

Master’s thesis

Implementation of smart part detection
algorithms in OpenPNP open-source
library

Bc. Nikola Karĺıková

Department of Artificial Inteligence
Supervisor: Ing. Lukáš Brchl

January 4, 2022

Acknowledgements

I would like to express my special thanks of gratitude to my supervisor Ing.
Lukáš Brchl for providing guidance and support throughout this project even
when things seemed uncertain. Thanks also to Ing. Tomáš Beneš for helping
me with the data collection.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 4, 2022

Czech Technical University in Prague
Faculty of Information Technology
c© 2022 Nikola Karĺıková. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Karĺıková, Nikola. Implementation of smart part detection algorithms in
OpenPNP open-source library. Master’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2022.

Abstrakt

Poč́ıtačové viděńı je d̊uležitou součást́ı povrchové montáže plošných spoj̊u,
která zahrnuje i Pick and Place (P&P) operace, pro které je d̊uležité mı́t
spolehlivé poč́ıtačové viděńı, které zvládne detekovat a zarovnat komponenty
na správnou pozici, ve které jsou poté osazeny na desku plošného spoje. Na
poli programů pro domáćı osazováńı plošných spoj̊u s open-source licenćı je
nejobĺıbeněǰśıch programem OpenPNP. Jeho poč́ıtačové je implementováno
jako sekvence OpenCV operaćı, která je aplikována na obrázek zachycuj́ıćı
součástku. Toto řešeńı neńı spolehlivé a je pozadu s dnešńımi trendy detekce
rotovaných objekt̊u. Tato práce ćıĺı na zlepšeńı procesu detekce součástek
v programu OpenPNP pomoćı implementace systému pro správu OpenCV
sekvence operaćı a pomoćı zavedeńı alternativńı metody pro detekci, která
by poskytla robustněǰśı řešeńı v̊uči vněǰśım vliv̊um. Rešerše této práce byla
soustředěna na dva aspekty; zkušenost s uživatelským prostřed́ım pro detekci
rotace OpenPNP programu a současné trendy v poč́ıtačovém viděńı pro de-
tekci objekt̊u, který by mohly být použity pro P&P procesy. Na základě dis-
kuśı v rámci komunity uživatel̊u OpenPNP, jsem navrhla a implementovala
řešeńı, které umožńı uživatel̊um správu OpenCV operaćı, t́ım, že budou mı́t
k dispozici znovu použitelné sekvence operaćı. V daľśı části této práce jsem
natrénovala čtyři detektory pro rotované objekty za použit́ı vlastńıch dat. Nej-
lepš́ıch výsledk̊u bylo doćıleno za použit́ı R3Det detektoru. Výsledky detektoru
jsem porovnala s výsledky ze současného řešeńı OpenPNP a dokázala jsem, že
za použit́ı strojového učeńı je možné dosáhnout řešeńı, které může sloužit jako
alternativa pro současné OpenCV řešeńı. Toto řešeńı je nav́ıc robustněǰśı v̊uči
vněǰśım vliv̊um a dokáže stabilně fungovat v reálném prostřed́ı bez nutnosti
časté uživatelské interakce.

Kĺıčová slova OpenPNP, Pick and place, plošné spoje, rotace součátky,
detekce rotace, strojové účeńı

vii

Abstract

Computer vision makes an important part in Surface Mount Technology pro-
cesses including Pick and Place (P&P) operations. For P&P operation it
is crucial to introduce strong computer vision solution to detect and align
components to correct position before they are placed on the board. In the
field of open-source software for DYI P&P machines the most popular tool
is OpenPNP. Its computer vision takes form of a pipeline of OpenCV opera-
tions applied on the captured image of the component. This solution is not
reliable and behind the latest trends of object detection. This work aims to
improve the part detection process in OpenPNP tool by implementing bet-
ter pipelines management system and introducing an alternative computer
vision method that would be more robust to outer conditions. The prior re-
search focused on two main aspects; user experience with OpenPNP object
offset detection, and current trends in object detection that could be used
for P&P detection purposes. Based on the OpenPNP community experience
and discussions I designed and implemented a new solution that will allow
users to manage OpenCV pipelines by making them reusable. In other part
of the work, I trained four detectors for rotated objects and measure their
performance upon custom dataset captured by P&P machine. The best de-
tection results were achieved using R3Det detector. I compared the detector
results with current OpenCV solution and proved that solution using machine
learning can be more robust alternative able to cope with real-time scenarios
without the need of regular user input.

Keywords OpenPNP, Pick and Place, SMT, Component offset, Part offset,
Part detection, Component detection, Rotation Detection, Machine learning,

viii

Contents

Introduction 1
Research background . 1
Current problems . 3
Thesis aims, objectives and significance 3
Known limitations . 3
Structural outline . 4

1 Parts detection in the manufacturing world 5
1.1 Image pre-processing and feature extraction 8
1.2 Recognition (classification) methods 8
1.3 Object detection . 9
1.4 OpenPNP . 11

1.4.1 Using the OpenPNP software 12
1.4.2 Computer vision in OpenPNP 13

2 Analysis and design 15
2.1 Part rotation detection . 15

2.1.1 Rotation detectors available today 15
2.1.2 R2CNN: rotational region CNN 17
2.1.3 RetinaNet . 18

2.1.3.1 Focal loss for dense object detection 18
2.1.4 R3Det: refined single-stage detector with feature refine-

ment for rotating object [1] 20
2.1.5 Bounding box for rotated object detection via Kullback-

Leibler divergence . 22
2.1.6 SRCDet and SCRDet++ 22
2.1.7 Summary of the detections results 23

2.2 Impediments when using OpenPNP CVPipeline 23
2.3 OpenPNP improvements . 27

ix

2.3.1 Default CVPipeline improvement 27
2.3.2 Part detection management proposal 27
2.3.3 Part offset detection using machine learning 29

3 Implementation 33
3.1 Part detection management implementation 33
3.2 Offset detection using machine learning 36
3.3 OpenPNP migration . 37
3.4 Data collection . 38
3.5 Model setup . 40

4 Model Evaluation 43
4.1 Dataset . 43
4.2 Evaluation of the trained model 44
4.3 Detection results comparison 49
4.4 Discussion . 51

4.4.1 Limitations and possible improvements 52

Conclusion 55
Future work . 56
Summary . 56

Bibliography 59

A Acronyms 63

B Contents of enclosed SD card 65

x

List of Figures

1.1 Example of a robotic arm (IRB 1400) [2] and Pick and Place ma-
chine for private use [3] . 5

1.2 Surface Mount Assembly line [4] 6
1.3 Cognex’s VisionPro software interface [5] 7
1.4 The process of the PCB surface mounting showing solder paste

printing and P&P operation [6] . 10
1.5 Definition of the printed solder paste offset [6] 10
1.6 The process of upper pin group segmentation [7] 11
1.7 OpenPNP User Interface . 12
1.8 OpenPNP definition of the offsets visualized 13

2.1 The architecture of R2CNN method 17
2.2 Focal Loss function graph [8] . 19
2.3 The architecture of RetinaNet detection model 20
2.4 The architecture of SCRDet detection model 22
2.5 Results visualization on DOTa image. From the left there is result

from RetinaNet-H, RetinaNet-R and R3Det 24
2.6 Example of a wrong detection using default CVPipeline in OpenPNP 25
2.7 Class diagram of the original OpenPNP computer vision solution . 26
2.8 Class diagram of the new proposed OpenPNP computer vision so-

lution . 28
2.9 Visualization of the UI part of the proposed solution 30
2.10 Structure of methods used in the RotationDetection project 31

3.1 OpenPNP new UI Package panel 34
3.2 OpenPNP UI Machine panel, Bottom Vision section 35
3.3 OpenPNP coordination system visualisation 39
3.4 GPU-Jupyter docker image Jupyterlab environment 41

4.1 OpenPNP dataset objects representing categories 44

xi

4.2 Cross-entropy loss for all detectors, x-axis measures iteration, y-
axis measures the loss value . 45

4.3 RetinaNet-R loss graphs, x-axis measures iteration, y-axis mea-
sures the loss value . 46

4.4 RetinaNet-R performance of validation data using thresholds 0.75,
0.8 and 0.95 . 46

4.5 R3Det and R3Det-KLD model total loss, x-axis measures iteration,
y-axis measures the loss value . 47

4.6 R3Det and R3Det-KLD performance of validation data using thresh-
olds 0.75, 0.8 and 0.95 . 47

4.7 AP and F1 score measured for individual categories using all de-
tection methods . 49

4.8 Comparison of detection results from R3Det detector and OpenPNP
default pipeline on images with low lighting 50

4.9 Comparison of detection results from R3Det detector and OpenPNP
default pipeline on images with high lighting or visible nozzle . . . 51

4.10 Comparison of detection results from R3Det detector and OpenPNP
default pipeline on images with empty nozzle 52

xii

List of Tables

4.1 Detection speed evaluation of trained detection methods on OpenPNP
dataset. 47

4.2 Performance evaluation of trained detection methods on OpenPNP
dataset. The shortnames for the categories are defined as: MC=Micro
Crystal, Inf-Infineon, NS-Nordic Semiconductor, UB-U-blox, STM-
STMicroelectronics . 48

xiii

Introduction

Within the manufacturing world, the role of computer vision became essential.
As physical dimensions of products, materials, and defects are decreasing, it is
increasingly impossible for humans to fulfill high demands on the production
precision and speed, and it makes the computer vision an important part in
most of the manufacturing steps. One specific area of the manufacturing world
is development of integrated circuits. Especially high demands are put on
Surface Mount Technology (SMT) including Pick and Place processes (P&P),
where object detection is the fundamental task requiring effective solution in
terms of accuracy and speed. As the number of producers and commercial
products grow, there is also increasing number of open-source P&P software.
OpenPNP is one of the most popular open-source tools. Even though its
popularity is huge, and the system is well designed, its computer vision still
cannot compete with the commercial solutions present on the market.

This thesis aims to identify and evaluate existing solutions of object de-
tection using computer vision that could be used in open-source OpenPNP
tool to provide more precise and faster object offset detection. This chapter
will provide and introduction to the thesis by providing the background and
objectives of the research and proposed solution along with its benefits and
limitations.

Research background

The focus of this thesis will be on the SMT P&P computer vision processes.
SMT is a component assembly technology which mounts the electric compo-
nents on the surface of a printed circuit board. The process of placing the
component on the board consists of taking the part from a feeder using a
suction nozzle and placing it on the board. To ensure the correct alignment of
the mounted component several checks need to be performed including rota-
tion of the nozzle with the picked part to the correct position using computer
vision algorithm. To rotate the nozzle to the desired position the software

1

Introduction

first needs to identify the exact location of the component and calculate its
offset represented by coordinates shift including a rotation angle. For that,
the requirement is to have a computer vision algorithm that can detect the
rotation of the object.

Current solution of OpenPNP software implements this rotation detection
using OpenCV library. OpenCV is an open-source computer vision library
that aims at real-time applications. OpenCV can provide strong object detec-
tion solution but its implementation in OpenPNP is not ideal. Based on the
users’ experience and demands the solution is not robust to outer conditions
and requires regular adjustments. The current implementation of computer
vision in OpenPNP using OpenCV library is therefore not sufficient and in
many cases, it represents the weak spot of the software.

Computer vision has countless usages in the manufacturing processes from
identifying defects and small parts to guiding the robot controllers in the en-
vironments. Even though every use case has its specific demands, there are
practices that can be generalized. From the high-level overview, the computer
vision tasks can be divided into two categories that are objects recognition
and object detection. For P&P application the it is crucial to have a strong
detection method. Most solutions are based on machine learning using Neural
Networks (NN). Control systems using NN solution usually achieve high de-
tection accuracy in real time object detection despite challenges like changing
environment including occlusion, changing lighting, or camera pose.

Rotation detectors are currently a lot discussed field of study and many
solutions were proposed in recent years. The pronounced challenges the studies
are trying to solve are:

1. small objects,

2. densely arranged objects and

3. arbitrary object orientation.

Based on these challenges, detectors for small and rotated objects are a per-
fect fit for application in industry and thus for this thesis even though the
manufacturing application is not the focus of the models’ study.

Detection methods can be divided into two categories. First, two-staged
detectors based on region features detection and classification based on fully
connected layers. There exist state-of-art solutions based on two-stage detec-
tion model. They are usually based on R-CNN, Fast R-CNN, and Faster R-
CNN and even though they are proved to perform well on challenging datasets
they still have their speed limitations. On the other hand, recently developed
single-stage detectors aiming to be fully convolutional proved to be fast in the
object detection and performed competitive performance. Single-stage detec-
tors were not yet able to achieve the same detection accuracy as state-of-art
two-staged detectors, but they offer interesting trade-off between the detection
performance and speed.

2

Current problems

Current problems

Dynamic computer vision solution is critically important for the industry. Nu-
merous studies have researched the field of computer vision in SMT and other
applications with robotic elements. However, only a few studies focused on
commercial or broadly used products and provided comparison of their results
on real-life applications where the need for new practices is more demanding.

There are also only a few studies discussing last trends in computer vision
and comparing their results in real-time industry environments. As a result,
there is not compact comparison of recent hot topics in computer vision in
manufacturing world providing a healthy competitiveness of open source and
commercial products.

