenshots from the ScannerTest scene (see subsection 3.5.2),
showing extreme conditions for the scanner Ű the camera is far away (top),
and the camera is at an angle (bottom).

3.5 Scenes

The project consists of three scenes Ű StyleTransfer, ScannerTest,
and MaterialExample.

3.5.1 StyleTransfer

The StyleTransfer scene is the main scene of the application, providing the
AR experience. It contains multiple GameObjects, each serving a different
function.

• AR Camera Ű This object is providing the feed from a deviceŠs rear
camera as background while also tracking its position in the environment.
It also houses the ARMarkerDetector component for exemplar scanning.

• AR Session Ű The AR Session object controls the lifecycle of an AR
experience. It handles enabling of the underlying framework (in this
case, the ARCore framework) and reports the state.

• AR Session Origin Ű Transforms trackable features (planar surfaces and
feature points) into the Unity scene. This allows it to handle the pose

45

3. Realisation

and scale of virtual content. The AR Session Origin contains most of
the custom scripts described in the Scripts section 3.6.

• Canvas Ű Contains all GameObjects relating to GUI.

• EventSystem Ű Allows sending user input events to objects in the
application.

• LeanTouch Ű A GameObject from the Lean Touch package [95]. Handles
gestures for scaling and rotating displayed 3D model. Relies on the
EventSystem GameObject.

For more information on how this scene functions, please see the Main
Ćow 3.2 and GUI 3.3 sections.

3.5.2 Testing scenes

Figure 3.8: A screenshot from the ScannerTest scene, demonstrating the
scannerŠs functionality. The bottom-left corner shows the result of the
perspective transformation.

The ScannerTest scene is a copy of the StyleTransfer scene with most of
the functionality disabled and without any GUI. The purpose of this scene
is to test the style exemplar acquisition functionality, described in detail in
section 3.4. The of the process output is shown in the bottom-left when the
device is in landscape orientation. A screenshot from the scene is shown in
Ągure 3.8.

The second testing scene is called MaterialExample and is shown in
Ągure 3.9. This scene applies StyleBlitŠs algorithm to 3D models in a regular
Unity environment that can be run in the Unity player. The 3D models can
have arbitrary sizes. This scene can also be used for testing the shader that
implements StyleBlitŠs algorithm. The scene is not designed to be run on
mobile devices.

46

3.6. Scripts

Figure 3.9: A screenshot from the MaterialExample scene, showcasing the
StyleBlitŠs algorithm on a large 3D model.

3.6 Scripts

The application uses several scripts to manage the inner state of the application
and allow for custom behavior. Here is their list:

• ARObjectLocationManager Ű Handles the Ąrst placement of a 3D model
and their relocation using the place object button.

• ARStyleScanner Ű This script is responsible for the style exemplar
acquisition. It implements the scanning Ćow described in subsection 3.4.2.

• ChangeSourceStyle Ű Replaces the input 2D texture for StyleBlitŠs shader.
Called every time a style exemplar selection is changed.

• ChangeStyleToggleBackground Ű After a new style is acquired, this script
is called to change the appearance of the toggle button to the new style.

• CustomStyleManager Ű Listens to the style scanning toggle button and
manages the ARStyleScanner. Handles the result from ARStyleScanner
by changing the custom style toggleŠs appearance and activating it.

• MarkerImageResult Ű Used only in the ScannerTest scene. Manages
the continuous usage of the ARStyleScanner and adapts the result to a
displayed image.

• SetupScreenResolution Ű Halves the screenŠs resolution at startup to
achieve better performance.

• TargetObjectManager Ű This is where the style exemplar and the 3D
model toggle groups meet. The script manages which style exemplar is
used in the StyleBlit shader and which 3D model is shown. Also handles
the generation of new stylized thumbnails of the 3D models with every

47

3. Realisation

style exemplar change. The 3D models are instantiated at startup to
optimize the changeover of 3D models.

• ToggleCircle Ű A simple script that shows or hides the green circle around
a toggle button based on its state.

3.7 Used libraries

UnityŠs AR Foundation framework [66] was used as the basis for the AR
experience. All 3D models and style exemplars found in the project were
supplied by the creators of StyleBlit [1]. The application also uses several
third-party packages. The packages and their usages are:

• StyleBlit Unity plugin [96] Ű An implementation of the StyleBlitŠs
algorithm in Unity.

• OpenCV for Unity [97] Ű For using OpenCV within Unity.

• Lean Touch [95] Ű A library that handles touch controls of 3D objects
(scale and rotation).

• Runtime Preview Generator [98] Ű For generating thumbnails of stylized
3D objects.

The 3rd party packages were separated from other assets by placing them
in the Plugins folder.

3.8 Shader

The application utilizes a shader that implements the StyleBlit algorithm.
The shader is part of the StyleBlit Unity plugin [96]. This section describes
the shaderŠs implementation and relies on the general shaders description in
subsection 2.6.10.

The shader uses nine properties with the Ąrst three being adjustable in
the editor:

• threshold Ű A threshold value for the allowed error when assigning a
pixel to a chunk. This affects the overall fragmentation of the 3D model.

