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Abstrakt		
Hlavní	náplní	 této	práce	 je	vytvoření	algoritmu	pro	analýzu	železobetonové	stropní	
desky	 vystavené	 teplotnímu	 zatížení.	 Deska	 je	 posuzována	 metodou	 založenou	 na	
závislosti	momentu	a	křivosti.		

Obsah	 této	práce	 je	 formálně	 rozdělen	do	dvou	částí.	V	první	 části	 jsou	 teoreticky	 i	
prakticky	 popsány	 mechanické	 a	 teplotní	 výpočty,	 které	 ukazují	 možnosti	 analýzy	
různých	 typů	konstrukcí	vystavených	mechanickému	či	 teplotnímu	zatížení.	Rovněž	
jsou	v	této	části	popsány	metody	posuzování	konstrukcí	za	požáru,	z	nichž	některé	byly	
použity	 k	 ověření	 správnosti	 vytvořeného	 algoritmu.	 Druhá	 část	 práce	 se	 věnuje	
komplexní	 mechanické	 a	 teplotní	 analýze	 stropní	 konstrukce	 v	 podobě	 algoritmu,	
který	je	v	této	části	detailně	popsán.	Rovněž	je	zde	vysvětlen	způsob,	jakým	se	ubíral	
vývoj	zmíněného	algoritmu.	

	

Klíčová	slova		

železobetonová	 deska;	 mechanická	 analýza;	 teplotní	 analýza;	 numerická	 analýza;	
metoda	moment-křivost;	požár;	požární	odolnost;	metoda	konečných	prvků	

 	



 

6 

 

Abstract		
The	main	aim	of	this	thesis	 is	designing	an	algorithm	for	an	analysis	of	a	reinforced	
concrete	 ceiling	 slab	which	 is	 exposed	 to	 thermal	 loading.	The	 analysis	 is	 based	on		
a	moment-curvature	approach.		

The	 content	 of	 this	 work	 is	 formally	 divided	 into	 two	 parts.	 In	 the	 first	 part	 the	
structural	and	thermal	calculations	are	theoretically	and	practically	explained	with	the	
use	of	several	illustrative	examples.	The	methods	for	analyzing	structures	exposed	to	
fire	are	described	in	this	part,	some	of	which	are	later	used	to	provide	a	verification	of	
the	designed	algorithm.	The	second	part	covers	the	complex	mechanical	and	thermal	
analysis	of	the	ceiling	slab	which	takes	form	of	an	algorithm,	the	principle	of	which	is	
closely	explained	in	this	part	as	well,	together	with	the	approach	to	the	development	
of	this	algorithm.	

Keywords		

reinforced	 concrete	 slab;	mechanical	 analysis;	 thermal	 analysis;	 numerical	 analysis;	
moment-curvature	approach;	fire;	fire	resistance;	finite	element	method	
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1 Introduction	

1.1 Motivation	and	goals	
Thermal	and	mechanical	analyses	of	reinforced	concrete	structures	are	a	crucial	part	
of	 structural	 design.	 There	 are	 many	 approaches	 from	 handwritten	 simplified	
equations	 to	 complex	 models	 which	 take	 advantage	 of	 advanced	 computational	
software.	The	analyzed	projects	themselves	cover	a	wide	range	as	well,	 from	simply	
supported	 elements	 to	 compound	 structures.	 It	 is	 a	 job	 of	 a	 structural	 designer	 to	
determine	which	element	or	structure	needs	to	be	analyzed	using	which	method.		

However,	structural	designers	and	especially	fire	protection	designers	very	often	need	
to	 analyze	 simple	 structural	 elements,	 such	 as	 columns,	 beams,	 walls,	 or	 slabs,	 to	
determine	their	load-bearing	capacity,	either	at	normal	or	at	high	temperatures.	For	
that,	computational	algorithms	designed	by	the	Department	of	Concrete	and	Masonry	
Structures	at	the	Faculty	of	Civil	Engineering	are	widely	used	amongst	professionals	as	
well	 as	 students	 of	 the	 Faculty	 of	 Civil	 Engineering,	 due	 to	 their	 user-friendly	
environment,	 short	 calculating	 time,	 precision,	 and	 the	 ability	 to	 run	 on	 standard	
computational	devices.	

The	Department	of	Concrete	and	Masonry	Structures	at	the	Faculty	of	Civil	Engineering	
has	already	developed	many	algorithms	which	come	very	handy	during	thermal	and	
mechanical	 analyses	 of	 reinforced	 concrete	 structures	 both	 at	 normal	 and	 high	
temperatures.	However,	 there	are	 topics	yet	 to	be	covered,	especially	regarding	 the	
mechanical	 analysis	 at	 high	 temperatures.	 Specifically,	 there	 is	 no	 algorithm	which	
determines	the	load-bearing	capacity	of	a	reinforced	concrete	ceiling	slab	exposed	to	
high	temperatures.	Therefore,	the	goal	of	this	thesis	is	to	design	such	algorithm	to	help	
simplify	and	speed	up	the	structural	design.		

This	 work	 is	 a	 result	 of	 two	 consecutive	 semester	 courses,	 124SEM	 and	 133DPM.		
I	 started	 the	 first	 of	 these	 two	 semesters	 having	 no	 experience	 with	 advanced	
numerical	analyses	of	structures,	therefore	my	main	aim	was	to	get	an	overview	of	how	
to	 analyze	 firstly	 mechanical	 and	 consequently	 thermal	 behavior	 of	 structures.		
I	 focused	on	mechanical	and	thermal	analyses	separately	through	smaller	examples,	
which	allowed	me	to	go	into	more	detail.	In	the	second	semester	we	decided	to	couple	
the	thermal	and	mechanical	analyses	into	one	algorithm,	which	would	deal	with	both	
thermal	 and	 mechanical	 behavior	 of	 a	 specific	 structural	 element	 with	 variable	
material	properties	and	geometry.	As	this	led	to	a	complex	investigation	of	structures	
at	high	temperatures,	which	would	need	more	than	one	semester	to	completely	cover	
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and	 therefore	would	 exceed	 the	 diploma	 thesis	 range,	we	 decided	 to	 simplify	 both	
thermal	and	mechanical	analyses	in	the	algorithm	compared	to	the	separate	examples.	

This	gradual	development	is	one	of	the	reasons	why	this	thesis	consists	of	two	parts.	
The	 first	 part	 introduces	 numerical	 thermal	 analysis	 and	 shows	 various	 ways	 of	
analyzing	mechanical	behavior	of	structures.	Moreover,	the	first	part	holds	a	general	
overview	 of	 various	 approaches	 used	 in	 thermal	 and	mechanical	 analyses	 together	
with	selected	practical	examples	which	led	to	the	algorithm	itself.	

The	 second	 part	 focuses	 on	 creating	 an	 algorithm,	 which	 investigates	 a	 reinforced	
concrete	 ceiling	 slab	 exposed	 to	 high	 temperatures.	 There	 are	 many	 possible	
approaches	to	cover	the	analysis	of	this	slab	(e.g.,	[1]),	some	of	which	are	introduced	
amongst	the	separate	thermal	and	mechanical	analyses	in	the	first	part	of	this	work.	
Eventually,	we	decided	to	go	with	a	numerical	method,	which	takes	advantage	of	the	
moment-curvature	dependency,	 for	 it	 is	quite	straightforward,	possible	 to	code	 in	a	
span	of	one	 semester	and	very	accurate.	The	basis	of	 the	analysis	of	 the	 reinforced	
concrete	ceiling	slab	lies	in	the	moment-curvature	approach,	which	is	covered	e.g.,	in	
[2]	or	in	[3].		Even	though	most	of	the	procedures	shown	in	the	first	part	of	this	work	
do	not	occur	in	the	final	algorithm,	they	provide	a	better	insight	in	the	possible	ways	of	
studying	thermal	and	mechanical	behavior	of	different	types	of	structures.	Therefore,	
I	consider	them	an	asset	and	resource	which	helped	me	to	a	better	understanding	of	
the	given	matters,	which	is	also	why	I	included	them	in	this	work.	

The	main	goals	of	this	work	are:	

1) Design	 of	 an	 algorithm,	 which	 determines	 the	 load-bearing	 capacity	 of	 a	
reinforced	concrete	ceiling	slab	exposed	to	high	temperatures.	

2) Comparison	of	the	results	obtained	from	the	program	executing	the	algorithm	
with	results	from	other	methods	and	existing	programs.	
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2 Methods	of	analysis	of	structures	

2.1 Mechanical	analysis	
Mechanical	 analysis	 is	 a	 process	 of	 searching	 for	 a	 reaction	 of	 a	 structure	 to	 a	
prescribed	loading.	When	analyzing	a	structure,	boundary	conditions	such	as	geometry	
and	material	properties	as	well	as	the	support	system	and	type,	size,	and	position	of	
loading	need	 to	be	defined.	The	purpose	of	 a	mechanical	 analysis	 is	 usually	 to	 find	
unknown	displacements	and	deformations,	reactions,	internal	forces,	and	stresses	[4].	

Individual	elements	as	well	as	whole	structures	can	be	analyzed,	whereas	the	applied	
methods	 change	 with	 the	 size	 and	 complexity	 of	 the	 analyzed	 subject	 and	 desired	
accuracy	[5].	

There	 are	 many	 methods	 and	 theories	 which	 are	 implemented	 when	 analyzing	
structures.	 Among	 them	 count	 theoretical	 analytical	models	 or	 numerical	methods.	
Former	 are	 used	 for	 accurate	 determination	 of	 deformation	 and	 stress	 in	 elements	
using	differential	and	integral	equations.	This	solution	is	called	the	accurate	problem	
solution.	 Latter	 define	 how	 to	 numerically	 approximate	mathematical	 problems	 by	
imposing	simplifying	assumptions.	By	 implementing	these	assumptions	complicated	
equations	are	simplified,	so	they	can	be	solved	numerically	with	use	of	computational	
software.	Since	the	original	equations	are	not	accurately	solved,	it	is	called	approximate	
problem	solution	[4].	

Amongst	numerical	methods	used	for	not	only	mechanical	but	for	thermal	analysis	as	
well,	 count	 for	example	Finite	Element	Method	(FEM),	which	discretizes	continuum	
into	 finite	 number	 of	 elements.	 Another	 one	 is	 Finite	 Difference	 Method,	 which	
approximates	derivations	in	differential	equation	by	differences,	changing	differential	
equations	into	difference	equations	[5].	
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2.2 Thermal	analysis	
Thermal	analysis	is	a	process	of	determining	the	temperatures	of	the	structure	when	
exposed	 to	 high	 temperatures,	most	 commonly	 a	 fire.	 The	 actual	 fire	 is	 during	 the	
analysis	replaced	by	a	fire	model.	The	fire	models	are	divided	into	two	main	groups:	

• Nominal	fire	curves	according	to	EN	1991-1-2	[6]	

o amongst	nominal	fire	curves	counts	for	example	the	standard	fire	
curve	ISO	834	defined	in	EN	1991-1-2	[6],	

o those	fire	curve	do	not	include	the	cooling	phase.	

• Natural	fire	models	

o simplified	 fire	 models,	 such	 as	 the	 parametric	 curve	 defined		
in	EN	1991-1-2	[6],	

o advanced	fire	models	such	as	the	zone	models	or	CFD	models,	

o these	models	include	the	cooling	phase.	

In	 the	 solved	 examples	 introduced	 in	 the	 next	 chapters,	 the	 development	 of	 high	
temperatures	follows	the	ISO	834	curve	defined	in	EN	1991-1-2	[6].	This	fire	model	
was	 selected	 for	 this	 work	 due	 to	 its	 widest	 range	 of	 usage,	 compatibility	 with	
standards,	simplicity,	and	conservative	results.	

The	main	part	of	the	thermal	analysis	is	a	heat	transfer	between	the	environment	and	
the	structure.	There	are	several	approaches	to	model	the	heat	transfer	from	simple	but	
inaccurate	to	highly	complex	ones.	 In	the	examples	solved	in	this	work,	the	thermal	
analysis	 is	 carried	 out	 using	 the	 Finite	 Element	 Method,	 which	 very	 accurately	
simulates	the	real	heat	transfer	([1]).	Another	reason	for	choosing	the	finite	element	
method	 for	 the	 thermal	 analysis	 is	 its	 potential	 to	 obtain	 results	 with	 the	 use	 of	
standard	 computational	 devices.	 The	 number	 of	 elements	 which	 the	 structure	 is	
divided	into,	and	therefore	the	precision	of	obtained	results,	can	be	customized	to	fit	
the	capacity	of	the	computational	device	in	use,	with	the	obvious	positive	or	negative	
impact	on	the	precision	of	the	method.	
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3 Methods	of	analysis	of	concrete	structures	
at	high	temperatures	

There	 are	 several	 methods	 which	might	 be	 implemented	when	 analyzing	 concrete	
structures	at	high	temperatures.	This	chapter	briefly	describes	especially	those	used	
for	a	ceiling	slab	analysis.	Possible	methods	are	described	in	detail	in	EN	1992-1-2	[7].	

According	to	EN	1992-1-2	[7],	there	are	several	possible	approaches	to	determine	the	
fire	resistance	of	a	concrete	structure.	Those	are:	

• normalized	tests	of	fire	resistance,	

• usage	of	tabulated	data,	

• design	with	use	of	simplified	calculation	methods,	

• design	with	use	of	advanced	calculation	methods,	

• full-scale	testing.	

The	 factors	 which	 determine	 the	 approach	 used	 for	 given	 design	 are	 the	 type	 of	
structure,	 the	 purpose	 of	 the	 building,	 required	 accuracy,	 computational	 devices	 at	
hand,	used	materials,	time	allowed	to	obtain	results	and	other.	

3.1 The	usage	of	tabulated	data	
Tabulated	 data	 obtained	 from	 former	 repeated	 experiments	 and	 calculations	 and	
included	in	the	standards	are	in	many	cases	the	easiest	and	fastest	way	to	determine	
the	fire	resistance	of	a	structural	element.		

However,	some	restrictions	exist	as	to	when	the	tabulated	data	can	be	used.	

• Tabulated	data	are	determined	from	experiments	and	calculations,	where	the	
fire	is	represented	by	the	nominal	fire	curve	ISO	834	defined	in	EN	1991-1-2	
[6].	Therefore,	these	values	cannot	be	used	for	any	other	fire	model.	

• Tabulated	 data	 included	 in	 EN	 1992-1-2	 [7]	 exist	 only	 for	 certain	 structural	
elements,	such	as	

o columns,	

o walls,	

o tensile	members,	

o beams,	

o slabs.	

The	usage	of	 tabulated	data	 is	very	conservative.	That	 is	why	 this	approach	usually	
serves	 as	 a	 pre-design,	 to	 obtain	 a	 general	 ideal	 of	 the	 fire	 resistance	 of	 a	 given	
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structure.	If	the	analyzed	structure	does	not	meet	the	required	fire	resistance	with	the	
use	 of	 tabulated	 data,	 it	 is	 necessary	 to	 choose	 a	 more	 accurate	 way	 of	 the	 fire	
resistance	determination,	such	as	one	of	the	simplified	calculation	methods.	

3.2 Simplified	calculation	methods	
These	methods	are	the	most	accurate	ways	of	analyzing	concrete	structures	without	
the	use	of	complex	computer	software.	The	main	advantage	of	these	methods	is	that	
most	 of	 the	 calculations	 can	 be	 done	 by	 hand	while	 still	 maintaining	 a	 reasonable	
accuracy.	

Amongst	the	simple	computational	methods	according	to	EN	1992-1-2	[7]	count	

• 500°C	 isotherm	 method	 for	 members	 subjected	 to	 the	 bending	 moment,		
and/or	the	normal	force,	

• zone	method	for	members	subjected	to	the	bending	moment,	and/or	the	normal	
force,	

• method	for	columns	based	on	a	curvature	estimate,	

• method	for	verification	of	the	load-bearing	capacity	in	shear	and	torsion,	

• simplified	calculation	method	for	beams	and	slabs.	

When	it	comes	to	analyzing	a	reinforced	concrete	slab,	which	is	an	element	subjected	
to	a	bending	moment,	the	500°C	isotherm	and	the	zone	methods	are	commonly	used.	
Both	methods	are	explained	in	detail	in	EN	1992-1-2	[7],	however,	general	overviews	
of	both	methods	are	given	in	the	next	subchapters.	The	method	for	columns	based	on	
a	curvature	estimate	is	briefly	described	as	well,	as	it	forms	the	basis	of	the	procedure	
implemented	in	the	designed	algorithm.		

3.2.1 500°C	isotherm	method	

This	method	is	based	on	following	assumptions:	

• structure	is	subjected	to	standard	fire	curve	ISO	834	or	parametric	fire	curve,	

• concrete	 of	 a	 temperature	 under	 500°C	 keeps	 all	 its	 material	 properties	
including	the	strength	same	as	at	normal	temperatures,	

• concrete	of	a	temperature	above	500°C	loses	its	strength	completely,	therefore	
it	is	neglected,	resulting	in	the	reduction	of	the	cross-section	dimensions,	

• the	yield	strength	of	steel	changes	with	temperature	according	to	the	diagram	
illustrated	in	EN	1992-1-2	[7],	Fig.	4.2a,	
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• the	temperature	of	the	reinforcement	is	assumed	to	be	equal	to	the	temperature	
of	the	concrete	in	the	position	of	the	cross-section,	where	the	center	of	the	rebar	
is	located.		

