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Abstrakt

Tato práce představuje tři IoT protokoly—CoAP, MQTT, a AMQP. Všechny
tři jsou popsány včetně bezpečnostńıch vlastnost́ı a jejich rozd́ıl̊u.

Bylo provedeno několik experiment̊u na dvou vývojových deskách pro IoT.
Tyto výsledky byly srovnány s přenosem přes HTTP. Všechny protokoly byly
použity s i bez TLS. Ukázalo se několik rozd́ıl̊u v rychlosti, počtu přenesených
byt̊u i použitelnosti daných protokol̊u, konkrétně AMQP se ukázalo být prak-
ticky nepoužitelné na ESP32. To vedlo k závěru, že je lepš́ı pro zař́ızeńı s ome-
zeným výkonem použ́ıt v́ıce podporované protkoly jako je např́ıklad MQTT.
Pokud má zař́ızeńı dostatečný výkon a je k dispozici vyhovuj́ıćı knihovna,
AMQP může být použito, jelikož má srovantelný výkon s ostatńımi protokoly.
CoAP pośılaný přes UDP měl nejmenš́ı rychlost přenosu kv̊uli předcházeńı
přet́ıžeńı śıtě, což bránilo paralelńımu pośıláńı dat. Toto byl jediný protkol a
zp̊usob přenosu, který byl pomaleǰśı než HTTP. U MQTT byly jasně zřetelné
rozd́ıly v počtu přenesných byt̊u i v rychlosti mezi garancemi doručeńı nejvýše
jednou, nejméně jednou a právě jednou. Tyto rozd́ıly ve výkonu by měly být
vždy brány v úvahu, když má být tento protokol použit.

Experimenty také ukázaly, že TLS výrazně nezpomaluje žádný těchto pro-
tokol̊u. Pro většinu protokol̊u se také jen mı́rně zvýšil počet přenesených byt̊u,
pouze pro MQTT se tento počet v́ıce než zdvojnásobil. Tato práce doporučuje
vždy použ́ıvat TLS nebo DTLS, pokud je to technicky možné.

Kĺıčová slova IoT, MQTT, CoAP, AMQP, ESP32, Raspberry Pi, vestavěné
systémy
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Abstract

This work introduces three IoT protocols—CoAP, MQTT, and AMQP. All
three protocols are described including security measures they provide and
some of the differences are noted.

Several experiments were done on the selected protocols using two distinct
IoT platforms. Results of these experiments were compared to HTTP which
has been used as a baseline. All protocols were examined both with and
without using TLS. There were some differences observered in both speed,
bandwidth usage, and usability, specifically AMQP turned out to be unusable
on ESP32 in practice. This led to the conclusion that it is better to use
other, more supported protocols like MQTT, for messaging in constrained
devices. If the device has sufficient computing power and a suitable library is
available, AMQP can be used as it has comparable performance to the other
protocols. CoAP over UDP did not perform very well under high load due
to its congestion control rules which prevented any parallel operations. This
has been the only protocol that performed worse than HTTP. For MQTT
the differences between at most once, at least once, and exactly once delivery
guarantees were clearly visible both in the amount transferred bytes and the
speed of the protocol. The performance difference should be always taken into
account when choosing to use MQTT.

The experiments also showed that TLS does not considerably increase the
time it takes to transfer messages. For most protocols there was also very
small increase in the number of transferred bytes with only MQTT more than
doubling the used bandwidth. This work advises to always use TLS or DTLS
if it is technically possible.

Keywords IoT, MQTT, CoAP, AMQP, ESP32, Raspberry Pi, Embedded,
Constrained
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Introduction

This work aims to provide an introduction and comparison of three protocols
used in IoT. These are CoAP, MQTT, AMQP.

The protocols will be first examined theoretically. All three are open-
sourced and their specification is publicly available. There is some history
behind each of the protocols with AMQP specifically changing considerably
between versions 0-9-1 and 1.0. MQTT has also seen considerable changes
between versions 3.1.1 and 5.0. In both cases, the latest version will be looked
at in this work.

CoAP was developed and is being actively extended by IETF and it has
been defined in RFC 7252[1]. This specification will be the main focus of the
work and other extensions such as block transfer[2] and observe[3] will not be
explained, but are mentioned where appropriate. The only extension that will
be considered more closely is RFC 8323[4], which makes slight adjustments to
the protocol so that it can be run on TCP as well as UDP, the latter being
the only option for the base protocol.

MQTT 5.0 will be also described. It is standardized by OASIS[5] This
work will not go over changes from the previous versions and only the stan-
dalone protocol will be considered. There is also MQTT-SN which is aimed at
constrained devices. However, it is not compatible with the MQTT protocol
itself and will not be considered in this work.

AMQP 1.0 is the last protocol that will be the focus of this work. It has
been designed for business messaging needs, but it has found its way into IoT
where for example Microsoft uses it in its IoT hub[6]. The protocol will also be
considered only as is and there will be no explanation on the changes between
this and prior versions.

Implementations of all three protocols will then be uploaded into two dif-
ferent devices and experiments will be run on them. First, device will be
ESP-WROOM-32[7] which is more constrained while still having enough RAM
and processing power to run more complicated workloads. One of its main
advantages is the integrated WiFi chip.
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Introduction

Second tests will be run from Raspberry Pi model 3 b+[8]. This is a much
stronger single board computer which can run even Linux OS.

The focus will be placed on the speed of the protocols when transmitting
many small messages and one large message. Next, a qualitative examination
of the protocol exchanges on the wire will be done through packet captures
with Wireshark. There number of transferred bytes, as well as packets, will
be compared between the protocols.

2



Chapter 1
IoT Security Problems Overview

1.1 Constrained Nodes

There is a very fast growing trend of creating small devices connected to the
Internet which do not have processing power, memory, or power that most
computers do. These devices are also called constrained nodes or IoT devices.

Internet of Things (IoT) is the interconnection through the Internet of
everyday objects from kitchen appliances to ordinary items such as shoes.
These small devices can send and receive data to provide insights or better
usage to the user. These devices use almost exclusively Machine-to-Machine
(M2M) communication with some servers on the Internet without any manual
trigger by the user.

IETF defines constrained nodes in RFC 7228[9] thus:

A node where some of the characteristics that are otherwise pretty
much taken for granted for Internet nodes at the time of writing
are not attainable, often due to cost constraints and/or physical
constraints on characteristics such as size, weight, and available
power and energy. The tight limits on power, memory, and pro-
cessing resources lead to hard upper bounds on state, code space,
and processing cycles, making optimization of energy and network
bandwidth usage a dominating consideration in all design require-
ments. Also, some layer-2 services such as full connectivity and
broadcast/multicast may be lacking.

Similarly, constrained network is defined as:

A network where some of the characteristics pretty much taken for
granted with link layers in common use in the Internet at the time
of writing are not attainable.

And finally a constrained-node network:

3



1. IoT Security Problems Overview

Name data size (e.g., RAM) code size (e.g., Flash)
Class 0, C0 « 10 KiB « 100 KiB
Class 1, C1 10 KiB 100 KiB
Class 2, C2 50 KiB 250 KiB

Table 1.1: Classes of constrained nodes based on available computing capa-
bilities.

A network whose characteristics are influenced by being composed
of a significant portion of constrained nodes.

These definitions were created by IETF in 2014 and they are still current.
Constrained networks are also further specified with their constraints,

which may include:

• low achievable bit rate and throughput,

• high packet loss and high variability of packet loss,

• highly asymmetric link characteristics,

• severe penalties for using larger packets,

• limits on reachability over time, and

• lack of (or constraints on) advanced services such as IP multicast.[9]

These constraints may be present only on some nodes and they can stem both
from constraints of the connected devices as well as from constraints of the
network itself.

The document then also differentiates between constrained nodes based on
their available computing capabilities to three classes as shown in table 1.1.

This distinction is several years old now and the document acknowledges
that the values may change with time, however it expects that most improve-
ments will be directed to lowering power consumption, thus prolonging battery
lives of the devices, and making the devices smaller.

Class 0 is envisioned to be simple sensors that will not be able to commu-
nicate on the Internet securely on their own. It is expected that these devices
will only send raw data and react to the simplest of commands such as on/off
and reset. Therefore this class of devices will not interest us in this thesis at
all.

Class 1 is expected to be able to use protocols specifically created for their
use such as CoAP. However they may not be able to use computationally
intensive or bandwidth-heavy protocols such as TLS and HTTP.

4



1.1. Constrained Nodes

Name Strategy Ability to communicate
P0 Normally-off Reattach when required
P1 Low-power Appears connected, perhaps with high latency
P9 Always-on Always connected

Table 1.2: Classes of constrained nodes based on power consumption strategy.

Class 2 encompasses devices that have enough processing power to run
the same protocols as laptops or servers. They may however still benefit from
protocols with lower network footprint and energy consumption.

The same RFC 7228[9] further differentiates classes of devices based on
their network usage. This is important because constrained node networks
are almost exclusively wireless networks and the active or passive usage of
the network modules has a huge impact on the energy usage and battery life.
The table 1.2 shows the different strategies for devices, based on their power
consumption strategy (hence classes P):

Class P0 is for devices that are usually turned off and do not send or receive
any communications for most of the time. These devices always start new
sessions when they are woken and do not try to resume older sessions because
the assumption of prolonged sleep mostly guarantees that any sessions have
already timed out. It is expected that the energy expended on creation of new
connections and sessions would be offset by the prolonged sleep time and that
this would be more economic than trying to reconnect. Upstream services
usually also cannot contact the devices directly and must instead wait for the
device to contact the service on its own, or another channel must be used.