The implementation of computer vision in the OpenPNP software is behind
the current trends. It brings many problems for practical usage and sets the
software back from being compared to commercial tools.

Thesis aims, objectives and significance

In this thesis I will aim to research and evaluate the current field of part detec-
tion in the manufacturing world. I will also research current trends in rotation
detection methods and evaluate possible benefits for this thesis. Based on the
research results I will aim to resolve current OpenPNP impediments regarding
computer vision by incorporating new computer vision solution for part offset
detection. Another objective of the thesis will be to implement and evaluate
the effectiveness of the new solution.

Questions to be answered in following chapters are what the current part
detection methods in the industrial world are and what are the most recent
trends in detecting rotated objects using machine learning. This thesis should
also answer questions about current impediments in OpenPNP and propose
and measure the improvements.

This work will contribute on the improvements of the widely used P&P
open-source project by implementing new solution for component offset de-
tection using last trends in machine learning for detection of rotated objects.
This will help making the open-source SMT world more competitive to com-
mercial tools. The results of the thesis should set a base for solving users
demands and providing them with advanced software.

Known limitations

The focus of this thesis is narrowed only to the OpenPNP software and testing
other implementations is not in the scope of this work. Therefore, the lack
of comparison can be a big limitation. Another limitation that needs to be
considered is the lack of previous studies trying to achieve similar results.

3

Introduction

Except commercial software that are not publicly documented, there is no
commonly known study trying to use recently researched machine learning
solutions for rotation detection in SMT technologies and thus there are no
practical usages that could be used as examples and to turn to.

Structural outline

In the first chapter, I will review the existing solutions regarding parts detec-
tion in the manufacturing world as well as describe the OpenPNP software
and its computer vision for deriving the part location offset. In the second
chapter, I will research rotation detectors available today. In another sec-
tion of this chapter, I will analyze impediments when using current OpenPNP
computer vision and provide design of a new solution in order to resolve users’
problems. Following third chapter will describe implementation details of the
solution proposed in the prior chapter. I will dedicate the fourth chapter for
the new computer vision solution evaluation to measure its performance and
state the results. In the last, fifth chapter, I will discuss the results of the new
solution and propose future enhancements.

4

Chapter 1
Parts detection in the

manufacturing world

Computer vision brings significant usage in automation of industrial processes.
Those include for example burr measurement, surface inspection or grading
and sorting products [9]. For Pick and Place automation operations in surface
mount technology, the essential bottom vision techniques are detection and
recognition of the objects to locate the workpieces. For such applications
there are already off-the-shelf solutions available, but every machine has its
specifications and limitations and not every solution can fit. Usually, it is also
costly. Therefore, many manufacturers and developers of those systems are
working on their own solutions.

Figure 1.1: Example of a robotic arm (IRB 1400) [2] and Pick and Place
machine for private use [3]

SMT is a method in which the components are mounted on the circuit
board (PCB). Pick and Place operations (P&P) are one of the main processes
the SMT comprises of. The electrical components are mounted directly on the
solder paste that is placed on the PCB pads. During the P&P process it is
usual that the components are not aligned and therefore there is a need of
computer vision to automate the process of aligning the parts to their desired

5

1. Parts detection in the manufacturing world

position [4]. The incorrect positioning can happen in multiple stages like
picking, placing, or can be caused during board reflow. Figure 1.2 shows
typical mount assembly process line.

There is not a lot of publicly available information about what computer
vision techniques are used in real manufacturing world as the producers keep
their processes hidden from the public. The only source for methods used
in parts recognition are papers describing computer vision approaches used
in pick and place machines or other application with robotic element. All
applications I will mention here have been made to experimentally test the
computer vision in real or simulated industrial environment. Even though
there is a good number of papers and works available the majority is discussing
solutions using pattern recognition and not the detection. Even fewer are
discussing the rotation of the objects. Still, I will mention those techniques
here as they are still relevant to the scope of this work.

Figure 1.2: Surface Mount Assembly line [4]

The variety of object detection methods in the scope of manufacturing is
huge and there is no common model that could be applied to multiple cases.
Therefore, I aim to create an overview of different kinds of approaches used,
and define what are the basics and widely used elements and methods.

When talking about the inspection techniques one of the simplest ones is
CAD-based method providing inspections for a CAD models. However, this
technique is not broadly used because it does not work for more complex
parts especially when the model differs from the intended design but is still
functionally acceptable. A widely used programming environment for the
inspection is a LabView [10]. It is a platform that allows data acquisition,
test automation, or embedded system design. It is usually combined with
MATLAB to perform high level calculations upon the results from LabView
to provide a classification.

From the commercially used vision software I can list Cognex’s VisionPro
[5] or MVTec Halcon [11]. Based on the specification by Cognex, the VisionPro

6

does not require any image preprocessing. The system focuses on the critical
acceptance relevant features ignoring any variations on the non-critical parts
appearance. VisionPro software provides users with functions like object lo-
cation, inspection, measurement, or alignment. Based on the specification the
library operates on wide range of tools implementing methods like image filter-
ing, OCR, patter matching and even smart and deep learning models. Halcon
is a software for machine vision developed by Halcon. It supports multi-core
platforms and GPU acceleration and serves various industries providing anal-
ysis, matching, measuring, object identification, 3D vision, and deep learning
algorithms using the latest state-of-art computer vision technologies. Halcon
is suited for embedded systems.

The typical workflow for the object recognition or detection can be bro-
ken down as follows. Firstly, image acquisition is performed to obtain an
image of the detection object. The capture is then passed to preprocessing
stage. Captured image is passed through various types of processes like filter
banks or pooling operation to clean image data and provide the detector with
normalized data to correctly generalize [12].

Figure 1.3: Cognex’s VisionPro software interface [5]

Computer vision tasks require high quality input images to ensure the best
results despite the challenges like occlusion, camera pose or unstable lightning
condition. However, there are techniques to be addressed before applying
image processing algorithms to improve the quality of the input image. Some
engineers proposed a method using illumination system to increase the quality
and illumination intensity of the capture acquired with a low-quality camera
[13]. Bringing uniformity into illumination intensity distribution can reduce
noise and shadows and thus can simplify image processing algorithms [14].
Almost every computer vision technique is at least adjusting the light system
mainly to solve the uneven lightning around the vision system hardware as

7

1. Parts detection in the manufacturing world

it makes the preprocessing easier. Another critical factor that influences the
captured object is the color of the surface on which the object is captured. The
color should be chosen as such the captured object is clearly distinguishable.

1.1 Image pre-processing and feature extraction

The next typical stage after the image acquisition is image preprocessing.
The most common techniques use real-time computer vision functions as can
be found in the OpenCV or MATLAB [13]. Commonly used techniques are
masking, spatial filtering, color conversions or binary conversion [15].

Recently the most studied area as a step preceding the detection or classi-
fication is a feature extraction. It usually serves for removing unwanted data,
providing new features to the training set for the classifier but can also be
used for the detection itself. The feature extraction provides the features like
centroid, shape, or color. The earlier feature extraction techniques focused
on the visual features like edges or algebraic features. Nowadays, one reads
mostly about features regarding the pattern withing the shape. The prior
step is usually an image segmentation to separate the object in the image
from the background to facilitate the process of feature extraction. The most
robust detectors containing the feature extraction that are mostly discussed
are Viola-Jones IP algorithm or Contour matching [16].

The feature extraction is usually based on simple thresholding algorithm.
The usual methods are based on the edge detection as is a Canny method
based on a Gaussian filter. Another step can be image dilatation and fill-
ing for achieving the object shape and drawing a bounding box around it.
Thresholding can be also used for background removal performing the Otsu’s
thresholding algorithm [16] [15].

Feature extraction can be also understood as a basic image segmentation
for which we can use a flood-fill algorithm [17]. Its purpose is to find areas
of connected pixels of the same color. It is a simple iterative process, but
its results cannot compete with the more sophisticated segmentation models
based on CNNs.

1.2 Recognition (classification) methods

There are various approaches and models used in the manufacturing or industry-
like environments. All the methods can be categorized as classification tasks
and may serve not just for pure object recognition but also as an intermittent
step in the object detection. Here, I am giving a general overview of the most
popular methods currently available.

Most widely known and popular recognition techniques are statistical meth-
ods based on a distance measurement using Gaussian classifiers. They model
many practical cases and are simple to implement. From this approach I can

8

1.3. Object detection

list a nearest-neighbor (K-NN) or minimum-distance rules [14]. K-NN method
is used as a recognition tool in many different domains [18]. Given an input
sample x and a corresponding training set the classifier assigns the sample to
the class given by the closest k prototypes in the training set.

It is desirable to make the recognition system as autonomous as possible
even for the statistical methods. For that, incremental learning algorithms
were introduced. They can benefit from previously obtained data. It makes
the recognition modules more robust and enables them to adapt to the dy-
namic environment. Incremental learning is based on improving the quality
of training data eliminating mislabeled examples [19].

Neural networks give an alternative method for a statistical recognition in
the context where the response time is as important as the recognition rate.
A lot of solutions are talking about migration from statistical method to ANN
[18]. From used models I can discuss solution done by TrainRp implemented
in MATLAB.

From widely known image classification models, I will mention VGGNet
lately outperformed by GoogleNet and ResNet using convolutional layers and
max pooling technique. Even though single stage recognition systems do exist,
most of the systems are employing two-stage process, Feature Extraction and
Classification.

1.3 Object detection

During the object detection the machine vision solution needs to perform
several steps including the classification. The high demand on the detection
speed led to an introduction of a R-CNN and Faster R-CNN to replace a slower
sliding window technique. Those techniques became a state-of-art solutions.
Real time object detection became an area of an interest but there has always
been a trade off between the detection accuracy and a speed, both crucial
elements in robotics. Only Single Shot Multibox Detector (SSD) achieved a
good balance between the speed and accuracy attaining 0.72 mAP at 58 fps
and became another state-of-art detector [20] [21].

In [6] the authors are describing a use of computer vision in SMT for place-
ment control when the object is placed on the wet solder paste. It can happen
that the solder paste itself is printed with an offset as can be seen in the figure
1.5. It is a different perspective then the approach of this thesis, but the same
operations can be applied, and it has the same importance. As the object is
placed on the wet surface it can slump and its position might change before the
board enters the heating stage. Authors designed an experiment considering
variety of possible situations. The experiment used a Support Vector Regres-
sion machine learning model combined with other computer vision techniques.
However, the component shifts were not addressed well.

9

1. Parts detection in the manufacturing world

Figure 1.4: The process of the PCB surface mounting showing solder paste
printing and P&P operation [6]

Figure 1.5: Definition of the printed solder paste offset [6]

In papers addressing the object rotation offset the vision processing is
carried mostly by real-time computer vision best implemented in OpenCV.
This approach gives developer a variety of different functions and integration
with different operation systems and programming languages. Methods used
are basically the same as described above in the image preprocessing section
[22].

The [7] describes four types of chip detection methods: template matching,
point set registration, pin line fitting and pin clustering. Template matching
calculates the correlation between the target and the template [23]. Examples
of such method are model-based matching or, for example, nearest neighbors.
For identifying chips there are more suitable methods like line fitting and
clustering. On the other hand, those methods are usually designed for specific
chips and thus are not universal. In the paper, authors proposed a new method
based on FAST model. FAST stands for Features from Accelerated Segment
Test and it is a corner detection method. The newly proposed method uses
an adaptive threshold that changes with the light. The rough position and
rotation angle are established by minimum enclosing rectangle around all the
FAST feature points. The executed experiments showed that the proposed

10

1.4. OpenPNP

method is promising even when compared with the commercial machine vision
libraries. Figure 1.6 shows the process of component pin extraction using Otsu
algorithm for preprocessing followed by segmentation as defined in the paper.

Figure 1.6: The process of upper pin group segmentation [7]

The neural network solution is recently being applied for most of the ap-
plications of the part detection and it is replacing the statistical methods [14].
The machine learning approach is almost in all cases preceded by object classi-
fication to determine whether the focused object is the object of interest. Few
more recent papers are mentioning the use of single shot detectors (SSDs) that
have recently brought a significant improvement in the performance and are
currently used as an alternative to multistage detectors like Faster R-CNN.

1.4 OpenPNP

OpenPNP is an open-source software used for SMT pick and place machines.
The official page provides ready to use software to run a pick and place machine
of any kind whether it is a self-built one or a commercial one.

The repository with the code is provided on GitHub allowing users to
build and modify the code freely. Contributors can make a fork and create
pull requests whenever they want to contribute. Even though the code is
under continuous development it is stable and heavily used. Over the ten
years of its existence the repository has had over 50 contributors and has been
forked for almost 400 times. Currently it is watched by nearly 150 users and
has just about 1000 stars.

The project has built its own live community watching the GitHub project
and having discussion groups, discord channel and twitter account. OpenPNP
project does also provide users with help when building custom pick and place
machines. [24]

11

1. Parts detection in the manufacturing world

1.4.1 Using the OpenPNP software

In the figure 1.7 one can see the user interface with the major components.
The initial setup provides a demo configuration so user can try the application
even without a machine connected. In this demo all machine parts needed for
the interaction with the software as cameras, feeders, nozzles, and others are
simulated.