• votespan Ű A measure of smoothness. The shader blends the patches
to hide seams and noise. The bigger the votespan, the more pixels
contribute to the resulting pixel, making the output texture look smoother.

• sourceStyle Ű The input style exemplar. This property changes with
every style exemplar selection change by the user.

48

3.8. Shader

Figure 3.10: Screenshots from the MaterialExample scene, showcasing
individual passes of the StyleBlitŠs shader on a large 3D model, where (a)
is an input to the shader, (b) is the model with normal texture, (c) output
from StyleBlitŠs algorithm as coordinates, and (d) is the output from a full
render.

• splatsize Ű The number of levels in the hierarchy of seeds.

• splitCo Ű Used for transferring data from the second to third pass.

• jitterCo Ű A coefficient for the seed distribution. The nearest seed
search is randomly offset using a value from the noise texture multiplied
by this coefficient.

• normalToSourceLUT Ű A lookup texture mapping normals to coordinates
from the source style. Used to accelerate retrieving the source texture
pixel.

49

3. Realisation

• sourceNormals Ű A normal map of the style exemplar template scene.
Only the sphere from the scene is used for mapping in this implementation.

• noiseTexture Ű A texture with white noise. Used for randomly
distributing the seeds.

The shader has one subshader. The subshader consists of three passes
with two grab passes in between. A grab pass is a special type of pass that
takes the contents of a frame buffer and converts them to a texure [99].

The Ąrst pass is very similar to the one described in the Shader example
subsection 2.6.11. It computes a normal for the vertex and passes it on as a
color6. The grab pass then collects the colors, resulting in a normal texture.

The second pass is the primary pass, implementing StyleBlitŠs parallel
algorithm. The parallel algorithm is detailed in subsection 2.2.3. The shader
searches for the nearest seed through multiple levels until the guidance error is
below the deĄned threshold. If such a seed is found, the current pixel can use
the seed to copy the corresponding source pixelŠs coordinates into the target
place. The output of this shader is a texture that encodes the coordinates
into color.

The last pass, with coordinates from the style exemplar as input supplied
by a grab pass, reconstructs the coordinates from color and performs smoothing
by voting. It averages the pixel values in their respective neighborhoods. This
blends the seams and suppresses noise pixels.

The output from individual passes is shown in Ągure 3.10 on the bunny 3D
model. The Ąrst render (a) is what comes to the shader as input. The second
image (b) is just a normal texture of the model from the Ąrst pass. The third
picture (c) is showing the output from the Ąrst and second passes. This is the
output from StyleBlitŠs algorithm with encoded target coordinates as colors,
which makes the individual chunks identiĄable. The last image (d) shows the
output of all three passes.

3.9 Performance

The application is limited to the inherited framerate of the deviceŠs camera
(generally 30) and achieves this Ągure when there is no virtual content being
rendered. The performance of the application strongly correlates with the
number of pixels the stylization shader has to process. This is why the
application runs at half of the maximum resolution by design.

The application was developed and tested mainly on the OnePlus Nord
and Google Pixel 3a XL mobile phones, which are not Ćagship-level devices
by any means. Figure 3.11 demonstrates how the framerate behaves under
different conditions.

6The process of converting a normal to color (in Unity) is this: the XYZ directions of
the vector are mapped to RGB by Ąrst halving them and then adding 0.5 [100].

50

3.10. Limitations

Figure 3.11: Performance graphs of the OnePlus Nord (top) and Google Pixel
3a XL (bottom) devices from the Unity ProĄler [28]. The graphs show the
application going through a simple scenario: detect surface, place 3D model,
and enlarge the 3D model so that it takes up most of the screen. The individual
steps are clearly noticeable in the graphs as they cause a signiĄcant drop in the
frames per second (FPS) measure (the measure increases from top to bottom
in the graph). The OnePlus device performs measurably better, but both
devices dip into single-digit framerate in the worst-case scenario. Note: the graph
is labeled as CPU Usage. This is because Unity reports GPU usage as CPU usage in mobile devices.

Figure 3.12: A performance graph illustrating the performance impact of
active style exemplar scanning. No 3D model is being rendered in this scenario.
After a successful scan, the subsequent transformation of the style exemplar
and thumbnail generation of the 3D models causes no measurable effect in
terms of performance. The scanning is successful at the last performance
spike and it is indistinguishable from the previous spikes. Measured on the
OnePlus Nord device. Note: the graph is labeled as CPU Usage. This is because Unity reports
GPU usage as CPU usage in mobile devices.

Another action impeding performance is the style exemplar scanning. The
script acquires a full resolution image from the camera every ten frames to
try and recognize the style exemplar template, which causes visible spikes in
performance. This behavior is shown in Ągure 3.12.

3.10 Limitations

Outside of the computational requirements, the main limitations are inherited
either from the StyleBlit algorithm or from using AR Foundation.

51

3. Realisation

When targeting Android while using AR Foundation, the ARCore
supporting services need to be installed. However, to be able to install those
services, Google needs to certify the speciĄc device Ąrst. The market share of
all certiĄed devices currently in use is estimated to be at 41 % [62].