When	 using	 the	 500°C	 isotherm	 method,	 firstly	 it	 is	 necessary	 to	 obtain	 the	
temperature	distribution	profile	of	the	cross-section	at	required	time	step.	That	can	be	
easily	 done	 by	 a	 thermal	 analysis	 of	 the	 cross-section	 using	 some	 of	 the	 existing	
programs,	 such	 as	 TempAnalysis	 [17].	 An	 example	 of	 the	 temperature	 profile	
generated	 from	 TempAnalysis	 [17]	 for	 a	 reinforced	 concrete	 slab	 of	 height		
ℎ = 200	mm,	 which	 is	 exposed	 to	 a	 nominal	 standard	 fire	 curve	 ISO	 834	 at	 time		
' = 120	min	is	shown	in	Figure	1.	

	
Figure	1	Temperature	profile	(generated	from	[17])	

From	 the	 temperature	 profile,	 it	 is	 clear,	 that	 the	 temperature	 limit	 of	 500°C	 is	 at		
the	distance	+!"" = 35	mm	from	the	surface.	The	new	height	of	the	cross-section	is	

ℎ#$ = ℎ − +!""	 = 200 − 35 = 165	mm.	 	 	 	 	 	 (3.1)	

Let	us	assume	that	 the	slab	 is	 reinforced	by	steel	bars,	whose	axial	 length	 from	the	
lower	surface	 is	+	 = 	30	mm.	 In	 that	case,	according	to	 the	 temperature	profile,	 the	
temperature	 of	 the	 reinforcement	 is	 0 = 550°C.	 The	 reduction	 coefficient	 of	 the	
characteristic	yield	strength	3&(5)	is	obtained	from	EN	1992-1-2	[7],	Fig.	4.2a	which	is	
shown	in	Figure	2.	
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Figure	2	Coefficient	!!(#)	allowing	for	decrease	of	characteristic	strength	$"#	(taken	from	[7])	

According	 to	 this	 diagram	 (curve	 number	 1),	 the	 reduced	 yield	 strength	 of	
reinforcement	is	

7&',) = 3*(5)	7'+ = 0.63	7'+ = 315	MPa,	 	 	 	 	 	 (3.2)	

assuming	that	7'+ = 500	MPa.	This	reduced	yield	strength	is	used	in	the	relation	for	
moment	capacity	calculation	

<,-,#$ = =*	7*'-,) 	>#$ = =* 	
.!",$
/%,&'

	>#$,	 	 	 	 	 	 	 (3.3)	

where	 >#$	 is	 the	 distance	 between	 internal	 forces	 after	 the	 cross-section	 dimension	
reduction	 and	 ?0,#$	 the	 coefficient	 of	 the	 reinforcement	 reliability	 during	 fire		
(?0,#$ = 1).	

Eventually,	the	moment	capacity	<,-,#$	is	compared	to	the	applied	bending	moment	in	
a	fire	situation	<1-,#$	to	determine	whether	the	load-bearing	capacity	of	the	element		
at	a	given	time	step	is	sufficient.	
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3.2.2 Zone	method	

This	method	is	based	on	similar	assumptions	as	the	500°C	isotherm	method,	with	some	
differences:	

• structure	is	subjected	to	standard	fire	curve	ISO	834	defined	in	EN	1991-1-2	[6],	

• the	 cross-section	 dimensions	 are	 reduced	 with	 accordance	 to	 the	 so-called	
mean	reduction	coefficient	32,3,	

• the	strength	of	concrete	in	the	remaining	part	of	the	cross-section	correspond	
to	the	reduced	strength	for	temperature	in	the	least	heated	part	of	the	cross-
section,	

• the	yield	strength	of	steel	changes	with	temperature	according	to	the	diagram	
illustrated	in	EN	1992-1-2	[7],	Fig.	4.2a,	

• the	temperature	of	the	reinforcement	is	assumed	to	be	equal	to	the	temperature	
of	the	concrete	in	the	position	of	the	cross-section,	where	the	center	of	the	rebar	
is	located.	

Firstly,	the	location	of	a	point	<	in	the	cross-section	is	determined.	The	point	is	always	
located	in	the	least	heated	part	of	the	cross-section.	If	the	element	is	exposed	to	fire	
from	one	side,	the	point	<	is	located	on	the	opposite	surface,	if	the	exposure	is	two-
sided,	the	point	<	is	in	the	center	of	the	cross-section,	as	shown	in	Figure	3.	

	
Figure	3	Cross-section	division	(taken	from	[8])	

The	characteristic	thickness	@	is	determined	according	to	the	location	of	the	point	<,	
as	shown	in	Figure	3.	This	thickness	is	then	divided	into	at	least	three	zones	of	the	same	
width.	 In	the	center	of	each	zone	the	temperature	of	 the	concrete	 is	 found	from	the	
temperature	profile	of	the	cross-section.	

For	 the	 center	 of	 each	 zone,	 the	 reduction	 coefficient	 of	 the	 characteristic	 concrete	
strength	32$(5)	is	obtained	from	EN	1992-1-2	[7],	Fig.	4.1,	which	is	shown	in	Figure	4.	
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Figure	4	Coefficient	!$(#)	allowing	for	decrease	of	characteristic	strength	$$#	(taken	from	[7])	

From	32$(5),	the	mean	reduction	coefficient	32,3	can	be	obtained	using	the	relation	

32,3 =
45(.*+
6
∑ 32$(5)
6
784 ,	 	 	 	 	 	 	 	 (3.4)	

where	B	stands	for	the	number	of	zones.	

The	 thickness	 of	 the	 eliminated	 layer	 of	 the	 cross-section	 +9	 is	 determined	 from		
the	equations	

+9 = @ C1 −
:,,-
:,,.,/

D	and	 	 	 	 	 	 	 	 (3.5)	

+; = @ C1 −
:,,-
:,,.,/

D
4.=
,	 	 	 	 	 	 	 	 (3.6)	

where	32,),>	 is	a	strength	reduction	coefficient	of	the	point	<.	The	equation	used	in	
each	specific	case	depends	on	the	type	of	the	analyzed	member	(see	[7]).	

In	cross-section	of	reduced	dimensions,	the	concrete	strength	is	reduced	to	correspond	
to	the	temperature	at	<,	that	is	

72-,#$ = 32,),> 	
.,0
/1,&'

	,	 	 	 	 	 	 	 	 	 (3.7)	

where	??,#$	is	the	coefficient	of	the	concrete	reliability	during	fire	(??,#$ = 1).	
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3.2.3 Method	for	columns	based	on	a	curvature	estimate	

This	method	is	usually	used	for	analyzing	columns	whose	behavior	is	influenced	by	the	
second	order	effects.	It	is	only	applicable	for	columns	as	part	of	solidified	structures	
(EN	1992-1-2	[7]).	

Similarly	 to	 the	previous	methods,	 firstly,	 it	 is	 necessary	 to	obtain	 the	 temperature	
distribution	profile	of	 the	cross-section	at	a	required	time	step.	For	a	constant	axial	
force,	the	moment-curvature	dependency	is	calculated	with	use	of	diagrams	illustrated		
in	 EN	 1992-1-2	 [7]	 (step	 by	 step	 description	 provide	 chapters	 6	 and	 7).	 For	 each	
curvature	the	equilibrium	of	internal	and	external	forces	is	found.	The	moment	of	the	
internal	 forces	 around	 the	 center	 of	 the	 cross-section	 is	 the	 searched	 moment		
capacity	<,-,#$.	The	difference	between	ultimate	moment	capacity	<,-,#$	and	nominal	
second	 order	 moment	<@,#$	 is	 a	 first	 order	 moment	 capacity	<",-,#$	 (as	 illustrated		
in	Figure	5)	which	is	then	compared	to	the	design	first	order	bending	moment	for	fire		
conditions	<"1-,#$	(EN	1992-1-2	[7]).	

	
Figure	5	Determination	of	first	order	moment	capacity	(0Rd,fi	(taken	from	[7])	
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4 Finite	Element	Method	

4.1 Introduction	to	Finite	Element	Method	
The	Finite	Element	Method	 is	one	of	 the	numerical	methods	 for	 solving	differential	
equations.	 Although	 originally	 developed	 for	 the	 purpose	 of	mechanical	 analysis,	 it	
quickly	expanded	into	other	fields	as	well,	and	it	now	belongs	to	the	most	practiced	
methods	 in	mechanics,	 thermodynamics,	 fluid	dynamics	or	 electromagnetism	 [4].	 It	
can	be	traced	back	to	the	1960s,	when	a	textbook	wearing	the	title	The	Finite	Element	
Method	in	Structural	and	Continuum	Mechanics	was	published.	This	was	the	very	first	
textbook	 defining	 the	 basics	 of	 this	 method.	 A	 clear	 demonstration	 of	 the	 rapid	
evolution	of	FEM	could	be	the	fact	that	between	the	years	1971	and	2000	five	editions	
of	this	textbook	were	published,	with	the	last	one	exceeding	the	number	of	pages	of	the	
very	first	edition	more	than	five	times,	despite	significant	reductions,	according	to	[4].	

Today	 the	 Finite	 Element	Method	 stands	 and	 is	 accepted	worldwide	 as	 a	means	 of	
solving	partial	 differential	 and	 integro-differential	 equations.	Among	 its	 advantages	
counts	its	versatility	in	comparison	with	other	methods,	which	qualifies	FEM	to	solve	
various	practical	examples	from	many	different	fields	and	areas.	Its	finite	number	of	
elements	means,	that	it	is	in	general	possible	to	obtain	results	quickly	even	in	complex	
analyses	with	use	of	digital	computational	devices	[4].	

4.2 Principle	of	Finite	Element	Method	
The	 basics	 of	 Finite	 Element	 Method	 lie	 in	 subdividing	 the	 system	 into	 individual	
elements.	This	is	followed	by	the	assembly	and	investigation	of	said	system	(see	[4]	
and	[5]).	

Some	systems	can	be	accurately	described	with	a	model	comprised	of	a	finite	number	
of	correctly	selected	elements.	These	problems	are	called	discrete.	In	other	cases,	the	
finite	 number	 of	 elements	 does	 not	 exist,	 and	 the	 system	 can	be	described	 only	 by	
mathematical	fiction	of	an	infinitesimal.	These	systems	are	called	continuous	[4].	

We	can	also	define	a	standard	discrete	system,	which	was	developed	over	the	years	as	
a	rather	standard	methodology	for	solving	discrete	problems.	This	methodology	shows	
a	certain	pattern,	which	 is	applicable	 to	discrete	systems	across	different	 fields	and	
areas	[4].	

This	work	focuses	only	on	Finite	Element	Method	in	mechanics	and	thermodynamics.	

In	this	chapter,	the	general	concept	of	discrete	systems	is	introduced	through	practical	
examples,	 which	 have	 been	 solved	 and	 coded	 in	 MATLAB	 [18]	 by	 the	 author		
of	the	thesis.	
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4.3 Finite	Element	Method	in	Thermal	Analysis	
Not	only	the	force	loads,	but	also	the	thermal	loads	have	an	impact	on	the	mechanical	
response	 of	 a	 structure.	With	 higher	 temperatures	 the	material	 properties	 change,	
resulting	in	a	greater	vulnerability	of	the	structure	to	the	force	loads.	That	is	the	reason	
for	implementing	thermal	analysis	into	the	complex	mechanical	analysis.	

For	this	work	a	transient	heat	transfer	is	introduced.	To	explain	the	principle	of	FEM	
in	thermal	analysis,	a	simple	illustrative	example	is	presented.	

Consider	 a	 ceiling	 composed	of	 a	 reinforced	 concrete	 slab	 and	a	 floor	 layer.	All	 the	
material	 properties	 are	 known.	 Let	 the	 slab	 be	 subjected	 to	 heat	 flux,	 which	 is	
characterized	as	a	time	dependent	function	applied	on	the	bottom	surface.	

The	 main	 aim	 of	 the	 analysis	 is	 to	 calculate	 temperature	 distribution	 along		
the	cross-section	at	time	t	=	30	min.	

The	characteristic	relation	used	for	solving	this	problem	can	be	written	as	

E(FA)	B
+235B+

△D
+H(FA)	I6E4 + J = 0,	 	 	 	 	 	 (4.1)	

where	E	represents	the	heat	capacity	matrix	and	H	the	thermal	conductivity	matrix,		
△ '	is	the	specified	time	step,	I6	+	I6E4	stand	for	vectors	of	temperatures	in	each	node	
at	the	actual	and	next	time	step.	Finally,	J	is	the	vector	of	heat	flux	which	the	structure	
is	subjected	to.		

When	 analyzing	 the	 illustrative	 ceiling	 slab,	 a	 500	 mm	 long	 part	 of	 it	 served	 as	 a	
reference	and	representation	of	the	behavior	of	the	entire	structure.	

4.3.1 Mesh	

As	a	 first	 step	 it	 is	necessary	 to	generate	mesh.	The	chosen	 fineness	of	 the	mesh	 is	
crucial	since	it	has	considerable	impact	on	the	obtained	result.	Too	gross	a	mesh	causes	
imprecise	results,	too	fine	a	mesh	results	in	greater	computational	costs	[4].	

When	analyzing	the	illustrative	example	from	the	previous	subchapter,	for	the	purpose	
of	this	work	the	prevailing	requirement	was	set	to	minimize	the	calculation	time	while	
the	results	remain	intact.	Therefore,	for	the	analyzed	characteristic	part	of	the	ceiling	
slab	 a	 mesh	 composed	 of	 250	 elements	 was	 generated	 as	 shown	 in	 Figure	 6.	 To	
distinguish	 the	 different	materials	 in	 the	 ceiling,	 the	mesh	 is	 plotted	 in	 two	 colors.	
Yellow	color	 stands	 for	 reinforced	concrete	 (material	A)	and	 red	color	 for	 the	 floor	
layer	(material	B).	
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Figure	6	Mesh	(created	in	[18])	

4.3.2 Material	parameters	

After	 defining	 the	 geometry,	 it	 is	 necessary	 to	 assign	 to	 each	 layer	 its	 material	
characteristics.	 Specifically,	 the	 material	 parameters	 entering	 the	 calculation	 are	
density	L,	heat	capacity	c	and	conductivity	N.	

Material	parameters	in	the	reference	example	are	assigned	as	shown	in	Figure	7,	where	
A	stands	for	reinforced	concrete	and	B	for	the	floor	layer.	

	
Figure	7	Material	parameters	assigned	to	reinforced	concrete	(A)	and	floor	layer	(B)	

4.3.3 Boundary	conditions	

The	structure	is	subjected	to	a	heat	flux,	which	is	for	the	purpose	of	this	work	defined	
as	a	time	dependent	function	as	shown	in	Figure	8.		
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Figure	8	Function	of	the	heat	flux	

The	 predefined	 heat	 flux	 is	 applied	 to	 selected	 nodes	 on	 the	 bottom	 surface	 of	 the	
structure.	

4.3.4 Thermal	analysis	of	the	structure	

The	 aim	 of	 this	 analysis	 is	 to	 calculate	 the	 temperature	 distribution	 at	 time		
t	=	30	min	using	the	relation	(4.1).	

Heat	capacity	matrix	E	of	an	element	takes	the	form	of	

E	 = 	 FG
H
	O

4+Q 2+Q +Q 2+Q
2+Q 4+Q 2+Q +Q
+Q 2+Q 4+Q 2+Q
2+Q +Q 2+Q 4+Q

R,	 	 	 	 	 	 	 (4.2)	

where	 +	 is	 calculated	 as	 a	 half	 of	 an	 element	 size	 in	 the	 direction	 of	 I	axis,		
and	Q	is	calculated	as	a	half	of	an	element	size	in	the	direction	of	S	axis.	

Thermal	conductivity	matrix	H	of	an	element	takes	the	form	of	

H	 = 	N	
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,	 	 	 	 	 	 (4.3)	

where	 +	 is	 calculated	 as	 a	 half	 of	 an	 element	 size	 in	 the	 direction	 of	 I	 axis,		
and	Q	is	calculated	as	a	half	of	an	element	size	in	the	direction	of	S	axis.	

The	calculated	temperature	distribution	along	the	cross-section	at	t	=	30	min	shows		
Figure	9.	
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Figure	9	Temperature	distribution	in	the	cross-section	at	. = 30	min	(created	in	[18])	

The	curves	across	the	cross-section	are	so-called	isotherms,	which	connect	parts	of	the	
cross-section	of	the	same	temperatures.	

4.3.5 Conclusion	

This	 subchapter	 includes	 a	 calculation	 of	 the	 temperature	 distribution	 along		
the	cross-section	of	a	ceiling	slab	composed	of	a	lower	reinforced	concrete	slab	and	an	
upper	floor	layer	subjected	to	a	defined	heat	flux.	A	characteristic	500	mm	long	part	of	
the	structure	was	selected	for	the	analysis.	The	example	demonstrates	the	calculation	
of	transient	heat	transfer.	

From	the	graphic	output	it	is	evident	that	the	temperatures	in	the	cross-section	of	the	
slab	are	highest	in	the	close	vicinity	of	the	applied	heat	flux,	whereas	further	from	the	
thermal	load	temperatures	remain	at	the	initial	value	of	20°C	even	after	30	minutes	of	
exposure.	Were	the	structure	subjected	to	a	heat	flux	of	a	higher	value	or	for	a	longer	
amount	of	time,	the	temperatures	would	increase	overall.	