Class P1 encompasses devices that communicate frequently but do not
need to reply with low latencies. These devices can then also sleep for some
periods of time, however only so that sessions and connections can be kept
and any keep-alive and ping/pong messages can be sent and replied to in a
timely manner. For upstream services these devices always look online but
their response times can fluctuate wildly.

Class P9 includes all devices that are continuously connected and reply
in a timely manner. This can consume very large amounts of energy and is
recommended mostly for devices that do not have any constraints on energy
usage, usually when they are mains-powered.

The LoRaWAN specification[10] specifies three different classes marked A,
B, and C, which are somewhat similar to the latter distinction in RFC 7228[9].
This distinction is based on the network behavior of the constrained device.
These classes are formally requirements for devices to be LoRaWAN certified,
but the behvaviour can be generalized and may be of interest for this thesis.

5



1. IoT Security Problems Overview

Class A is called bi-directional end-devices. Devices in this class are re-
quired to listen for incoming packets only shortly after sending their own data.

Class B, bi-directional end-devices with scheduled receive slots, works in
the same way as class A, but additionally also listens for network traffic at
scheduled times.

Lastly class C, bi-directional end-devices with maximal receive slots, allow
nearly continuously open receive windows.

1.2 Problems

All of the protocols discussed in this work provide some form of authentication.
While the mechanisms offered by the protocols will be reviewed, the problem
of bootstrapping credentials such as passwords or private keys to the devices
will not be considered in this work. This is a complicated problem and its
discussion and some ways to handle it can be found for example in [11] and
[12].

Constrained devices also by definition do not have much processing power
and therefore, any Internet protocol employed for communication should have
small code size, not be computationally intensive, and use as little bandwidth
as possible. The constraints can also affect the operational aspect of some se-
curity protocols as it may be more complicated to harvest entropy to generate
sufficiently complex keying material or nonce values.

The communications of IoT devices are often done through an interme-
diary which can provide several services such as caching responses, batching
operations, or translating requests between different protocols. This can often
be a single point of failure and in case of compromise the blast radius can be
much lowered by having an end-to-end integrity or confidentiality guarantees
for communications between the device and the destination service.

6



Chapter 2
Protocol Descriptions

2.1 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) is a specialized web transfer
protocol for use with constrained nodes and constrained networks in the In-
ternet of Things. The protocol is designed for Machine-to-Machine (M2M)
applications such as smart energy and building automation.[13]

Like HTTP, CoAP has servers make resources available under a URL, and
clients access these resources using methods such as GET, PUT, POST, and
DELETE.[13] Since then PATCH, FETCH, and iPATCH methods have been
added.[14]

CoAP is currently defined in 13 RFCs and there are 14 further active
Internet-Drafts. The original specification in RFC 7252[1] was released as an
official Proposed Standard in June 2014 and has been worked on since late
2009.[15]

CoAP makes use of GET, PUT, POST, and DELETE methods in a similar
manner to HTTP. The detailed semantics of CoAP methods are ”almost,
but not entirely unlike”[16] those of HTTP methods: intuition taken from
HTTP experience generally does apply well, but there are enough differences
that make it worthwhile to actually read the specification.[1] There are some
differences in response codes and what should be expected as well as general
as some calls like large updates to server resources, which may be split into
multiple requests.

The protocol was originally designed to be run on UDP and therefore
benefits from its lower overhead, but in cases where reliable messaging is
required needs to define its own mechanisms for packet resending and timeouts,
otherwise handled by TCP or other reliable protocol. Devices in networks
that often fail can benefit from not having to do handshakes and in case of
non-confirmable messages can simply send the message without much other
overhead.

The headers and options are also optimized for size so every message must

7



2. Protocol Descriptions

contain only a 4-byte header, options such as path to the requested resource
or query, and the payload itself prefixed with a single byte with all bits set.
Each option is prefixed with one to five bytes specifying the option number.
Therefore the smallest CoAP message is just four bytes long and a message
with payload and no options would incur only five bytes of overhead. There
is guaranteed MTU of at least 1280 in IPv61 and which makes CoAP very
efficient.

2.1.1 Features

2.1.1.1 Reliability

There are two kinds of messages—Confirmable (CON) and Non-confirmable
(NON). The former requires an acknowledgement message to be sent by the
recipient back to the sender. If either the original or the acknowledgement is
lost, the message is retransmitted until either acknowledgement is received or
maximum retrying is reached. On the other hand Non-confirmable messages
are sent with no expectation for confirmation of the message from the receiver.
For higher chance of successful delivery the sender may send several copies of
a non-confirmable message in a time slot. Multiple identical messages, caused
either because of retransmissions or packet duplication in the network, are
deduplicated based on their message ID which is part of the CoAP header.

Every confirmable request elicits a confirmable response and similarly ev-
ery non-confirmable request can receive only a non-confirmable response. If
Non-confirmable message is used for the request, the client must be prepared
for the scenario that the request or the response are lost. It also cannot as-
sume that the server did or did not receive the original request. This is useful
mostly for sensors updating periodically their readings of non-critical data
where simply waiting for the next value is preferable to potentially causing
further congestion with retrying.

Because CoAP is expected to be used in highly constrained networks,
default parameters of the protocol are set to be both simple and prevent
congestion. With the default settings, each client can have only a single out-
standing unacknowledged message for each server it communicates with. This
doesn’t mean there cannot be multiple parallel requests, but the next request
can be sent only after the one before was acknowledged, even if there is no
response message yet. Retransmission of confirmable messages uses exponen-
tial back-off with total time from sending the original message until giving
up on receiving an acknowledgement message being 93 seconds with default
parameters.

1There may however still be fragmentation on the link layer, for example 6LoWPAN
has MTU of 127 bytes but has an adaptation layer to reconstruct any fragmented packets if
necessary.

8



2.1. Constrained Application Protocol (CoAP)

2.1.1.2 Piggybacked Responses

The acknowledgement packets of Confirmable messages are only four bytes in
size, but to further save bandwidth they may be combined with a response
when appropriate and when it is available early. This is useful for example for
errors such as when a resource is not found or when the response is readily
available and small. It may be preferable to not use this feature when both
the request and response have large size because when a piggybacked response
is lost both the original request and response are retransmitted. If normal
acknowledgement was used, only four byte reply to the first request message
would be sent which could improve the chances of it arriving, saving the
original sender from having to retry the request.

2.1.2 Security

CoAP was originally built on top of UDP and relies heavily on Datagram
Transport Layer Security (DTLS) to provide confidentiality and integrity guar-
antees. Since then the protocol was extended to also work on TCP, TCP with
TLS, and WebSockets.[4]

It can use three security bindings of DTLS—using pre-shared keys, asym-
metric cryptography with raw public key, or a certificate. In any case the keys
are expected to be made available to the device beforehand. Implementation
of TLS ECDHE ECDSA WITH AES 128 CCM 82 is mandated.

The CoAP RFC has its own security section[1] which references HTTP
1.1[17] for breakdown of security issues since CoAP realizes a subset of the
features of HTTP 1.1. The section then talks about CoAP-specific security
considerations.

If the protocol runs on UDP without DTLS any node can spoof requests
and responses, including RST packets which would abort any request. Since
there is no packet sequence number like in TCP, this vulnerability can be to
some extent leveraged even if the attacker is not in a position for a MITM at-
tack. The attacker can also spoof multicast requests which can drain resources
in the target server faster or induce network congestion in the network. This
may also be used to send traffic to a constrained network which is protected
by firewall rules that allow inbound traffic from a set of machines.

There is also the risk of using CoAP servers in an amplification attack,
where small requests with a spoofed source IP address generate potentially
very large packets to the victim. This can be to some extent mitigated by the
server not providing responses with large amplification factors to unauthenti-
cated nodes, leveraging extensions of the protocol to send large responses in
separate packets[1][2].

2TLS using elliptic curve Diffie-Helman ephemeral key exchange, elliptic curve Digital
Signature Algorithm, and AES with 128 bit key size in counter mode with 8 byte CBC
Message Authentication Code

9



2. Protocol Descriptions

2.2 Message Queuing Telemetry Transport
(MQTT)

MQTT is a Client Server publish/subscribe messaging transport protocol. It
is lightweight, open, simple, and designed to be easy to implement. These
characteristics make it ideal for use in many situations, including constrained
environments such as for communication in Machine-to-Machine (M2M) and
Internet of Things (IoT) contexts where a small code footprint is required
and/or network bandwidth is at a premium.[5]

The MQTT protocol runs on network protocols that provide ordered, loss-
less, and bi-directional connections. The specification names as examples
TCP/IP[18], TLS[19], and WebSocket[20]. It also explicitly states that con-
nectionless protocols such as UDP are not suitable because the data can be
lost, duplicated, or reordered.[5]

Features of MQTT according to the specification [5] include:

• Use of the publish/subscribe message pattern which provides one-to-
many message distribution and decoupling of applications.

• A messaging transport that is agnostic to the content of the payload.

• Three qualities of service for message delivery:

– ”At most once”, where messages are delivered according to the best
efforts of the operating environment. Message loss can occur. This
level could be used, for example, with ambient sensor data where
it does not matter if an individual reading is lost as the next one
will be published soon after.

– ”At least once”, where messages are assured to arrive but duplicates
can occur.

– ”Exactly once”, where messages are assured to arrive exactly once.
This level could be used, for example, with billing systems where
duplicate or lost messages could lead to incorrect charges being
applied.

• A small transport overhead and protocol exchanges minimized to reduce
network traffic.