There are a few limitations of the StyleBlit method. The Ąrst one is that
the method is unable to keep a regular texture, for example, a brick wall, which
produces visible misalignments. Another issue arises when the target model
contains large planar areas. This causes repetition of patches, producing
ŤscalesŤ. Both of these issues are shown in Ągure 3.13. However, these issues
are considered edge-cases and generally do not occur in the application.

Figure 3.13: Known limitations of the StyleBlit [1] method. The Ąrst image
(left) shows the inability to reproduce a texture that contains structure. The
second image (right) shows the repetition of patches when there is little surface
variation.

Limitations of the scanning process are described in section ??,

3.11 Stylization comparison

As the application implements StyleBlitŠs algorithm, it is reasonable to compare
the output with the original StyleBlit. The golem 3D model along with several
different styles was chosen for this comparison. Please see Ągure 3.14 and its
subĄgures for the comparison. Even though their pose is not exact and the
algorithm is stochastic by design, we can see that both algorithms behave
similarly and their outputs are comparable. One noticeable difference is that
the transition between the model and background is smooth in the original
StyleBlit, but the same transition is abrupt in the application. This is caused
by the shader being supplied only with the pixels for the target model.

52

3.11. Stylization comparison

(a) Application output (left) in comparison to the original StyleBlit [1] (right).

53

3. Realisation

(b) Application output (left) in comparison to the original StyleBlit [1] (right).

54

3.11. Stylization comparison

(c) Application output (left) in comparison to the original StyleBlit [1] (right).

55

3. Realisation

(d) Application output (left) in comparison to the original StyleBlit [1] (right).

Figure 3.14: This Ągure compares seven different styles rendered by the
application with the original StyleBlit [1] algorithm. The poses are not exactly
aligned but are sufficient for comparison.

56

Conclusion

This thesis has provided a broad overview of the computer-assisted stylization
Ąeld, describing four different branches along with their development. The
focus then shifted to a number of contextual topics, all of which were needed
to fully comprehend and implement the project. Among these topics were two
patch-based stylization methods, the math behind perspective transformation,
detection of the style exemplar, augmented reality Ű both its place in the XR
spectrum and implementations, the Unity game engine, and the OpenCV
library.

With this background knowledge, the StyleTransfer application was developed
in Unity game engine with the AR Foundation framework. Until now, there
was no application combining stylization of an interactable 3D model with
style exemplar acquisition within the augmented reality domain. The application
is able to perform all these actions in real-time. The components of the
application were described in detail, including the typical usage, GUI, and
exemplar scanning. Vital parts of the Unity project were also recounted,
including a shader that implements the StyleBlit algorithm. Finally, the thesis
evaluates the performance and compares the output from the application to
the original StyleBlit, while also mentioning its limitations. With the resulting
application, the thesis has reached its goals.

Further work

While the thesis has reached its target, there is always room for improvement.
A substantial improvement to the project would be an iOS application, leveraging
the AR Foundation frameworkŠs multi-platform capability. While this was
one of the motivations for using AR Foundation, it requires a hand-crafted
shader, because it uses the Metal API (instead of OpenGL) for GPU-based
computation. A web-based version could also be viable.

Another thing that could be improved is the 3D model manipulation within

57

Conclusion

the scene. Currently, the user has to press a button to relocate the 3D model.
A more intuitive way would be to drag the model manually, but this was
interfering with the rotate and scale gestures.

One last area that would beneĄt from improvements is performance. While
the applicationŠ performance is adequate, implementing the concept of adaptive
resolution would allow it to keep high framerates even when rendering large-
scale objects.

58

Bibliography

[1] Sýkora, D.; Jamrǐska, O.; et al. StyleBlit: Fast Example-Based
Stylization with Local Guidance. Computer Graphics Forum, volume 38,
no. 2, 2019: pp. 83Ű91.

[2] Haeberli, P. Paint by Numbers: Abstract Image Representations.
SIGGRAPH Computer Graphics, volume 24, no. 4, 1990: pp. 207Ű214.

[3] Litwinowicz, P. Processing Images and Video for an Impressionist Effect.
In SIGGRAPH, 1997, pp. 407Ű414.

[4] Hertzmann, A. Paint By Relaxation. In Proceedings of Computer
Graphics International, 2001, pp. 47Ű54.

[5] Winnemöller, H.; Kyprianidis, J. E.; et al. XDoG: An eXtended
Difference-of-Gaussians Compendium Including Advanced Image
Stylization. Computers & Graphics, volume 36, no. 6, 2012: pp. 740Ű753.

[6] Lu, C.; Xu, L.; et al. Combining sketch and tone for pencil
drawing production. In Proceedings of International Symposium on Non-
Photorealistic Animation and Rendering, 2012, pp. 65Ű73.

[7] Hertzmann, A.; Jacobs, C. E.; et al. Image Analogies. In SIGGRAPH
Conference Proceedings, 2001, pp. 327Ű340.

[8] Sloan, P.-P. J.; Martin, W.; et al. The Lit Sphere: A Model for Capturing
NPR Shading from Art. In Proceedings of Graphics Interface, 2001, pp.
143Ű150.

[9] Bénard, P.; Cole, F.; et al. Stylizing Animation By Example. ACM
Transactions on Graphics, volume 32, no. 4, 2013: p. 119.