Mechanical Analysis  

28 

 

5 Mechanical	Analysis	

5.1 Structural	Element	
In	 this	 chapter,	 mechanical	 analysis	 of	 structures	 is	 introduced	 through	 several	
illustrative	examples.	

The	first	example	is	taken	from	[9].	Consider	a	two-dimensional	structure	as	shown	in	
Figure	10.	For	now,	a	linear	elastic	behavior	is	assumed,	which	is	described	as	a	linear	
relationship	between	the	input	(applied	force,	stress)	and	the	output	(displacement,	
strain)	 [10].	The	cross-sectional	area	and	Young’s	modulus	of	 the	material	are	both	
known.	Let	the	truss	be	subjected	to	a	force	Z	of	a	given	value.	The	joints	are	pinned,	
so	that	moments	cannot	be	transmitted	within	the	bars.	

	As	 was	 explained	 in	 chapter	 4.2,	 the	 system	 is	 firstly	 subdivided	 into	 individual	
elements.	In	this	case	the	subdivision	is	very	simple.	The	structure	comprises	of	two	
bars,	thus	two	elements.	There	are	nodes	on	either	end	of	each	element.	

	
Figure	10	Truss	structure	subjected	to	mechanical	loading	

Firstly,	to	investigate	the	structure,	it	is	necessary	to	assign	numbers	to	all	the	elements	
and	nodes.	The	order	in	which	the	numbers	are	assigned	does	not	matter.	For	example,	
in	this	case	the	numbers	were	assigned	as	shown	in	Figure	11.	
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Figure	11	Numbers	assigned	to	elements	and	nodes	

Assuming	linear	elastic	behavior	of	the	element,	the	system	of	equations	describing	the	
relationship	always	takes	form	of	

H	[	 = 	J,		 	 	 	 	 	 	 	 	 	 (5.1)	

where	K	stands	for	the	element	stiffness	matrix,	f	represents	the	vector	of	nodal	external	
forces	and	u	the	vector	of	corresponding	nodal	displacements	of	the	element.	The	size	
of	the	element	stiffness	matrix	depends	on	the	number	of	degrees	of	freedom	of	the	
element.	As	in	the	two-dimensional	problem,	each	node	is	defined	by	two	degrees	of	
freedom	 and	 the	 element	 is	 interconnected	 with	 two	 nodes,	 the	 element	 stiffness	
matrix	 is	 of	 the	 size	 4 × 4.	 Let	 C	 be	 the	 cosine	 of	 the	 angle	 between	 the	 element		
and	the	I	axis	and	S	the	sine	of	the	same	angle,	then	

HI 	= 	 JK
L
	O

]@ ]	^ −]@	 −]	^
]	^ ^@ −]	^ −^@

−]@ −]	^ ]@ ]	^
−]	^ −^@ ]	^ ^@

R,	 	 	 	 	 	 (5.2)	

where	E	 is	 the	Young’s	modulus	of	material,	A	 is	 the	 cross-sectional	area	and	L	 the	
length	of	the	element.	

5.1.1 Assembly	and	analysis	of	the	structure	

In	the	next	step	the	structure	is	assembled	and	analyzed.	To	obtain	the	solution,	we	
must	satisfy	the	following	conditions:	

1) displacement	compatibility	and	

2) equilibrium.	

According	to	[4],	any	system	of	nodal	displacements	[	listed	for	the	whole	structure	in	
which	all	the	elements	participate	automatically	satisfies	the	condition	of	displacement	
compatibility.	Since	the	conditions	of	equilibrium	within	an	element	have	been	already	
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satisfied,	 it	 is	only	necessary	 to	establish	equilibrium	conditions	at	 the	nodes	of	 the	
structure.		

Considering	the	structure	as	shown	in	Figure	10,	 the	corresponding	vector	of	nodal	
displacement	is	

[	 = 	

⎩
⎪
⎨

⎪
⎧

	

cM4
c'4
cM@
c'@
cM=
c'=⎭

⎪
⎬

⎪
⎫

,		 	 	 	 	 	 	 	 	 (5.3)	

and	the	corresponding	vector	of	external	nodal	forces	is	

J	 = 	

⎩
⎪⎪
⎨

⎪⎪
⎧

	

7M4
7'4
7M@
7'@
7M=
7'=⎭
⎪⎪
⎬

⎪⎪
⎫

,	 	 	 	 	 	 	 	 	 	 (5.4)	

where	7M@ = 5	kN.		

The	assembly	process	is	the	fundamental	feature	of	all	finite	element	calculations.	It	is	
crucial	to	assemble	the	stiffness	matrix	of	the	whole	structure.	This	matrix	is	called	the	
global	stiffness	matrix	[4].	

The	global	stiffness	matrix	of	the	reference	structure	is	of	the	size	6 × 6	(three	nodes,	
each	two	degrees	of	freedom)	and	takes	form	of	

H	 =
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	 	 	 	 			(5.5)	

5.1.2 Boundary	conditions	

In	some	cases,	a	certain	displacement	is	described.	For	that	we	use	the	term	constraint	
condition.	The	simplest	constraint	condition	is	the	so-called	single-freedom	constraint.	
Through	 the	 single-freedom	constraint	we	 impose	a	prescribed	value	 for	one	nodal	
displacement	component.	The	term	homogeneous	condition	is	used	when	the	equation	
prescribing	the	displacement	equals	zero.	For	instance		

cM4 = 0.	 	 	 	 	 	 	 	 	 	 (5.6)	
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The	 term	 non-homogeneous	 condition	 is	 used	 when	 the	 equation	 prescribing	 the	
displacement	is	not	equal	to	zero.	For	example		

cM4 = 4,		c'4 = 0.7.	 	 	 	 	 	 	 	 	 (5.7)	

The	usual	solution	for	a	single-freedom	constraint	is	deleting	the	appropriate	row	and	
column	corresponding	to	the	restricted	displacement	 in	the	stiffness	matrix	and	the	
vectors	[	and	J	and	thus	reducing	the	system	of	equations.	

More	 complex	 constraint	 condition	 is	 the	 so-called	 multi-freedom	 constraint.		
The	multi-freedom	constraint	 is	a	 functional	equation,	which	connects	 two	or	more	
displacement	components.	For	instance	

cM4 + cM= = 0,		c'@ + cMN = 5.2	 	 	 	 	 	 	 (5.8)	

are	 multi-freedom	 constraints,	 first	 one	 is	 homogeneous	 while	 the	 second	 one		
non-homogeneous.	

There	are	multiple	ways	of	treating	the	multi-freedom	constraints.	For	the	purpose	of	
this	work	the	Lagrange	Multiplier	Adjunction	is	described.		

Lagrange	Multiplier	Adjunction	belongs	to	the	methods	for	imposing	single-freedom	
and	multi-freedom	constraints.	In	principle,	for	each	constraint	an	additional	variable	
or	a	set	of	variables	 is	appended	to	the	stiffness	equations.	Said	variables	represent	
constraint	 forces,	which,	 if	 applied	 to	 the	 unconstrained	 system,	would	 enforce	 the	
constraints.	The	Lagrange	multiplier	N		is	appended	to	the	vector	of	original	unknowns.	
The	set	of	equation	with	adjoined	unknowns	is	called	the	multiplier-augmented	system.	
The	process	of	appending	N	to	the	vector	of	unknowns	is	called	adjunction.	Through	
solving	 the	 system,	 the	 solution	 for	 the	 degrees	 of	 freedom	 is	 obtained	 and		
the	constraint	forces	are	characterized	through	N.	

The	boundary	conditions	in	the	illustrative	example	from	Figure	10	resulting	from	the	
supporting	conditions	prescribe	following	constraint:	

cM4 = c'4 = cM= = c'= = 0.		 	 	 	 	 	 	 (5.9)	

Thus,	the	only	unknown	displacements	are	cM@	and	c'@.	After	inserting	the	boundary	
conditions	 to	 the	 equations,	 the	 structure	 can	 be	 solved	 for	 these	 unknown	
displacements.	

5.1.3 Conclusion	

In	 this	 subchapter	 the	deformation	of	 a	basic	 two-dimensional	 truss	 structure	with	
assumption	of	a	linear	elastic	behavior	was	calculated.	A	linear	behavior	means	that	
the	relationship	between	the	input	such	as	applied	forces	and	stress,	and	the	output	
such	 as	 displacements	 and	 strain	 is	 linear.	 The	 procedure	 applied	 to	 obtain		
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the	unknown	variables	(nodal	displacements)	is	called	the	direct	stiffness	method	and	
it	is	a	typical	method	used	for	analysis	of	structures	with	linear	elastic	behavior.	

5.2 Nonlinear	mechanical	analysis	
Nonlinear	systems	are	defined	with	a	nonlinear	relationship	between	the	 input	and		
the	output	[10].	Generally,	there	are	four	types	of	nonlinearities	defined	in	structural	
mechanics	according	to	[10]:	

Geometric	 nonlinearity	 is	 a	 nonlinearity	 among	 displacement,	 rotation,	 and	 strain.		
It	usually	occurs	together	with	large	deformation.	

Material	 nonlinearity	 means	 that	 the	 relationship	 between	 stress	 and	 strain	 is	
nonlinear.	This	 relationship	usually	 takes	a	graphic	 form	of	a	 stress-strain	diagram.	
Material	nonlinearity	is	typical	for	many	materials	including	concrete	and	steel.	

Kinematic	nonlinearity	occurs	when	the	displacement	boundary	conditions	depend	on	
deformation	of	the	structure.	

Force	nonlinearity	represents	the	case	when	the	applied	forces	depend	on	deformation.	

To	explain	the	nonlinear	analysis,	consider	a	one-dimensional	example	as	shown	in	the	
Figure	12.	This	example	is	taken	from	[10].	

	
Figure	12	Serially	connected	nonlinear	springs	(taken	from	[10])	

In	 this	 example,	 two	 serially	 connected	nonlinear	 spring	 elements	 are	pulled	by	 an	
applied	 force	 Z	 = 	100	N.	 The	 variables	 are	 the	 elongations	 of	 springs	 c4	 and	 c@.	
Assume	 that	 the	 stiffness	 of	 both	 springs	 depends	 on	 the	 elongation	 such	 that		
34 = 	50 + 500	c	and	3@ = 	100 + 200	c	(N/m).	

The	elongation	is	solved	using	the	same	relation	as	in	the	linear	analysis,	which	takes	
the	form	of	

H	[	 = 	J,          (5.10) 

where	the	element	stiffness	matrix	is	

HI 	= 	 k 3 −3
−3 3

l.	 	 	 	 	 	 	 	 	 (5.11)	

While	the	elongation	of	spring	1	is	c4,	the	elongation	of	spring	2	is	c@ − c4.	
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5.2.1 Assembly	

Considering	the	structure	as	shown	in	Figure	12,	 the	corresponding	vector	of	nodal	
displacement	is	

[	 = 	 m	
c"
c4
c@
n,	 	 	 	 	 	 	 	 	 	 (5.12)	

and	the	corresponding	vector	of	external	nodal	forces	is	

J	 = 	o	
7"
74
7@
p,	 	 	 	 	 	 	 	 	 	 (5.13)	

where	7@ 	= 	100	N.		

The	global	stiffness	matrix	of	the	reference	structure	is	of	the	size	3 × 3	(three	nodes,	
each	one	degree	of	freedom)	and	is	in	the	form	

H	 = 	 q
34 −34 0
−34 34 + 3@ −3@
0 −3@ 3@

r.	 	 	 	 	 	 	 (5.14)	

5.2.2 Boundary	conditions	

Since	 spring	 1	 is	 fixed,	 the	 boundary	 conditions	 in	 the	 illustrative	 example	 from		
Figure	12	resulting	from	the	supporting	conditions	prescribe	following	constraint:	

c" = 	0.	 	 	 	 	 	 	 	 	 	 (5.15)	

It	 is	 a	 single-freedom	 constraint	 which	 is,	 in	 this	 example,	 treated	 by	 deleting	 the	
appropriate	 row	 and	 column	 corresponding	 to	 the	 restricted	 displacement	 in	 the	
stiffness	matrix	and	both	vectors	and	thus	reducing	the	set	of	equations.	

By	 multiplying	 the	 stiffness	 matrix	 and	 the	 vector	 of	 unknown	 displacements,		
the	following	set	of	equations	is	obtained:	

300c4
@ + 400c4c@ − 200c@

@ + 150c4 − 100c@ = 0	

200c4
@ − 400c4c@ + 200c@

@ − 100c4 + 100c@ = 100.	 	 	 	 (5.16)	

5.2.3 Analysis	of	a	nonlinear	structure	

To	 find	 roots	of	nonlinear	 equations,	 one	of	 the	procedures	 for	 solving	 a	 system	of	
nonlinear	 equations	 must	 be	 implemented.	 One	 of	 the	 most	 popular	 methods		
in	the	numerical	analysis	is	Newton	or	Newton-Raphson	method,	which	is	also	used	for	
solving	the	reference	example	from	Figure	12.	
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Newton	 method	 is	 a	 numerical	 method	 based	 on	 the	 principle	 of	 iterations.	 Its	
fundament	is	an	assumption	of	an	initial	estimate	[O	of	the	variables.	Consequently,	
the	nonlinear	equations	are	locally	approximated	by	linear	ones	to	find	the	increment	
∆[	 to	 the	 initial	 estimate.	 The	 new	 estimate	 [O + ∆[	 is	 closer	 to	 satisfying	 the	
nonlinear	 equation.	 Through	 repeating	 this	 process,	 the	 estimate	 converges	 to	 the	
accurate	solution	until	the	required	tolerance	is	satisfied	[10].	

First	step	when	using	Newton	method	is	setting	the	required	tolerance	of	the	solution	
and	the	value	of	the	initial	estimate.	Then	the	so-called	residual	R	is	calculated	using	
the	relation	

t = J − u([),	 	 	 	 	 	 	 	 	 (5.17)	

where	u([)	is	an	internal	force	vector	which	depends	on	the	elongation	[.	

Afterwards	the	matrix	HP,	which	is	called	Jacobian	matrix,	is	calculated	as	

HP([) = (∂u/x[).	 	 	 	 	 	 	 	 	 (5.18)	

By	solving	the	equation	

HP∆[ = J − u([),	 	 	 	 	 	 	 	 	 (5.19)	

the	increment	∆[	is	calculated	which	updates	the	solution	by		

[ = [ + ∆[.	 	 	 	 	 	 	 	 	 	 (5.20)	

If	the	new	[	meets	the	solution	with	required	tolerance,	the	calculation	is	finished	and		
the	[	from	the	last	iteration	is	considered	as	the	final	solution	[10].	

Newton	Raphson	method	is	usually	implemented	with	use	of	computational	devices.	
The	method	is	computationally	quite	demanding	especially	since	the	two	most	complex	
operations,	forming	the	Jacobian	matrix,	and	solving	the	matrix	equation	are	repeated	
at	every	iteration.	To	decrease	the	complexity	and	shorten	the	calculation	time	when	
using	computational	devices,	the	modified	Newton	method	was	introduced	[10].	

While	the	regular	Newton	method	requires	the	Jacobian	matrix	to	be	formed	at	each	
iteration,	 the	modified	Newton	method	builds	 the	 Jacobian	matrix	 only	 once	 at	 the	
beginning	and	then	uses	the	initial	matrix	repeatedly	in	each	iteration	[10].	

Using	 the	 initial	 matrix	 repeatedly	 through	 the	 process	 causes	 greater	 number	 of	
iterations	 required	 for	 solving	 the	 equations.	However,	 the	 absence	 of	 building	 the	
Jacobian	matrix	 in	every	 iteration	shortens	 the	required	time	 for	each	 iteration	and	
overall	reduces	the	computational	cost	of	the	process	[10].	

The	reference	example	is	solved	using	both	Newton	and	modified	Newton	method	to	
compare	the	results.	
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The	initial	estimate	was	in	both	cases	set	to	

[O 	= 	 y	
c4
c@
z = y	0.1

0.5
z 	m.	 	 	 	 	 	 	 	 (5.21)	

Figure	13	shows	the	unknown	displacements	obtained	by	implementing	the	Newton	
method.	The	final	displacements	c4	and	c@	were	reached	with	the	required	tolerance	
after	five	iterations.	

	
Figure	13	Results	obtained	using	Newton	method	

Figure	14	shows	the	unknown	displacements	obtained	by	implementing	the	modified	
Newton	method.	The	final	displacements	c4	and	c@	were	reached	with	the	required	
tolerance	after	ten	iterations.	

	
Figure	14	Results	obtained	using	modified	Newton	method	

For	 illustration,	 Figure	 15	 shows	 the	 official	 results	 of	 this	 example	 as	 presented		
in	[10].	

	
Figure	15	Official	results	(taken	from	[10])	
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Even	though	the	initial	estimate	is	in	our	case	different	from	the	one	presented	in	[10],	
it	is	clear	that	the	algorithm	came	to	the	same	values	of	unknown	displacements,	which	
proves	that	the	algorithm	calculates	with	sufficient	accuracy.	

5.2.4 Conclusion	

In	 this	 subchapter,	 the	 deformation	 of	 two	 serially	 connected	 nonlinear	 spring	
elements	 was	 calculated.	 To	 compare	 different	 solving	 methods,	 the	 unknown	
displacements	 were	 obtained	 using	 both	 regular	 and	 modified	 Newton-Raphson	
method.	