• A mechanism to notify interested parties when an abnormal disconnec-
tion occurs. [5]
The MQTT For Sensor Networks (MQTT-SN) specification[21] was de-
veloped and released by IBM. It is not an official OASIS standard but
version 2 is being worked on to be released by OASIS. This document
was developed to make MQTT more reliable on wireless sensor networks
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where bandwidth is low and packet loss may be high. MQTT-SN is also
optimized for running on low-cost, battery-operated devices with limited
processing power and storage.[21] MQTT-SN relaxes the requirements
on the network and requires only bi-directional data transfer service,
therefore it can run for example on UDP.

2.2.1 History

The first version of the protocol was developed by IBM and Eurotech, Inc. in
1999. The standard was released in 2010 and submitted in 2013 in version
3.1 to Organization for the Advancement of Structured Information Standards
(OASIS), a non-profit standards organization. Version 3.1.1 was released by
OASIS in 2014. Next version is version 5.0, which was released in 2019. Ver-
sion 4 was skipped over, because as part of the protocol the connecting party
selects which version of the protocol is to be used and while the value 3 was
used for version 3.1, version 3.1.1 uses 4. The MQTT committee decided to
mark the next version 5.0 to be consistent with this byte used in the CON-
NECT packet.

2.2.2 Features

There are two defined actors, client and server. The server is a central system
with which multiple clients can communicate. Every message belongs to a so-
called topic. Each client can publish messages and subscribe to these topics.
When the server receives a message it checks whether there are any clients
subscribed to the given topic and then routes the message to each of them.
The client publishing a message to a topic acts as sender with the server acting
as receiver and when the server then delivers the message to subscribed clients,
the server acts as sender and the clients act as receivers. Both of these cases
are identical in practice with the same messages, only the roles inverted.

The communication uses two terms - connection and session. Connection
is a construct provided by the underlying transport protocol that is being
used by MQTT for relaying data between client and server[5]. This can be
safely regarded as a TCP connection or its equivalent in another suitable
protocol. A session is a stateful interaction between a client and a server.
Some sessions last only as long as the network connection, others can span
multiple consecutive network connections between a client and a server[5].
The server should keep the session state for as long as the client has requested
during connection. However, this is not guaranteed. The client can also keep
its own session state to allow resending messages that were not acknowledged
by the server possibly due to network failure. Keeping the state can save
some resources because the process of resuming a session may be simpler than
initiating a new one. Furthermore any messages that were received by the
server during the time when the connection was down will be sent to the client
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upon reconnection if the client has subscribed to the given topic. This way
the client can to some extent also control whether it is interested in messages
that were sent during the time when it was disconnected.

2.2.2.1 Publish and Subscribe

The protocol uses a topic-based publish–subscribe pattern where each client
communicates only with the central server sometimes called a broker, which
facilitates message exchange between all the other clients. Central unit inside
the broker is a topic which is a path-like string with sections delimited by
forward slashes to which each device can publish messages or it can subscribe
to the topic. If a message is published to a given topic it is sent to every
device that is at that time subscribed to that topic. This implies that if there
is no subscribed client, any published messages are discarded upon delivery to
the broker. This does not however mean that the client must be connected, it
just needs to have an active session. All messages on the subscribed topic will
be delivered upon reconnection, unless the session or the individual messages
expire.

The protocol also allows subscriptions to topic filters with wildcards so that
a device can subscribe to all topics with common structure, for example with
the same first segment in the path. Another new feature in MQTT version
5 is shared subscription, where the published message is not sent to all the
subscribed clients, but to only one. This can be useful in cases where all the
subscribing clients are peers and messages should be processed in parallel but
only once.

2.2.2.2 Will Messages

When a client connects to the server it may provide a so-called will message
which should be saved by the server and sent to a given topic in case the
client disconnects. There is also a configurable timeout during which the
client can reconnect and thus cancel the process of sending the will message.
This can notify other clients that the client has disconnected and may not
be processing any further messages. Not receiving the will message does not
imply that the device is connected though, because it is not normally sent on
standard successful disconnect and even on failure there can be an unknown
timeout before the message is sent.

2.2.2.3 Retained Messages

Clients can also publish retained messages which will be saved on a given
topic and if a new subscribing client chooses so, they may receive the retained
message upon subscription. There can be only a single retained message on
each topic. If a new one is published there, the old one is deleted.

12



2.2. Message Queuing Telemetry Transport (MQTT)

Sender Action Receiver Action
PUBLISH QoS 0, DUP=0

Deliver Application Message to
appropriate onward recipient(s)

Figure 2.1: MQTT actions by the sender and receiver in QoS 0 exchange.

2.2.2.4 Quality of Service (QoS)

There are three Quality of Service (QoS) options:

• QoS 0—at most once,

• QoS 1—at least once,

• QoS 2—exactly once.

Each QoS level has larger overhead than the one before.
These guarantees apply only to a single exchange between client and server.

If a client publishes a message to a topic with exactly once guarantee it cannot
be sure that every subscribed client will receive the message exactly once in
the general case because the subscribing client may not support some of the
higher QoS options or it may have chosen to subscribe with lower guarantees
for performance reasons. Furthermore there may not be any clients subscribed
to the topic and therefore no one to read the message. The sending client may
be notified of this, but the server can omit this information.

2.2.2.4.1 QoS 0—At Most Once The lowest Quality of Service possible,
useful when lowest overhead is desired and delivery of each message is not
critical.

Sender sends the message in a PUBLISH packet and discards it. Receiver
does not reply to it in any way. These messages are always delivered unless
the receiver disconnects or restarts when the message should be received. In
that case the message can be lost.

The whole exchange consists of exactly one message containing the data
and no data is saved by the MQTT client or server.

2.2.2.4.2 QoS 1—At Least Once Medium Quality of Service option
where delivery of every message is needed and possible duplicates can be
either idempotently processed or identified and discarded.

Sender persists the message and sends it to the receiver in a PUBLISH
packet with QoS 1. Receiver passes the message to any consuming applica-
tions and sends an acknowledgement in a PUBACK packet upon delivery.
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Sender Action Receiver action
Store message

Send PUBLISH QoS 1,
DUP=0, <Packet Identifier>

Initiate onward delivery of the
Application Message

Send PUBACK
<Packet Identifier>

Discard message

Figure 2.2: MQTT actions by the sender and receiver in QoS 1 exchange.

Receiver does not save any information about the message and therefore if
any duplicates arrive it treats them the same way and does not discard them,
therefore the consuming application may process duplicates multiple times.
When the PUBACK packet is received by the sender it discards the message.

If the receiver disconnects when it should receive the PUBLISH packet
the message is still kept with the sender which will resend it upon reconnec-
tion. If the message itself is delivered but the PUBACK message is not sent
due to unexpected restart of the receiver’s application or the original sender
disconnects, the sender will send the original PUBLISH message again upon
reconnection. In this case the message may be delivered more than once.

During this exchange at least two messages are sent and the sender is
required to keep the message in its state until it is acknowledged.

2.2.2.4.3 QoS 2—Exactly Once The highest Quality of Service level
where every message is guaranteed to be delivered exactly once but with a
considerable overhead of a two-step acknowledgement process.

This process uses four different packets:

1. PUBLISH,

2. PUBREC—Publish received,

3. PUBREL—Publish release, and

4. PUBCOMP—Publish complete.

Sender persists the message and sends it to the receiver in a PUBLISH
packet with QoS set to 2. The receiver stores the message passes it to any pro-
cessing applications and sends confirmation of the receipt back to the sender
in a PUBREC packet. After confirmation is received the sender persists the
information that the message has been received and sends a PUBREL packet
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signaling release of the message on the sender’s side. The sender may now
safely discard the contents of the message but it must still keep information
about the ongoing exchange and the packet identifier of the original PUB-
LISH message. When the receiver reads the PUBREL packet it can discard
the message and sends PUBCOMP, signalling the end of processing of the
message. When this last message is received by the sender it discards all state
pertaining to the exchange.

In case the two parties disconnect during the exchange only the packets
sent by the sender (PUBLISH and PUBREL) are resent. If the PUBLISH or
PUBREL message is lost due to disconnection, the sender resends them and
the protocol works the same way as if nothing has happened. If the PUBREC
message is lost, the receiver has already consumed the message and saved the
identifier of the message. In case of reconnection, the sender will send the
original PUBLISH message containing data again but the receiver will ignore
the data and reply again with confirmation of receipt of the message. Then
the protocol continues as usual again. In case the PUBCOMP message is
lost, the receiver has already discarded information about the exchange but
may still receive a duplicate message from the sender about the release of the
message. Then, assuming everything until now has been correct, the receiver
can infer that it has already processed the message in question and can simply
send the last message again.

There are always four messages plus any retries during this exchange. The
sender must keep the whole message at least until delivery is confirmed by
PUBREC and must keep the state of the message along with its identifier
until the end of the exchange. The receiver must keep the identifier and state
of the message until it completes the exchange by sending PUBCOMP.

2.2.2.5 Flow Control

The client cannot control when it will receive messages and the broker delivers
them usually as soon as they are available. The only option to limit these
messages is by setting the Receive Maximum option which limits the number
of QoS 1 and 2 messages that can be unacknowledged at any given time. Both
the client and broker can set this limit independently to signal how many
messages they are willing to process concurrently. If the limit is reached the
sending party has to wait until some of the pending messages are acknowledged
or completed and only then further publish messages may be sent.

2.2.3 Security

The MQTT specification[5] also has a (non-normative) chapter on the security
of the protocol. The protocol is designed to run over TCP/IP and it is advised
to use TLS.
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Sender Action Receiver Action
Store message

PUBLISH QoS 2, DUP=0
<Packet Identifier>

Store <Packet Identifier> then
Initiate onward delivery of the

Application Message
PUBREC <Packet Identifier>

<Reason Code>
Discard message,

Store PUBREC received
<Packet Identifier>

PUBREL <Packet Identifier>
Discard <Packet Identifier>

Send PUBCOMP <Packet Identifier>
Discard stored state

Figure 2.3: MQTT actions by the sender and receiver in QoS 2 exchange.