[10] HauptĆeisch, F.; Texler, O.; et al. StyleProp: Real-time Example-based
Stylization of 3D Models. Computer Graphics Forum, volume 39, no. 7,
2020: pp. 575Ű586.

59

Bibliography

[11] Futschik, D.; Kučera, M.; et al. STALP: Style Transfer with Auxiliary
Limited Pairing. Computer Graphics Forum, volume 40, no. 2, 2021: pp.
563Ű573.

[12] Gatys, L. A.; Ecker, A. S.; et al. A Neural Algorithm of Artistic Style.
CoRR, volume abs/1508.06576, 2015.

[13] Kolkin, N. I.; Salavon, J.; et al. Style Transfer by Relaxed Optimal
Transport and Self-Similarity. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 10051Ű10060.

[14] Fǐser, J.; Jamrǐska, O.; et al. StyLit: Illumination-Guided Example-
Based Stylization of 3D Renderings. ACM Transactions on Graphics,
volume 35, no. 4, 2016: p. 92.

[15] Cáceres, E.; Carrasco, M.; et al. Evaluation of an eye-pointer interaction
device for human-computer interaction. Heliyon, volume 4, 2018.

[16] The-Crankshaft Publishing. Geometric Transformations (Introduction
to Video and Image Processing) Part 1. [online], [cit. 26.12.2021].
Available from: http://what-when-how.com/introduction-to-

video-and-image-processing/geometric-transformations-

introduction-to-video-and-image-processing-part-1/

[17] Daniel Sýkora. Image Deformation. [online], [cit. 26.12.2021]. Available
from: https://dcgi.fel.cvut.cz/home/sykorad/dzo/slides/dzo-

l07.pdf

[18] Garrido-Jurado, S.; Muñoz-Salinas, R.; et al. Automatic generation and
detection of highly reliable Ąducial markers under occlusion. Pattern
Recognition, volume 47, 2014: pp. 2280Ű2292.

[19] Elizabeth Robinson. Microsoft outlines three trends that will impact
mixed reality in 2018. [online], [cit. 14.12.2021]. Available from:
https://www.technologyrecord.com/Article/microsoft-outlines-

three-trends-that-will-impact-mixed-reality-in-2018-63570

[20] Microsoft. What is mixed reality? [online], [cit. 15.12.2021].
Available from: https://docs.microsoft.com/en-us/windows/mixed-

reality/discover/mixed-reality

[21] El Filali, Y.; Salah-ddine, K. Augmented Reality Types and Popular
Use Cases. 2018, pp. 107Ű110.

[22] IKEA. IKEA Place. [online], [cit. 6.12.2021]. Available from:
https://www.ikea.com/au/en/customer-service/mobile-apps/

say-hej-to-ikea-place-pub1f8af050

60

http://what-when-how.com/introduction-to-video-and-image-processing/geometric-transformations-introduction-to-video-and-image-processing-part-1/
http://what-when-how.com/introduction-to-video-and-image-processing/geometric-transformations-introduction-to-video-and-image-processing-part-1/
http://what-when-how.com/introduction-to-video-and-image-processing/geometric-transformations-introduction-to-video-and-image-processing-part-1/
https://dcgi.fel.cvut.cz/home/sykorad/dzo/slides/dzo-l07.pdf
https://dcgi.fel.cvut.cz/home/sykorad/dzo/slides/dzo-l07.pdf
https://www.technologyrecord.com/Article/microsoft-outlines-three-trends-that-will-impact-mixed-reality-in-2018-63570
https://www.technologyrecord.com/Article/microsoft-outlines-three-trends-that-will-impact-mixed-reality-in-2018-63570
https://docs.microsoft.com/en-us/windows/mixed-reality/discover/mixed-reality
https://docs.microsoft.com/en-us/windows/mixed-reality/discover/mixed-reality
https://www.ikea.com/au/en/customer-service/mobile-apps/say-hej-to-ikea-place-pub1f8af050
https://www.ikea.com/au/en/customer-service/mobile-apps/say-hej-to-ikea-place-pub1f8af050

Bibliography

[23] Instagram Business Team. Introducing Face Filters and More
on Instagram. [online], [cit. 13.12.2021]. Available from: https:

//www.facebook.com/business/news/instagram/introducing-face-

filters

[24] Pascal Bregeon. Here Comes a $400,000 Augmented Reality
Helmet for Fighter Jet. [online], [cit. 14.12.2021]. Available from:
http://www.augmentedrealitytrends.com/augmented-reality/

helmet-for-fighter-jet

[25] Unity Technologies. Order of execution for event functions. [online],
[cit. 28.12.2021]. Available from: https://docs.unity3d.com/Manual/

ExecutionOrder.html

[26] OpenCV team. Detection of ArUco Markers. [online], [cit. 27.12.2021].
Available from: https://docs.opencv.org/4.x/d5/dae/tutorial_

aruco_detection.html

[27] Balsamiq Studios, LLC. Quick and Easy Wireframing Tool. [online], [cit.
2.1.2022]. Available from: https://balsamiq.com/wireframes/

[28] Unity Technologies. ProĄler overview. [online], [cit. 4.1.2022]. Available
from: https://docs.unity3d.com/Manual/Profiler.html

[29] Unity Technologies. About AR Foundation. [online], [cit.
19.12.2021]. Available from: https://docs.unity3d.com/Packages/

com.unity.xr.arfoundation@4.2/manual/index.html

[30] Lambert, N.; Latham, W.; et al. The Emergence and Growth of
Evolutionary Art Ů 1980Ů1993. Leonardo, volume 46, 2013: pp. 367Ű
375.