Whilst	defining	the	same	input,	initial	estimate	of	variables	and	required	tolerance	in	
both	methods,	a	difference	between	the	number	of	 iterations	required	to	obtain	the	
solution	 was	 detected.	 The	 final	 solution	 was	 obtained	 in	 five	 iterations	 using	 the	
regular	Newton	method,	whereas	ten	iterations	were	required	to	get	the	solution	using	
the	modified	Newton	method.	No	difference	in	computational	time	was	detected,	which	
is	due	to	simplicity	of	the	reference	example.	It	is	presumed,	that	the	difference	would	
grow	with	the	complexity	of	analyzed	structure	in	favor	to	modified	Newton	method.	
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5.3 Direct	Stiffness	Method	in	truss	mechanical	analysis	
This	subchapter	deals	with	a	mechanical	analysis	of	several	truss	structures	exposed	
to	mechanical	and	thermal	loadings.	The	procedure	implemented	for	all	the	following	
examples	is	the	so-called	direct	stiffness	method	(see	[5])	and	it	will	be	closely	described	
later	in	this	chapter.	The	following	examples	are	based	on	the	following	assumptions:	

• linear	material	properties	of	both	concrete	and	steel,	

• material	properties	do	not	change	with	increasing	temperatures.	

The	first	example	which	is	presented	here	is	taken	from	[11].	Consider	a	truss	structure	
comprised	 of	 5	 bars,	 as	 shown	 in	 Figure	 16.	 The	 cross-sectional	 area	 and	 Young’s	
modulus	of	the	material	are	both	known.		

	
Figure	16	Truss	structure	(created	in	[18])	
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5.3.1 Mechanical	analysis	–	prescribed	force	

The	 direct	 stiffness	method	 is	 best	 described	 through	 an	 example	 taken	 from	 [11].		
For	all	the	following	examples	assume	{= = 1	N.	

Let	us	assume	that	 the	structure	 is	subjected	 to	a	 force	Z	 = 	1	N	 in	node	number	4	
according	to	Figure	17.		

	
Figure	17	Element	numbers	and	force	in	node	4	(taken	from	[11])	

Firstly,	 it	 is	 necessary	 to	 assign	 the	 so-called	 code	 numbers	 to	 the	 global	 nodal	
displacements.	 All	 the	 unknown	 displacements	 are	 given	 numbers	 starting	 from	 1.	
Where	the	boundary	conditions	prescribe	a	displacement	as	zero,	the	code	number	for	
this	displacement	is	a	zero	as	well,	as	shown	in	Figure	18.	

	

Figure	18	Code	numbers	(taken	from	[11])	

The	corresponding	vector	of	unknown	nodal	displacements	is	

[	 = 	o	

cM4
c'@
cM=
c'N

p,	 	 	 	 	 	 	 	 	 	 (5.22)	
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and	the	corresponding	vector	of	external	nodal	forces	is	

J	 = 	o	

0
0
1
0

p.	 	 	 	 	 	 	 	 	 	 (5.23)	

The	global	stiffness	matrix	of	the	size	of	4 × 4	is	assembled	and	it	looks	as	following:	

H	 = O

0.253 0 −0.128 0.096
0 0.239 0.096 −0.072

−0.128 0.096 0.384 −0.096
0.096 −0.072 −0.096 0.216

R 	N/m.	 	 	 	 (5.24)	

After	applying	the	solving	formula	which	takes	the	form	of		

[ = H\J,	 	 	 	 	 	 	 	 	 	 (5.25)	

where	 \	 is	 a	backslash	 operator	 used	 in	MATLAB	 [18]	 for	 solving	 systems	of	 linear	
equations,	we	get	following	nodal	displacements:	

[	 = 	o	

1.657
−1.318
3.591
0.420

p	m.	 	 	 	 	 	 	 	 	 (5.26)	

5.3.2 Mechanical	analysis	–	prescribed	force,	reactions	

To	obtain	reactions	in	the	supports,	a	different	approach	is	needed.	

Let	us	assume	the	same	structure	subjected	to	a	 force	Z	 = 	1	N.	This	time,	the	code	
numbers	 given	 to	 each	 displacement	 differ.	 Lower	 numbers	 are	 used	 to	 indicate	
unconstrained	degrees	of	 freedom.	Firstly,	 let	us	assign	a	number	 to	each	unknown	
displacement,	starting	from	number	1.	After	assigning	every	unknown	displacement	
with	a	code	number,	we	proceed	to	give	code	numbers	to	the	known	displacements,	
resulting	 in	 them	 being	 assigned	 the	 largest	 numbers.	 Compared	 to	 the	 previous	
example,	where	known	displacements	are	assigned	with	a	zero,	this	way	the	known	
displacements	are	not	eliminated	from	the	stiffness	matrix.	 Instead,	 the	vectors	and	
matrix	are	divided	into	known	and	unknown	parts.	
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The	code	numbers	are	assigned	as	shows	Figure	19.	

	
Figure	19	Example	with	prescribed	force	

The	corresponding	vector	of	both	unknown	and	known	nodal	displacements	is	

�	 = 	

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	

cM4
c'@
c'=
cMN
3M!
3'Q
3MR
3'S⎭

⎪
⎪
⎬

⎪
⎪
⎫

,	 	 	 	 	 	 	 	 	 	 (5.27)	

where	c	stands	for	unknown	and	3	for	known	displacements,	

and	the	corresponding	vector	of	nodal	forces	and	reactions	is	

J	 = 	

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	

1
0
0
0
ÄM!
Ä'Q
ÄMR
Ä'S⎭
⎪
⎪
⎬

⎪
⎪
⎫

	N,	 	 	 	 	 	 	 	 	 (5.28)	

where	Ä	stands	for	reactions	and	numbers	1	and	0	for	external	forces	in	the	nodes.	
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The	global	stiffness	matrix	of	the	size	of	8 × 8	is	assembled	and	it	looks	as	following:	

!	 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0.384 −0.096 0.096 −0.128 −0.128 −0.096 −0.128 0.096
−0.096 0.216 −0.072 0.096 −0.096 −0.072 0.096 −0.072
0.096 −0.072 0.239 0 0 −0.167 −0.096 0
−0.128 0.096 0 0.253 −0.125 0 0 −0.096
−0.128 −0.096 0 −0.125 0.253 0.096 0 0
−0.096 −0.072 −0.167 0 0.096 0.239 0 0
−0.128 0.096 −0.096 0 0 0 0.128 0
0.096 −0.072 0 −0.096 0 0 0 0.072 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	N/m.		 (5.29)	

To	calculate	the	displacements	and	obtain	the	reactions	in	the	supports,	it	is	necessary	
to	 split	 both	 vectors	 as	 implied	 in	 the	 known	 and	 unknown	 parts.	 That	means	 the	
vector	�	is	split	to	unknown	and	known	displacements	[	and	Å,	the	vector	J	to	known	
external	forces	Ç	and	unknown	reactions	in	supports	t.	The	stiffness	matrix	H	needs	
to	be	split	in	four	parts	to	correspond	with	the	vectors.	In	the	reference	example,	in	
each	vector,	there	are	four	known	and	four	unknown	values,	so	the	matrix	is	split	into	
four	parts,	each	of	the	size	4 × 4,	which	is	illustrated	in	Figure	20.	

	
Figure	20	Split	of	stiffness	matrix	

Firstly,	the	unknown	displacements	cM4, c'@, c'=, cMN	are	calculated	with	use	of		

HTT	[ + HTU	Å = Ç,	 	 	 	 	 	 	 	 	 (5.30)	

from	which	u	is	formularized	as	
[ = HTT(Ç − HTU	Å).	 	 	 	 	 	 	 	 (5.31)	

After	solving	the	unknown	displacements	as	vector	[	

[ =

⎩
⎪
⎪
⎨

⎪⎪
⎧

	

3.591
0.420
−1.318
1.657
0
0
0
0 ⎭

⎪
⎪
⎬

⎪⎪
⎫

	m,	 	 	 	 	 	 	 	 	 (5.32)	

it	is	possible	to	calculate	the	reactions	in	the	supports	using	the	equation	

t = HUT	[ + HUU	Å.	 	 	 	 	 	 	 	 	 (5.33)	
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After	solving	these	equations,	vector	f	is	obtained	with	following	values:	

J =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	

1
0
0
0
ÄM!
Ä'Q
ÄMR
Ä'S⎭
⎪
⎪
⎬

⎪
⎪
⎫

=

⎩
⎪⎪
⎨

⎪⎪
⎧

	

1
0
0
0

−0.707
−0.155
−0.293
0.155 ⎭

⎪⎪
⎬

⎪⎪
⎫

	N.	 	 	 	 	 	 	 (5.34)	

5.3.3 Mechanical	analysis	–	prescribed	displacement,	reactions	

The	 approach	 described	 in	 the	 previous	 subchapter	 can	 be	 used	 in	 examples	with	
prescribed	displacements	as	well.	

Assume	 the	 structure	 from	 previous	 chapters.	 Instead	 of	 an	 external	 force,	 this	
structure	is	subjected	to	a	prescribed	displacement	as	shown	in	Figure	21.	

Let	us	assign	code	numbers	1−3	to	unknown	displacements	and	code	numbers	4−8	to	
known	displacements.		

	
Figure	21	Example	with	prescribed	displacement	

The	corresponding	vector	of	both	unknown	and	known	nodal	displacements	is	

� = 	

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	

cM4
c'@
c'=
3MN
3'!
3'Q
3MR
3MS⎭

⎪
⎪
⎬

⎪
⎪
⎫

,	 	 	 	 	 	 	 	 	 	 (5.35)	
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and	the	corresponding	vector	of	nodal	forces	and	reactions	is	

J	 = 	

⎩
⎪⎪
⎨

⎪⎪
⎧

	

0
0
0
ÄMN
Ä'!
Ä'Q
ÄMR
ÄMS⎭
⎪⎪
⎬

⎪⎪
⎫

.	 	 	 	 	 	 	 	 	 	 	(5.36)	

The	global	stiffness	matrix	of	the	size	of	8 × 8	is	assembled	and	it	looks	as	following:	

! =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 0.253 0.096 0 −0.125 0 −0.096 −0.128 0
0.096 0.216 −0.072 −0.096 −0.072 −0.072 −0.096 0.096
0 −0.072 0.239 0 −0.167 0 0.096 −0.096

−0.125 −0.096 0 0.253 0.096 0 −0.128 0
0 −0.072 −0.167 0.96 0.239 0 −0.096 0

−0.096 −0.072 0 0 0 0.072 0.096 0
−0.128 −0.096 0.096 −0.128 −0.096 0.096 0.384 −0.128
0 0.096 −0.096 0 0 0 −0.128 0.128 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	N/m.	 	(5.37)	

The	vectors,	as	well	as	the	stiffness	matrix	are	split	in	the	same	way	as	described	in	the	
previous	example.	

After	 solving	 [ = HTT(Ç − HTU	Å)	 and	 t = HUT	[ + HUU	Å,	 we	 obtain	 vector	 of	
displacements	and	vector	of	nodal	forces	and	reactions	as	following:	

[ =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

1.657
0.420
−1.318
0
0
0

3.591
0 ⎭

⎪⎪
⎬

⎪⎪
⎫

	m, J =

⎩
⎪⎪
⎨

⎪⎪
⎧

	

0
0
0

−0.707
−0.155
0.155
1

−0.293⎭
⎪⎪
⎬

⎪⎪
⎫

	N.	 	 	 	 	 	 	(5.38)	
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5.3.4 Mechanical	analysis	–	prescribed	force	and	thermal	loading	

Let	us	assume	that	the	structure	from	the	previous	subchapters	is	subjected	to	a	force		
Z	 = 	1	N	 in	 node	 number	 3,	 and	 that	 all	 the	 bars	 are	 heated	 by	 500°C,	 as	 shown		
in	Figure	22.	

	
Figure	22	Example	with	prescribed	force	and	thermal	loading	

The	unknown	displacements	are	solved	with	the	use	of	relation		

H	[ = J − JV,		 	 	 	 	 	 	 	 	 (5.39)	

where	JW	is	a	vector	of	forces	in	the	nodes	caused	by	the	heat	loading.	

The	 corresponding	 vector	 of	 unknown	 nodal	 displacements	 is	 the	 same	 as	 (5.22),		
the	corresponding	vector	of	external	nodal	forces	is	the	same	as	(5.23)	and	the	global	
stiffness	matrix	of	the	size	of	4 × 4	is	assembled	as	(5.24).	

The	vector	of	forces	caused	by	the	heat	is	calculated	for	each	element	as	

JI 	= 	{	=	Ñ	Ö	Üá k ] ^
−] −^

l,	 	 	 	 	 	 	 (5.40)	

where	 Ñ	 is	 the	 temperature	 coefficient,	 Ö	 is	 the	 length	 of	 the	 element,	 Üá	 the	
temperature	difference	in	°C	and	C	and	S	the	cosine	and	sine	of	the	angle	between	the	
element	and	the	I	axis.	

From	 these	element	vectors	JI	 the	global	vector	of	heat	 forces	 in	 the	nodes	 can	be	
assembled	as		

JV = o	

−0.072
−0.54
−0.024
−0.018

p 	N.	 	 	 	 	 	 	 	 	 (5.41)	
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Now	it	is	possible	to	solve	the	equation	(5.39),	from	which	u	is	formularized	as	

[ = H(J − JV).	 	 	 	 	 	 	 	 	 (5.42)	

The	obtained	vector	of	nodal	displacements	is	

[ = o	

1.991
−1.130
3.733
0.481

p 	m.	 	 	 	 	 	 	 	 	 (5.43)	

5.3.5 Axial	forces	and	deformation	–	force	loading	

From	 the	 displacements	 it	 is	 possible	 to	 calculate	 deformation	 of	 unconstrained	
elements,	 i.e.	 those	 with	 no	 restrictions	 preventing	 them	 from	 elongation,	 using		
the	relation	

à = ∆L
L
= Y35Y*

L
,	 	 	 	 	 	 	 	 	 (5.44)	

where	∆Ö	 is	 the	elongation	of	 the	element	and	c4, c@	are	 local	displacements	of	 the	
element	calculated	from	the	global	displacements	as	

y
c4
c@
z = 	 O

] 0
^ 0
0 ]
0 ^

R \â

cM4
c'4
cM@
c'@

ä.	 	 	 	 	 	 	 	 (5.45)	

However,	 if	 the	 element	 is	 prevented	 from	 expansion,	 stress	 and	 internal	 forces	
develop	in	the	element.	This	stress	can	be	calculated	using	the	equation	

ã = {	à = {	 ∆L
L
.	 	 	 	 	 	 	 	 	 (5.46)	

By	 multiplying	 stress	 by	 the	 cross-sectional	 area,	 the	 axial	 force	 in	 the	 element	 is	
obtained:		

å = ã	= = {	à	= = {	 ∆L
L
	=.	 	 	 	 	 	 	 	 (5.47)	

If	the	stress	value	is	positive,	the	element	is	in	tension,	otherwise	it	is	in	compression.	

This	 is	 demonstrated	 using	 the	 example	 from	 previous	 subchapters.	 The	 truss	 is	
subjected	to	a	force	Z	 = 	1	N.	
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After	obtaining	the	vector	of	nodal	displacements	

[	 = 	

⎩
⎪
⎪
⎨

⎪⎪
⎧

	

3.591
0.420
−1.318
1.657
0
0
0
0 ⎭

⎪
⎪
⎬

⎪⎪
⎫

	m,		 	 	 	 	 	 	 	 (5.48)	

the	axial	force	in	each	element	can	be	obtained.	Firstly,	it	is	necessary	to	calculate	the	
nodal	 displacements	 in	 local	 coordinate	 system.	 For	 example,	 for	 element	 (1)	 it	 is	
calculated	as	

y
c4
c@
z = O

] 0
^ 0
0 ]
0 ^

R \â

cM!
c'Q
cMR
c'=

ä 	= 	 O

] 0
^ 0
0 ]
0 ^

R \â

0
0
0

−1.318

ä 	= 	 y 0
−1.318

z 	m.	 	 (5.49)	

The	axial	force	is	then	calculated	from	the	equation	(5.47)	as	

å = ã	= = {	à	= = {	 ∆L
L
	= = 1	 54.=4RR5"

Q
= 0.2196	N.	 	 	 	 (5.50)	

The	axial	forces	in	the	rest	of	the	elements	are	calculated	identically.	

5.3.6 Axial	forces	and	deformation	–	force	and	thermal	loading	

With	 increasing	 temperature	 in	 the	element,	 the	element	expands.	 If	 the	element	 is	
mechanically	 prevented	 from	 expanding,	 stress	 and	 internal	 forces	 develop	 in	 the	
element.	That	is	why	the	final	axial	forces	are	composed	of	forces	caused	by	mechanical	
loading	and	forces	caused	by	thermal	expansion.	

Consider	 an	 example	 as	 shown	 in	 Figure	 23.	 This	 example	 is	 taken	 from	 [12].	 The	
structure	consists	of	three	pinned	elements.	The	cross-sectional	areas	of	the	elements	
are	 respectively	 15	cm@,	 20	cm@	 and	 25	cm@.	 Assume	 { = 2 × 10!	å/mm@	 and		
Ñ = 1/75000	1/℃.	
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Figure	23	Truss	example	(taken	from	[12])	

 

Figure	24	Truss	example	(created	in	[18])	

Let	us	assume	that	the	temperature	of	the	element	(2)	is	raised	by	40℃.	