Figure 1.7: OpenPNP User Interface

OpenPNP allows to setup the machine in Machine Setup tab. Here, user
can configure all the aspects the machine consists of. This is the place where
we want to start when using the software with our custom machine. The
structure has a tree shape with root representing the machine itself. Every
setup is mirrored in xml configurations that serves as an initial setup and
place to persist the settings.

In its base the software is a Computer Numerical Control (CNC) machine
controller. The main section in the program is the Jobs tabs. There, user
can define a set of jobs the machine is supposed to execute, and the software
sends the corresponding commands to the hardware. When defining a job user
needs to configure the location of all the aspects needed for the execution which
means defining location of boards, parts, packages, feeders, and corresponding
final placements.

For this thesis, section dedicated for parts is the most relevant. From
OpenPNP perspective, part is a record referring to its origin and final place-
ment, also containing an information about its physical properties to help
to place the part accurately to a desired place. Every part belongs under

12

1.4. OpenPNP

a specific package. Package closer specifies the part’s physical properties. It
provides OpenPNP with information about the appearance including shape,
count of the pads or pins, and the size.

1.4.2 Computer vision in OpenPNP

Computer Vision in OpenPNP is managed in module called Bottom Vision
[25]. It helps to place the components more accurately by identifying center
point offset or rotation error and correcting the position of the part on the
nozzle. It can also determine if the pick was successful. Main elements of the
Bottom Vision procedure are up-looking camera along with CVPipeline. The
whole operation consists of:

1. picking the part from a feeder,

2. centering the nozzle over the up-looking camera and take an image and

3. applying CVPipeline to determine the errors.

CVPipeline stands for Computer Vision pipeline and consists of stages
represented by CVStage class. Each stage represents an OpenCV operation
or another procedure to help with the image processing and debugging such as
image capturing and saving. OpenPNP implements editor for user to be able
to specify concrete stages and their order of the execution along with individual
stage parameters. CVPipeline, when executed, provides image capture and
part detection, and computes the errors. During the execution, original image
is updated after each stage is applied providing user option to debug the whole
CVPipeline.

Figure 1.8: OpenPNP definition of the offsets visualized

The output of the CVPipeline is rotated rectangle that represents a min-
imal bounding box of the picked up and captured component. The rectangle

13

1. Parts detection in the manufacturing world

is represented by width, height, center coordinates and rotation. Using this
we calculate the error in the offset and in the rotation.

Bottom Vision configuration offers to apply rotation action prior to the
vision. That means that the nozzle will pre-rotate to its final placement po-
sition. Enabling this pre-rotation allows user to apply also multipass vision.
During the multipass, part is centered based on the calculations derived from
the error multiple times. The aim is to cancel any potential errors caused by
wrong camera caption. These errors have various causes. Part on the nozzle
can be seen from a slight angle, a section of the part can be out of focus or
there may be reflections due to angled surfaces.

OpenPNP Bottom Vision also provides user with part size check. Based
on the selected method and defined tolerance, the part alignment can fail if
the component size differs. CVPipeline can check for body size or for whole
footprint including pads.

14

Chapter 2
Analysis and design

In this chapter I will present current trends in machine learning techniques
for detecting rotated objects. In other section I will analyze impediments
when using current computer vision solution in OpenPNP tool. Based on
previous research and analysis I will propose a design for new functionality
for OpenPNP tool to solve current problems and to introduce new updated
solution.

2.1 Part rotation detection

Main applications of the rotating image detectors are scene texts and retail
scenes. Scene text is text that appears in the pictures from outdoor scene. It is
difficult to locate a multiangled object and distinguish it from the background.
Existing detection methods work with objects as they would be located along
the horizontal line. Those are known detectors like Fast R-CNN, Faster R-
CNN, SSD or YOLO. However, the problem of arbitrary rotated objects was
not addressed by the above detectors. Due to the value the detectors for
rotated objects would bring, there are new detection methods currently de-
veloped. To achieve better accuracy, many of the detectors are introducing
refinements directly to the existing solutions.

2.1.1 Rotation detectors available today

Rotation detection is a challenging task and only few solutions exist and are
well documented. Next to the large aspect ratio and densely arranged objects,
arbitrary orientation of objects is one of the challenges pronounced today and
therefore new rotation detectors have been proposed. Methods using Deep
Neural Networks can be generally grouped into two categories [26].

The first category are two-staged detectors. They usually calculate the
sparse set of feature proposals that should contain all the objects in the first
stage, and then apply the classifiers or regressors in the second stage. The

15

2. Analysis and design

region proposal methods are usually models like R-CNN, SPPnet, Fast or
Faster R-CNN and R-FCN. The outputs are then post-processed by methods
such as non-maximum suppression (NMS) to get the detection results. Due
to their robustness and ability to classify objects in dense scenes, two-staged
detectors are still dominant. However, when we look at the performance
and accuracy of the detection of rotated objects there is still a space for
improvement. ICN, SCRDet or Gliding Vertex are examples of state-of-art-
detectors. The main drawback of the two-staged detectors is the complexity
of their structure that is causing the speed bottleneck. Recently the studies
and works showed that the two-staged detectors can overcome this bottle-
neck by reducing input image resolution and by number of other proposals.
Above mentioned rotation detectors are based on horizontal detectors such as
Faster R-CNN, Region-based Fully Convolutional Networks (R-FCN) or Fea-
ture Pyramid Network (FPN). Those advanced techniques were introduced to
improve the speed of sliding window approach. These two-staged frameworks
are consistently achieving top results on the COCO benchmark [27] consid-
ered as one the most challenging and used for comparing the performance of
state-of-art algorithms. Neural Networks have shown that they can achieve
high detection accuracies in real time detection, up to 0.73 mAP but there has
always been a tradeoff between accuracy and speed. To achieve better accu-
racy, many detectors are using cascaded model like The Cascade RCNN, HTC
or FSCascade performing multiple concatenated classifications and regressions
in the second stage.

Second method, on the other hand, does not rely on region proposals.
Detectors using this method are single shot detectors based on convolutional
neural network which makes them much more attractive due to their effec-
tiveness. This family of detectors directly estimate object candidate same as
SSD or YOLO. This method saves detection speed without losing to much
accuracy. Single-stage detectors are based on and introduce refinements to
models like RetinaNet or RefineDet. RetinaNet is especially popular due to
its ability to detect small scale objects in a dense scene that are typical for
aerial and satellite images. The performance of single-shot detectors is mainly
limited by features misalignment. Maintaining fully convolutional structure
is the important requirement so the feature misalignment cannot be fixed by
adding refinements from two-staged detectors as the speed advantage would
be lost.

Even though two-stage detectors are still achieving better results, single-
stage detectors maintain faster detection speed. From existing and most doc-
umented detectors for rotated objects, I can list R2CNN, RetinaNet-H and
RetinaNet-R, FCOS or R3Det. In the sections bellow I will give a brief de-
scription of a few detectors including state-of-art method.

16

2.1. Part rotation detection

2.1.2 R2CNN: rotational region CNN

This model was first proposed in 2017 as a novel method for arbitrary-oriented
text detection. While traditional text detection methods are based on sliding
window or Connected Components (CC), R2CNN proposes deep learning base
method as it has been recently widely studied.

Figure 2.1: The architecture of R2CNN method

Rotational Regional CNN is based on Faster R-CNN architecture. The
procedure first uses Region Proposal Network (RPN) to propose axis-aligned
bounding boxes around the texts. The next stage is classification and refine-
ment of the boxes to predict the minimum area boxes using the Fast R-CNN.
Last process is a post-process using non-maximum suppression to get results
[28]. Figure 2.1 shows the architecture.

The approximation of the detected arbitrary-oriented scene text is done
by inclined minimum area rectangle. Instead of using angle to represent the
rotation, the model uses coordinates of the first two points and the height of
the rectangle (x1, x2, y1, y2, h). The first and second points always mean the
left-top and the right-top corners. To increase the performance the method
adds additional axis aligned bounding boxes to each predicted inclined box.

The detection strategy is based on two stages. In the first stage, the RPN
is first used to generate region proposals. Proposals are axis-aligned bounding
boxes enclosing the arbitrary oriented texts. It is also called cascade stage
and reduces the set of all possible objects from almost infinite to thousands by
eliminating the easy negatives. The ROIPooling is then performed upon the
proposals to generate pool features for further classification and regression.
The Faster R-CNN uses ROIPooling with pooled size 7x7 pixels. R2CNN
adds additional two pool sizes 11x3 pixels to catch more horizontal features
and 3x11 pixels to catch more vertical features. The pooled features and fully
connected layers are then used to generate scores, axis-aligned boxes, and
inclined minimum area boxes.

Non-maximum suppression (NMS) is used to post-process the detection
candidates. NMS uses Intersection-over-Union (IoU) and modifies it to cal-
culate the IoU between two inclined bounding boxes. The second NMS is
applied to axis-aligned bounding boxes respectively. The loss function is the
summation of the text/non-text classification loss and the box regression loss.

17

2. Analysis and design

The regression loss consists of the loss of axis-aligned boxes and the loss of
inclined minimum area boxes.

The model was trained on images from ICDAR 2015 dataset and custom
images containing incidental scene texts with arbitrary orientation. Based on
the results from the experiment the R2CNN reached recall of 79.68%, pre-
cision of 85% and F-measure of 82.54%. Compared to Faster R-CNN the
proposed method outperformed the detector by 6% which was mainly caused
by Faster R-CNN ignoring the rotation of the objects. In overall, the evalua-
tion shows that the model reached competitive results on the selected dataset.
The method is also general and could be applied to other general detection
frameworks like YOLO or SSD.

2.1.3 RetinaNet

RetinaNet is one of the best single-shot detectors. It consists of the backbone
network, and classification and bounding box regression subnetworks [29].
The backbone network is an off-the-self convolutional network responsible for
extracting a feature map from the entire input image. As its base settings
it uses tuple representing an arbitrary oriented rectangle [30]. It consists of
five parameters (x, y, w, h, θ) representing center of the object, its width and
height and rotation angle ranging in [−90, 0) degree range. Theta denotes the
acute angle between the box and the x-axis. This definition is consistent with
OpenCV structures.

2.1.3.1 Focal loss for dense object detection

When we speak about RetinaNet we cannot but mention the Focal Loss as the
base that makes RetinaNet such a strong detector. The imbalance between
foreground and background class is one of the main reasons why single-stage
detectors do not reach the accuracy of two-staged methods. Focal Loss (FL)
can, as a novel loss function, remedy this issue and make the single-shot
detectors more powerful. When the RetinaNet was firstly introduced, it out-
performed every other model on the market mainly thanks to the Focal Loss
[31].

In the case of class imbalance there is a surplus of easy negatives that
tend to overwhelm the foreground class which can lead to generalization of
the model. The class imbalance also leads to a training inefficiency as the high
number of easy negatives leads to a lot of useless signals. The general solution
to overcome this impediment is to perform hard negatives mining. The FL
stands as a contrast to these methods showing that it can naturally handle
the class imbalance for one-stage detectors.

The function is described in the figure 2.2. It is a dynamically scaled cross-
entropy loss. When the confidence in the correct class increases the scaling
factor gamma decays to zero. This scaling factor can make the model focus

18

2.1. Part rotation detection

Figure 2.2: Focal Loss function graph [8]

on the hard examples by downweighing the easy examples contribution and
is commonly used to address the class imbalances [8]. For the notation we
classify:

pt =
{
p if y = 1
1− p otherwise.

(2.1)

It can be observed that even for well-classified examples (pt � 0.5) the
loss in non-trivial.

The gamma (γ ≥ 0) plays role in the so-called modulation factor 1 −
pt)γ that is added to a cross-entropy loss. The Focal Loss is then defined as
followed:

FL(pt) = −(1− pt)γlog(pt). (2.2)

When the pt is small, the modulation factor is close to one and the loss is
unchanged. In the opposite case when the pt goes to 1 the factor goes to zero
and the loss is downweighted. It means the loss contribution of easy examples
Is reduced. The gamma parameter has the power to adjust the rate at which
the easy examples are reduced. Clearly, the case of γ = 0 corresponds to
a cross-entropy. From the graph in the figure 2.2, it can be observed that the
Focal Loss function also extends the range where examples receive a low loss
and thus put more importance on the misclassified examples.

In practice, there is another α-balanced variant:

FL(pt) = −αt(1− pt)γlog(pt). (2.3)

This form comes out of the balanced cross-entropy loss. α is a weighting
factor that takes value of [0, 1] for class 1 and 1 − α for class -1. It may be
derived either with inverted class frequency or as a cross-validation hyperpa-
rameter. The precise form is not crucial is the authors of the paper proved
during the experiments.

To improve the training stability in case of heavy disbalanced classes,
authors introduced the concept of prior pi. The value p for the rare cases is

19

2. Analysis and design

at the beginning estimated to π to overcome the instability in the phase of
early training.

The Focal Loss is used as the loss on the output of the classification subnet.
Experiments showed that in practice, γ = 2 works well and the model is robust
when the γ is in [0.5, 5]. In general, the α should be decreased slightly when
γ increases and for the γ = 2 the best value of α was observed to be 0.25.