[31] Magnenat, S.; Ngo, D. T.; et al. Live Texturing of Augmented Reality
Characters from Colored Drawings. IEEE Transactions on Visualization
and Computer Graphics, volume 21, no. 11, 2015: pp. 1201Ű1210.

[32] Kyprianidis, J. E.; Collomosse, J.; et al. State of the ŞArtŤ: A Taxonomy
of Artistic Stylization Techniques for Images and Video. IEEE
Transactions on Visualization and Computer Graphics, volume 19, no. 5,
2013: pp. 866Ű885.

[33] Salisbury, M. P.; Wong, M. T.; et al. Orientable Textures for Image-
based Pen-and-ink Illustration. In SIGGRAPH Conference Proceedings,
1997, pp. 401Ű406.

[34] Snavely, N.; Zitnick, L.; et al. Stylizing 2.5-D video. In SIGGRAPH
Sketches, edited by J. Buhler, 2005, p. 94.

61

https://www.facebook.com/business/news/instagram/introducing-face-filters
https://www.facebook.com/business/news/instagram/introducing-face-filters
https://www.facebook.com/business/news/instagram/introducing-face-filters
http://www.augmentedrealitytrends.com/augmented-reality/helmet-for-fighter-jet
http://www.augmentedrealitytrends.com/augmented-reality/helmet-for-fighter-jet
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://balsamiq.com/wireframes/
https://docs.unity3d.com/Manual/Profiler.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@4.2/manual/index.html

Bibliography

[35] Breslav, S.; Szerszen, K.; et al. Dynamic 2D patterns for shading 3D
scenes. ACM Transactions on Graphics, volume 26, no. 3, 2007: p. 20.

[36] Hays, J.; Essa, I. A. Image and Video Based Painterly Animation.
In Proceedings of International Symposium on Non-Photorealistic
Animation and Rendering, 2004, pp. 113Ű120.

[37] Zhao, M.; Zhu, S.-C. Portrait Painting Using Active Templates.
In Proceedings of International Symposium on Non-Photorealistic
Animation and Rendering, 2011, pp. 117Ű124.

[38] Gedraite, E. S.; Hadad, M. Investigation on the effect of a Gaussian
Blur in image Ąltering and segmentation. In Proceedings ELMAR-2011,
2011, pp. 393Ű396.

[39] Assirati, L.; Rosa, N.; et al. Performing edge detection by difference
of Gaussians using q-Gaussian kernels. Journal of Physics Conference
Series, volume 490, 2013.

[40] Blinn, J. F.; Newell, M. E. Texture and ReĆection in Computer
Generated Images. Communications of the ACM, volume 19, no. 10,
1976: pp. 542Ű547.

[41] Barnes, C.; Shechtman, E.; et al. PatchMatch: A randomized
correspondence algorithm for structural image editing. ACM
Transactions on Graphics, volume 28, no. 3, 2009: p. 24.

[42] Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR, volume abs/1409.1556, 2014.

[43] Liao, J.; Yao, Y.; et al. Visual Attribute Transfer Through Deep Image
Analogy. ACM Transactions on Graphics, volume 36, no. 4, 2017: p.
120.

[44] Goodfellow, I.; Pouget-Abadie, J.; et al. Generative Adversarial
Networks. Advances in Neural Information Processing Systems,
volume 3, 2014.

[45] Isola, P.; Zhu, J.-Y.; et al. Image-to-Image Translation with Conditional
Adversarial Networks. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 5967Ű5976.

[46] Tulyakov, S.; Liu, M.-Y.; et al. MoCoGAN: Decomposing Motion and
Content for Video Generation. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1526Ű1535.

[47] Huang, X.; Belongie, S. J. Arbitrary Style Transfer in Real-Time with
Adaptive Instance Normalization. Proceedings of IEEE International
Conference on Computer Vision, 2017: pp. 1510Ű1519.

62

Bibliography

[48] Heckbert, P. S. Adaptive Radiosity Textures for Bidirectional Ray
Tracing. SIGGRAPH Computer Graphics, volume 24, no. 4, 1990: pp.
145Ű154.

[49] Rosenberger, A.; Cohen-Or, D.; et al. Layered Shape Synthesis:
Automatic generation of control maps for non-stationary textures. ACM
Transactions on Graphics, volume 28, no. 5, 2009: p. 107.

[50] Masty lo, M. Bilinear interpolation theorems and applications. Journal
of Functional Analysis, volume 265, 2013: pp. 185Ű207.

[51] Lowe, D. Object recognition from local scale-invariant features.
In Proceedings of the Seventh IEEE International Conference on
Computer Vision, volume 2, 1999, pp. 1150Ű1157, doi:10.1109/
ŤProceedingsofIEEEInternationalConferenceonComputerVisionŤ.1999.790410.