Due	to	boundary	conditions,	it	is	clear	from	Figure	23	that	the	displacements		

c= = cN = c! = cQ = cR = cS = 0.		

The	global	stiffness	matrix	of	the	size	8 × 8	is	assembled	as	

! = 109

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡147.14 47.14 0 0 −47.14 −47.14 −100 0
47.14 147.14 0 −100 −47.14 −47.14 0 0
0 0 0 0 0 0 0 0
0 −100 0 100 0 0 0 0

−47.14 −47.14 0 0 47.14 47,14 0 0
−47.14 47.14 0 0 47.14 47.14 0 0
−100 0 0 0 0 0 100 0
0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	kN/m.																														(5.51)	

and	for	each	element	the	vector	of	the	forces	caused	by	the	heat	JI	is	calculated	from	
the	equation	(5.40).	
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After	the	assembly	the	vector	of	the	heat	forces	is	

JV =

⎩
⎪
⎨

⎪
⎧

	

−640
−640
0
0
640
640 ⎭

⎪
⎬

⎪
⎫

	kN.	 	 	 	 	 	 	 	 																	(5.52)	

The	unknown	displacements	c4	and	c@	are	calculated	from		

HTT	[ + HTU	Å = J − JV.	 	 	 	 	 	 	 	 			(5.53)	

from	which	[	is	formularized	as	

[ = HTT(J − JV −HTU	Å) = y0.0033
0.0033

z 	m.	 	 	 	 	 	 			(5.54)	

The	reactions	in	the	supports	are	then	calculated	as	

t = HUT	[ + HUU	Å =

⎩
⎪
⎨

⎪
⎧

0
−329.42
329.42
329.42
−329.42

0 ⎭
⎪
⎬

⎪
⎫

	kN.	 	 	 	 	 	 (5.55)	

To	 calculate	 the	 axial	 force	 in	 the	 element	 (2)	 it	 is	 firstly	 necessary	 to	 know	 the	
elongation	 of	 the	 element.	 The	 elongation	 of	 the	 element	 (2)	 due	 to	 the	 raised	
temperature	is	calculated	using	the	relation	

ÜÖ = Ñ	Ö	Üá = 0.0023	m.	 	 	 	 	 	 	 	 (5.56)	

From	the	elongation	it	is	possible	to	finally	calculate	the	axial	force	in	the	element	(2)	
as	

å	 = 	{	=/Ö	 â

−]
−^
]
^

ä	â

c!
cQ
c4
c@

ä − {	=	 ZL
L
= 225.9	kN.	 	 	 	 	 (5.57)	

Since	the	axial	force	is	positive,	the	element	(2)	is	in	tension.	

If	the	temperature	of	the	element	(2)	was	raised	by	another	40℃	to	80℃,	the	axial	force	
would	change	to	å = 451.79	kN.	
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5.3.7 Complex	example	

Consider	a	truss	as	shown	in	Figure	25.	

	
Figure	25	Truss	structure	

The	 truss	 structure	 comprises	 17	 elements	 (bars).	 The	 bars	 are	 assigned	 numbers		
as	illustrated	in	Figure	26.	

 

Figure	26	Truss	structure	(created	in	[18])	

The	 structure	 is	 subjected	 to	 two	 external	 forces	 Z = 0.5	kN.	 Let	 us	 assume	 the	
modulus	of	elasticity	{ = 30 × 10=	Pa	and	sectional	area	of	the	elements	= = 0.2	m@.	
The	lower	bars	(1−4)	are	subjected	to	a	temperature	of	100℃.	

From	the	boundary	conditions	is	clear	that	the	displacements		

c4R = c4S = c4H = c@" = 0.		 	 	 	 	 	 	 (5.58)	
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Firstly,	the	global	stiffness	matrix	of	the	size	20 × 20	is	assembled.	Next,	the	vector	of	
external	forces	and	vector	of	the	heat	forces	are	put	together	as	

J =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

	

0
0
0

−500
0
0
0

−500
0
0
0
0
0
0
0
0
0
0
0
0 ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

	N,		JV =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

	

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−14.4
0
14.4
0 ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

	N.	 (5.59)	

Then	the	unknown	displacements	c4	to	c4Q	are	calculated	from	(5.53)	as		

[	 = HTT(J − JV −HTU	Å) =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
0.333
−0.167
0.167
−1.221
0

−1.138
−0.167
−1.221
−0.333
−0.167
−0.083
−1.055
0

−1.138
0.083
−1.055⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎫

	m,	 	 	 	 (5.60)	

and	from	them	the	reactions	as	

t	 = 	HUT	[ + HUU	Å = â

−264.4
500
264.4
500

ä 	N.	 	 	 	 	 	 (5.61)	

	



Mechanical Analysis  

51 

 

Let	us	calculate	the	axial	force	in	the	element	(3).	The	elongation	of	this	element	due	to	
the	raised	temperature	is	calculated	using	the	relation	

ÜÖ = Ñ	Ö	Üá = 0.0024	m.	 	 	 	 	 	 	 	 (5.62)	

From	the	elongation	it	is	possible	to	finally	calculate	the	axial	force	in	the	element	(2)	
as	

å	 = 	{	=/Ö	 â

−]
−^
]
^

ä	â

c4=
c4N
c4!
c4Q

ä − {	=	 ZL
L
= 242.8	N.	 	 	 	 	 (5.63)	

The	axial	force	of	the	element	is	positive,	therefore	the	element	is	in	tension.	

The	 axial	 forces	 of	 all	 the	 elements	 as	well	 as	 the	 displacements	 shows	 Figure	 27.	
Elements	in	tension	are	in	red	color,	elements	in	compression	in	green.	

	
Figure	27	Displacements	and	axial	forces	

Now	assume	that	the	temperature	in	the	lower	bars	is	raised	to	300℃.	Figure	28	shows	
that	the	axial	forces	have	changed.	Higher	temperatures	result	in	greater	compression	
and	smaller	tension	of	the	lower	bars.	
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Figure	28	Displacements	and	axial	forces	after	raising	the	temperature	in	the	lower	bars	

For	 comparison,	 Figure	 29	 shows	 the	 axial	 forces	 in	 the	 structure	 not	 affected		
by	the	thermal	loading:	

	
Figure	29	Displacements	and	axial	forces	without	thermal	loading	
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6 Analysis	of	a	reinforced	concrete	ceiling	
slab	at	normal	temperature	

The	 main	 goal	 of	 this	 thesis	 is	 to	 design	 an	 algorithm	 for	 analyzing	 a	 reinforced	
concrete	slab	exposed	to	thermal	loading.	The	previous	chapters	dealt	with	different	
ways	of	investigating	separately	thermal	and	mechanical	behavior	of	structures,	which	
served	as	research	on	possible	methods	to	use	in	this	algorithm.	Eventually,	we	decided	
for	a	slightly	different	approach,	which	 is	 in	detail	explained	 in	 this	chapter.	At	 this	
point	 both	 thermal	 and	mechanical	 analyses	 are	 coupled	 together	 for	 the	 purpose		
of	analyzing	a	reinforced	concrete	ceiling	slab.		

The	algorithm	designing	process	was	divided	 into	 two	parts,	 the	analysis	at	normal	
temperature	and	then	the	analysis	at	high	temperatures.	This	chapter	covers	the	first	
part	of	 the	designing	process,	 that	 is	 the	analysis	 at	normal	 temperature.	The	main	
principles	are	same	for	both	analyses.	

The	calculating	program	developed	in	this	work	was	coded	in	MATLAB	[18].		

The	method	chosen	for	the	analysis	is	very	similar	to	the	substitute	slender	reinforced	
concrete	columns	method,	which	is	in	detail	described	e.g.,	in	[13].		

The	 main	 principle	 of	 the	 method	 is	 to	 determine	 the	 moment	 and	 curvature	
dependance	[13].	The	curve	is	always	defined	for	a	constant	value	of	the	axial	 force	
(see	Figure	30).	The	dependance	curve	is	denoted	as	é	in	Figure	30.	According	to	[14],	
this	method	can	be	successfully	used	not	only	in	columns	analysis,	but	in	a	slab	analysis	
as	well,	provided	that	the	axial	force	is	always	set	to	zero.	

	
Figure	30	Moment-curvature	diagram	(taken	from	[13])	
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For	different	curvatures	the	equilibrium	of	internal	and	external	forces	is	calculated.	
The	 moment	 of	 internal	 forces	 calculated	 to	 the	 center	 of	 the	 cross-section	 is	 the	
moment	for	that	precise	curvature.	After	calculating	moment	for	different	curvatures	
and	connecting	the	values,	the	diagram	is	drawn.	The	curve	ends,	when	the	limit	strain	
value	is	reached	in	at	least	one	of	the	materials.	The	maximum	moment	capacity	for	the	
defined	cross-section	and	constant	value	of	 the	axial	 force	 is	 the	maximum	moment	
value	in	the	moment-curvature	diagram.	This	is	also	the	value	we	are	looking	for	when	
analyzing	the	slab.	

This	method	can	be	used	for	structures	either	at	normal	or	at	high	temperatures.	The	
differences	in	the	method	and	input	parameters	are	specified	in	the	next	chapter.	

The	 concept	 of	 the	 program	 is	 following.	 For	 different	 values	 of	 curvature,		
the	 corresponding	 height	 of	 the	 compressed	 part	 of	 cross-section	 is	 obtained	 from		
the	 equilibrium	 of	 internal	 forces.	 For	 each	 curvature,	 the	 corresponding	 moment	
capacity	is	calculated.	The	program	stops	once	such	a	curvature	is	reached,	for	which		
the	 internal	 forces	 equilibrium	 no	 longer	 exists.	 The	 program	 then	 plots		
the	 moment-curvature	 diagram	 from	 which	 the	 maximum	 moment	 capacity	 for		
the	given	cross-section	is	procured	as	a	maximum	moment	value	of	the	diagram.	

The	program	is	based	on	the	following	assumptions:	

• Bernoulli-Navier	hypothesis	before	and	after	deformation,	

• the	 parameters	 of	 the	 cross-section	 such	 as	 geometry	 and	 dimensions	 are	
known,	

• the	mechanical	and	thermal	material	properties	for	normal	temperatures	are	
known,	

• the	strain	of	the	reinforcement	and	the	concrete	in	the	same	place	is	assumed	
to	be	the	same,	

• concrete	in	tension	is	neglected,	

• since	 the	program	 focuses	on	purely	bent	 structures,	 such	as	 slabs,	 the	axial	
force	is	always	equal	to	zero.	

Amongst	the	advantages	of	using	this	program	count:	

• although	it	currently	works	with	material	properties	as	specified	in	EN	1992-1-
1	[15],	these	can	be	easily	customized,	

• the	 upper	 reinforcement	 is	 optionally	 included,	 and	 the	moment	 capacity	 is	
calculated	with	its	addition.	

In	this	chapter	each	step	of	the	design	is	described.	Part	of	the	design	is	a	verification	
with	 existing	 programs	based	 on	 several	 benchmark	 examples	 of	 a	 slab	with	 given	
parameters.	
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6.1 Required	inputs	
Following	inputs	are	necessary	to	specify	in	the	algorithm:	

Geometry:	

• the	height	of	the	cross-section	ℎ	

• the	area	of	the	reinforcement	in	tension	=*4	and	in	compression	=*@	

• the	diameter	of	the	reinforcing	bars	in	tension	è*4	and	in	compression	è*@	

Material	properties	

• concrete	characteristic	strength	72+	

• steel	characteristic	yield	strength	7'+	

• Young’s	modulus	of	elasticity	for	steel	{*	

6.1.1 Material	properties	at	normal	temperature	

Material	 properties	 of	 both	 concrete	 and	 reinforcing	 steel	 are	 taken	 from	 [7].	 For	
concrete,	the	parabolic-rectangular	stress-strain	diagram	describes	the	behavior	of	the	
material	 at	 normal	 temperatures	 as	 illustrated	 in	 EN	 1992-1-1	 [15],	 Fig.	 3.3		
(see	Figure	31).	

 

Figure	31	Parabolic-rectangular	stress-strain	diagram	of	concrete	(taken	from	[15])	

For	steel,	the	bi-linear	stress-strain	diagram	is	assumed	as	illustrated	in	EN	1992-1-1	
[15],	 Fig.	 3.8	 (see	Figure	32).	 	 For	 the	 algorithm	 the	diagram	with	 a	 horizontal	 top	
branch	is	selected.	
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Figure	32	Bi-linear	stress-strain	diagram	of	steel	(taken	from	[15])	

The	 design	 strengths	 of	 concrete	 and	 steel	 are	 calculated	 with	 accordance	 to		
EN	1992-1-1	[15]	as	

72- =
.,0
/1
	for	concrete	and	 	 	 	 	 	 	 	 (6.1)	

7'- =
."0
/%
	for	steel,	 	 	 	 	 	 	 	 	 (6.2)	

where	 ?[ 	 is	 the	 coefficient	 for	 concrete	 (?[ = 1.5)	 and	 ?\	 the	 coefficient	 for	 steel		
(?\ 	= 	1.15).	

6.2 Load-bearing	capacity	at	normal	temperature	
The	 load-bearing	 capacity	 is	 calculated	 from	 the	 equilibrium	 of	 the	 internal	 forces		
	Z*4 + Z*@ + Z2 = 0,	 	 	 	 	 	 	 	 	 (6.3)	

where	Z*4	 and	Z*@	 are	 the	 forces	 in	 the	 reinforcements	 in	 tension	and	 compression	
respectively,	and	Z2	the	force	in	the	compressed	concrete.	

6.2.1 Forces	in	reinforcements	

The	forces	in	reinforcing	steel	are	calculated	as	

Z&7	 = =&7 	ã*$,	 	 	 	 	 	 	 	 	 	 (6.4)	

where	=&7 	is	the	area	of	reinforcement	and	ã*$	the	stress	in	reinforcement	determined	
from	the	stress-strain	diagram	of	steel.	



Analysis of a reinforced concrete ceiling slab at normal temperature  

57 

 

6.2.2 Forces	in	concrete	

The	part	of	the	concrete	cross-section	which	is	in	tension	is	neglected.	Therefore,	only	
the	forces	in	compressed	concrete	are	part	of	the	balance	of	internal	forces.	

The	force	Z?	in	the	compressed	concrete	is	calculated	as	follows.	The	compressed	part	
of	 the	cross-section	 is	divided	 into	a	 finite	number	of	horizontal	sections	(strips)	of	
equal	heights.	For	this	algorithm	a	value	of	100	sections	was	chosen.	For	each	section	
the	strain	à2$	in	the	center	of	the	section	is	determined	from	the	similarity	of	triangles	
(see	 Figure	 33).	 The	 stress	 in	 each	 section	 is	 then	 obtained	 from	 the	 stress-strain	
diagram.	The	force	in	each	section	is	calculated	as	

Z2$	 = σ2$	Q	ℎ$,		 	 	 	 	 	 	 	 	 (6.5)	

where	Q	is	the	width	of	the	section,	which	is	in	case	of	a	slab	1	m,	and	ℎ$	is	the	height	of	
the	section,	whereas	all	the	sections	are	of	equal	height,	that	means	ℎ4 = ℎ@ =	. . = ℎ4"".	

	
Figure	33	Division	of	the	compressed	part	of	the	cross-section	into	strips	

The	 final	 force	 in	 compressed	 concrete	 is	 then	 obtained	 as	 a	 sum	 of	 forces	 in	 the	
sections	

∑ Z?$	784
4"" .	 	 	 	 	 	 	 	 	 	 (6.6)	

6.2.3 The	load-bearing	capacity	

The	 load-bearing	 capacity	 of	 the	 cross-section	 is	 given	 by	 the	 maximum	 moment	
capacity	<,-,	which	is	calculated	from	the	internal	forces	rotating	around	the	center	of	
the	cross-section.	

Therefore,	 to	 determine	 the	 load-bearing	 capacity	 of	 the	 cross-section,		
the	 corresponding	<,-	is	 calculated	 for	 each	 curvature.	 The	 algorithm	 starts	 with		
a	very	low	value	of	curvature,	for	which	it	finds	the	equilibrium	of	internal	forces,	and	
subsequentially	calculates	the	maximum	moment	capacity.	Then	it	incrementally	adds	
curvature	as	
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S	‘’ = S’’ + ÜS’’,	 	 	 	 	 	 	 	 	 (6.7)	

and	repeats	the	process,	as	long	as	the	equilibrium	can	be	obtained	(see	Figure	34).	

	
Figure	34	Strain	and	curvature	in	the	cross-section	

Once	the	program	reaches	a	curvature,	for	which	the	internal	forces	equilibrium	does	
not	exist,	it	plots	the	moment	curvature	diagram.	

The	load-bearing	capacity	is	then	given	by	the	maximum	value	of	<,-	in	the	diagram.	

6.3 Methods	of	determining	the	height	of	the	compressed	
part	of	the	cross-section	

The	easiest	way	to	find	the	balance	between	internal	forces	in	the	cross-section	is	to	
determine	a	very	low	value	of	the	height	of	the	compressed	part	of	the	cross-section	I	
and	gradually	increase	I	in	increments	ÜI	of	a	given	value	(see	Figure	35).	Amongst	
the	advantages	of	this	method	counts	simplicity	of	coding	the	algorithm.	On	the	other	
hand,	the	calculating	time	of	the	program	is	in	most	cases	unnecessarily	high.	