2.1.4 R3Det: refined single-stage detector with feature
refinement for rotating object [1]

The detector aims to solve current problems with existing single-stage de-
tectors and provide accurate and fast solution for rotated objects detection.
Namely the problems analyzed are large aspect ratio, densely arranged and
arbitrary oriented objects. The main design improvements proposed are pro-
gressive regression using combination of rotated and horizontal anchors and
feature refinement module to solve feature misalignment problem. The base
of the detector is a Refined Rotation RetinaNet (R3Det) as can be seen in
the figure 2.3. At the beginning there is a bottom-up and top-down path-
way to build the feature pyramid network (FPN). The refinement is added to
the classification and regression subnetwork in the form of refinement stage
for bounding box and feature refinement module (FRM) to reconstruct the
feature map. It can be repeated multiple times.

Figure 2.3: The architecture of RetinaNet detection model

As a loss function the SkewIoU is used as it can differentiate box sets with
different aspect ratio. Commonly used smooth L1 loss value does not consider
aspect ratio in its calculations, only the angle and size of the objects. IoU
in general is an effective regression loss function and is widely used but it is
not derivable which makes it unusable for direct usage. In the refinement for
rotating objects the derivable approximate SkewIoU loss function is used and

20

2.1. Part rotation detection

defined as follows:

L = λ1
N

N∑
n=1

objn
Lreg(v′n, vn)
|Lreg(v′n, vn)| |f(SkewIoU)|+ λ2

N

N∑
n=1

Lcls(pn, tn). (2.4)

Lreg(v′, v) = Lsmooth−l1(v′θ, vθ)− IoU(v′{x,y,w,h}, v{x,y,w,h}). (2.5)

’N indicates the number of anchors, objn is a binary value. v0 represents
the predicted offset vectors, v denotes the targets vector of ground-truth. While
tn indicates the label of object, pn is the probability distribution of various
classes calculated by sigmoid function. SkewIoU denotes the overlap of the
prediction box and ground-truth box. The hyper-parameters λ1, λ2 control the
trade-off and are set to 1 by default. The classification loss Lcls is implemented
by focal loss.’ [1]

In addition, SkewIoU loss is sensitive to slight changes in rotation therefore
authors introduced the refinement of the prediction boxes using various IoU
thresholds to improve the recall rate. Multiple refined stages are joined to-
gether using different combination of foreground and background thresholds.
The overall loss is then defined as a sum of the refinement stages loss values.

Because the detector was designed to identify the rotated objects in mov-
ing images the FRM came in place to pick up any misalignments caused by
changing location of the bounding boxes. This improvement does not con-
sider me as I will be using the picture from a static camera. However, it is
still worth short mention as it improves the accuracy of the whole model. The
FRM serves as an addition to refined bounding box re-encoding its position
to corresponding feature point causing reconstruction of the whole feature
map to achieve the correct alignment. ROIAlign is the equivalent solution
for solving feature misalignment in two-stages detectors as mentioned in the
previous section. Compared to ROIAlign, FRM has about 25% less sampling
points which gives it a speed advantage. In addition, FRM maintains a full
convolution structure that compared to fully connected structure in ROIAlign
leads to a higher efficiency and fewer parameters.

During the experiments there were various datasets and protocols used to
measure the results and choose the combination with the best performance.
As one of the datasets, authors used public DOTa dataset comprising of over
2000 aerial annotated images. As next datasets used there was HRSC2016,
ICDAR2015 and UCAS-AOD datasets.

Three baseline methods were used for training. RetinaNet-H using hori-
zontal anchor boxes made the model less accurate. RetinaNet-R baseline with
rotated anchor boxes on the other hand performed better in dense scenes but
was less efficient because it adds angle parameters and thus multiplying num-
ber of anchors. R3Det refined detector without the FRM combines the best
of two previous baselines. First, it uses horizontal anchors and then applies

21

2. Analysis and design

the rotating refined anchors to overcome the problem that dense scenes cause.
Performance of the R3Det baseline was measured to 63.52%. Adding two
refined stages, the FRM and approximate SkewIoU loss improved the perfor-
mance and shot the percentage up to 73.79%. Results showed that the new
method achieved the best performance among all the detectors. In overall, the
experiments and studies showed that the results achieved state-of-art models‘
accuracy and efficiency.

2.1.5 Bounding box for rotated object detection
via Kullback-Leibler divergence

a regression framework using Kullback-Leibler Divergence (KLD) was pro-
posed in [32] to overcome limitation of regression loss on dense scenes and
objects with large aspect ratio. The paper is based on the idea that different
parameters are important for different types of objects like angle parame-
ter and center point and thus the regression loss should be self-modulated,
and the learning process could use more dynamic optimization. First the ro-
tated bounding boxes are converted into Gaussian distribution N (µ,Σ) and as
a standard distance metric the KLD is used to calculate the distance between
the predicted and ground-truth box.

The KLD method is compared to L1 Smooth Loss and Gaussian Wasser-
stein Distance (GWS). The study and experiments found that KLD has more
complex parameter optimization and the gradient of the parameters can be
dynamically adjusted based on the object of interest. Additionally, it is scale
invariant and can be degenerated into the ln-norm loss.

2.1.6 SRCDet and SCRDet++

Same as the R3Det model described above this solution is trying to offer
a model that would perform well on scene images with small, cluttered, and
arbitrarily oriented objects. It tries to minimize the interference on both
background and foreground objects by introducing a denoising module.

Figure 2.4: The architecture of SCRDet detection model

The proposed architecture is a two-stage model based on RPN network.
In the first stage authors added SF-Net and MDA-Net to reduce noise and
increase feature information amount in the feature map. This stage is still

22

2.2. Impediments when using OpenPNP CVPipeline

using regression for horizontal boxes. The second stage on the other hand
uses improved regression with five parameters and rotation non-maximum
suppression operation for each proposal. The whole method is described in
the figure 2.4.

Because using the pooling layers can lead to a loss of small object feature
information, the model introduces a feature fusion such as Top-Down Modu-
lation (TDM) o FPN. Based on the deeper analysis of the feature fusion and
finer sampling method authors designed the finer sampling and feature fusion
network (SF-Net) [33].

Next the Multi-Dimensional Attention Network (MDA-Net) was designed
to enhance the object’s features and weaken the non-object information. Com-
pared to other existing attention methods this one is supervised and thus able
to learn specific purposes.

The model uses the same parameters to represent ground-truth boxes as
OpenCV and thus the previous above-described detector (R3Det). Also, the
loss function is based on the same method, namely SkewIoU [34]. Based on
SkewIoU computation there is also post-processing operation using rotation
non-maximum suppression (R-NMS).

2.1.7 Summary of the detections results

All above mentioned detectors and corresponding papers show good results
on various datasets. The most interesting results are achieved by R3Det de-
tector on DOTa dataset. This dataset contains aerial images and thus provid-
ing samples with small, rotated, and cluttered objects. The paper provides
results comparison between R3Det detector and SCRDet and RetinaNet de-
tectors. Among the single-stage detectors, R3Det achieved the best detection
results around 89%. RetinaNet-R outperformed R3Det detector only one on
HRSC2016 dataset containing aerial images of ships. Even though two-stage
detectors are still dominant, the R3Det detector achieved the best and promis-
ing performance on DOTa dataset. Figure 2.5 shows the detection compared
on image from DOTa dataset.

The results indicate that above mentioned detectors could be a good fit
for purposes of this work and for SMT processes in general.

2.2 Impediments when using OpenPNP
CVPipeline

OpenPNP default configuration offers a default OpenCV pipeline. The default
pipeline described below gives a nice overview of possible pipeline configura-
tion. The OpenPNP implementation contains more stages than described
here. There are over 60 stages implemented using around 26 OpenCV opera-

23

2. Analysis and design

Figure 2.5: Results visualization on DOTa image. From the left there is result
from RetinaNet-H, RetinaNet-R and R3Det

tions. Considering how big library the OpenCV is, the number of operations
implemented is quite small.

The default pipeline consists of stages listed below.

1. Capture image.

2. Gaussian blur: Performs minor blurring to reduce noise in the image.

3. Circle mask: Blacks out everything outside of a circle of a given diameter.

4. Convert RGB color to HSV.

5. HSV Mask: Searches the image for any pixels that match a certain hue
and turns them black to remove green pixels from the image. Green is
the color of the nozzle holder.

6. Convert color back from HSV to RGB.

7. Convert color from RGB to grayscale.

8. Threshold: Turns the image into a binary image.

9. Find connected contours in the image.

10. Remove any contours from the previous stage that are smaller than
a specified value.

11. Draw all the of the remaining contours in white on the black background.

12. Use Minimal Area Rectangle to create a Rotated Rectangle that fits
around any non-black pixels in the image.

13. Draw the Rotated Rectangle in red overtop the original image.

14. Write the resulting image out to a file.

24

2.2. Impediments when using OpenPNP CVPipeline

The default CVPipeline is not a reliable solution. It introduces a lot
of mistakes during the part segmentation and users of the program usually
need to adjust the pipeline for separate parts or packages. To support this
statement there exist several proposals and discussions upon the usage of the
CVPipeline and users are repeatedly confirming that part detection using
CVPipeline is at least unintuitive, and it takes time to become acquainted
to setup the pipeline correctly considering also other setup like lightning or
lenses. Next, a segmentation error can occur when the part is not picked up
correctly, and part of the nozzle remains visible in the capture. The nozzle is
not distinguished from the part and the rotated rectangle then covers bigger
area then it should. This mistake can be seen in the figure 2.6.

Figure 2.6: Example of a wrong detection using default CVPipeline in
OpenPNP

For nice captures that can be processed correctly it is important to set up
the light and camera exposure correctly. When the outside condition changes
during different parts of the day it requires making lightning changes quite
often. Slight change in the aperture of the image can mean errors during the
rotation detection. It means that the CVPipeline is not a robust against the
changes in the lightning.

Another obstacle can be the pipeline management. User can define dif-
ferent pipelines for different parts and he or she can also copy and paste the
pipeline as a whole. But there is no option how to save the defined pipeline
under unique and distinguishable name for quick access and assignment to
individual part. In the background there is a container mapping the part to
an individual pipeline, however, it is not visible to the user and it is not main-
tainable. This container can be seen on class diagram in the figure 2.7. The
structure holding the pipelines is represented as a map of PartSettings objects
living only in a ReferenceBottomVision class. This class represents Machine
Bottom Vision settings.

Many parts that belong to the same package usually have very similar
footprint and thus it would be convenient to have the option to assign or at
least define pipeline for the whole package. This option is completely missing,
and package stands almost completely apart from the logic described in the
diagram. It must be said that there exists a global object called Configuration

25

2. Analysis and design

holding all the instances of model classes, but it is not reachable from the UI.

There have been some proposals and CVPipeline improvements from both
the authors and users. One of them is a CVStage for detecting Circular Sym-
metry [35]. This stage can be used to detect objects like fiducials, nozzle tips
and others that take form of a concentric circles. It could be used for detections
of an empty nozzle and thus the failure to pick up a part. Unfortunately, cur-
rent CVPipeline management do not allow any conditional behavior so there
is currently no possibility to first run automatic empty nozzle detection and
then, in case of failure, detection of the part. This stage is currently used
purely for navigating the machine head using fiducial markers.

Another step was made by introducing stage for detecting rectangles. It
was based on the idea that most of the parts are rectangular. The stage used
Hough Transform with some further processing. However, this stage was not
introduced to the default pipeline nor brought any significant improvement.

Unfortunately, none of the existing nor proposed solution is in form of
out-of-box technique that would fit many cases. The CVPipeline still re-
quires thorough pre and post processing. Generally, world of image detec-
tion advanced and nowadays there exist faster and more accurate solutions.
OpenPNP is a powerful solution for home pick and place machines and having
more advanced and powerful computer vision algorithm could make it even
bigger player on the field on SMT machines.

Figure 2.7: Class diagram of the original OpenPNP computer vision solution

26

2.3. OpenPNP improvements

2.3 OpenPNP improvements

As already mentioned, the current part detection solution is not strong and
robust. In this section, I will propose and design a new solution, by which
I will try to improve the process of part offset detection. The proposal does
not contain only improvements in the accuracy of the part detection but also
in the manageability and maintainability of the whole process. OpenPNP
software is implemented using Java Swing that is used to create a window-
based application, so for the analysis purposes it was easy to navigate through
the code.

2.3.1 Default CVPipeline improvement

As it was already said and shown in the previous section, the default pipeline
doesn’t provide users with functional solution and the CVPipeline usage in
general can be a tedious process. During the analysis I considered an option
to propose and build functional pipelines for separate packages that could be
used as a reliable out-of-box solution. During the research of today’s object
detection options, I decided to withdraw this solution as it is outdated and
I would not be able to ensure a high accuracy and ease usage. Even though
there are solutions to make the process using OpenCV operations more robust
and dynamic by automation, the OpenCV solution is still not that robust to
handle wide range of outer conditions and provide universal solution.

2.3.2 Part detection management proposal

To ease the usage of CVPipelines I will propose a solution, how to make them
more maintainable and manageable by introducing a logic for reusing them.
From the beginning, I intended to get a new patch with those changes to the
repository because it would solve a lot of users’ complaints and, I believe,
would be a beneficial contribution.

The standard way how to contribute to the OpenPNP repository is de-
scribed directly in wiki section of the Github repository. First, a discussion
must be created to get other users’ support on the vision solution and their
insights. It is also the best way how to connect with the project’s maintainers
and get their approval. After a successful discussion, a Pull Request in the
Github repository with the proposed changes can be created. Other users
are then given a space to comment, review, approve or reject the code. The
code needs to be approved mainly by maintainers of the repository. After
that it goes to testing branch so users can thoroughly test the solution on real
machines.