The specification lists a number of threats that solution providers should
consider. For example:

• Devices could be compromised;

• Data at rest in Clients and Servers might be accessible;

• Protocol behaviors could have side effects (e.g. “timing attacks”);

• Denial of Service (DoS) attacks;

• Communications could be intercepted, altered, re-routed, or disclosed;
and

• Injection of spoofed MQTT Control Packets[5].

It is important to note that the protocol is stateful and messages may be
persisted both in client and server and steps should be taken that anyone with
access to the hardware isn’t able to obtain the data.

The implementations should also be aware that it may run in a hostile
environment and in these cases authentication, authorization, integrity, and
confidentiality also have to be taken into account[5].

OASIS has also released a supplemental publication to serve as a guid-
ance to integrate MQTT with the NIST Framework for Improving Critical
Infrastructure Cybersecurity[22][23]. Other standards and security profiles
must also be met for certain use-cases such as processing credit card payment
information.
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The CONNECT packets of the protocol support User Name and Password
fields which may be used for authentication of clients at the server. These
fields can be used for other purposes than basic authentication, they may also
contain certificates or other forms of credentials. Another option is to use
mutual TLS for authenticating the clients.

The protocol also supports enhanced authentication where the client can
declare what authentication flow it would like to use with the server. These
authentication mechanisms are not specified so the client and server should
know beforehand what protocol they wish to use. Examples that can be used
this way include SASL, Kerberos, and SCRAM challenge.

There is no mechanism in the protocol to authenticate the original client
that published a message that was received on a topic. Therefore the users
should also consider the possibility of a rogue client connected to the server and
sending fake data to a topic. This must be prevented by correct authorization
rules in the scope of topics.

Authorized clients can also in some cases cause restarts of subscribing
clients by including some forbidden features that the server may not check for.
This can happen for example when a rogue client publishes to a topic that
contains a forbidden character in its name and another client is subscribed to
the topic with a wildcard subscription. Then if the broker does not correctly
check the topic name and does not reject the message, when it is forwarded
to other correctly implemented clients they may disconnect from the broker
because of the invalid topic name.

2.3 Advanced Message Queuing Protocol (AMQP)

Advanced Message Queuing Protocol is an OASIS and ISO-IEC standard. The
protocol is intended for business messaging and allows all common behaviours
and delivery guarantees.

The specification defines the wire-level encoding of all primitives and ob-
jects that can be used and transported in the protocol, communication over
TCP, messaging layer, and transactional messaging[24].

2.3.1 History

The protocol originated in 2003 and was pioneered by JPMorgan Chase & Co.
The company eventually reached out to other firms such as Cisco and Red Hat
to create a working group, which later grew to have 23 members including for
example Microsoft and VMware. Several versions of the protocol were released
with the most widely used being 0-9-1 released in 2008, sometimes also referred
to as 0.9.1. The working group became an OASIS section in 2011 and in that
year version 1.0 was officially released.

The OASIS version is substantially different from the older ones[25]. This
work specifically focuses on version 1.0.
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2.3.2 Features

An AMQP network consists of nodes connected via links. Nodes are named
entities responsible for the safe storage and/or delivery of messages. Messages
can originate from, terminate at, or be relayed by nodes[24].

A node is any entity participating in the exchange of messages using
AMQP. Multiple nodes may run on the same computer or even in the same
application. Examples are queues in a broker, where each is considered a
separate node.

A link is a unidirectional route between two nodes. A link attaches to a
node at a terminus. There are two kinds of terminus: sources and targets. A
terminus is responsible for tracking the state of a particular stream of incoming
or outgoing messages. Sources track outgoing messages and targets track
incoming messages. Messages only travel along a link if they meet the entry
criteria at the source[24].

Communication between nodes is carried on an AMQP connection, which
is a full-duplex reliably ordered sequence of frames. It is assumed connections
are transient and can fail for a variety of reasons resulting in the loss of an
unknown number of frames, but they are still subject to the aforementioned
ordered reliability criteria. This is similar to the guarantee that TCP or SCTP
provides for byte streams, and the specification defines a framing system used
to parse a byte stream into a sequence of frames for use in establishing an
AMQP connection[24].

Each connection may contain several sessions where each provides bidirec-
tional, sequential conversation between two containers, where a container is
a machine or a program that contains one or more nodes. Sessions provide
a flow control scheme based on the number of transfer frames transmitted.
Since frames have a maximum size for a given connection, this provides flow
control based on the number of bytes transmitted and can be used to optimize
performance[24].

A link is a unidirectional route between two nodes. A link attaches to a
node at a terminus. There are two kinds of terminus: sources and targets. A
terminus is responsible for tracking the state of a particular stream of incoming
or outgoing messages. Sources track outgoing messages and targets track
incoming messages[24].

Each connection can have several sessions. A single session can be simulta-
neously associated with any number of links. Therefore for sending messages
in one direction, the applications need one connection, one session, and one
link; for sending and receiving messages one connection, at least one session,
and two links. There is a link (or a pair of links in case of bi-directional
messaging) for each node recipient, which may be a device or a queue on the
Internet. Links are named, and the state at the termini can live longer than
the connection on which they were established. The retained state at the
termini can be used to reestablish the link on a new connection (and session)
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+-------------+
| Link | Message Transport
+-------------+ (Node to Node)
| name |
| source |
| target |
| timeout |
+-------------+

/|\ 0..n
|
|
|

\|/ 0..1
+------------+
| Session | Frame Transport
+------------+ (Container to Container)
| name |
+------------+

/|\ 0..n
|
|
|

\|/ 1..1
+------------+
| Connection | Frame Transport
+------------+ (Container to Container)
| principal |
+------------+

Figure 2.4: Relationship between links, sessions, and connections in AMQP.

with precise control over delivery guarantees (e.g., ensuring ”exactly once”
delivery)[24].

2.3.2.1 Transferring Messages

Messages are sent in AMQP frames with a transfer performative, which is a
term that the AMQP specification uses for an object that dictates what the
packet is supposed to do, such as opening a connection or transferring a mes-
sage. Each message may be split into multiple frames which are individually
sent and the original message is then reconstructed at the target. The state
of the message is tracked at both ends of the exchange with either of them
being able to change it. In normal operations, the receiver processes the mes-
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sage and then notifies the sender that the message has been processed. The
sender then does any operations needed such as notifying interested parties
about message processing, cleans up all information pertaining to the mes-
sage, and confirms the new state of the message to the receiver, while also
settling it, effectively announcing that it has now forgotten the message. Any
further messages from the receiver pertaining to the message would then be
considered an error.

The sender may also change the state of the message on its own, for ex-
ample if the message times out. If both the sender and the receiver wish to
change the message at the same time, the sender’s version is authoritative.

There are four terminal states of the message defined:

1. Accepted—the message was successfully processed,

2. Rejected—the message is malformed and will not be processed,

3. Released—the message was not acted upon and should be delivered
again, and

4. Modified—the message has been modified and should be delivered again.

2.3.2.2 Quality of Service

All messages are reliably transferred if links are not detached unexpectedly.
If links are detached (for example because the underlying TCP connection is
interrupted), the current state of each ongoing message for that link should
be kept at the terminus at the node. The link is then reattached, the source
and the target compare the information they have about the transfer of the
messages and restart, resume, or abort any of them.

The specification does not explicitly provide guidance as to how to imple-
ment given QoS level. It only provides hints for some decisions about redeliv-
ery on reattached links and if those must be done to guarantee for example
the at least once semantics.

2.3.2.3 Flow Control

The protocol can be used for the transport of messages between two nodes
where there is very little assumed about them. They can be peers exchanging
messages, but usually, publish-subscribe pattern is implemented with distri-
bution nodes serving as the central broker of messages. Operation and state
of messages at the distribution nodes is also part of the specification[24].

The number of messages and when they are delivered can be controlled
both on the level of a session and on individual links. The controls on links are
especially useful when the consuming application wants to for example receive
only a single message and no more until it has been processed or it wants to
wait until a given number of messages are ready. The flow is controlled by the
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sending node advertising number of messages it can send at a given time and
the receiving node giving the sending node link-credits, where each credit can
be spent to deliver one message.

2.3.2.4 Multiplexing

Since there can be multiple sessions and ptentially many links in a single con-
nection, multiple devices can be multiplexed onto a single TCP connection[26].
This may be advantageous in cases for IoT gateways that communicate with
brokers on the Internet on behalf of some devices. These devices can then com-
municate with the gateway with simpler protocols. For this feature to work
an extension of the protocol[27] is needed for authentication of the devices.
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Chapter 3
Experiment Design

3.1 Common Design

The experiments were performed on two different devices. One was more
constrained where a custom firmware had to be built and flashed on it, the
other was running the Linux OS.

3.1.1 Platforms

The first device was ESP-WROOM-32 with integrated 2.4Ghz WiFi module.
It uses Xtensa architecture on its two low-power 32-bit 240Mhz LX6 micro-
processors and provides 520 kB of RAM[7]. Devices with ESP32 or ESP2866
WiFi chips are cheap and often used by hobbyists for personal projects as well
as for industrial applications that need WiFi connectivity. This device type
is fairly constrained while still having a wireless network interface and being
easily obtainable. There will be no operating system and the code must utilize
the hardware directly.