	
Figure	35	Determining	the	height	of	the	compressed	part	of	cross-section	

Another	way	of	obtaining	I	is	using	the	interval	halving	method.	The	program	chooses	
first	I	in	the	middle	of	the	height	of	the	cross-section.	If	Z2 > Z*,	second	I	is	chosen	in	
the	middle	of	the	upper	half	of	the	height,	if	Z2 < Z*,	I	is	in	the	middle	of	the	lower	half	
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of	the	height	of	the	cross-section.	Similarly,	next	I	is	always	chosen	in	the	middle	of	the	
previous	span,	resulting	in	the	new	increment	being	only	half	as	big	as	the	previous	
one.	 Using	 this	 method,	 the	 user	 can	 benefit	 from	 the	 calculating	 time	 being	
significantly	shorter	compared	to	the	previous	method.	

Even	faster	and	more	elegant	way	of	finding	I	proved	to	be	the	following	concept.		This	
method	is	based	on	the	fact,	that	when	I	is	too	small,	Z*	will	always	be	greater	than	Z2,	
which	is	similar	to	the	previous	concept.	The	algorithm	starts	with	I	small	enough,	that	
the	relation	Z* − Z2 > 0	is	true.	In	each	following	step	an	increment	is	added	to	I,	until	
finally	Z* − Z2 < 0.	At	this	point,	the	algorithm	linearly	interpolates	between	the	I	and	
I	from	the	previous	step,	from	which	it	obtains	a	new	I,	where	Z* − Z2	~	0.	With	this	
new	I	obtained	from	the	interpolation	the	algorithm	calculates	the	difference	in	the	
internal	forces	Z* − Z2.	This	process	is	repeated	until	the	difference	Z* − Z2	 is	smaller	
than	a	required	value.	

In	the	designed	algorithm,	the	last	of	the	methods	of	obtaining	I	was	used	due	to	its	
shortest	average	calculating	time	and	versatility.	
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6.4 The	description	of	the	algorithm	at	normal	
temperature	

The	algorithm	serves	as	a	tool	to	analyze	reinforced	concrete	slabs.	

The	algorithm:	

1. Entry	parameters	specification:	material	properties,	geometry	

2. Incremental	cycle	S’’ = 0.005 →	infinite	

3. 					while	ó > 1	å;	Residuum	ó = Z2 + Z*4 + Z*@	

4. 					I = I + ÜI	or	linear	interpolation	

5. calculate	à2]	

6. determine	strain	in	reinforcement	à*4	and	à*@	from	the	similarity	
of	triangles	

7. determine	stress	in	reinforcement	ã*4	and	ã*@	for	à*4	and	à*@	with	
use	of	the	stress-strain	diagram	

8. 					calculate	Z*4	and	Z*@	from	the	stress	

9. for	ò = 1 → 100;	divide	the	compressed	part	of	the	cross-section	
into	100	sections	(strips)	

10. determine	strain	and	stress	in	each	section	

11. calculate	Z2$	for	each	section	

12. calculate	<2$	for	each	section	

13. end	for	

14. 					calculate	Z2	as	a	sum	of	Z2$	

15. 					calculate	ó = Z2 + Z*4 + Z*@	

16. end	while	

17. check	for	limit	strain	

18. check	for	the	limit	height	of	the	compressed	part	of	the	cross-section	I	

19. calculate	the	moment	capacity	<,-	

20. S’’ = S’’ + ÜS’’	

21. end	incremental	cycle	once	the	equilibrium	can	no	longer	be	found	

22. plot	moment-curvature	diagram	
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1.	Entry	parameters	specification:	material	properties,	geometry	

Firstly,	it	is	necessary	to	specify	material	characteristic	strengths	72+	and	7'+	and	the	
modulus	 of	 elasticity	 for	 steel	 {*.	 The	 geometry	 of	 the	 cross-section	 needs	 to	 be	
specified	as	well.	The	algorithm	automatically	calculates	the	yield	strain	of	steel	à'.	

2.	The	curvature	loop	

The	algorithm	starts	a	cycle	which	calculates	the	corresponding	moment	capacity	for	
different	curvatures.	Before	the	loop	starts,	it	is	necessary	to	specify	values	of	initial	
curvature	S’’	and	increment	ÜS’’.	The	value	of	increments	affects	the	smoothness	of	the	
moment-curvature	diagram.	For	this	algorithm	the	initial	curvature	as	well	as	value	of	
the	increments	was	set	to	S’’ = ÜS’’ = 0.005	m54.	

The	loop	automatically	ends	once	it	is	no	longer	possible	to	reach	the	equilibrium	of	
the	internal	forces.	

3.	While	cycle	

To	 calculate	 the	moment	 capacity	 for	 each	 curvature,	 the	height	of	 the	 compressed		
cross-section	 needs	 to	 be	 determined,	 for	which	 the	 equilibrium	with	 the	 required	
precision	is	reached.		

Firstly,	 the	 required	 precision	 needs	 to	 be	 specified.	 For	 this	 algorithm	 a	 required	
precision	ó = 1	N	is	set.	

The	 height	 of	 the	 compressed	 part	 of	 cross-section	 is	 determined	 with	 use		
of	the	method	described	in	chapter	6.3.	For	each	I	in	the	loop	the	strain	in	the	upper	
fibers	is	calculated	as	

à2] = I	S′′,	 	 	 	 	 	 	 	 	 	 (6.8)	

which	illustrates	Figure	34.	

Since	the	method	presumes	Bernoulli-Navier	behavior	before	and	after	deformation,	
strain	 in	 any	 part	 of	 the	 cross-section	 can	 be	 determined	 from	 the	 similarity		
of	triangles.	

With	use	of	the	stress-strain	diagrams	the	stresses	and	then	the	corresponding	internal	
forces	 in	 reinforcements	 as	 well	 as	 in	 compressed	 concrete	 are	 calculated.	 The	
residuum	ó	is	calculated	from	the	forces	in	reinforcements	and	concrete	as	

ó = Z2 + Z*4 + Z*@.	 	 	 	 	 	 	 	 	 (6.9)	

If	the	residuum	does	not	meet	the	criteria	for	precision,	that	is	if	the	absolute	value	of	
ó	is	greater	than	the	value	of	the	required	precision,	the	height	of	the	compressed	part	
of	cross-section	I	is	modified,	either	by	linear	interpolation	or	incrementally.	

The	loop	ends	as	soon	as	the	criterium	for	precision	is	met.	
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17.	Check	for	limit	strain	

Once	the	equilibrium	of	 internal	 forces	 is	acquired,	 it	 is	necessary	to	check	the	final	
value	of	 the	strain	 in	upper	 fibers	à2].	 If	à2]	 is	smaller	 than	 limit	strain	given	 in	 the	
stress-strain	diagram	for	concrete	à2]@,	the	algorithm	proceeds	to	a	next	step.	However,	
if	 the	 limit	 strain	 is	 exceeded,	 the	 cross-section	 is	 above	 its	maximum	 load-bearing	
capacity	and	the	calculations	are	terminated.	

18.	Check	for	the	limit	height	of	the	compressed	part	of	the	cross-section	I	
If	0 < I < ℎ,	

where	 ℎ	 is	 the	 height	 of	 the	 cross-section,	 the	 algorithm	 proceeds	 to	 a	 next	 step.	
Otherwise,	if	I	does	not	meet	the	criterium	above,	the	equilibrium	of	internal	forces	
cannot	be	found,	and	the	calculations	are	terminated.	

6.5 Verification	with	existing	programs	
To	 find	 out	 the	 correctness	 and	 accuracy	 of	 the	 algorithm,	 two	 existing	 computer	
programs,	RCC	[19]	and	InDion	[20]	were	selected	to	verificate	the	calculations	with	
use	of	so-called	benchmark	examples.	Both	programs	were	created	by	the	Department	
of	Concrete	and	Masonry	Structures	at	CTU	in	Prague	and	are	available	free	of	charge.	
RCC	 [19]	 is	 a	 program	 for	 designing	 reinforced	 concrete	 columns.	 It	 calculates	 the	
moment	capacity	for	a	specific	cross-section	and	plots	the	moment-curvature	diagram.	
InDion	[20]	is	a	program	which	plots	interaction	diagram	of	a	cross-section	based	on	
given	parameters,	such	as	geometry	and	material	parameters.	

6.5.1 Benchmark	example	No.	1	

Consider	a	reinforced	concrete	slab	with	following	parameters:	

ℎ = 200	mm,	 =*4 = =*@ = 374	mm@,	 è = 10	mm,	 ö = 25	mm,	 axial	 force	 å = 0	kN,	
concrete	]20/25,	7̂ : = 500	MPa,	{& = 200	GPa	

This	example	is	firstly	solved	with	use	of	the	newly	designed	algorithm.	The	input	to	
the	algorithm	with	the	material	properties	and	geometry	is	shown	in	Figure	36.	

	
Figure	36	Input	in	the	designed	algorithm	
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Figure	37	shows	the	output	of	the	algorithm,	which	takes	form	of	a	moment-curvature	
diagram.	As	the	diagram	shows,	the	maximum	moment	capacity	calculated	with	use	of	
the	design	algorithm	is	<,- = 27.79	kNm.	

 

 

Figure	37	Output	from	the	designed	algorithm;	moment-curvature	diagram	

The	same	example	was	solved	with	use	of	the	computer	program	RCC	[19].	Figure	38	
shows	the	preprocessor	of	RCC	[19]	with	filled-in	parameters	such	as	dimensions,	load,	
and	 materials.	 Since	 the	 program	 does	 not	 allow	 zero	 axial	 force,	 the	 axial	 force		
å1- = 1	N	was	inserted	instead,	which	has	an	insignificant	impact	on	the	result.	As	the	
program’s	primary	use	is	for	designing	columns,	the	cross-section	of	the	slab	is	in	the	
preprocessor	represented	by	a	width	of	1	m.	
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Figure	38	RCC	[19]	Preprocessor	

The	output	of	RCC	[19]	 (Figure	41)	 takes	 form	of	a	moment	capacity,	which	 is	very	
convenient	for	the	verification	with	the	designed	algorithm.	

According	to	RCC	[19],	<,- = 27.7	kNm,	which	makes	a	total	difference	of	0.09	kNm	
from	the	moment	calculated	with	the	algorithm.	

 

Figure	39	RCC	[19]	Postprocessor	

The	same	input	parameters	were	then	inserted	in	the	computer	program	InDion	[20].	
The	cross-section	of	a	slab	was	represented	by	a	cross-section	of	a	width	of	1	m	as	
shows	Figure	40.		
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Figure	40	Input	in	InDion	[20]	

The	 output	 of	 InDion	 [20]	 takes	 form	 of	 an	 interaction	 diagram	 and	 6	 points		
of	the	diagram.	For	the	verification	of	the	algorithm,	we	were	interested	in	the	moment	
value	for	an	axial	force	equal	to	zero	(<,-=),	which	can	be	compared	to	the	maximum	
moment	obtained	from	the	algorithm.	

	
Figure	41	Output	from	InDion	[20]	

As	shown	in	Figure	41,	the	moment	capacity	for	zero	axial	force	calculated	in	InDion	
[20]	is	<,-= = 27.85	kNm.		
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The	total	difference	between	the	moments	obtained	from	the	designed	algorithm	and	
computer	program	InDion	[20]	is	0.06	kNm.	

6.5.2 Benchmark	example	No.	2	

As	 a	 second	 example,	 let	 us	 assume	 a	 reinforced	 concrete	 slab	 with	 following	
parameters:	

ℎ = 250	mm,	=*4 = =*@ = 1100	mm@,	è = 14	mm,	ö = 35	mm,	 axial	 force	å = 0	kN,	
concrete	]30/37,	7̂ : = 500	MPa,	{& = 200	GPa	

The	input	parameters	in	the	algorithm	are	shown	in	Figure	42.	

	
Figure	42	Input	in	the	designed	algorithm	

According	 to	 the	 calculations,	 the	 maximum	moment	 capacity	 of	 the	 cross-section		
is	<,- = 95.24	kNm	(Figure	43).	

 

Figure	43	Output	from	the	designed	algorithm;	moment-curvature	diagram	
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The	 same	 example	 was	 solved	 in	 the	 computer	 program	 RCC	 [19]	 as	 well.	 The	
preprocessor	and	postprocessor	of	RCC	[19]	are	shown	 in	Figure	44	and	Figure	45.	
According	 to	RCC	 [19],	<,- = 94	kNm,	which	makes	 a	 total	 difference	 of	1.24	kNm	
from	the	moment	capacity	calculated	with	the	designed	algorithm.	

 

Figure	44	RCC	[19]	Preprocessor	

 

Figure	45	RCC	[19]	Postprocessor	

Figure	 46	 and	 Figure	 47	 show	 the	 input	 and	 output	 from	 the	 computer	 program		
InDion	 [20].	 The	 moment	 capacity	 for	 zero	 axial	 force	 calculated	 in	 InDion	 [20]	
is	 <,-= = 95.44	kNm,	 which	 compared	 to	 the	 result	 obtained	 in	 the	 algorithm		
is	0.2	kNm	higher.	
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Figure	46	Input	in	InDion	[20]	

 

Figure	47	Output	from	InDion	[20]	
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6.5.3 Benchmark	example	No.	3	

For	 the	 third	 example,	 let	 us	 assume	 a	 reinforced	 concrete	 slab	 with	 following	
parameters:	

ℎ	 = 	140	mm,	=*4 = 870	mm@,	=*@ = 283	mm@,	è4 = 12	mm,è@ = 8	mm,	ö = 25	mm,	
axial	force	å = 0	kN,	concrete	]20/25,	7'+ = 500	MPa,	{* = 200	GPa	

Since the program RCC [19] does not allow different values for =*4 and =*@, this	example	
could	be	verificated	only	with	the	output	from	InDion	[20]. 
The	input	in	the	algorithm	is	shown	in	Figure	48.	

	
Figure	48	Input	in	the	designed	algorithm	

Figure	49	shows	the	output	from	the	algorithm	with	the	maximum	value	of	the	moment	
capacity	<,- = 35,69	kNm.	

	
Figure	49	Output	from	the	designed	algorithm;	moment-curvature	diagram	
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The	input	in	the	computer	program	InDion	[20]	is	shown	in	Figure	50.	

 

Figure	50	Input	in	InDion	[20]	

As	 shown	 in	 Figure	 51,	 the	 moment	 capacity	 corresponding	 to	 zero	 axial	 force		
is	<,-= = 35.83	kNm.	

 

Figure	51	Output	from	InDion	[20]	
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The	total	difference	between	the	moments	obtained	from	the	designed	algorithm	and	
computer	program	InDion	[20]	is	0.14	kNm.	

6.5.4 Assessment	

	The	differences	between	the	moment	values	obtained	in	the	designed	algorithm	and	
existing	programs	are	in	all	cases	sufficiently	small.	Therefore,	based	on	the	benchmark	
examples,	it	can	be	said	that	the	algorithm	works	properly	with	a	minimum	error	and	
is	applicable	for	a	given	structure.	
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7 Analysis	of	a	reinforced	concrete	ceiling	
slab	at	high	temperature	

The	 algorithm	 for	 the	 analysis	 of	 the	 reinforced	 concrete	 ceiling	 slab	 at	 high	
temperature	 has	 its	 basis	 in	 the	 algorithm	 for	 the	 analysis	 at	 normal	 temperature,	
which	 is	 in	 detail	 described	 in	 the	 previous	 chapter.	 Again,	 for	 different	 values	 of	
curvature	the	height	of	the	compressed	part	of	the	cross-section	is	determined	from	
the	equilibrium	of	internal	forces.	This	time,	the	stress-strain	diagrams	for	materials	at	
high	 temperatures	 as	 specified	 in	 EN	 1992-1-2	 [7]	 are	 used.	 Since	 the	 material	
properties	change	with	temperatures,	it	is	essential	to	know	the	temperature	of	each	
part	 of	 the	 cross-section	 at	 the	 time	 step,	 for	 which	 the	 analysis	 is	 performed.		
The	designed	algorithm	does	not	include	a	thermal	analysis,	instead,	it	follows	up	on	
an	existing	program	TempAnalysis	(TA)	[17],	which	focuses	on	a	thermal	analysis	of		
a	concrete	cross-section.	The	resulting	data	from	TA	[17]	containing	temperatures	in	
the	 cross	 section	 are	 called	 in	 the	 new	 algorithm.	 With	 this	 data	 the	 algorithm	
calculates	 the	 corresponding	 moment	 for	 each	 curvature	 and	 plots	 the	 moment-
curvature	 diagram	 for	 the	 given	 cross	 section,	 from	 which	 the	 maximal	 moment	
capacity	can	be	deduced	as	the	greatest	moment	value.	

A	 pre-requisite	 for	 using	 the	 algorithm	 is	 to	 have	 obtained	 the	 temperature	
development	of	the	cross	section.	The	user	then	specifies	parameters	such	as	geometry	
of	the	cross-section,	material	attributes	and	the	required	time	step.		