There already was a recent discussion talking about the part of the code
related to computer vision on up-looking camera and the way how to make

27

2. Analysis and design

Figure 2.8: Class diagram of the new proposed OpenPNP computer vision
solution

it manageable1. The thread was based on the idea that the whole vision
module including the pipeline should be reusable. It was a slightly different
approach than mine but still based on the same foundations, making the
process manageable. The older discussion has created at the beginning of
the year 2021 so I created a new thread backing this one2. With one of the
maintainers of the repository, we agreed and cooperatively designed a solution
making the vision module containing CVPipeline reusable3.

First thing that needed to be taken into consideration was how to represent
the new Vision object. In the original code the vision consisted of different
UI elements that were brought together in the object mapped to the part it
belonged too. The object was given no id so it could not be referenced, and it
lived only in the global machine setup. The proposed solution aims to create
an identifiable object representing the vision settings that would stand on the
same level as part and package.

Same as parts and packages have their tab in the UI, the vision objects
would also have dedicated tab to provide users with the possibility to manage
the settings. User should be given an option to assign the vision object to every
part and newly also to the package. The proposed UI design is presented in
the figure 2.9.

1The older discussion is available at
https://groups.google.com/g/openpnp/c/7DeSdX4cFUE/m/VYDG6x6-AAAJ

2The newly created discussion is available at
https://groups.google.com/g/openpnp/c/BehcYrn-qhs/m/oldc9a07AAAJ

3The discussion is available at https://github.com/openpnp/openpnp/pull/1318

28

2.3. OpenPNP improvements

As the object scope will be extended, it is important to extent the re-
set functionality and inheritance. Currently there is an option to reset any
pipeline to the default one saved in the machine setup, but the default pipeline
can also change so it is hard to keep track of what pattern is the specific
pipeline following. Original code is also not providing an option to reset other
elements in the vision settings like tolerance or part size check method. The
code also doesn’t count with the package to play part in the vision setup.

The new solution would introduce a dynamic inheritance between parts,
packages, and machine. The first link in the chain of inheritance is the part.
If the part doesn’t have any vision assigned, the program will automatically
assign the package’s vision to it. Next, if the package doesn’t have any vision
assigned, it will be provided with the machine’s default vision settings.

The base of the solution is modeled in the class diagram in the figure 2.8.
It shows only a portion of the classes that needs to be refactored but those are
the core ones. In the middle there stands the new class representing the new
bottom vision object replacing the PartSettings class. The new object is called
BottomVisionSettings. It is visible that from the vision settings point of view
the Package now stands on the same level as the Part or the Machine Bottom
Vision. I am not showing any Wizard classes in this diagram. There should
be one for each respective class, so I am omitting them from the diagram to
maintain the simplicity.

New code would be backed with a slightly different xml configuration, so
it is crucial to introduce a migration solution. During the migration, the old
PartSettings mapping solution should be removed and replaced by a new xml
element representing the vision and its settings and every part and package
should be provided with an ID of the migrated vision to serve as a foreign key.

Current proposal supplies a solution only for an up-looking camera vision
but there is also a vision belonging to the down-facing camera for machine
head navigation. It is important to implement the new patch the way that
would be in the future easily extended to different kinds of Vision. Current
design counts on it and therefore the BottomVisionSettings class is designed
as an extension to an abstract vision settings class. When new kind of vision
is needed, it can simply extend this abstract class.

2.3.3 Part offset detection using machine learning

After researching existing solutions and methods used in manufacturing, I
decided to propose a new part offset detection using neural networks as an
alternative way to the OpenCV pipeline. The software allows to run a script
so adding this method is simple and straightforward.

Papers describing the observed detectors showed very promising results.
Based on the character of the data collected by OpenPNP software, I can
assume that I could achieve very good results and help to introduce a robust
solution that could replace current OpenCV pipeline.

29

2. Analysis and design

Figure 2.9: Visualization of the UI part of the proposed solution

To cope with the existing code and make the whole process as simple as
possible, running the model would be the same as running a single stage in
the CVPipeline. Like that, there could be a new Vision created containing
a pipeline that would be running the model. The whole pipeline would at its
base have a stage to capture the image from the camera and run the model
upon the capture. If needed, prior stages can be added to preprocess the
image as required. At the end of the pipeline, the software would derive the
offset based on the rotated bounding box the same way as now.

As already described in the previous chapter, there exists some solutions
of detectors for arbitrarily rotated objects. I decided to choose the R3det
single stage detector. From the results published in the paper it seems like
a promising solution. There is a complete code available as well as a working
benchmark called RotationDetection. The benchmark does not contain only
the implementation of R3Det detector but also other detectors like two-stage
SCRDet, Refined RetinaNet or other variations using like Gaussian Wasser-
stein Distance Loss function or Kullback-Leibler divergence. It will allow me
to train multiple detectors and compare the results to choose the best per-
forming one. The project is well documented and includes the guide to run
the detectors upon custom data. The project is written in Python and the
benchmark I am going to use is built on TensorFlow 1.x. The structure of the
project is displayed on the figure 2.10.

30

2.3. OpenPNP improvements

Figure 2.10: Structure of methods used in the RotationDetection project

31

Chapter 3
Implementation

In this chapter I will describe my approach and used methods when imple-
menting the new feature for OpenPNP software. Following text is divided into
sections together describing the implementation of the part detection manage-
ment and an introduction of machine learning model for the offset detection.
As the last, I will provide details about data collecting for future training
purposes.

Testing of the new solution was done using unit tests and manual tests.
After the pull request is approved and merged to the repository the code goes
first to the testing branch so users can try it out and test it before it will go
to the main branch.

The implementation is based on the analysis stated in the previous chap-
ter. The proposed design was done by me but as the new feature for OpenPNP
software was developed in a cooperation with the repository maintainer the
final design and functionality was extended. The extension does not make
impact on the scope of this work. I will briefly mention the extended func-
tionality, but I will not present the details and it is important to state that it
is not clearly my implementation.

3.1 Part detection management implementation

To start working on the code I forked the repository to create my custom copy
to work on, following the standard way of contributing to a GitHub repository.
I implemented all the code changes upon a test branch and at the end I created
a pull request so my code could be reviewed by the repository maintainers.

In the middle of everything there stands BottomVisionSettings (BVS)
class. This class represents the up-looking camera settings model that was
created to replace the previous PartSettings class. Above the attributes the
BVS took from PartSettings it now contains a name and an id. This is by
default given by inheritance from Named and Identifiable interface. Between
the VisionSettings interface and the BVS class there stands abstract class Ab-

33

3. Implementation

stractVisionSettings. Its purpose is to provide extendable model in case there
will be another VisionSettings needed. It holds the common attributes every
vision should have including the CVPipeline.

Figure 3.1: OpenPNP new UI Package panel

The BVS inheritance is done in the same manner as described previously
in the analysis chapter. If there is no BVS assigned to a part, it inherits
the settings from its package. Same goes with the package which inherits
from the Machine default Bottom Vision. In addition, user can specify, which
BVS will be used as the default one. He or she can choose from the list of
all defined BVS, default BVS migrated from the previous configuration and
stock BVS. Stock BVS is a setting that comes from the original configuration.
It represents built-in configuration that is immutable and is identified by the
unique id.

Multiple reset scenarios needed to be handled. The set of reset operations
differs slightly based on the placed where the BVS is handled. The BVS can be
reset to the default or user can reset only the pipeline. The default pipeline is
the pipeline saved in the default BVS. In the package’s Bottom Vision Settings
panel there is an extra button for generalization. This function resets the BVS
for all the parts within the package. It simply unassign any special BVS from
the parts so they will inherit the package’s BVS by default. The same logic
is implemented for the Machine, allowing user to reset all the packages and
parts.

Another model classes like Part and Package are now having an extra at-

34

3.1. Part detection management implementation

tribute representing the assigned BVS. In the UI, every Part and Package is
organized in the table. The table has been extended by one more column
with a combo box, so user is able to choose and assign the BVS manually to
individual part or package. When part or package is selected it is possible to
update the vision attributes in the Bottom Vision Settings panel. The layout
of the panel is almost the same as in the eferenceBottomVision panel original
version except few extra elements. Now, there are options to change the name
of the assigned or inherited BVS, specialize the BVS for the selected part or
package, or reset the BVS to the default. Specialization is another way, how
to assign the inherited BVS.

Figure 3.2: OpenPNP UI Machine panel, Bottom Vision section

There is a new panel dedicated for the BVS objects displayed in the table
following the same pattern as with panel for Part, Package or Feeder objects.
The table contains two columns with name and list of part or packages the
BVS is assigned to. When a BVS is selected, the UI provides user with the
settings panel same as with the part or package.

When loading and saving the configuration, the BVS class represents the
model class same as Part or Package so it is loaded from the xml configuration
file and follows the same persisting logic. The link between BVS and Part
and Package is represented by xml attribute bottom-vision-id. The attribute
represents the foreign key relationship.

Extra functionality for fiducial vision was added by the repository main-
tainer on the top of my implementation. To navigate the machine head the
program uses down-looking camera and computer vision related to it. This
fiducial computer vision uses the same principle of OpenCV pipeline as the
BottomVision. It looks for fiducial markers on the board and process the
captured images by CVPipeline. The implementation is using the same base
implementation by creating new FiducialVisionSettings class extending the
AbstractVisionSettings class.

As already mentioned in the analysis chapter, the functionality was de-

35

3. Implementation

signed and implemented in the cooperation with one of the OpenPNP repos-
itory maintainers4. The created Pull Request was successfully merged to the
repository to testing branch. There was an announcement and a video made
in the discussion channel, informing about the changes and showing the use
case of the new feature [9].

3.2 Offset detection using machine learning

OpenPNP has a built-in scripting engine. It allowed me to add a machine
learning solution for the offset detection without the need to change the source
code. To modify the code as little as possible I introduced a new stage that
represents the trained model. The new stage is represented by ModelRun class
extending CVStage abstract class. To add the stage to the list of all stages so
it could be listed and selected I needed to register it in the CVPipelineEditor.
The name of the stage needs to be “results so the DrawRotatedRects stage
can retrieve it and draw the rectangle in the image.

p u b l i c c l a s s ModelRun extends CvStage {

p u b l i c RotatedRect r e c t a n g l e ;

@Override
p u b l i c Result p r o c e s s (CvPipel ine p i p e l i n e) throws Exception {

F i l e f i l e = C o n f i g u r a t i o n . get ()
. c r e a t e R e s o u r c e F i l e (g e t C l a s s () , ” Test ” , ” . png”) ;

Imgcodecs . imwrite (f i l e . getAbsolutePath () ,
p i p e l i n e . getWorkingImage ()) ;

Map<Str ing , Object> g l o b a l s = new HashMap<>() ;
g l o b a l s . put (” imageFi le ” , f i l e) ;
g l o b a l s . put (” s t a g e ” , t h i s) ;

C o n f i g u r a t i o n . get () . g e t S c r i p t i n g () . on (”Model . Run” , g l o b a l s) ;

r e t u r n new Result (nu l l , r e c t a n g l e) ;
}

}

Listing 3.1: Code of a process() method in the ModelRun.java stage class

The code of the stage can be seen in the listing 3.1. From the pipeline, the
code simply loads the image that was captured in the previous stage. Then it
defines variables that will be sent to the script and runs the script using the
scripting engine. The return value is a Result object containing the rotated
rectangle. The return value is saved in the pipeline mapped on the stage so
it can be retrieved any time during the pipeline execution.

4The complete Pull Request with discussion and further implementation details can be
seen on
https://github.com/openpnp/openpnp/pull/1318

36

3.3. OpenPNP migration

import os
import t e n s o r f l o w as t f
import org . opencv . imgcodecs as imgc
import org . opencv . imgproc as imgp
from org . opencv . co re import RotatedRect

img data = imgc . imread (imageFi le)
img plac = t f . compat . v1 . p l a c e h o l d e r (dtype=t f . uint8 , shape =[None , None , 3])
img batch = t f . c a s t (img plac , t f . f l o a t 3 2)

with t f . compat . v1 . S e s s i o n () as s e s s :
saver = t f . t r a i n . import meta graph (checkpo int path + ’ . meta ’)
saver . r e s t o r e (s e s s , t f . t r a i n . l a t e s t c h e c k p o i n t (checkpo int path))

img h , img w = img data . shape [0] , img data . shape [1]
new h , new w = min (i n t (s h o r t s i z e ∗ f l o a t (img h) / img w) , max len) ,

s h o r t s i z e
i m g r e s i z e = imgp . r e s i z e (img data , (new w , new h))

r e s i z e d i m g , detected boxes , d e t e c t e d s c o r e s , d e t e c t e d c a t e g o r i e s =
s e s s . run ([img batch] , f e e d d i c t ={ img plac : i m g r e s i z e [: , : , : : −1]})

i f d e t e c t e d b o x e s . shape [0] != 0 :
r e s i z e d h , r e s i z e d w = r e s i z e d i m g . shape [1] , r e s i z e d i m g . shape [2]
d e t e c t e d b o x e s [: , 0 : : 2] ∗= (img w / r e s i z e d w)
d e t e c t e d b o x e s [: , 1 : : 2] ∗= (img h / r e s i z e d h)

x c , y c , w, h , theta = d e t e c t e d b o x e s [: , 0] [0] , d e t e c t e d b o x e s [: , 1] [0] ,
d e t e c t e d b o x e s [: , 2] [0] , d e t e c t e d b o x e s [: , 3] [0] , d e t e c t e d b o x e s [: ,

4] [0]

s t a g e . r e c t a n g l e = RotatedRect ([x c , y c , w, h , theta])

Listing 3.2: Code of the script running the trained model

The script takes the file name and stage class as arguments so it can write
to the stage’s variables and provide the result in the for in rotated rectangle.
First, it loads the image and creates a TensorFlow session. The session is used
to restore the trained model from the checkpoint saved in the configuration.
After the session is restored and run upon the captured image, it will return
the detected box. The box is in the form of four points array, so it needs to be
converted to format with the angle. I omitted this part from the code listing.