The second device on which experiments were run is Raspberry Pi 3b+[8]
running Manjaro OS. These devices are much less constrained, but still widely
used for various IoT projects. All standard functions of the Linux operating
system will be available. The device has a 1.4Ghz 64-bit quad-core ARMv8
CPU, 1 GB of RAM, and both 2.4Ghz and 5Ghz WiFi capability.

All experiments will be run against brokers run in Docker on a personal
computer with no other significant load. The device with the computer will
be in a local network with a router with dual-band WiFi. The computer
where brokers and servers will be running will be connected through the 5Ghz
band with hroughput of 867 Mb/s. ESP32 will connect to the 2.4Ghz WiFi
band with 300 Mb/s speed. Raspberry Pi will be connected with an Ethernet
cable. As each device will be connected through a different channel they
should have minimal influence on each other. Some interference with other
wireless networks in the vicinity can still occur though.

23



3. Experiment Design

3.1.2 Experiments

The experiments will mainly test properties of the protocol under load by:

• Sending a very high amount of small messages—this test should measure
the performance of the protocol in a setting where many small messages
are sent. This can be the case when there is a lot of data generated
by a device such as a sensor and all data are to be sent for processing.
Possibly a device can also cache data and then send a large number of
messages at once to save power by not being continuously connected to
the network.

• Sending large messages—here we test for the other possible mode of op-
eration, that is sending large amounts of data at once that are packaged
in one message. This can either be a single message like a picture from
a photo trap or it can be an aggregate message with multiple buffered
readings.

The first test will be performed by sending 65536 messages with a 2-byte
random payload. The second test will be done with a single 65536-byte mes-
sage.

We will measure the time it takes to finish these tasks. We can assume that
most of the inefficiencies in performance come from the constrained devices,
not the brokers.

Each test will be run 100 times on the Raspberry Pi or 20 times on ESP32
in similar conditions to diminish any interfering effects or to split them be-
tween all protocols as evenly as possible.

Qualitative analysis of some exchanges will also be done:

• Sending several messages, capturing these packets with Wireshark, and
examining the contents and sizes.

Bandwidth used by the protocols will be measured as network efficiency
is also an issue that constrained nodes must take into account. This will
not be done several times but instead, it will be evaluated qualitatively by
examination of individual packets through Wireshark. The focus will be placed
on two aspects of the protocols, the connection phase and the data transfer
itself. Both the number of exchanged packets as well as the size on the wire
will be examined.

3.1.3 AMQP

The protocol itself is symmetrical, so the speed should not differ depending
on whether the device is client or broker. But logically the device will always
be a client connecting to a broker to send messages to some queue. Therefore
in the experiments, the device will publish messages to a broker.
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The implementation to which it will connect is RabbitMQ 3.9.11 run in
a Docker container on a personal computer in the same local network as the
tested device. This broker uses by default the AMQP 0-9-1 protocol, but
there is also a plugin for version 1.0 which will be used. As Quality of Service
is not integrated into the protocol, simple publishing of messages with an
acknowledgement from the broker will be done, effectively resulting in an at
least once guarantee.

3.1.4 MQTT

In the case of MQTT, there is no reason for a constrained device to serve as a
central broker with which all other devices communicate.3 In all experiments
the device will be the one connecting and sending publish messages to the
broker. We will measure all three settings of QoS in individual experiments.

The broker will be EMQ X 4.3.10, an open-source implementation of
MQTT broker supporting version 5.0. It also contains a plugin for translating
CoAP requests to MQTT publish or subscribe messages which will be useful
in the last test. The broker is again run in Docker on a personal computer in
the same local network as the tested device.

3.1.5 CoAP

We will let the constrained device take the role of the client. In some instances,
an IoT device may also be a CoAP server but this configuration generally
needs a continuous connection to the network throughout its lifetime. On
the other hand, a client can enter long periods of deep sleep to save power
otherwise expanded on the network interface. There is a tradeoff between
responsiveness and power saving based on the frequency of uploading data,
polling for configuration changes for the client, and other communications.
Furthermore, CoAP has an Observe option which lets the device get any
updates if continuously listening to network traffic is not an issue. Thus we
conclude that the device acting as a client in the CoAP protocol is generally
more favourable and therefore that is the role in which the device shall be
tested.

We will measure both non-confirmable and confirmable messages. For
confirmable messages, we will focus only on piggy-backed responses (responses
embedded in the ACK packet) because all scenarios are about the device
sending data to the server. Therefore it makes no sense for the server to
acknowledge the request and send a response in a separate message.

3We can think of an exception to this where an edge device like Raspberry Pi runs
the broker for all local devices. In this section, we are however considering primarily more
constrained devices and Raspberry Pi itself as a device serving as an IoT device and not an
edge computer.
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A custom server was built using Golang and the Go-CoAP library[28]. It
is very simple as it only accepts data on a given path and sends a success
indicating result code. It can serve CoAP over UDP, DTLS, TCP, and TLS.

3.2 ESP32

The tests were written in Rust, which is a systems programming language
focused on three goals: safety, speed, and concurrency[29]. There is support
from the community to use Rust in embdedded systems with documentation
being available on the internet[30]. There is also guidance on how to flash
Rust programs onto ESP32 boards[31].

In the Rust ecosystem, published libraries executables are generally re-
ferred to as crates. This work will follow this naming, so the word crate used
in this work in the context of Rust will always mean library.

3.2.1 HTTP

Bindings to the C implementation of HTTP in Espressif IoT Development
Framework (ESP-IDF)[32] were used. This feature is very crude and in an
early development stage in Rust, but the underlying implementation is stable.
As the test is run in a single thread without a support of an operating system,
each request is sent sequentially after the previous one has been responded to.
Both HTTP and HTTPS were tried.

3.2.2 AMQP

Attempts to find a suitable library to use on the selected device as a library
for the AMQP client were largely unsuccessful. There exist a lot of different
libraries in many programming languages, however, none were found that
would make an effort to run directly on bare metal without basic OS services
such as threading, except for one C library.

First, the Rust language was tried, where there are many open-source li-
braries both for the 0-9-1 and 1.0.0 versions of AMQP, however, all depend
on a library called Metal IO (mio)[33] which cannot be currently run on the
xtensa architecture[34]. Next, was tried using the C language with a library
called uamqp[35]. Although there is a system for components in the official
ESP-IDF[32], it was too complicated to repurpose the CMake files needed for
a successful build and then also find and fix all transitive dependencies. Then,
MicroPython[36] was tried. It is a smaller Python runtime designed to work
on embedded devices with constrained resources. Two AMQP libraries were
tried—amqp[37] and pika[38]. Both needed some minor adjustments because
they relied on functionality not provided in standard MicroPython packages,
but eventually, both failed with allocation errors during initialization. After
that, Espruino[39], which is marketed as JavaScript for microcontrollers, was
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attempted to be used. This ended up the same way as Micropython, because
there are no AMQP packages created for microcontrollers and the ecosystem
does not support simple usage of standard packages that can be found for
example in npm. Lastly, a version of .NET runtime called Nanoframework[40]
was found. This runtime should be able to run managed C# code on con-
trollers. This ecosystem also has its own packages created for the purposes of
embedded devices. It is in part developed by Mircosoft whose several Azure
services leverage the AMQP 1.0 protocol[41] and therefore there are libraries
ready for interoperation with some of these services. However, documenta-
tion on how to properly use the Nanoframework is somewhat sparse and the
flashed managed code was unable to start properly on the ESP32 device.

Therefore this work concludes that using AMQP on severely constrained
devices without the ability to run a standard operating system should be
discouraged because there is simply no community to support this scenario.
That said there does not seem to be a technical problem that would prevent
implementation in any language if it was needed.

3.2.3 MQTT

The implementation for MQTT tests uses the Rust programming language
and a library called MiniMQ[42].

This library is specifically designed to run on bare metal, in devices with no
OS support, and also without the standard library. It does not even depend on
mechanisms like heap allocations which introduces a trade-off where the user
must declare during compilation time some constants such as sizes of buffers
and how many messages can be in-flight. The library supports asynchronous
operation by the way of making the user poll for responses and getting mes-
sages and ackonwledgements in return. Since all unacknowledged messages
must be stored in memory this allows for some, but not many, messages to be
in transfer at the same time. The experiments will use at most 64 messages
in transit in at the same time. All messages are sent through the same TCP
connection.

The library uses an abstraction of the network stack which currently sup-
ports only unencrypted UDP and TCP sockets, therefore encrypted transfers
were not tested on this device.

A notable implementation in C that could have been used is the MQTT
implementation that is present in the ESP-IDF. However this implementation
uses only versions 3.1 and 3.1.1 of the MQTT protocol, therefore it could not
have been used for this work.

3.2.4 CoAP

Originally some open-source fully functional library was supposed to be used.
However, some of them (like the library called coap) also relied on the mio and
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tokio libraries for handling the asynchronous nature of the protocol. The only
one which has been found that used other mechanisms used a crate for asyn-
chronous operations that uses too much memory on stack resulting in stack
overflow in any program that tried to send CoAP requests on a constrained
device. Therefore the coap lite crate without dependencies on any standard
library functionality was used for serializing and deserializing the messages
and the protocol itself was custom-written.

The CoAP tests were implemented with the use of the coap lite[43] crate
for Rust. This library provides all necessary functions for manipulating CoAP
messages and is intended to serve as a building block for more complex libraries
which can handle all the messaging concepts and resend rules and thus extract
some of this work. Because of the relative simplicity of CoAP when compared
to the other protocols this was not an issue and the basic functionality was
written in about 150 lines of code.

Because the protocol allows only one unacknowledged request at a time the
messages will be sent strictly sequentially. Only when the previous message
has been responded to will the next message be sent to the server.

Only the UDP transport has been tried on ESP32.