[52] Bay, H.; Ess, A.; et al. Speeded-Up Robust Features (SURF). Computer
Vision and Image Understanding, volume 110, 2008: pp. 346Ű359.

[53] Alcantarilla, P. F.; Bartoli, A.; et al. KAZE Features. In ECCV (6),
volume 7577, edited by A. W. Fitzgibbon; S. Lazebnik; P. Perona;
Y. Sato; C. Schmid, 2012, pp. 214Ű227.

[54] Leutenegger, S.; Chli, M.; et al. BRISK: Binary Robust invariant
scalable keypoints. 2011, pp. 2548Ű2555.

[55] Radzi, F.; Khalil-Hani, M.; et al. Generalizing convolutional neural
networks for pattern recognition tasks. ARPN Journal of Engineering
and Applied Sciences, volume 10, 2015: pp. 5298Ű5308.

[56] Girshick, R.; Donahue, J.; et al. Rich Feature Hierarchies for Accurate
Object Detection and Semantic Segmentation. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 580Ű
587.

[57] Liu, W.; Anguelov, D.; et al. SSD: Single Shot MultiBox Detector.
Lecture Notes in Computer Science, 2016: pp. 21Ű37.

[58] Redmon, Joseph and Divvala, Santosh and Girshick, Ross and Farhadi,
Ali. You Only Look Once: UniĄed, Real-Time Object Detection. 2015.
Available from: http://arxiv.org/abs/1506.02640

[59] Google LLC. Overview of ARCore and supported development
environments. [online], [cit. 17.12.2021]. Available from: https://

developers.google.com/ar/develop

[60] Google LLC. ARCore SDK for Android. [online], [cit. 16.12.2021].
Available from: https://github.com/google-ar/arcore-android-

sdk

63

http://arxiv.org/abs/1506.02640
https://developers.google.com/ar/develop
https://developers.google.com/ar/develop
https://github.com/google-ar/arcore-android-sdk
https://github.com/google-ar/arcore-android-sdk

Bibliography

[61] Google LLC. Introduction to Cloud Anchors on Android. [online],
[cit. 17.12.2021]. Available from: https://developers.google.com/ar/

develop/java/cloud-anchors/introduction

[62] Richard Révész. How many AR supported phones are in the
world? Ű 2020. [online], [cit. 17.12.2021]. Available from: https:

//www.aronplatform.com/mobile-ar-penetration-2020/

[63] Google LLC. ARCore supported devices. [online], [cit. 17.12.2021].
Available from: https://developers.google.com/ar/devices

[64] Apple Inc. More to Explore with ARKit 5. [online], [cit. 18.12.2021].
Available from: https://developer.apple.com/augmented-reality/

arkit/

[65] Apple Inc. RealityKit. [online], [cit. 19.12.2021]. Available from: https:

//developer.apple.com/augmented-reality/realitykit/

[66] Unity Technologies. AR Foundation. [online], [cit. 19.12.2021]. Available
from: https://unity.com/unity/features/arfoundation

[67] John K Haas. A History of the Unity Game Engine. 2014.

[68] Unity Technologies. 2021 Gaming Report. [online], [cit. 27.12.2021].
Available from: https://create.unity3d.com/2021-game-report

[69] Unity Technologies. Editor Features. [online], [cit. 27.12.2021]. Available
from: https://docs.unity3d.com/Manual/EditorFeatures.html

[70] Unity Technologies. Plans and pricing. [online], [cit. 27.12.2021].
Available from: https://store.unity.com

[71] Unity Technologies. System requirements for Unity 2020 LTS. [online],
[cit. 27.12.2021]. Available from: https://docs.unity3d.com/Manual/

system-requirements.html

[72] Unity Technologies. Installing the Unity Hub. [online], [cit.
27.12.2021]. Available from: https://docs.unity3d.com/Manual/

GettingStartedInstallingHub.html

[73] Unity Technologies. Unity download archive. [online], [cit. 27.12.2021].
Available from: https://unity3d.com/get-unity/download/archive

[74] Unity Technologies. Integrated development environment (IDE)
support. [online], [cit. 27.12.2021]. Available from: https://

docs.unity3d.com/Manual/ScriptingToolsIDEs.html

[75] Unity Technologies. Scripting. [online], [cit. 27.12.2021]. Available from:
https://docs.unity3d.com/Manual/ScriptingSection.html

64

https://developers.google.com/ar/develop/java/cloud-anchors/introduction
https://developers.google.com/ar/develop/java/cloud-anchors/introduction
https://www.aronplatform.com/mobile-ar-penetration-2020/
https://www.aronplatform.com/mobile-ar-penetration-2020/
https://developers.google.com/ar/devices
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/realitykit/
https://developer.apple.com/augmented-reality/realitykit/
https://unity.com/unity/features/arfoundation
https://create.unity3d.com/2021-game-report
https://docs.unity3d.com/Manual/EditorFeatures.html
https://store.unity.com
https://docs.unity3d.com/Manual/system-requirements.html
https://docs.unity3d.com/Manual/system-requirements.html
https://docs.unity3d.com/Manual/GettingStartedInstallingHub.html
https://docs.unity3d.com/Manual/GettingStartedInstallingHub.html
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/Manual/ScriptingToolsIDEs.html
https://docs.unity3d.com/Manual/ScriptingToolsIDEs.html
https://docs.unity3d.com/Manual/ScriptingSection.html