The implementation of the machine learning solution was discussed among
the OpenPNP community but the Pull Request was not yet created. Due to
the complexity of the problem the code is still in progress and requires more
testing. After the trained model is fully improved and all the scenarios are
tested, the code patch can be published for a review. Based on the experience
with pipeline management implementation and approving process the code
could be successfully merge within next few months.

3.3 OpenPNP migration

Because I changed the xml configuration structure, it was necessary to intro-
duce a migration solution that transforms the original configuration to the
new one. The migration code is run after the configuration is fully loaded.
Therefore, the original structures need to be kept so the xml files are loaded
and mapped to the object flawlessly.

37

3. Implementation

After everything is loaded successfully the migration takes the map of
PartSettings and transforms them one by one to the new BVS objects. Before
that the stock settings and default settings are migrated to avoid duplications.
This process is shown in the listing 3.3. To make the code more compact I
omitted some parts that are not important for the logic, like null or invalid
data checking, logging or attributes setting. To avoid duplicates, every newly
created BVS is stored in a hash map. Every BVS is assigned to the respective
part and saved in the configuration. At the end of the migration process the
partSettingsByPartId map and original default pipeline are set to null so they
will not be present in the configuration anymore.

p r o t e c t e d void m i g r a t e P a r t S e t t i n g s (C o n f i g u r a t i o n c o n f i g u r a t i o n) {
HashMap<Str ing , BottomVis ionSett ings > bottomVisionSettingsHashMap = new

HashMap<>() ;

// Create s tock s e t t i n g s , add i t to the c o n f i g u r a t i o n and the map above
// Migrate the d e f a u l t s e t t i n g s
// r e s e t v i s i o n s e t t i n g s in a l l p a r t s and packages

partSett ingsByPart Id . forEach ((partId , p a r t S e t t i n g s) −> {
Part part = c o n f i g u r a t i o n . getPart (part Id) ;

S t r i n g s e r i a l i z e d H a s h = c r e a t e S e t t i n g s F i n g e r p r i n t (p a r t S e t t i n g s) ;
BottomVis ionSett ings bottomVis ionSett ings =

bottomVisionSettingsHashMap . get (s e r i a l i z e d H a s h) ;
i f (bottomVis ionSett ings == n u l l) {

bottomVis ionSett ings = new BottomVis ionSett ings (p a r t S e t t i n g s) ;
bottomVisionSettingsHashMap . put (s e r i a l i z e d H a s h ,

bottomVis ionSett ings) ;

c o n f i g u r a t i o n . a d d V i s i o n S e t t i n g s (bottomVis ionSett ings) ;
}

part . s e t V i s i o n S e t t i n g s ((bottomVis ionSett ings !=
d e f a u l t B o t t o m V i s i o n S e t t i n g s) ? bottomVis ionSett ings : n u l l) ;

}) ;

partSett ingsByPart Id = n u l l ;
}

Listing 3.3: Code of the xml configuration migration

3.4 Data collection

To train the selected detector and get accurate results in the form of bound-
ing boxes with correct offset and rotation it was necessary to collect enough
data directly from the pick and place machine. For the training dataset to be
accurate it was essential to collect the images from the bottom vision cam-
era and save corresponding annotations. From the annotations it was possible
to describe the images correctly and specify a ground-truth boxes for the
training process.

The OpenPNP uses right-hand coordination system as can be seen in the
figure 3.3. This coordination system assumes that we are standing above the
machine looking down at it. Nozzle then moves on the X axis from right to
left where right is positive, on the Y axis forward and back, forward being

38

3.4. Data collection

negative and on the Z axis up and down. The last direction C specifies the
rotation. Counter-clockwise rotation has positive values. The default unit for
the movement on X, Y and Z axis is a millimeter. Rotation is given in degrees.

Figure 3.3: OpenPNP coordination system visualisation

The easiest option how to collect the data and be able to interactively
see and control the process in the OpenPNP application was to implement
it directly in the software. In the OpenPNP every CVStage class contains
process() method. That method runs the corresponding stage’s operation
producing appropriate results. I used this functionality to create my own
custom stage which results in the set of images and annotations. The code
structure of the custom process() method can be seen in the listing 3.4 bellow.

p u b l i c Result p r o c e s s (CvPipel ine p i p e l i n e){
// i n i t i a l i z e the s t a r t i n g parameters

f o r (i n t exp = expMinValue ; exp < expMaxValue ; exp++) {
camera . getExposure () . setValue (exp) ;

f o r (i n t l i g h t = 3 ; l i g h t <= lightCount ; l i g h t ++)

f o r (i n t cap = 0 ; cap < captureCount ; cap++) {
f l o a t curXDeviation =

(new Random () . nextFloat () − 0 . 5) ∗2 ∗ maxXDev ;
f l o a t curYDeviation =

(new Random () . nextFloat () − 0 . 5) ∗2 ∗ maxYDev ;
f l o a t curRDeviation =

(new Random () . nextFloat () − 0 . 5) ∗2 ∗ maxRDev ;

Locat ion o f f s e t L o c a t i o n = new Locat ion (curXDeviation ,
curYDeviation , 0 , curRDeviation) ;

n o z z l e . moveTo(baseLocat ion . addWithRotation (o f f s e t L o c a t i o n)) ;

f l o a t curLight = (1 << l i g h t) −1;
a c t u a t o r . actuate (curLight) ;

BufferedImage buf feredImage = camera . sett leAndCapture () ;
Mat image = OpenCvUtils . toMat (buf feredImage) ;
Imgcodecs . imwrite (outFi l e , image) ;

// assemble and save j s o n data c o n t a i n i n g part parameters
// and a l l the d e v i a t i o n s

}
}

}

Listing 3.4: Code of a process() method in the TestCapture.java stage class

39

3. Implementation

The code sets different values of camera exposure and light to simulate
changing and unstable conditions. For every capture and the combination of
the exposure and light, the part on the nozzle was moved to a random location.
The location was given by random deviations. The deviations were applied on
the x, y location and on the rotation. For every part the capture process was
run twice. First time the process captured images of the part picked by the
nozzle the standard was. Second time the part was deflected from its position
on the nozzle manually to simulate the wrong pick up when the part of the
nozzle is visible in the capture.

After the dataset was collected it was necessary to go through the pictures
manually and delete the outliers that could confuse the training process. As
an outlier I considered captures with too high or too low exposure, so it was
not clear, what part is in the picture.

3.5 Model setup

As described in the analysis chapter I chose to use TensorFlow-based detection
benchmark. In order to start training I had to fork the repository and made
some adjustments. All the steps required are put in the documentation. The
model was originally trained and tested upon several dataset but the mainly
used one was DOTa dataset.

First step to do was to download the pretrained weights. The model I
was using was pretrained Resnet model. After that I needed to compile the
project by running the predefined scripts and the code for ready to train the
DOTa dataset. To train my own dataset I needed to modify some variables
like the name of the dataset to be loaded, number of classes and the version.
The training script is loading the configuration from cfgs.py file that differs
slightly based on used model or data.

The training process loads the data from the tfrecord file and as the main
format of the image annotation it uses the xml format. The repository already
contained the script for transforming the data into desired format. All I
needed to do was to introduce logic to parse my json data annotations into
the xml format and migrate the offsets into the bounding box format defined
as [x1, y1, x2, y2, x3, y3, x4, y4].

I trained my models using Fraktal, a powerful computer placed in Impro-
Lab equipped with GeForce RTX 2080 graphic card. The computer disposes
of CUDa driver 11.3 version and GPU memory of 11016 MiB. In the im-
age, I installed CUDa compilation tool in version 11.2. I was connecting to
it using ssh connection. On the computer I was using a docker image from
GPU -Jupyter project. This project uses NVIDIa CUDa image and install the
Python, R and Julia toolstack on top of it. It enables GPU calculations in
Jupyter notebooks [36]. The environment is show-cased in the figure 3.4.

40

3.5. Model setup

Figure 3.4: GPU-Jupyter docker image Jupyterlab environment

The TensorFlow version 1.x which the benchmark is built on is not com-
patible with CUDa driver version 11.0 and higher. It was necessary to migrate
the code to TensorFlow 2.x. For that I run the official migration script and
replaced imports of tensorflow.contrib.slim library with tf slim.

41

Chapter 4
Model Evaluation

In this chapter I will present the training and testing process of the detection
models. Prior to that, I will enclose a brief description of the dataset upon
which the model was trained. For training I chose 4 different methods. I
selected three single-stage methods including RetinaNet for rotated objects
using rotated anchors (RetinaNet-R), R3Det detector and R3Det combined
with Kullback-Leibler divergence (R3Det-KLD). As the last detector I chose
a state-of-art two-stage detector SCRDet. All four detectors were introduced
in the Analysis chapter. At last, I added a section for discussion where I will
discuss the results and propose possible future enhancements and improve-
ments.

4.1 Dataset

For the training I was using custom dataset collected from up-looking cam-
era on P&P machine using OpenPNP tool. The dataset contains 1074 im-
ages of 5 categories defined as Infineon, Micro Crystal, Nordic Semiconductor,
STMicroelectronics and U-blox. Each category represents a component picked
up on the nozzle. The image size is 1944x2592 pixels and contains exactly one
object with an arbitrary center point offset and rotation offset.

Dataset was collected so it represents various situations. It contains images
with different lighting conditions as well as images simulating wrongly picked
component where part of the nozzle is visible. Every image in the dataset is
annotated by xml file containing the category of the object and its location
represented as [x1, y1, x2, y2, x3, y3, x4, y4] bounding box. The smallest object
is Infineon amplifier with size of 0.7x1.1 millimeter which makes something
around 49x77 pixels in the image and the biggest is Nordic Semiconductor
of size 4.5x4.5 millimeters and something around 314x314 pixels. Figure 4.1
shows all parts in dataset labeled with the respective category. Images in the
figure are cropped so the objects of interest are clearly visible.

43

4. Model Evaluation

The dataset is split into training, validation and testing sets using 80:10:10
ratio. To avoid model overfitting, I doubled the size of dataset by duplicating
each image and applying an image augmentation to each image before it enters
the training, validation or testing process. Augmented data for validation and
testing is not the usual practice, but it allows more accurate measurements.
The augmentation contains a sequence of random rotation and vertical or hor-
izontal flip. Each image is also normalized by simple pixel mean subtraction.

Originally, the dataset also contained images of empty nozzles but the
there was an error in collected annotations and I was not able to use them for
training. Therefore, I omitted those images from datasets as it would bring
an error to the results.

(a) Infineon (b) Micro Crystal (c) Nordic Semiconductor

(d) STMicroelectronics (e) U-blox

Figure 4.1: OpenPNP dataset objects representing categories

4.2 Evaluation of the trained model

For consistency and fairness in the model comparison all experiments were
performed with the same parameter settings. Maximum number of epochs
was set to 13. Checkpoints with respective weights were saved every 20 000
to 30 000 iterations. In total, every model generated around 15 checkpoints.
All the models used pretrained ResNet50 model as it was recommended. All
the loss graphs where generated using TensorBoard tool.

When observing the cross-entropy loss graph in the figure 4.2, all the
detectors performed well. They reached almost zero loss in the first 20 000
iterations and thus it does not make sense to observe the cross-entropy loss
further. Same goes for the learning rate. All detectors’ learning rate changed
in the first 15 000 iterations.

44

4.2. Evaluation of the trained model

Figure 4.2: Cross-entropy loss for all detectors, x-axis measures iteration, y-
axis measures the loss value

For measuring the performance, I am using mainly mean average precision
(mAP) and detection speed. During the validation/testing number of true and
false positives were collected by calculating intersection over union (IoU) be-
tween detected bounding boxes and ground-truth boxes using different values
of threshold. From collected numbers precision, recall and F1 scores, average
precision (AP) and mAP were calculated. AP is generally the area under
precision-recall curve and is calculated for each category. The mAP is then
calculated by averaging all the AP values. For the model evaluation I was
using three values of thresholds: 0.75, 0.8 and 0.95.

For purpose of this work, the final detector should have the best trade-
off between the performance and detection speed even when high threshold
is used. The tolerance of component misalignment is always specific to the
component [37][38], but it was empirically measured, and we can assume that
for the part placement threshold of 0.85 is sufficient. Therefore, for comparing
testing results I will be using this threshold.