3.3 Raspberry Pi 3 B+

Tests for all three protocols in question will be run on Raspberry Pi 3 Model
B+ which is a single-board computer with 1.4Ghz 64-bit quad-core ARMv8
CPU, 1 GB of RAM, dual-band WiFi, and Gigabit Ethernet over USB 2.0[8].
It also provides four USB ports and forty pins out of which twenty-eight are
GPIO with support for SPI, I2C, etc. This type of board is much less con-
strained than the ESP32 devices but it is still often used for IoT solutions that
need high computational power or a standard Linux environment into which
the developer can connect for example through SSH. This comes with much
higher power consumption so it is not suited for battery-powered applications.
Using the Linux system also introduces considerably longer boot time until the
board can execute its intended function. This can be tweaked to some extent
by disabling some unneeded services like Bluetooth or WiFi (when connected
through Ethernet) but it may never be suitable for some very time-sensitive
operations like a camera photo trap. For the tests, Manjaro OS for ARM
which is based on Arch Linux will be used.

The Python programming language has been used for all three protocols on
this device. This language is very well known and regarded for its simplicity
and for that reason is used on several projects, both by hobbyists and IoT
companies. The source code in attachments also include pyproject.toml
and poetry.lock files that define dependencies and their versions so that the
projects can be easily rebuilt with the same versions.
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3.3.1 HTTP

HTTP requests which would be used as a baseline were done with the aiohttp
library[44]. This is a library that can send many requests in parallel and
asynchronously wait for the responses, no other advanced functionality of
HTTP was needed in the experiments. No limit was imposed on the library
and all messages were asynchronously enqueued for sending as fast as possible.

3.3.2 AMQP

The Qpid Proton library[45] was used for AMQP implementation. This li-
brary is maintained by Apache and it is written in C with bindings to several
languages, such as Python. It supports AMQP 1.0 with all its standard func-
tionality.

The library provides very granular support over handling of events in the
protocol through callbacks. These events include for example when the other
peer accepts the message which is used to count the number of successfully
trasfered and accepted messages. The code as written has at least once seman-
tics when publishing. It only sends a predefined number of messages and then
counts acknowledgements with callbacks in a separate thread. All messages
are sent through the same TCP connection.

3.3.3 MQTT

For MQTT tests, the Eclipse Paho MQTT Python Client library[46] was cho-
sen. This library is written in Python and is not a wrapper around C functions
and therefore some operations can be slower because of garbage collection and
other runtime overhead. It supports protocol versions 3.1, 3.1.1, and 5.0 out
of which only tests with the latest version, which has been discussed in the
second chapter, were run. All levels of Quality of Service are supported and
all have been measured individually.

This library also provides a way to register callbacks for events such as
finishing publishing a message. These callbacks were used to count the number
of published messages similarly to the AMQP experiment.

3.3.4 CoAP

Originally, tests that simulate a CoAP client were first created using the
aiocoap[47] a Python native library using asyncio—a library for running con-
current IO-bound Python code. It implements all major CoAP functionality
and several of the extensions that were added to the standard later.

However this library and any other popular Python CoAP did not seem
to support TCP and full DTLS. The Python library however does not sup-
port TCP. Therefore, all tests were rewritten in Golang with the Go-CoAP
library[28].
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Tests with UDP and DTLS were limited to only one concurrent request
as is the default for CoAP over UDP. Each request was sent only after the
previous was settled. CoAP over TCP does not limit the number of concurrent
requests as congestion control is not managed by CoAP, but rather by TCP.
Therefore, in these tests asynchronous tasks are spawned and executed in
parallel where each sends one request. There can be up to 1024 concurrent
requests. This number was used because further increase seemed to not have
any effect on the speed anymore while some higher configurations ran into
issues with memory and thread scheduling. All requests are sent through the
same socket.
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Chapter 4
Results Evaluation

4.1 Expected Results

The three protocols serve very specific purposes. While CoAP shines in very
simple scenarios with the request-response pattern, MQTT and AMQP are
designed for messaging patterns with a central broker. MQTT is also better
suited for messages that are to be routed directly to the subscribers while
AMQP has found uses in more standard queue-oriented setups. Another big
difference is AMQP’s ability to control the number of incoming messages with
credits while MQTT only has a quota set during the connect phase for how
many messages can be in-flight at any given moment. On the other hand, the
ability to set the desired and supported QoS of MQTT gives more control to
the developer where the same behaviour would be largely dependent on the
implementation of the broker in AMQP.

Therefore the chosen protocol for a given solution should be based first and
foremost on the scenario and guarantees. As we have seen, CoAP is generally
very simple to implement and use if there is no need for its advanced features.
MQTT also has great support from the IoT community with many imple-
mentations aimed at various constrained devices. Usage of AMQP for IoT
solutions is harder because there is not much support for it and the protocol
itself is fairly complicated. While Microsoft uses in several of its Azure ser-
vices AMQP 1.0[41] and Red Hat publicly supporting the newest version[48]
the community still uses AMQP 0-9-1. This can be illustrated by the fact
that although there are more repositories for AMQP 1.0 on GitHub, the most
popular repository[49] has 322 stars and only four have more than 100 stars
while the most started repository for AMQP 0-9-1 is a Go implementation
with 4161 starts[50] followed by implementations for Node.JS and Python,
both having around three thousand stars. There is about the same number
of repositories that have more than one star. Another example is RabbitMQ
which can use both versions, but it uses only the older version by default and
the newer version is supported as an opt-in plugin. Therefore there should be

31



4. Results Evaluation

strong reasons to introduce AMQP to a very constrained IoT solution because
it carries some risk and complexity.

Of the three protocols, CoAP should have theretically the lowest over-
head. Not only can data be sent with only a five-byte protocol overhead (not
including options such as URI path) but it can also run on UDP which has a
smaller header than TCP and for spurious transmissions also saves bandwidth
because there are no handshake or termination messages. Handshake however
is present if DTLS is used. Usage of UDP also brings some drawbacks such as
shorter NAT timeout times[51][52][53], speed of transfer in good networks[54],
and implementation of congestion control in the application instead of the
transport protocol. CoAP also supports TCP transmissions which have a
minimum of three- to seven-byte overhead depending on the length of the
sent data[4].

MQTT should have fairly small overheads for the PUBLISH messages, but
compared to CoAP the connection establishment may be somewhat expensive.
It is however simple if no advanced features of the protocol are needed. This
can be suboptimal if the device should sporadically connect to the broker and
send only one or a few small messages.

The most complicated connection establishment is that of AMQP where
first a proto-header stating protocol name and version is sent (8 bytes), then
each party needs to send an Open packet, Begin packet, and Attach packet,
each having 8-byte headers and some data. Each transfer message then needs
at least 30 bytes of additional overhead just for AMQP on each transfer packet.
All these packets then also need to be acknowledged and in most scenarios
settled with further messages in each direction.

4.2 Size on the Wire

For this experiment only 1024 messages were transmitted, each message con-
tained two bytes of data. The exchanges were tracked using Wireshark and
the corresponding packet capture files are available in the enclosed memory.
Only exchanges not using TLS or DTLS were saved as the captures of en-
crypted communications provide very little outside of the numbers discussed
in this section.

The focus will be placed on the number of bytes transmitted including
all network headers. Next to that number of packets will be also examined.
This metric is of interest because it indirectly shows the effectiveness of the
transfer. Each transferred TCP packet has an overhead of at least 54 bytes of
headers4.

All conversations were captured using Wireshark which has some limita-
tions such as not being able to easily decode TLS communications and not
being able to capture all transferred bytes, namely Frame Check Sequence

4Ethernet header is 14 bytes, IP header is 20 bytes, TCP header is 20 bytes plus options.
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Bytes transferred (B) Packets transferred
Theoretical minimum

of HTTP 140460 98

HTTP 500304 4107
HTTPS 565768 4113

CoAP over UDP 110464 2048
CoAP over UDP with DTLS 197150 2054

CoAP over TCP 115954 1451
CoAP over TCP with TLS 187277 1765

MQTT QoS 0 13172 34
MQTT QoS 1 61438 764
MQTT QoS 2 114932 1559

MQTT QoS 0 with TLS 39416 66
MQTT QoS 1 with TLS 129902 1166
MQTT QoS 2 with TLS 251094 2369

AMQP 88058 183
AMQP with TLS 90558 181

Table 4.1: Comparison of transmitted bytes and packets for 1024 messages
consisting of 2 bytes each with different protocols.

(FCS) of the Ethernet packets. Therefore the figures shown may differ from
actual numbers of transmitted bytes on the wire by 4 bytes per packet. This
is however consistent across the protocols and mostly negligible and therefore
it will not be considered beyond this point.

4.2.1 Protocol Results

4.2.1.1 HTTP

The time it took to transmit HTTP packets was rather long. The packets
themselves were fairly large as both the client library as well as the server
sent several headers along with the HTTP messages. Furthermore, the client
library is optimized to use several concurrent connections which may be ben-
eficial in other scenarios for multiplexing responses but here it considerably
added to the overhead of the TCP protocol. For this experiment the library
was configured to use only one TCP connection to not pollute the results with
multiple three-way handshakes and other overhead.

HTTP is notoriously very verbose with all of its headers and options be-
ing sent in ASCII. The client library also always sent only the headers in one
packet and after the server acknowledged them it sent the two bytes of payload
in a separate message. Therefore each request consisted of two packets, one
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with 191 bytes of payload which contained just the headers, HTTP method,
and other protocol information, and then another containing two bytes of pay-
load. Each of these incurred 54 bytes of network overhead because of Ethernet,
IP, and TCP headers. Furthermore, the packets for acknowledgement from
the server took another 54 bytes on the wire. Then the server sent 129-byte
response, out of which 75 bytes were the HTTP response. The response itself
contained no payload, only the status code, and headers. Then the client
acknowledged this message in a separate 54-byte TCP packet.