The	program	is	based	on	the	following	assumptions:	

• Bernoulli-Navier	hypothesis	before	and	after	deformation,	

• the	 parameters	 of	 the	 cross-section	 such	 as	 geometry	 and	 dimensions	 are	
known,	

• the	 mechanical	 and	 thermal	 material	 properties	 for	 normal	 and	 high	
temperatures	are	known,	

• for	 the	 high-temperature	 conditions,	 the	 creep	 and	 transient	 strains	 are	
neglected,	

• concrete	in	tension	is	neglected,		

• the	temperature	of	the	reinforcement	is	assumed	to	be	equal	to	the	temperature	
of	the	concrete	in	the	position	of	the	cross-section,	where	the	center	of	the	rebar	
is	located,	

• the	strain	of	the	reinforcement	and	the	concrete	in	the	same	place	is	assumed	
to	be	the	same,	

• since	 the	program	 focuses	on	purely	bent	 structures,	 such	as	 slabs,	 the	axial	
force	is	always	equal	to	zero.	
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Amongst	the	advantages	of	using	this	program	count:	

• the	 program	 can	 be	 used	 for	 any	 fire	model	 (nominal	 fire	 curve,	 fire	 curves	
which	include	the	cooling	phase,	advanced	fire	models	etc.),	

• although	 it	 currently	 works	 with	 material	 properties	 as	 specified		
in	EN	1992-1-2	[7],	these	can	be	easily	customized,	

• the	 upper	 reinforcement	 is	 optionally	 included,	 and	 the	moment	 capacity	 is	
calculated	with	its	addition.	

7.1 Temperatures	in	the	structure	
The	program	follows	up	on	TempAnalysis	[17],	a	computer	program	based	on	FEM	for	
thermal	analysis	of	a	cross-section	exposed	to	fire.	After	entering	the	geometry	of	the	
cross-section,	 material	 properties	 and	 a	 fire	 model	 in	 the	 program,	 a	 table		
of	 temperatures	 in	 each	 time	 and	 location	 of	 the	 cross-section	 is	 obtained.		
For	 illustration,	 this	 table	 is	 shown	 in	 Figure	 52.	 In	 the	 table,	 the	 user	 is	 given	
temperatures	in	20	seconds	time	steps	and	1	mm	thicknesses.	

	
Figure	52	Complete	temperature	data	(obtained	from	[17])	

Notice	that	the	temperatures	across	the	cross-section	in	the	table	form	isotherm-like	
shapes	similarly	to	the	real	thermal	development	in	the	structure.	This	effect	is	because	
after	zooming	out,	same	numbers	look	the	same.	

To	do	the	analysis,	it	is	necessary	to	be	able	to	define	a	temperature	at	any	time	and	
location	of	the	cross	section	including	parts	and	time	steps,	which	are	not	included	in	
the	result	table.	Therefore,	the	first	step	of	the	program	is	to	do	a	linear	interpolation	
across	the	table.	For	this	an	independent	function	was	designed,	which	is	later	called	
in	the	analyzing	algorithm.	
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Three	interpolations	in	total	are	done	to	obtain	the	final	temperature	at	each	time	step	
and	 location.	 First	 two	 interpolate	 the	 temperature	 at	 the	 specified	 height		
of	the	cross-section	for	the	closest	lower	and	higher	time	step.	The	third	interpolation	
is	for	the	temperature	at	the	specified	time	step.	

For	 a	better	understanding,	 let	us	 assume	a	 slab	of	 a	 given	height	ℎ = 250	mm,	 for	
which	a	temperature	at	I = 21.5	mm	at	a	time	of	' = 3630	s	is	to	be	determined.	

	Figure	 53	 shows	 the	 TempAnalysis	 preprocessor,	 from	 which	 the	 data	 table	 is	
obtained	by	clicking	the	button	in	the	bottom-right	corner	Save	data.	

	
Figure	53	TempAnalysis	preprocessor	

This	 table	 obtains	 data	 for	 time	 steps	 of	 20	 s	and	 thicknesses	 of	 whole	 mm,	 both	
starting	with	a	zero.	It	is	clear	that	the	final	temperature	is	located	somewhere	between	
the	rows	182	and	183	and	 the	columns	22	and	23	and	 therefore	 the	algorithm	will	
interpolate	between	the	highlighted	values	in	Figure	54.	

 

Figure	54	Values	used	for	interpolation		
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	According	to	a	manual	linear	interpolation,	the	temperature	at	I = 21.5	mm	and	time	
' = 3630	s	is	5 = 	506.9211℃.	

To	prove	the	correctness	of	the	manual	calculation,	let	us	look	at	a	temperature	profile	
generated	 from	 TempAnalysis	 [17]	 for	 time	 ' = 60	min = 3600	s,	 illustrated		
in	Figure	55.	

	
Figure	55	Temperature	profile	at	. = 60	min	(generated	from	[17])	

According	to	the	temperature	profile,	the	temperature	at	I = 21.5	mm	should	slightly	
exceed	500℃.	

Now	let	us	enter	the	required	parameters	together	with	the	data	table	in	the	algorithm	
as	shown	in	Figure	56.	

	
Figure	56	Input	in	the	algorithm	for	linear	interpolation	

Based	on	the	input,	the	algorithm	calculates	the	temperature	at	I = 21.5	mm	and	time	
' = 3630	s	as	5 = 	506.9211℃,	which	is	the	exact	same	value	as	the	one	obtained	from	
the	 manual	 linear	 interpolation.	 Therefore,	 a	 conclusion	 can	 be	 drawn	 that		
the	algorithm	works	correctly.	
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A	boundary	condition	needed	to	be	specified	 in	case	of	searching	for	a	 temperature		
at	 a	 time	 step	 exceeding	 the	 range	 covered	 in	 the	 table.	 That	 is	 why	 a	 linear	
extrapolation	is	included	in	the	algorithm.	

7.2 Load-bearing	capacity	at	high	temperatures	
A	similar	approach	to	the	one	at	normal	temperature	is	employed	when	calculating	the	
moment-curvature	dependance	and	searching	for	the	maximum	load-bearing	capacity	
of	the	cross-section	at	high	temperatures.	However,	there	are	two	main	differences:	

• temperature-dependent	 material	 properties	 of	 concrete	 and	 steel	 at	 high	
temperatures	as	specified	in	EN	1992-1-2	[7]	are	used	in	the	program,	

• total	 strain	 of	 both	 concrete	 and	 steel	 comprises	 thermal	 strain	 and		
stress-dependent	strain.	

7.2.1 Material	properties	at	high	temperature	

The	stress-strain	diagrams	for	concrete	and	steel	were	changed	to	correspond	with	the	
diagrams	described	in	EN	1992-1-2	[7].	The	stress-strain	diagram	for	concrete	exposed	
to	high	temperatures	shown	in	EN	1992-1-2	[7],	Fig.	3.1	is	illustrated	in	Figure	57.	

 

Figure	57	Stress-strain	diagram	of	concrete	at	high	temperatures	(taken	from	[7])	

The	 nonlinear	 descending	 curvature	 is	 used	 in	 the	 program	 to	 achieve	 a	 higher	
accuracy	 of	 the	 calculations.	 The	 temperature-dependent	 parameters	 of	 the	 stress-
strain	diagram	are	automatically	determined	for	each	temperature	from	EN	1992-1-2	
[7],	Table	3.1	(see		Figure	58).	
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Figure	58	Values	for	the	parameters	of	the	stress-strain	relationship	of	concrete		
(taken	from	[7])	

The	main	parameters	of	the	stress-strain	diagram	of	concrete	used	in	the	program	are	
those	 for	 siliceous	 aggregates,	 because	 of	 their	 worse	 properties	 compared	 to	 the	
calcareous	aggregates,	resulting	in	the	algorithm	being	on	the	safe	side.	

The	 stress-strain	 diagram	 for	 steel	 exposed	 to	 high	 temperatures	 shown		
in	 EN	 1992-1-2	 [7],	 Fig.	 3.3	 is	 used	 in	 the	 algorithm.	 The	 diagram	 is	 illustrated		
in	Figure	59.		
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Figure	59	Stress-strain	diagram	of	steel	at	high	temperatures	(taken	from	[7])	

The	temperature-dependent	parameters	of	the	stress-strain	diagram	are	determined	
for	each	temperature	from	EN	1992-1-2	[7],	Table	3.2a	(see	Figure	60).	

 

Figure	60	Values	for	the	parameters	of	the	stress-strain	relationship	of	steel	(taken	from	[7])	

The	algorithm	works	with	parameters	for	hot	rolled	steel,	so	only	columns	number	2,	
4	and	6	are	included	in	the	code.	

The	total	strain	of	both	concrete	and	steel	at	high	temperatures	is	generally	assumed	
to	be	composed	of	four	strain	components	(see	below).	The	stress-dependent	strain,	
the	thermal	strain,	the	creep	strain,	and	the	transient	strain	[2].		
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7.2.2 Strain	

When	 analyzing	 concrete	 at	 high	 temperatures,	 several	 material	 models	 can	 be	
implied,	as	described	in	EN	1992-1-2	[7]	(see	also	[2]).	In	some	of	the	models,	the	creep	
strain	and	the	transient	strain	are	implicitly	included,	in	others	neglected,	as	it	is	stated		
in	EN	1992-1-2	[7]	and	in	[2].	For	this	work,	we	chose	to	neglect	the	creep	strain	and	
the	transient	strain	due	to	their	low	impact	on	the	analysis	result.	Therefore,	the	total	
strain	is	calculated	from	

à = àW_ + à3,2,	 	 	 	 	 	 	 	 	 (7.1)	

where	àD`	is	the	thermal	strain	and	à3,2	the	stress-dependent	strain.	The	thermal	strain	
of	 concrete	 is	 obtained	 for	 each	 temperature	 from	 the	 diagram	 illustrated		
in	EN	1992-1-2	[7],	Fig.	3.5	(see	Figure	61).	

 

Figure	61	Total	thermal	elongation	of	concrete	(taken	from	[7])	

When	 determining	 the	 thermal	 strain,	 again,	 the	 diagram	 for	 siliceous	 aggregates	
(curve	1)	is	used	in	the	algorithm.	

When	analyzing	steel	under	high	temperatures,	we	also	follow	the	simplified	approach	
of	 neglecting	 creep	 strain	 and	 transient	 strain,	 leading	 in	 total	 steel	 strain	 being	
calculated	from	

à = àW_ + à3,*,	 	 	 	 	 	 	 	 	 (7.2)	

where	àD_	is	the	thermal	strain	and	à3,*	the	stress-dependent	strain.	The	thermal	strain	
of	 steel	 is	 obtained	 for	 each	 temperature	 from	 the	 diagram	 illustrated		
in	EN	1992-1-2	[7],	Fig.	3.8	(see	Figure	62)	for	reinforcing	steel	(curve	1).	
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Figure	62	Total	thermal	elongation	of	steel	(taken	from	[7])	

According	to	[16],	the	incorporation	of	the	strain	àW_	for	both	concrete	and	steel	in	the	
calculations	does	not	influence	the	value	of	the	maximum	moment	capacity	<aZ ,	only	
the	 shape	 of	 the	 moment-curvature	 diagram.	 Also,	 since	 many	 of	 the	 simplified	
methods	of	analyzing	structures	at	high	temperatures	such	as	the	500°C	isotherm	or	
the	zone	method	neglect	the	thermal	strain	completely,	and	assume	that	

à = à3,	 	 	 	 	 	 	 	 	 	 (7.3)	

when	developing	the	algorithm,	 the	thermal	strain	 	àW_	was	not	 included	 in	 the	 first	
calculations	 and	 was	 only	 added	 later	 in	 accordance	 with	 EN	 1992-1-2	 [7].	 The	
influence	of	the	thermal	strain	àW_	on	the	output	is	illustrated	in	Figure	63.	
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Figure	63	Illustration	of	the	thermal	strain	effect	on	the	output	(created	in	[18])	

From	this	diagram	it	 is	clear,	 that	 the	 thermal	strain	àW_	has	 in	 fact	no	effect	on	 the	
maximum	value	of	 the	moment	capacity.	 Instead,	 it	only	 influences	the	shape	of	 the	
moment-curvature	 diagram.	The	 conclusion	drawn	here	 corresponds	 to	 [16]	 and	 it	
proves	that	the	basis	of	the	simplified	methods	in	which	the	thermal	strain	is	neglected	
does	not	compromise	the	accuracy	of	those	methods.	

Notice	that	moment	gets	into	negative	values	for	small	values	of	curvature,	which	is	
due	to	the	fact,	that	in	the	equation	

à3 = à − àW_,	 	 	 	 	 	 	 	 	 	 (7.4)	

thermal	strain	àW_	exceeds	the	total	strain	à.	The	negative	value	of	à3	then	enters	in	the	
stress-strain	diagrams	to	obtain	internal	stresses	and	forces	in	the	cross-section.	

7.2.3 The	description	of	the	algorithm	at	high	temperature	

The	algorithm	serves	as	a	 tool	 to	analyze	reinforced	concrete	slabs	exposed	to	high	
temperatures.	

The	differences	from	the	previous	algorithm	for	analysis	at	normal	temperature	are	
highlighted.	

Every	time	a	temperature	in	the	cross-section	needs	to	be	obtained	from	the	data	table	
generated	 from	 TempAnalysis	 [17],	 the	 algorithm	 calls	 the	 function	 for	 linear	
interpolation,	which	is	described	in	detail	in	chapter	7.1.	



Analysis of a reinforced concrete ceiling slab at high temperature  

82 

 

The	algorithm:	

1. Entry	 parameters	 specification:	material	 properties,	 geometry,	 time	 step,	
data	from	thermal	analysis	

2. Incremental	cycle	S’’ = 0.005 →	infinite	

3. 					while	ó > 1	å;	Residuum	ó = Z2 + Z*4 + Z*@	

4. 					I = I + ÜI	or	linear	interpolation	

5. calculate	à2]	

6. determine	strain	in	reinforcement	à*4	and	à*@	from	the	similarity	
of	triangles	

7. determine	ùVb,c	and	calculate	ùd,e,c	as	ùd,e,f,c = ùcf − ùVb,c	

8. determine	stress	in	reinforcement	ûcT	and	ûcU	for	ùg,e,T	and	
ùg,e,U	with	use	of	the	stress-strain	diagram	

9. 					calculate	Z*4	and	Z*@	from	the	stress	

10. for	ò = 1 → 100;	divide	the	compressed	part	of	the	cross-section	
into	100	sections	(strips)	

11. determine	strain	in	each	section	à2$	from	the	similarity	of	
triangles	

12. determine	ùVb,hf		

13. calculate	ùg,e,hf	as	ùg,e,,hf = ùhf − ùVb,hf	

14. determine	stress	in	each	section	ûhf	for	ùg,e,hf	with	use	
of	the	stress-strain	diagram	

15. calculate	Z2$	for	each	section	

16. calculate	<2$	for	each	section	

17. end	for	

18. 					calculate	Z2	as	a	sum	of	Z2$	

19. 					calculate	ó = Z2 + Z*4 + Z*@	

20. end	while	

21. check	for	limit	strain	

22. check	for	the	limit	height	of	the	compressed	part	of	the	cross-section	I	

23. calculate	the	moment	capacity	<,-	

24. S’’ = S’’ + ÜS’’	

25. end	incremental	cycle	once	the	equilibrium	can	no	longer	be	found	

26. plot	moment-curvature	diagram	
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1.	Entry	parameters	specification:	material	properties,	geometry,	time	step,	data	from	
thermal	analysis	

Firstly,	it	is	necessary	to	specify	material	characteristic	strengths	72+	and	7'+	and	the	
modulus	 of	 elasticity	 for	 steel	 {*.	 The	 geometry	 of	 the	 cross-section	 needs	 to	 be	
specified	as	well.	The	algorithm	automatically	calculates	the	yield	strain	of	steel	à'.	

2.	The	curvature	loop	

The	 algorithm	 starts	 a	 cycle	 which	 calculates	 the	 corresponding	 moment	 capacity		
for	different	curvatures.	Before	the	loop	starts,	it	is	necessary	to	specify	the	values	of	
initial	curvature	S’’	and	increment	ÜS’’.	The	value	of	increments	affects	the	smoothness	
of	the	moment-curvature	diagram.	For	this	algorithm	the	initial	curvature	as	well	as	
the	value	of	the	increments	is	set	to	S’’ = ÜS’’ = 0.005	m54.	

The	 loop	 automatically	 ends	 once	 it	 is	 no	 longer	 possible	 to	 reach	 the	 equilibrium		
of	the	internal	forces.	

3.	While	cycle	

To	calculate	the	moment	capacity	for	each	curvature,	the	height	of	the	compressed	part	
of	 cross-section	 needs	 to	 be	 determined,	 for	 which	 the	 equilibrium	 with	 required	
precision	is	reached.		

Firstly,	 the	 required	 precision	 needs	 to	 be	 specified.	 For	 this	 algorithm	 a	 required	
precision	ó = 1	N	is	set.	

The	 height	 of	 the	 compressed	 part	 of	 cross-section	 is	 determined	 with	 use	 of	 the	
method	described	in	chapter	6.3.	For	each	I	in	the	loop	the	strain	in	the	upper	fibers	is	
calculated	using	the	relation	(6.8).	

Since	the	method	presumes	Bernoulli-Navier	behavior	before	and	after	deformation,	
strain	 in	 any	 part	 of	 the	 cross-section	 can	 be	 determined	 from	 the	 similarity	 of	
triangles.	