As first I trained the RetinaNet-R model as the single-stage model that
serves as a base for various refinements. The model was trained for 300 000
iterations. The regression loss and total loss graphs are in the figure 4.3.
Validation data performance in the figure 4.4 shows that the best results
were achieved by using threshold 0.75 as expected but using threshold 0.8 the
performance is also good. On the other hand, the performance when using
higher threshold of value 0.95 is low and the model is useless.

Next two trained models are R3Det single-stage detector and mixed method
R3Det-KLD. Compared to the RetinaNet-R loss graphs the R3Det loss line in
the figure 4.5 has more outliers making the line less smooth. The R3Det-KLD
loss did not converge at all and it was constantly oscillating between values
1 and 4. I was not able to achieve significantly better results not even after
trying to modify the hyperparameters of the model. However, both models
achieved quite good performance on the validation dataset. With threshold

45

4. Model Evaluation

(a) RetinaNet-R regression loss (b) RetinaNet-R total loss

Figure 4.3: RetinaNet-R loss graphs, x-axis measures iteration, y-axis mea-
sures the loss value

Figure 4.4: RetinaNet-R performance of validation data using thresholds 0.75,
0.8 and 0.95

value 0.75 the R3Det outperformed RetinaNet-R by 8% in the best result.
Using threshold 0.8 and 0.95 the result of RetinaNet-R and R3Det are similar.
R3Det-KLD result were lower but still reaching maximum value of 0.8 mAP
when using 0.8 threshold.

As last model to train, I chose state-of-art two-stage detector SCRDet
based on Faster R-CNN. When observing the loss function graph and valida-
tion performance, the results are close to RetinaNet-R results, but it seems
that RetinaNet even outperformed the SCRDet model when using higher
threshold.

Table 4.1 lists the comparison between detectors detection speed. The
lowest detection speed was measured for SCRDet model as expected as it
is the only two-staged detector. The best detection speed was reached by
RetinaNet-R. The model speed was 23 fps outperforming R3Det by 6 fps.

I took two best performing detectors R3Det and RetinaNet-R and tried
to train them for additional 4 epoch. When evaluating the trained models

46

4.2. Evaluation of the trained model

(a) R3Det total loss (b) R3Det-KLD total loss

Figure 4.5: R3Det and R3Det-KLD model total loss, x-axis measures iteration,
y-axis measures the loss value

(a) R3Det performance (b) R3Det-KLD performance

Figure 4.6: R3Det and R3Det-KLD performance of validation data using
thresholds 0.75, 0.8 and 0.95

Detector Speed (fps)
R3Det 17
R3Det KLD 18
Retina 23
SCRDet 14

Table 4.1: Detection speed evaluation of trained detection methods on
OpenPNP dataset.

during the training I did not observed any improvements in the results.
Based on the performance on the evaluation data and loss function I se-

lected the best performing checkpoint for each detector and measured the
testing performance adding one more threshold value of 0.85. The results can
be seen in the table 4.2. The first two best results are highlighted considering
not just value but also the threshold. Most of the best (green) values are in
the 0.8 threshold section and the rest is in the 0.75 threshold part.

When observing the performance upon individual categories and detectors,
the R3Det and SCRDet performed well on all categories. R3Det scored the
highest mAP for 0.85 threshold. It was also the only method that scored
over 80% mAP in higher threshold for Infineon category that seems like to

47

4. Model Evaluation

Method MC Inf NS UB STM mAP
threshold = 0.75

R3DET 1.00 0.88 1.00 1.00 1.00 0.98
R3DET KLD 0.89 0.15 1.00 1.00 1.00 0.81
Retina 1.00 0.37 1.00 1.00 1.00 0.87
SCRDet 1.00 0.84 1.00 1.00 0.90 0.95

threshold = 0.8
R3DET 1.00 0.86 1.00 1.00 0.91 0.95
R3DET KLD 0.69 0.00 0.86 1.00 1.00 0.71
Retina 1.00 0.18 1.00 1.00 1.00 0.84
SCRDet 1.00 0.54 1.00 1.00 0.88 0.88

threshold = 0.85
R3DET 0.71 0.38 0.76 0.58 0.90 0.67
R3DET KLD 0.30 0.00 0.38 0.66 0.78 0.42
Retina 0.75 0.08 0.61 0.70 0.79 0.59
SCRDet 0.88 0.24 0.47 0.56 0.53 0.54

threshold = 0.95
R3DET 0.01 0.00 0.14 0.19 0.04 0.07
R3DET KLD 0.00 0.00 0.00 0.01 0.06 0.01
Retina 0.05 0.00 0.11 0.20 0.00 0.07
SCRDet 0.04 0.00 0.15 0.01 0.03 0.04

Table 4.2: Performance evaluation of trained detection methods on OpenPNP
dataset. The shortnames for the categories are defined as: MC=Micro Crystal,
Inf-Infineon, NS-Nordic Semiconductor, UB-U-blox, STM-STMicroelectronics

most difficult one. R3Det KLD was the detector that scored the worst values.
Its mAP for 0.8 threshold was 71% where other detectors scored more than
80%. RetinaNet-R also achieved good results competing with other mentioned
detectors. Figure 4.7 shows the same data for categories along the F1 score
visualized using the most relevant and performing threshold of value 0.85.

When run upon testing data and using the threshold of value 0.85, the
R3Det detector achieved 0.67 mAP outperforming the SCRDet detector by
13%. The detector was able to detect 166 of 220 images correctly reaching 75%
of sensitivity. The best results of 0.9 AP it achieved for the STMicroelectronics
category. We can consider the Infineon category as the most difficult one.
Generally, the results upon this category where lower due to its size and thus
it is more sensitive to bounding box deviation. The R3Det detector reached
0.38 AP that is by 14% better than the state-of-art SCRDet detector.

48

4.3. Detection results comparison

(a) AP of threshold = 0.85

(b) F1 of threshold = 0.85

Figure 4.7: AP and F1 score measured for individual categories using all
detection methods

4.3 Detection results comparison

The aim of this work is to provide OpenPNP software with computer vision
solution that is robust and dynamically adapts to outer conditions. Therefore,
I did not make any image adjustments before testing to simulate the real-time
situation. To make the OpenCV default pipeline perform better it is possible
to adjust the parameters of individual stages however, it would be necessary to
adapt the pipeline differently for each testing capture. Therefore, when testing
the current OpenPNP solution, I left the default OpenCV pipeline without
any changes. Figures 4.8 and 4.9 show examples of final detections compared
to results from OpenPNP default OpenCV pipeline. I chose different kinds of
pictures representing the difficult detection cases.

Figure 4.8 shows captures with low camera exposure settings. It can be
seen, that in one case (4.8a and 4.8b) the default pipeline performed even
better than detector, however, figures 4.8c and 4.8d show better result for the
detector.

Figure 4.9 shows captures with high camera exposure settings and capture
representing wrong pick where big part of the nozzle is visible. OpenPNP
detection in 4.9a is wrong due to the bright color of the nozzle caused by high

49

4. Model Evaluation

(a) Micro Crystal
OpenPNP detection

(b) Micro Crystal R3Det
detection

(c) Nordic Semiconductor
OpenPNP detection

(d) Nordic Semiconduc-
tor R3Det detection

Figure 4.8: Comparison of detection results from R3Det detector and
OpenPNP default pipeline on images with low lighting

exposure. When capture is converted to gray scale and image threshold is
performed, big part of the nozzle is selected and outlined by the bounding
box. In case of visible nozzle (4.9c) the same mistake with image threshold
happened and the nozzle was selected and outlined by the OpenPNP pipeline.
The detector in both cases performed well.

I tried to run the model upon images of empty nozzles. For most of the
nozzle types the detector successfully did not detect any object. The model
was not trained upon the nozzle category, so it is not possible to measure
the detection accuracy but even so, the model was able to detect no object
on 78% of nozzle images. Most of the detection mistakes were done on one
type of the nozzle shown in the figure 4.10. The Figure shows the result in
detecting empty nozzles when using R3Det detector and OpenPNP computer
vision. OpenPNP is not able to detect empty nozzle. Its pipeline is based only
on image thresholding and because the color of the nozzle is similar to color
of any component, it is not able to distinguish between those two objects. It
is also visible that the nozzle where the detector did mistake of detecting an
object is not clearly circular and its inner shape is rectangular like. Because
of its size, it was detected as Infineon category.

50

4.4. Discussion

(a) Infineon OpenPNP
detection

(b) Infineon R3Det detec-
tion

(c) STMicroelectronics
OpenPNP detection

(d) STMicroelectronics
R3Det detection

Figure 4.9: Comparison of detection results from R3Det detector and
OpenPNP default pipeline on images with high lighting or visible nozzle

4.4 Discussion

Above stated results show that recently developed detectors for rotated ob-
jects perform well on the custom dataset collected from the P&P machine.
The best results were achieved by R3Det single-stage detector. It also achieved
better results than the state-of-art SCRDet detector. The best results were
attained for categories like Micro Crystal, Nordic Semiconductor and STMi-
croelectronics. For the Infineon category the detector performed the worst.
The performance upon this category was anticipated to be lower due to its
size but it was expected to be higher that the achieved results. Overall, the
detector’s true positive rate was 75% and considering the high threshold of
0.85, the results fulfilled the expectations.

R3Det detector also performed the detection task in the same speed as
OpenPNP pipeline. We did not achieve any improvement in this direction
but the speed is already sufficient so it can be considered as success that the
NN solution did reached the same detection speed as current method.

Comparing the results to the results stated in the research papers the per-
formance upon OpenPNP dataset is better. Compared to the DOTa dataset
that the detectors were evaluated for, the OpenPNP dataset is not that diffi-

51

4. Model Evaluation

Figure 4.10: Comparison of detection results from R3Det detector and
OpenPNP default pipeline on images with empty nozzle

cult. However, in the OpenPNP dataset, it is important for the objects to be
defined precisely and due to the application, the accuracy is more crucial.

In cases when the captured image has ideal lightning, the component of the
interest is in focus, and the nozzle is fully hidden behind the component, the
OpenCV pipeline can still give more precise results. Even so, the detectors
for arbitrarily rotated and small objects proved to be effective solution for
computer vision of P&P part alignment process. Due to the character of
the application, it can be assumed that the detectors would be a good fit to
other manufacturing processes where component detection is needed. Single-
stage detectors can provide accurate and fast detection and thus improve the
industry procedures.

4.4.1 Limitations and possible improvements

Even though the model performed well there are still some limitations and
space for improvements. Without the context, the results would be consid-
ered good but for purposes of this work better results should be expected for
higher thresholds. The models were trained to be used in the P&P software
that requires high speed of the recognition and high accuracy in the offset de-
tections. The SMT processes usually manipulate with small size objects and
therefore, the trained model should be able to provide high accuracy results

52

4.4. Discussion

for smaller components and higher thresholds like 0.95 on which, in this case,
the models performed poorly.

Improving the training data could be one way how to achieve better results.
The initial dataset of 1074 samples is small and after splitting the dataset,
the train set contains something around 800 samples. Even with this small
number of train images I was able to achieve good results, mainly thanks to
the augmentation, but I believe increasing the dataset size would bring even
better results. The dataset also contained only 5 categories. By gathering
more component captures with various environment and machine settings,
the final dataset could be more diverse.

Another way how to improve the training dataset would be to improve the
offset annotations and ensure that all the ground-truth boxes are defined cor-
rectly. Current training data were collected directly from the P&P software
using the default OpenCV pipeline for offset detection. It is possible that some
offsets were not detected precisely or there was an error introduced when set-
ting the environment and part placement manually. By introducing another
check of the offset annotations, the training process could be improved. Dif-
ferent offset check would also help the testing and it would have provided
better data when comparing the results between detector and OpenPNP. It
would help to generate valid and unbiased performance data for the OpenPNP
pipeline and detector itself and it would allow me to measure the improvement
of the offset detection.

Another aspect is the testing itself. Currently the results can be compared
only to original OpenCV method. By having access to wider range of appli-
cations the results could be compared to other methods from manufacturing
and it would allow me to see other ways of improvement.

As last way how to improve the training process I will mention settings
of hyperparameters of the models. In the papers describing the detection
methods, authors were mentioning setting different anchor scales for different
objects. For smaller objects it was necessary to setup finer anchors scale then
for objects that are bigger and in the foreground. It is possible that this setup
could cause improvement not just in the performance but also in the detection
speed.

The training in this chapter was performed upon real components used
in P&P operations but it is also important to detect empty nozzle and alert
error in picking the component. Due to an error in dataset images with empty
nozzle I was not able to train the model for those cases. By providing dataset
with correct annotations for empty nozzles, the detection could be further
improved.

53

Conclusion

In this section, I will conclude the thesis by summarizing the key points of
the work and relate them to the work aims and questions and discuss the
contribution thereof. I will also discuss the limitations and opportunities for
future research and enhancements.

In this thesis I aimed to apply a new computer vision solution for part
offset detection in OpenPNP project. The solution should have been based
on research of last trends in machine learning for rotation detection. I was
aiming to provide the OpenPNP tool with new implementation making it
more competitive in the field of SMT software.