This behaviour would be highly inefficient in IoT applications. If HTTP
should be used in a constrained network, special care should be placed on
correctly configuring all relevant options.

If the client used as little bandwidth as possible, it would have needed 25
bytes for declaring HTTP verb, version, and path, 19 bytes for the content-
length header, 2-byte CR LF to signal the end of headers and the start of the
payload, and finally 2 bytes of user data. In total every HTTP request would
need at least 48 bytes plus network headers for a total of 102 bytes per request
if every request was sent individually. Each response needs 17 bytes to declare
HTTP version and status code, 19 bytes for content length5, and 2-byte CR
LF to signal the end of headers. This is a total of 36 bytes per response plus
network headers.

If we assume MTU of 1500 and buffering both requests and responses in as
large packets as possible, there would be at least 58 TCP packets containing
all the requests and at least 33 TCP packets containing responses. Therefore
including the three-way and four-way handshakes, there would be at least
140460 bytes transmitted in 98 packets.

4.2.1.2 CoAP

4.2.1.2.1 CoAP over TCP As TCP is connection-oriented, CoAP adds
one message at the beginning of the connection. That is the Capabilities and
Settings Messages (CSM), where both the client and server declare options
and extensions that they would like to use. Both the client and server sent a
CSM message with no options which amounted to 64 bytes in each direction,
where 54 bytes were network headers.

Then each transferred message was 73 bytes long, that is 19 bytes without
network headers. Out of these 2 were the CoAP header, 8 were for the token
that is used for identifying response packets to the correct requests, 6 were
options for the message, then 1 byte is used to mark the beginning of the
body and the last 2 bytes were the payload itself. Each of these messages
then needed a response that contained no data, only a status code. Along
with that it also needed a 2-byte header and an 8-byte token to pair the

5This header is not actually mandatory, but when it is omitted, the client should consider
everything received from the server as part of the response until the connection is closed.
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response with the correct request. Each reply was 10 bytes without network
headers, 64 bytes with Ethernet, IP, and TCP headers.

It is important here to note that the 8-byte token is the longest that it can
be and this length was chosen by the library. Each message can contain as
short as 1-byte tokens as long as they are not reused until the requests time
out. Therefore in our experiment with 65536 messages tokens with two bytes
(or three since the CSM message also needs a valid token) would be sufficient.

We can see that TLS adds some overhead to the bytes transferred but not
to the number of packets.

4.2.1.2.2 CoAP over UDP The number of transferred bytes is lower
with UDP. This is in part due to smaller UDP headers compared to TCP, but
also because the Python implementation used for this used only 2-byte tokens,
saving 12 bytes per each request-response pair, totalling at 12288 bytes. The
shorter header itself may also not provide that large benefit since, unlike TCP,
each UDP packet can contain only a single CoAP message. Therefore exactly
2048 packets were sent, 1024 with a request, 1024 with a response. This
means that there are more packets sent, each needing its own headers. This
is furthermore illustrated with the use of DTLS where there are 6 more UDP
packets for DTLS handshake. In total, the difference between TCP and UDP
network headers was less than 3 % because the shorter length of UDP headers
was balanced by the higher number of packets.

The messages themselves were mostly the same as with TCP except that
there is no deduplication in UDP so each CoAP message contains 2-byte mes-
sage ID for that purpose. Confirmable and non-comfirmable messages are
identical except for a single bit and therefore only one result is shown in the
results table.

4.2.1.3 AMQP

The client sent a total of 245 bytes in AMQP proto-header with the proto-
col and version declaration, Open, Begin, and Attach packets to estabilish a
connection, session, and link respectively, all of which were sent in a single
TCP packet, therefore with further 54 bytes of network headers. RabbitMQ
responded to each of these messages in a separate packet, sending a total of
708 bytes including all headers. In the last TCP packet, there was also an
AMQP flow packet which is needed to set up flow control so that the client
may start sending data.

Then the client started sending messages with an overhead between 50 and
64 bytes per AMQP message, depending on some numbers sent in the AMQP
headers and their variable length encoding. These messages were usually
sent in bulk so TCP overhead is negligible in this experiment, although in
normal circumstances the messages would be likely not sent at the same time.
RabbitMQ then acknowledged the messages dispositions packet, often sending
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each individually in a TCP packet. However, a single AMQP disposition
message may acknowledge multiple transferred messages at the same time
with no further overhead. Each disposition packet has 31 bytes, not including
the TCP overhead.

Therefore opening up a connection until the client could send any useful
data consisted of sending 245 bytes to the broker and receiving 708 bytes.
Then each individual message incurs an overhead of 104 bytes per message
in one direction and another 85-byte confirmation, assuming each message is
sent individually.

We can see that there is only a slight increase in transferred bytes when
using TLS. The number of packets is also very similar between the encrypted
and unencrypted versions. This number can however fluctuate and in some
experiments got as low as 120. This is because in some circumstances the
broker can send several disposition packets in the same TCP packet.

4.2.1.4 MQTT

To initiate a connection the client sent a 73-byte packet and the broker re-
sponded with a 75-byte packet, both figures including all headers. Then each
PUBLISH message was sent with only 9-byte overhead for QoS 0 and 11-byte
overhead for QoS 1 and 2. For QoS 1 there is also a 6-byte (60 including
network overhead) response, for QoS 2 there is also 6-byte PUBREC, 4-byte
PUBREL, and 6-byte PUBCOMP.

There is a significant increase in transferred bytes when encrypted using
TLS. Possible causes for this increase are higher packet fragmentation and
padding in TLS, especially for short messages such as PUBACK, but it was
not feasible to examine the unencrypted packet contents due to the limitations
of the used tooling.

4.2.2 Comparison

We can see that all of the protocols behaved much better than HTTP with
default settings. Every unencrypted version of the protocol used smaller band-
width than is the theoretical minimum that could have been used by HTTP.
Only CoAP over TCP used about 3 % more bandwidth than the theoreti-
cal minimal HTTP client. This is due to the number of transferred packets.
While we have assumed perfect usage of MTU by the HTTP client and server
with a total of 98 packets, the CoAP client sent and received 1636 packets.
This is an overhead of at least 88344 bytes in network packet headers, which
is about 61 % of the bytes transferred in the test.

There was an expectation for CoAP over UDP to have much better per-
formance, but in the setting of many messages sent at the same time, the
advantage of a smaller L4 header is offset by the need to send each individual
message in its own packet as UDP is packet-oriented, unlike TCP which is
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connection-oriented. While the CoAP over UDP performed a bit better than
CoAP over TCP, these tests were done with different libraries, and the TCP
implementation suffered from larger token size and imperfect buffering of mes-
sages into fewer packets resulting in a large number of packets as discussed
earlier.

On the other hand, we can see that MQTT with QoS 0 sent the lowest
number of packets. This is because it sent all 1024 PUBLISH messages in just
14 TCP packets. Since there is no response from the broker for this QoS most
of the other packets are TCP ACK packets and connection establishment.

AMQP used a surprisingly small amount of packets. On closer inspection,
it however sent TCP packets as large as 13194 bytes even though MTU was
configured to 1500. This means that it ran a great risk of fragmentation on the
network layer which may be dangerous in unstable network since losing a sin-
gle Ethernet frame can mean retransmission of all fragments. While it slightly
lowered the results in this experiment, the potential overhead on retransmis-
sion is much larger. But even if the AMQP implementation used more packets
it seems to have a lower footprint than CoAP. It is also worth noting that if
the developer also optimized the broker to wait with the disposition packets
to acknowledge data transfer the overhead would be significantly lowered as
the broker could potentially send just a single disposition packet in response.
This would however increase the risk that a message may be delivered more
than once.

MQTT with QoS 1 seems to have performed better than AMQP since
even though there were several times more packets in the exchange, the overall
bandwidth was lower. However, MQTT has a strange increase with a factor
of more than 2 when used with TLS.

MQTT with QoS 2 used much more bandwidth than QoS 1 and this should
be taken into account when deciding what QoS is needed for messages. The
bandwidth is still lower than both CoAP with TCP and HTTP.

Since AMQP and MQTT with QoS 1 are the most similar protocols, it
is worth focusing part of the comparison on these two cases. It is visible
that MQTT sent fewer bytes but it sent a lot more packets. This is because
although both of the protocols need to acknowledge the messages, AMQP can
send a disposition packet that acknowledges multiple packets at the same time.
It also sent some packets that were much larger than expected. Furthermore,
it seems that the MQTT broker did not buffer the acknowledgement messages
to send them in a bulk in a single TCP packet. But even with this inefficiency
MQTT with QoS 1 sent fewer bytes on the wire.

MQTT has used the shortest messages with QoS 0 PUBLISH messages
being only 11 bytes and higher QoS being 13 bytes long. The length of the
CoAP messages is similar to that with the length of 19 in our experiments.
As discussed previously this could be improved upon by using tokens shorter
than 8 bytes. The token length also influences the length of the response which
is 64 bytes for CoAP and 60 bytes for MQTT in our experiments. Therefore
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Mean transfer time
and standard deviation (s)

HTTP 281.274 ± 3.19
HTTPS 313.013 ± 2.743

CoAP over UDP 239.182 ± 17.443
CoAP over UDP with DTLS 289.001 ± 24.316

CoAP over TCP 8.916 ± 0.549
CoAP over TCP with TLS 12.778 ± 0.613

MQTT QoS 0 18.293 ± 1.318
MQTT QoS 1 83.2529 ± 1.254
MQTT QoS 2 150.997 ± 1.314

MQTT QoS 0 with TLS 16.614 ± 0.681
MQTT QoS 1 with TLS 82.0632 ± 1.539
MQTT QoS 2 with TLS 152.580 ± 9.777

AMQP 78.187 ± 1.146
AMQP with TLS 78.831 ± 4.286

Table 4.2: Comparison across 100 measurements on Raspberry Pi of trans-
mission times of 65536 messages in seconds with different protocols.

with better settings for tokens MQTT with QoS 1 and CoAP would have used
very similar bandwidth and most of the difference would then come from the
network stack usage and buffering.