With	use	of	the	stress-strain	diagrams	the	stresses	and	then	the	corresponding	internal	
forces	 in	 reinforcements	 as	 well	 as	 in	 compressed	 concrete	 are	 calculated.		
The	 residuum	ó	 is	 calculated	 from	 the	 forces	 in	 reinforcements	and	 concrete	using		
the	equation	(6.9).	

If	the	residuum	does	not	meet	the	criteria	for	precision,	that	is	if	the	absolute	value	of	
ó	is	greater	than	the	value	of	the	required	precision,	the	height	of	the	compressed	part	
of	cross-section	I	is	modified,	either	by	linear	interpolation	or	incrementally.	

The	loop	ends	as	soon	as	the	criterium	for	the	precision	is	met.	
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17.	Check	for	limit	strain	

Once	the	equilibrium	of	 internal	 forces	 is	acquired,	 it	 is	necessary	to	check	the	final	
value	of	 the	strain	 in	upper	 fibers	à2].	 If	à2]	 is	smaller	 than	 limit	strain	given	 in	 the	
stress-strain	diagram	of	concrete	à2]@,	the	algorithm	proceeds	to	a	next	step.	However,	
if	 the	 limit	 strain	 is	 exceeded,	 the	 cross-section	 is	 above	 its	maximum	 load-bearing	
capacity	and	the	calculations	are	terminated.	

18.	Check	for	the	limit	height	of	the	compressed	part	of	the	cross-section	I	
If	0 < I < ℎ,	

where	ℎ	 is	 the	height	 of	 the	 cross-section,	 the	 algorithm	proceeds	 to	 the	next	 step.	
Otherwise,	if	I	does	not	meet	the	criterium	above,	the	equilibrium	of	internal	forces	
cannot	be	found,	and	the	calculations	are	terminated.	
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7.2.4 The	effect	of	high	temperatures	on	load-bearing	capacity	

To	gain	an	idea	on	how	much	the	thermal	loading	influences	the	load-bearing	capacity	
of	 the	 cross-section,	 let	 us	 assume	 a	 reinforced	 concrete	 slab	 with	 following	
parameters:	

	ℎ = 200	mm,	 =*4 = 714	mm@,	 =*@ = 0	mm@,	 è&4 = 10	mm,	 ö = 25	mm,	 axial	 force		
å = 0	kN,	concrete	]20/25,	7̂ : = 500	MPa,	{& = 200	GPa	

The	 slab	 is	 exposed	 to	 the	 standard	 fire	 curve	 ISO	834	defined	 in	EN	1991-1-2	 [6].		
To	get	an	idea	of	the	temperature	changes	in	the	cross-section,	Figure	64	shows	the	
temperature	 development	 in	 the	 center	 of	 the	 reinforcing	 bars.	 According	 to	 the	
diagram,	 the	 temperature	 in	 the	 reinforcement	 rises	 from	 20°C	 to	 almost	 600°C		
in	120	minutes.	

	
Figure	64	Temperature	development	at	C = 30	mD	(generated	from	[17])	

The	 concrete	 slab	 and	 its	 load-bearing	 capacity	 was	 determined	 every	 20	minutes		
in	 a	 time	 span	 of	 120	minutes	 during	 the	 exposure	 to	 standard	 fire	 curve	 ISO	 834	
defined	 in	 EN	 1991-1-2	 [6].	 For	 illustration,	 Figure	 65	 shows	 the	 changes	 of	 the	
moment-curvature	 dependency	 in	 each	 time	 step	 as	 calculated	 by	 the	 designed	
algorithm.	The	maximum	moment	capacity	decreases	from	the	initial	value	of	almost	
60	kNm	at	' = 0	min	to	approximately	half	its	value	at	' = 120	min.		
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Figure	65	Comparison	of	moment-curvature	diagrams	for	different	times	(created	in	[18])	

7.3 Verification	with	existing	methods	
To	find	out	the	correctness	and	accuracy	of	the	algorithm,	the	500°C	isotherm	method	
was	 selected	 to	 verificate	 the	 calculations	 with	 use	 of	 benchmark	 examples.		
The	method	is	in	detail	described	in	chapter	3.2.1.	

The	 thermal	 analyses	prior	 to	both	 calculations	 are	done	 in	 the	 computer	program	
TempAnalysis	[17].		

7.3.1 Benchmark	example	No.	1	

Consider	a	reinforced	concrete	slab	with	following	parameters:	

ℎ = 200	mm,	 =*4 = 655	mm@,	 =*@ = 0	mm@,	 è&4 = 10	mm,	 ö = 25	mm,	 axial	 force		
å = 0	kN,	concrete	]20/25,	7̂ : = 500	MPa,	{& = 200	GPa	

The	slab	is	subjected	to	fire,	which	is	in	this	case	represented	by	the	Isotherm	834	curve	
defined	in	EN	1991-1-2	[6].	<,- =?	at	time	' = 60	min.	

Firstly,	the	temperatures	in	the	structure	are	calculated	in	TempAnalysis	[17].	The	data	
from	this	program	are	used	in	both	methods.	The	preprocessor	of	TempAnalysis	[17]	
is	shown	in	Figure	66.	
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Figure	66	TempAnalysis	[17]	preprocessor	

This	example	is	firstly	solved	with	use	of	the	newly	designed	algorithm.	The	input	to	
the	algorithm	with	the	material	properties	and	geometry	is	shown	in	Figure	67.	

	
Figure	67	Input	in	the	designed	algorithm	

To	use	the	designed	algorithm,	it	is	necessary	to	download	the	full	temperature	data	
from	TempAnalysis	[17],	which	are	generated	in	.xls	format.	The	table	is	added	to	the	
code	via	xlsread	MATLAB	function.	

The	 output	 of	 the	 algorithm	 shows	 Figure	 68.	 According	 to	 the	 calculations,	 the	
maximum	moment	capacity	of	the	cross-section	at	' = 60	min	is	<,- = 67.77	kNm.		
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Figure	68	Output	from	the	designed	algorithm;	moment-curvature	diagram	

To	 solve	 the	 example	with	 500°C	 isotherm	method,	 the	 temperature	 profile	 of	 the	
structure	at	defined	time	is	needed	(as	shown	in	Figure	69).	

 

Figure	69	Temperature	profile	at	. = 60	min	(generated	from	[17])	
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From	 the	 temperature	 profile	 it	 is	 clear	 that	 the	 temperature	 of	 500°C	 is	 reached		
at	+!""	 = 23	mm.	The	temperature	in	the	center	of	reinforcing	rebars	at	+ = 30	mm		
is	5 = 410°C.	This	data	is	sufficient	for	the	500°C	isotherm	method,	which	is	shown	in	
use	in	Table	1.	

Table	1	Calculation	with	use	of	500°C	isotherm	method	

	 h	 =	 250	 mm	 	 	
	 a500	 =	 23	 mm	 	 	
	 hfi	 =	 h	–	a500	 =	 227	 mm	

reinforcement	 Gs	 =	 410	 °C	 	 	
	 fsyd,fi	 =	 ks,fi	fyk	 =	 490	 MPa	
	 ks,fi	 =	 0.98	 	 	 	

	 As	 =	 655	 mm2	 	 	

concrete	 fcd,fi	 =	 fck/	HC,fi	 =	 20	 MPa	
	 HC,fi	 =	 1	 	 	 	
	 HS,fi	 =	 1	 	 	 	
	 HM	 =	 1	 	 	 	
 x	 =	 As	fyd/(0.8	b	fcd)	 =	 26.78	 mm	
	 d	 =	 h	–	c	–	I/2	 =	 220	 mm	
	 z	 =	 d–0.4	x	 =	 209.29	 mm	
	 MRd,fi	 =	 As	fsy,fi	z/HS,fi	 =	 67.17	 kNm	

According	 to	 the	 500°C	 isotherm	 method,	 the	 maximum	 moment	 capacity	 of		
the	cross-section	at	 ' = 60	min	 is	<,- = 67.17	kNm,	which	makes	a	 total	difference		
of	0.6	kNm	from	the	moment	calculated	with	the	designed	algorithm.	

7.3.2 Benchmark	example	No.	2	

Consider	a	reinforced	concrete	slab	with	following	parameters:	

ℎ = 180	mm,	 =*4 = 437	mm@,	 =*@ = 0	mm@,	 è&4 = 8	mm,	 ö = 25	mm,	 axial	 force		
å = 0	kN,	concrete	]30/37,	7̂ : = 500	MPa,	{& = 200	GPa	

The	slab	is	subjected	to	fire,	which	is	in	this	case	represented	by	the	Isotherm	834	curve	
defined	in	EN	1991-1-2	[6].	<,- =?	at	time	' = 75	min.	

The	 temperatures	 in	 the	 structure	 are	 calculated	 in	 TempAnalysis	 [17].	 The	
preprocessor	of	TempAnalysis	[17]	is	shown	in	Figure	70.	
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Figure	70	TempAnalysis	[17]	preprocessor	

The	 input	 to	 the	 algorithm	with	 the	material	 properties	 and	 geometry	 is	 shown	 in	
Figure	71.	

	
Figure	71	Input	in	the	designed	algorithm	

The	 output	 of	 the	 algorithm	 shows	 Figure	 72.	 According	 to	 the	 calculations,	 the	
maximum	moment	capacity	of	the	cross-section	at	' = 60	min	is	<,- = 27.11	kNm.		
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Figure	72	Output	from	the	designed	algorithm;	moment-curvature	diagram	

The	temperature	profile	of	the	structure	at	defined	time	for	the	500°C	isotherm	method	
shows	Figure	73.	

	

Figure	73	Temperature	profile	at	t	=	75	min	(generated	from	[17])	
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In	the	temperature	profile	it	can	be	observed	that	the	temperature	of	500°C	is	reached		
at	+!""	 = 27	mm.	The	temperature	in	the	center	of	reinforcing	rebars	at	+ = 29	mm	is	
5 = 470°C.	The	500°C	isotherm	method	is	shown	in	Table	2.	

Table	2	Calculation	with	use	of	500°C	isotherm	method	

	 h	 =	 180	 mm	 	 	
	 a500	 =	 27	 mm	 	 	
	 hfi	 =	 h	–	a500	 =	 153	 mm	

reinforcement	 Gs	 =	 470	 °C	 	 	
	 fsyd,fi	 =	 ks,fi	fyk	 =	 415	 MPa	
	 ks,fi	 =	 0.83	 	 	 	

	 As	 =	 437	 mm2	 	 	

concrete	 fcd,fi	 =	 fck/HC,fi	 =	 30	 MPa	
	 HC,fi	 =	 1	 	 	 	
	 HS,fi	 =	 1	 	 	 	
	 HM	 =	 1	 	 	 	
 x	 =	 As	fyd/(0.8	b	fcd)	 =	 7.56	 mm	
	 d	 =	 h	–	c	–	I/2	 =	 151	 mm	
	 z	 =	 d	–	0.4	x	 =	 147.98	 mm	
	 MRd,fi	 =	 As	fsy,fi	z/HS,fi	 =	 26.84	 kNm	

According	 to	 the	 500°C	 isotherm	 method,	 the	 maximum	 moment	 capacity	 of		
the	cross-section	at	 ' = 75	min	 is	<,- = 26.84	kNm,	which	makes	a	 total	difference		
of	0.27	kNm	from	the	moment	calculated	with	the	designed	algorithm.	

7.3.3 Benchmark	example	No.	3	

Consider	a	reinforced	concrete	slab	with	following	parameters:	

ℎ = 210	mm,	 =*4 = 946	mm@,	 =*@ = 0	mm@,	 è&4 = 12	mm,	 ö = 30	mm,	 axial	 force		
å = 0	kN,	concrete	]20/25,	7'+ = 500	MPa,	{& = 200	GPa	

The	slab	is	subjected	to	fire,	which	is	in	this	case	represented	by	the	Isotherm	834	curve	
defined	in	EN	1991-1-2	[6].	<,- =?	at	time	' = 90	min.	

The	 temperatures	 in	 the	 structure	 are	 calculated	 in	 TempAnalysis	 [17].	 The	
preprocessor	of	TempAnalysis	[17]	is	shown	in	Figure	74.	
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Figure	74	TempAnalysis	[17]	preprocessor	

The	 input	 to	 the	 algorithm	with	 the	material	 properties	 and	 geometry	 is	 shown	 in	
Figure	75.	

 

Figure	75	Input	in	the	designed	algorithm	

The	 output	 of	 the	 algorithm	 shows	 Figure	 76.	 According	 to	 the	 calculations,	 the	
maximum	moment	capacity	of	the	cross-section	at	' = 90	min	is	<,- = 65.96	kNm.	
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Figure	76	Output	from	the	designed	algorithm;	moment-curvature	diagram	

The	temperature	profile	of	the	structure	at	defined	time	for	the	500°C	isotherm	method	
shows	Figure	77.	

 

Figure	77	Temperature	profile	at	. = 75	min	(generated	from	[17])	

In	the	temperature	profile	it	can	be	observed	that	the	temperature	of	500°C	is	reached		
at	+!""	 = 30	mm.	The	temperature	in	the	center	of	reinforcing	rebars	at	+ = 36	mm		
is	5 = 450°C.	The	500°C	isotherm	method	is	shown	in	Table	3.	
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Table	3	Calculation	with	use	of	500°C	isotherm	method	

	 h	 =	 210	 mm	 	 	
	 a500	 =	 30	 mm	 	 	
	 hfi	 =	 h	–	a500	 =	 180	 mm	

reinforcement	 Gs	 =	 450	 °C	 	 	
	 fsyd,fi	 =	 ks,fi	fyk	 =	 440	 MPa	
	 ks,fi	 =	 0.88	 	 	 	

	 As	 =	 946	 mm2	 	 	

concrete	 fcd,fi	 =	 fcd	 =	 20	 MPa	
	 HS,fi	 =	 1	 	 	 	
	 HM	 =	 1	 	 	 	
	 x	 =	 As	fyd/(0.8	b	fcd)	 =	 44.45	 mm	
	 d	 =	 h	–	c	–	I/2	 =	 174	 mm	
	 z	 =	 d	–	0.4	x	 =	 156.22	 mm	
	 MRd,fi	 =	 As	fsy,fi	z/HS,fi	 =	 65.03	 kNm	

According	to	the	500°C	isotherm	method,	the	maximum	moment	capacity	of	the	cross-
section	 at	 ' = 90	min	 is	 <,- = 65.03	kNm,	 which	 makes	 a	 total	 difference		
of	0.93	kNm	from	the	moment	calculated	with	the	designed	algorithm.	

7.3.4 Assessment	

	The	 differences	 between	 the	 moment	 capacity	 values	 obtained	 in	 the	 designed	
algorithm	and	with	use	of	 the	500°C	 isotherm	method	 are	 in	 all	 solved	benchmark	
examples	presented	in	this	chapter	sufficiently	small.	The	value	of	<,-	obtained	from	
the	algorithm	is	in	all	cases	slightly	higher	compared	to	the	moment	capacity	obtained	
with	 use	 of	 the	 500°C	 isotherm	 method.	 Since	 the	 500°C	 isotherm	 method	 is		
a	simplified	procedure,	it	is	less	accurate	and	therefore	much	more	conservative	than	
a	more	detailed	calculation	which	the	algorithm	provides,	and	that	is	why	this	pattern	
was	expected	and	is	correct.	

To	sum	it	up,	based	on	the	benchmark	examples,	it	can	be	said	that	the	algorithm	works	
properly	with	a	minimum	error.	
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8 Conclusion	
In	 this	 thesis,	 numerical	 methods	 for	 investigating	 the	 mechanical	 and	 thermal	
behavior	 of	 various	 structures	 were	 presented.	 The	 main	 focus	 was	 on	 creating	 a	
complex	 algorithm	which	would	 analyze	 a	 reinforced	 concrete	 ceiling	 slab	 exposed		
to	thermal	loading.	The	procedure	used	in	the	algorithm	has	its	basis	in	the	moment-
curvature	approach.	The	program	executing	the	algorithm	was	coded	in	MATLAB	[18].	

Firstly,	the	moment-curvature	approach	was	implemented	for	a	normal	temperature	
situation	and	verified	with	computer	programs	RCC	[19]	and	InDion	[20].	

Then	 the	 algorithm	 was	 modified	 to	 cover	 the	 subjection	 of	 the	 slab	 to	 high	
temperatures.	 The	 procedure	 was	 then	 verified	 with	 the	 500°C	 isotherm	 method,	
which	is	described	in	EN	1992-1-2	[7].	

The	applicability	of	the	algorithm	was	proven	through	a	series	of	benchmark	examples,	
which	show	that	the	procedure	provides	results	with	sufficient	accuracy.		

The	 main	 contribution	 of	 this	 work	 is	 a	 design	 of	 an	 algorithm	 which	 analyzes	
reinforced	concrete	slabs	with	various	material	properties	and	geometry	at	normal	and	
high	temperatures.	

In	 the	 future,	 this	 work	 can	 be	 expanded	 to	 cover	 not	 only	 slabs	 but	 also	 beams		
of	 various	 shapes.	Moreover,	 a	 non-zero	 axial	 force	 can	 be	 added	 to	 the	 procedure	
which	allows	an	extension	of	the	applicability	on	different	structural	elements,	such	as	
columns	or	walls.	
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