In this work I successfully researched and organized methods used in the
industry for part detection and created an overview of publicly available ap-
proaches confirming the important part of machine learning in parts detection.
I made an overview of recently developed detectors solving challenge of detect-
ing small and rotated objects and proposed a solution, how those detectors
could solve the prior stated problems and impediments in OpenPNP com-
puter vision component. The results of the research of detection methods
used in manufacturing indicated flaws in current OpenPNP implementation.
OpenPNP computer vision is outdated not unable to provide users with robust
detection.

Further investigation found recent rotation detectors with high perfor-
mance that seemed like a perfect fit for the purpose of this work. Taking the
researched detectors, I was able to train four of them on custom dataset col-
lected from a P&P machine. I achieved a decent performance and detection
speed that could be compared to current solution. Based on the design, I
implemented the solution incorporating the trained model into the OpenPNP
software. The solution is not replacing the current computer vision completely
but serves as an addition to current solution.

I tested the trained detectors and compared the results to current solution.
The detectors achieved high performance when using standard thresholds but
when testing the data with threshold higher that 0.85 the performance de-

55

Conclusion

creased rapidly. The main reason for that could be insufficient dataset size
and variability and insufficient model setup. Despite that the model performed
good and proved to be sufficient and robust solution that has the potential to
replace current OpenCV based computer vision. As part of fixing the limita-
tions of the OpenPNP computer vision module I designed and implemented
a solution for managing current solution based on OpenCV operation pipeline.
This improvement was implemented as a contribution to existing repository
and was successfully approved and merged to the testing branch of the repos-
itory. The implementation solves problems discussed among the community
and it will help incorporating the machine learning solution more smoothly.

Future work

In the last chapter I detected limitation of the solution and proposed some
methods for future work and enhancements.

First limitation of this work was the data quality. The quality of the
data could be increased by introducing extra method for generating the data an-
notations that would serve also for the testing and more accurate results com-
parison between the detector and OpenPNP solution. Along with increasing
the data quantity the overall training process could be improved.

In the evaluation chapter I also mentioned the limitation regarding de-
tection of an empty nozzle images. Current OpenPNP solution is provided
with an option to detect circular symmetry. This method could in theory de-
tect empty nozzle, but current solution does not provide users with optional
pipeline execution. If this optional execution would be implemented, it would
allow users to combine empty nozzle detection with running the train model
to detect the part rotation. Unfortunately, I was not able to introduce such
solution and therefore I am mentioning it here as a proposal for future work.

Summary

In this thesis I researched computer vision methods used in manufacturing
world mainly in Surface Mount Technology for part detection. Next, I re-
searched last trends in object detection for rotated objects. Based on the
research I designed and implemented computer vision solution for OpenPNP
tool that could serve as an alternative for current OpenCV method provid-
ing user with more robust detection. As part of the OpenPNP computer
vision improvements I successfully implemented a new solution for OpenCV
pipeline management. This implementation resulted in the contribution to
the OpenPNP code repository and after approval it was merged to the testing
branch.

56

Summary

At the end of this work, I analyzed the results and evaluated the limi-
tations. Based on the limitations I also proposed options for future work to
further improve the new solutions.

57

Bibliography

[1] Yang, X.; Yan, J.; et al. R3Det: Refined Single-Stage Detector with
Feature Refinement for Rotating Object. 2020.

[2] IRB 1400 - industrial Robot. Accessed: 2021-12-02.
Available from: https://library.e.abb.com/public/
99bb3fb8ff6495cfc1257b130056d120/IRB1400_R3-US%2002_05.pdf

[3] LitePlacer – The Prototyping Pick and Place Machine for Your Lab.
Accessed: 2021-12-02. Available from: https://liteplacer.com/

[4] Introduction to Surface Mount Technology. Accessed: 2021-12-02. Avail-
able from: https://www.surfacemountprocess.com/articles.html

[5] QUICK AND EASY: PICK-AND-PLACE OF MICROPARTS
WITH VISIONPRO. Accessed: 2021-12-02. Available from:
https://www.cognex.com/en-cz/applications/customer-
stories/medical-devices/quick-and-easy-pick-and-place-of-
microparts-with-visionpro

[6] Cao, S.; Parviziomran, I.; et al. Prediction of Component Shifts in Pick
and Place Process of Surface Mount Technology Using Support Vector
Regression. Procedia Manufacturing, 2019: pp. 2–6.

[7] Liu, W.; Yang, X.; et al. A novel industrial chip parameters identifica-
tion method based on cascaded region segmentation for surface mount
equipment. IEEE Transactions on Industrial Electronics, 2021: pp. 2–5.

[8] Lin, T.-Y.; Goyal, P.; et al. Focal Loss for Dense Object Detection. 2018.

[9] Sharan, R. V.; Onwubolu, G. C. Measurement of end-milling burr using
image processing techniques. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, Mar. 2011: pp.
448–452.

59

https://library.e.abb.com/public/99bb3fb8ff6495cfc1257b130056d120/IRB1400_R3-US%2002_05.pdf
https://library.e.abb.com/public/99bb3fb8ff6495cfc1257b130056d120/IRB1400_R3-US%2002_05.pdf
https://liteplacer.com/
https://www.surfacemountprocess.com/articles.html
https://www.cognex.com/en-cz/applications/customer-stories/medical-devices/quick-and-easy-pick-and-place-of-microparts-with-visionpro
https://www.cognex.com/en-cz/applications/customer-stories/medical-devices/quick-and-easy-pick-and-place-of-microparts-with-visionpro
https://www.cognex.com/en-cz/applications/customer-stories/medical-devices/quick-and-easy-pick-and-place-of-microparts-with-visionpro

Bibliography

[10] Alnowaini, G.; Alttal, A.; et al. Design and simulation robotic arm with
computer vision for inspection process. In 2021 International Conference
of Technology, Science and Administration (ICTSA), 2021, pp. 2–4.

[11] HALCON – THE POWER OF MACHINE VISION. Accessed: 2021-12-
02. Available from: https://www.mvtec.com/products/halcon

[12] Riordan, A. D. O.; Toal, D.; et al. Object recognition within smart man-
ufacturing. 2019: pp. 2–4.

[13] Cabré, T. P.; Cairol, M. T.; et al. Project-Based Learning Example:
Controlling an Educational Robotic Arm With Computer Vision. 2013:
pp. 1–2.

[14] Zhang, Z.; Yang, X.; et al. Weighted Smallest Deformation Similarity for
NN-Based Template Matching. IEEE Transactions on Industrial Infor-
matics, 2020: pp. 6787–6795.

[15] Sharan, R. V.; Onwubolu, G. C. Automating the Process of Work-Piece
Recognition and Location for a Pick-and-Place Robot in a SFMS. Inter-
national Journal of Image, Graphics and Signal Processing, Mar. 2014:
pp. 3–6.

[16] Kumar, R.; Lal, S.; et al. Object detection and recognition for a pick and
place Robot. In Asia-Pacific World Congress on Computer Science and
Engineering, 2014, pp. 1–4.

[17] Schindler, K.; Suter, D. Object detection by global contour shape. Pattern
Recognition, Dec. 2008.

[18] Sanz, P.; Marin, R.; et al. Including efficient object recognition capabil-
ities in online robots: from a statistical to a Neural-network classifier.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 2005: pp. 2–6.

[19] Marin, R.; Sanchez, J.; et al. Object recognition and incremental learn-
ing algorithms for a web-based telerobotic system. In Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat. No
.02CH37292), 2002, pp. 2719–2724 vol.3.

[20] Kipkosgei, P.; Njiri, J. G.; et al. Real Time Object Detection using Single
Shot Multibox Detector Network for Autonomous Robotic Arm. JOUR-
NAL OF SUSTAINABLE RESEARCH IN ENGINEERING, Sep. 2020.

[21] Liu, W.; Anguelov, D.; et al. SSD: Single Shot MultiBox Detector. Lecture
Notes in Computer Science, 2016: p. 1–4.

60

https://www.mvtec.com/products/halcon

Bibliography

[22] Andhare, P.; Rawat, S. Pick and place industrial robot controller with
computer vision. In 2016 International Conference on Computing Com-
munication Control and automation (ICCUBEA), 2016, pp. 1–4.

[23] Shih, H.-C.; Yu, K.-C. A New Model-Based Rotation and Scaling-
Invariant Projection Algorithm for Industrial Automation Application.
IEEE Transactions on Industrial Electronics, 2016: pp. 4452–4460.

[24] OpenPNP. Accessed: 2021-12-02. Available from: https:
//openpnp.org/

[25] OpenPNP. Bottom Vision. Accessed: 2021-12-02. Available from: https:
//github.com/openpnp/openpnp/wiki/Bottom-Vision

[26] J., H.; J., S. Detecting Rotated Objects Using the NVIDIA Ob-
ject Detection Toolkit. 2020, accessed: 2021-12-02. Available from:
https://developer.nvidia.com/blog/detecting-rotated-objects-
using-the-odtk/

[27] Veit, A.; Matera, T.; et al. COCO-Text: Dataset and Benchmark for
Text Detection and Recognition in Natural Images. 2016.

[28] Jiang, Y.; Zhu, X.; et al. R2CNN: Rotational Region CNN for Orientation
Robust Scene Text Detection. 2017.

[29] Ahmad, M.; Abdullah, M.; et al. Small Object Detection in Aerial Im-
agery using RetinaNet with Anchor Optimization. In 2020 International
Conference on Electronics, Information, and Communication (ICEIC),
2020.

[30] How RetinaNet works? Accessed: 2021-12-02. Available from: https:
//developers.arcgis.com/python/guide/how-retinanet-works/

[31] RetinaNet: The beauty of Focal Loss. Accessed: 2021-12-02. Available
from: https://towardsdatascience.com/retinanet-the-beauty-of-
focal-loss-e9ab132f2981

[32] Yang, X.; Yang, X.; et al. Learning High-Precision Bounding Box for
Rotated Object Detection via Kullback-LeibleDivergence. 2021.

[33] Yang, X.; Yang, J.; et al. SCRDet: Towards More Robust Detection for
Small, Cluttered and Rotated Objects. 2019.

[34] Yang, X.; Yan, J.; et al. SCRDet++: Detecting Small, Cluttered and
Rotated Objects via Instance-Level Feature Denoising and Rotation Loss
Smoothing. 2020.

61

https://openpnp.org/
https://openpnp.org/
https://github.com/openpnp/openpnp/wiki/Bottom-Vision
https://github.com/openpnp/openpnp/wiki/Bottom-Vision
https://developer.nvidia.com/blog/detecting-rotated-objects-using-the-odtk/
https://developer.nvidia.com/blog/detecting-rotated-objects-using-the-odtk/
https://developers.arcgis.com/python/guide/how-retinanet-works/
https://developers.arcgis.com/python/guide/how-retinanet-works/
https://towardsdatascience.com/retinanet-the-beauty-of-focal-loss-e9ab132f2981
https://towardsdatascience.com/retinanet-the-beauty-of-focal-loss-e9ab132f2981

Bibliography

[35] Openpnp. DetectCircularSymmetry. Accessed: 2021-12-02.
Available from: https://github.com/openpnp/openpnp/wiki/
DetectCircularSymmetry

[36] GPU-Jupyter. Jul 2021, accessed: 2021-12-02. Available from: https:
//hub.docker.com/r/cschranz/gpu-jupyter

[37] Infineon Technologies AG, 81726 Munich, Germany. Recommendations
for Printed Circuit Board Assembly of Infineon QFN Packages. 5 2012.

[38] STMicroelectronics. Mounting instructions for SMD (surface mounting
device) packages. 5 2019.

62

https://github.com/openpnp/openpnp/wiki/DetectCircularSymmetry
https://github.com/openpnp/openpnp/wiki/DetectCircularSymmetry
https://hub.docker.com/r/cschranz/gpu-jupyter
https://hub.docker.com/r/cschranz/gpu-jupyter

Appendix A
Acronyms

P&P Pick and Place

SMT Surface-mount technology

NN Neural Network

CNN Convolutional Neural Network

R-CNN Region-based Convolutional Neural Network

PCB Printed Circuit Board

CAD Computer-Aided Design

OCR Optical Character Recognition

K-NN K-Nearest Neighbor

FAST Features from Accelerated Segment Test

SSD Single Shot Detector

CNC Computer Numerical Control

CC Connected Components

RPN Region Proposal Network

NMS Non-maximum Suppression

IoU Intersection-over-Union

FPN Feature Pyramid Network

FRM Feature Refinement Module

FL Focal Loss

63

A. Acronyms

KLD Kullback-Leibler Divergence

GWS Gaussian Wasserstein Distance

AP Average Precision

mAP mean Average Precision

64

Appendix B
Contents of enclosed SD card

readme.txt...........................file with CD contents description
RotationDetection directory with rotation detector source code

dataloader.............directory with scripts for data preprocessing
libs directory with helper functions and training scripts

models directory with scripts for building the models
r3det directory with training and testing script for r3det detector
r3det kl.......directory with training and testing script for r3det kl
detector
retina.......directory with training and testing script for RetinaNet
detector
scrdet directory with training and testing script for SCRDet detector

OpenPNP..................directory with the source codes for OpenPNP
gui directory with gui implementation
machine directory with machine interface implementation classes
model................................the directory with data classes
stages....................................directory with CVStages
config............................directory with xml configurations

text.............................thesis text and LATEX source directory
thesis.pdf thesis text in PDF format
thesis..................directory of LATEX source codes of the thesis

65