Bibliography

[76] Unity Technologies. Asset WorkĆow. [online], [cit. 28.12.2021]. Available
from: https://docs.unity3d.com/Manual/AssetWorkflow.html

[77] Unity Technologies. Unity Asset Store. [online], [cit. 28.12.2021].
Available from: https://assetstore.unity.com/

[78] Unity Technologies. Shaders introduction. [online], [cit. 29.12.2021].
Available from: https://docs.unity3d.com/Manual/shader-

introduction.html

[79] Unity Technologies. The Shader class. [online], [cit. 29.12.2021].
Available from: https://docs.unity3d.com/Manual/shader-

objects.html

[80] Microsoft Corporation. High-level shader language (HLSL). [online],
[cit. 29.12.2021]. Available from: https://docs.microsoft.com/en-us/

windows/win32/direct3dhlsl/dx-graphics-hlsl

[81] NVIDIA Corp. Cg Language SpeciĄcation. [online], [cit. 29.12.2021].
Available from: https://developer.download.nvidia.com/cg/Cg_

language.html

[82] Unity Technologies. Material Inspector reference. [online], [cit.
30.12.2021]. Available from: https://docs.unity3d.com/Manual/

class-Material.html

[83] Unity Technologies. Custom shader fundamentals. [online], [cit.
29.12.2021]. Available from: https://docs.unity3d.com/Manual/SL-

VertexFragmentShaderExamples.html

[84] OpenCV team. OpenCV: Home. [online], [cit. 27.12.2021]. Available
from: https://opencv.org/

[85] OpenCV team. OpenCV license Ąle. [online], [cit. 30.12.2021]. Available
from: https://github.com/opencv/opencv/blob/4.x/LICENSE

[86] OpenCV team. About. [online], [cit. 30.12.2021]. Available from: https:

//opencv.org/about/

[87] Slashdot Media. Source Forge Download Statistics. [online], [cit.
30.12.2021]. Available from: https://sourceforge.net/projects/

opencvlibrary/files/stats/timeline?dates=2001-03-01%20to%

202021-12-01&period=monthly

[88] OpenCV team. Repository for OpenCVŠs extra modules. [online], [cit.
30.12.2021]. Available from: https://github.com/opencv/opencv_

contrib

65

https://docs.unity3d.com/Manual/AssetWorkflow.html
https://assetstore.unity.com/
https://docs.unity3d.com/Manual/shader-introduction.html
https://docs.unity3d.com/Manual/shader-introduction.html
https://docs.unity3d.com/Manual/shader-objects.html
https://docs.unity3d.com/Manual/shader-objects.html
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl
https://developer.download.nvidia.com/cg/Cg_language.html
https://developer.download.nvidia.com/cg/Cg_language.html
https://docs.unity3d.com/Manual/class-Material.html
https://docs.unity3d.com/Manual/class-Material.html
https://docs.unity3d.com/Manual/SL-VertexFragmentShaderExamples.html
https://docs.unity3d.com/Manual/SL-VertexFragmentShaderExamples.html
https://opencv.org/
https://github.com/opencv/opencv/blob/4.x/LICENSE
https://opencv.org/about/
https://opencv.org/about/
https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-03-01%20to%202021-12-01&period=monthly
https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-03-01%20to%202021-12-01&period=monthly
https://sourceforge.net/projects/opencvlibrary/files/stats/timeline?dates=2001-03-01%20to%202021-12-01&period=monthly
https://github.com/opencv/opencv_contrib
https://github.com/opencv/opencv_contrib

Bibliography

[89] Bookstein, A.; Kulyukin, V. A.; et al. Generalized Hamming Distance.
Inf. Retr., volume 5, 2002: pp. 353Ű375.

[90] StatCounter. Mobile & Tablet Android Version Market Share
Worldwide. [online], [cit. 31.12.2021]. Available from: https:

//gs.statcounter.com/android-version-market-share/mobile-

tablet/worldwide/#monthly-202111-202111-bar

[91] Google LLC. Gestures. [online], [cit. 2.1.2022]. Available from: https:

//material.io/design/interaction/gestures.html

[92] OpenCV team. ArUco Marker Detection documentation. [online],
[cit. 2.1.2022]. Available from: https://docs.opencv.org/4.x/d9/d6a/

group__aruco.html#gab9159aa69250d8d3642593e508cb6baa

[93] OpenCV team. Geometric Image Transformations documentation:
getPerspectiveTransform. [online], [cit. 2.1.2022]. Available
from: https://docs.opencv.org/4.x/da/d54/group__imgproc_

_transform.html#ga20f62aa3235d869c9956436c870893ae

[94] OpenCV team. Geometric Image Transformations documentation:
warpPerspective. [online], [cit. 2.1.2022]. Available from:
https://docs.opencv.org/4.x/da/d54/group__imgproc_

_transform.html#gaf73673a7e8e18ec6963e3774e6a94b87

[95] Carlos Wilkes. Lean Touch. [online], [cit. 31.12.2021]. Available
from: https://assetstore.unity.com/packages/tools/input-

management/lean-touch-30111

[96] Adam Posṕı̌sil. StyleBlit Unity Plugin. [online], [cit. 31.12.2021].
Available from: https://github.com/AdamPospisil/StyleBlitUnity

[97] Enox Software. OpenCV for Unity. [online], [cit. 31.12.2021].
Available from: https://assetstore.unity.com/packages/tools/

integration/opencv-for-unity-21088

[98] yasirkula. Runtime Preview Generator. [online], [cit. 31.12.2021].
Available from: https://assetstore.unity.com/packages/tools/

camera/runtime-preview-generator-112860

[99] Unity Technologies. ShaderLab command: GrabPass. [online], [cit.
3.1.2022]. Available from: https://docs.unity3d.com/Manual/SL-

GrabPass.html

[100] Unity Technologies. Normal map (Bump mapping). [online], [cit.
3.1.2022]. Available from: https://docs.unity3d.com/Manual/

StandardShaderMaterialParameterNormalMap.html

66

https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide/#monthly-202111-202111-bar
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide/#monthly-202111-202111-bar
https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide/#monthly-202111-202111-bar
https://material.io/design/interaction/gestures.html
https://material.io/design/interaction/gestures.html
https://docs.opencv.org/4.x/d9/d6a/group__aruco.html#gab9159aa69250d8d3642593e508cb6baa
https://docs.opencv.org/4.x/d9/d6a/group__aruco.html#gab9159aa69250d8d3642593e508cb6baa
https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html#ga20f62aa3235d869c9956436c870893ae
https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html#ga20f62aa3235d869c9956436c870893ae
https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html#gaf73673a7e8e18ec6963e3774e6a94b87
https://docs.opencv.org/4.x/da/d54/group__imgproc__transform.html#gaf73673a7e8e18ec6963e3774e6a94b87
https://assetstore.unity.com/packages/tools/input-management/lean-touch-30111
https://assetstore.unity.com/packages/tools/input-management/lean-touch-30111
https://github.com/AdamPospisil/StyleBlitUnity
https://assetstore.unity.com/packages/tools/integration/opencv-for-unity-21088
https://assetstore.unity.com/packages/tools/integration/opencv-for-unity-21088
https://assetstore.unity.com/packages/tools/camera/runtime-preview-generator-112860
https://assetstore.unity.com/packages/tools/camera/runtime-preview-generator-112860
https://docs.unity3d.com/Manual/SL-GrabPass.html
https://docs.unity3d.com/Manual/SL-GrabPass.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html

Appendix A

Acronyms

LPE Light Path Expressions

NNF Nearest Neighbor Field

ANN Approximate Nearest Neighbor

CPU Central Processing Unit

GPU Graphics Processing Unit

SDK Software Development Kit

APK Android Application Package

CNN Convolutional Neural Network

DCNN Deep Convolutional Neural Network

GANN Generative Adversarial Neural Network

IDE Integrated Development Environment

HLSL High-Level Shader Language

API Application Programming Interface

GUI Graphical User Interface

FPS Frames Per Second

67

Appendix B

Contents of enclosed CD

apk......................................the directory with executables
src.......................................the directory of source codes

unity implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

69

Appendix C

Installation manual

To install the attached APKs, please follow these steps:

1. Connect the Android device to your PC.

2. Enable Ąle transfer mode. The mode is usually displayed as a persistent
notiĄcation.

3. Copy the desired APK(s) to your Android device.

4. Open a Ąle manager application on the Android device.

5. Find the desired APK and open it.

6. ConĄrm the warning dialogs. Wait until the installation Ąnishes.

7. Find the application in the list of all applications.

71

	Introduction
	Structure

	State-of-the-art
	Pattern-based methods
	Filter-based methods
	Patch-based methods
	Image Analogies
	The Lit Sphere
	Stylizing Animation by Example
	Recent improvements

	Neural-based methods
	Summary
	Pattern-based methods
	Filter-based methods
	Patch-based methods
	Neural-based methods

	Background
	StyLit: Illumination-guided Example-based Stylization of 3D Renderings
	Light Path Expressions
	Algorithm

	StyleBlit: Fast Example-Based Stylization with Local Guidance
	Approach
	Brute force algorithm
	Parallel algorithm
	Extensions

	Style exemplar acquisition
	Projective transformation
	Mapping
	Exemplar detection

	Augmented reality introduction and terms
	Extended reality
	Augmented reality
	Virtual reality
	Mixed reality

	Augmented reality
	How it works
	Real world usage examples
	ARCore
	ARKit
	AR Foundation

	Unity
	General information
	Installation
	Scenes
	GameObject
	Scripting in Unity
	Lifecycle
	Prefabs
	Assets
	Packages
	Shaders
	Shader example

	OpenCV
	ArUco

	Realisation
	Application design
	Main flow
	GUI
	Style exemplar acquisition
	Corner detection
	Scanning flow

	Scenes
	StyleTransfer
	Testing scenes

	Scripts
	Used libraries
	Shader
	Performance
	Limitations
	Stylization comparison

	Conclusion
	Further work

	Bibliography
	Acronyms
	Contents of enclosed CD
	Installation manual