4.3 Protocol Speed

4.3.1 Protocol Results

All discussed measurements were measured on the Raspberry Pi and with the
libraries discussed in the previous chapter unless stated otherwise.

4.3.1.1 CoAP

There is an extremely large difference between transmission times when using
CoAP with UDP and TCP. This is because CoAP defines very crude con-
gestion control[1]. That is because the protocol should be very simple and
therefore the congestion rules were created to be simple to implement. It was
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Mean transfer time
and standard deviation (s)

HTTP 0.02487 ± 0.00178
HTTPS 0.04858 ± 0.00759

CoAP over UDP 0.19635802 ± 0.03137
CoAP over UDP with DTLS 0.66193877 ± 0.08757

CoAP over TCP 0.019998632 ± 0.00228
CoAP over TCP with TLS 0.034399883 ± 0.00866

MQTT QoS 0 0.10306 ± 0.00034
MQTT QoS 1 0.10316 ± 0.00055
MQTT QoS 2 0.10316 ± 0.00066

MQTT QoS 0 with TLS 0.103
MQTT QoS 1 with TLS 0.103
MQTT QoS 2 with TLS 0.10305 ± 0.00041

AMQP 0.091985 ± 0.00855
AMQP with TLS 0.110612 ± 0.01363

Table 4.3: Comparison across 100 measurements on Raspberry Pi of transmis-
sion times of one message with 65536 bytes in seconds with different protocols.

Mean transfer time
and standard deviation (s)

HTTP 903.667 ± 23.721
HTTPS 1059.431 ± 29.931

CoAP over UDP confirmable 1716.413 ± 123.643
CoAP over UDP nonconfirmable 1732.160 ± 147.458

MQTT QoS 0 16.650 ± 2.075
MQTT QoS 1 645.518 ± 25.807
MQTT QoS 2 985.738 ± 27.363

Table 4.4: Comparison across 20 measurements on ESP32 of transmission
times of 65536 messages in seconds with different protocols.
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also designed for very constrained networks and therefore the protocol reacts
more severely than it could in normal settings.

When a request or response is lost in UDP the protocol waits at least
one second to resend the request and then continues with exponential back-
off. TCP uses advanced mechanisms to speed up retransmission such as fast
retransmit[55]. Furthermore, CoAP in default settings allows only one pending
request from a client to a given server. Therefore while the CoAP client can
send as many parallel requests over a TCP connection as the link can handle,
it waits with each UDP request.

4.3.1.2 MQTT

The results show that the time grows based on the chosen level of QoS. This
is expected as each of the guarantee levels has more packets that need to be
transmitted over the network. The difference between QoS 0 and QoS 1 is very
large because the client must not only send the data but also store it in case
that it must be retransmitted later. Therefore based on the implementation,
the data may be copied on the disk or in memory and a structure holding IDs
of unacknowledged messages must be kept up to date. The difference between
QoS 1 and QoS 2 is also considerable as the former needs a single round trip
per message while the latter needs two round trips. A probable explanation
for such an increase in time is provided by an examination of the traffic with
Wireshark, where we can see that the broker sends confirmation messages in
individual packets instead of sending multiple in a single packet. This can
strain the network as the size of the headers is much larger than the messages
themselves.

We see an even bigger performance drop on the ESP32 where the MQTT
client must save the message for later potential resend which includes copying
of the data in the chosen implementation because there is no memory heap.
Due to the constrained nature, there is also a limit to the number of messages
that can be saved this way and further messages cannot be published until at
least some of the preceding ones were acknowledged. This also prevents the
network stack to send as many messages in one packet as it did with QoS 0
because not enough messages can be sent at the same time.

On the other hand, there is no measurable difference between different
QoS levels when there is only a single large message.

Surprisingly the experiments show that the protocol is faster with TLS
than without it for two of the QoS settings. This is most likely the case
because the overhead of TLS is dominated by the work done by the protocol
itself and the transmission of data and that other factors causing variance in
the data ended up skewing the experiment toward this result. We can however
conclude that the overhead of TLS does not significantly slow the transfer time
for the protocol.
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Another surprising result is the increase in the number of packets when
encrypted with TLS. This is hard to explain since the contents of the encrypted
packets are unknown. The most plausible reason would be that the TLS
library used by the broker is very inefficient with buffered data.

4.3.1.3 AMQP

The times for AMQP transfers show no irregularities. The transfer is a little
bit slower with encryption. The time of transfer is similar to MQTT QoS 1
although it is faster.

4.3.2 Comparison

All tested protocols were significantly faster than HTTP except for CoAP over
UDP. This is of course because of the default congestion control because of
which each request is done sequentially. We can clearly see that when it was
sent over TCP it performed much better. The TCP implementation made
use of high parallelism with up to 1024 concurrent requests. When the client
was configured to have a maximum of only one outstanding request at a time
in a TCP connection similarly to the transport over UDP, the transfer of all
messages took about 4 minutes. This discrepancy seems to be mostly because
of different implementations.

There was a very small increase in processing time when TLS was used
with all protocols. Only CoAP showed a considerable relative drop in speed,
however, it has still been the fastest and the test included the exchange of
certificates which add one-time overhead to the connection establishment.

We can see that all of the protocols seem to perform well when a single
large message is sent.

On ESP32 CoAP shows much worse performance than MQTT. There does
not seem to be any difference in the speed of transfer between confirmable and
non-confirmable CoAP messages. This is mostly because the program always
waits for a response before starting another request. Even then it is able to
serve about 40 messages per second. The MQTT implementation had at most
16 unacknowledged messages at once and with QoS 1 it achieved a throughput
of about 100 messages per second.
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Conclusion

All the protocols were introduced to the reader to the extent that they should
know how it generally behaves and what kind of messages are needed to trans-
fer data. At that point, several areas where the protocols differ significantly
were identified and these differences were confirmed by the experiments. There
are some features that do not have an alternative in the other protocols, such
as CoAP’s block transfer, MQTT’s native implementation of Quality of Ser-
vice, or AMQP’s superior flow control and multiplexing.

During the experiments implementation phase, several problems with var-
ious code libraries were uncovered. As part of this work, issues were raised in
several GitHub repositories and even some contributions were made to a Rust
MQTT implementation[42] for constrained devices.

These problems were most visible with the AMQP implementation, where
there was very little support to be found. Most implementations focused on
business messaging for more complex systems which heavily relied on OS func-
tionality not available on ESP32. The uamqp library[35] was the only library
that was optimized for low RAM footprint and portability. Nonetheless, at-
tempts to create a firmware to flash this library on the ESP32 board failed.
After that several runtimes and languages were tried to find if any supported
an AMQP 1.0 library. Rust[31], C[32], Python[36], C#[40], and JavaScript[39]
were all tried with no success.

CoAP and MQTT were both successfully flashed onto the ESP32 chip. The
former was in part implemented for the purposes of this thesis. The coap-lite
library[43] was used for manipulating the CoAP messages but sending and
resending were implemented by hand. For MQTT the MiniMQ library[42]
was used. It was extended to support QoS 1 and QoS 2.

All three protocols were then successfully used on the Raspberry Pi model
3 b+. For the experiments Python libraries for HTTP[44], MQTT[46], and
AMQP[45]; and a Golang library for CoAP[28] were used.

The results show that all three protocols perform considerably better than
simple HTTP. The only exception was the speed of CoAP over UDP which
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has very strict default settings for congestion control which makes the protocol
perform worse. This can be worked around by using it over TCP assuming
higher network load is not an issue. Using TCP should not introduce any issue
if there is no expectation to transfer a very large number of small messages in
a short amount of time and the network is stable enough to support it.

The results also showed differences in speed and bandwidth usage when
different Quality of Service guarantees were used in MQTT. When choosing
which guarantee to use these perofrmance measurements should be taken into
consideration as this setting has a tremendous influence on the speed and
possibly on congestion.

All three protocols can be used with TLS or DTLS. This work showed that
there is not a significant performance hit when these are used. Only MQTT
used considerably more bandwidth, this however didn’t significantly slow it
down. Therefore, this work concludes that these secure protocols should be
used whenever technically possible.
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Appendix A
Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks.

AES Advanced Encryption Standard.

AMQP Advanced Message Queuing Protocol.

CBC Cipher Block Chaining.

CoAP Constrained Application Protocol.

CPU Central Processing Unit.

CSM Capabilities and Settings Messages.

DSA Digital Signature Algorithm.

DTLS Datagram Transport Layer Security.

ESP-IDF Espressif IoT Development Framework.

FCS Frame Check Sequence.

GPIO General-Purpose Input/Output.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

I2C Inter-Integrated Circuit.

IBM International Business Machines Corporation.

IEC International Electrotechnical Commission.
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Acronyms

IETF Internet Engineering Task Force.

IoT Internet of Things.

IP Internet Protocol.

IPv6 Internet Protocol version 6.

ISO International Organization for Standardization.

LoRaWAN Long Range Wide Area Network.

M2M Machine-to-Machine.

MAC Message Authentication Code.

mio Metal IO.

MITM Man in the Middle.

MQTT Message Queuing Telemetry Transport.

MQTT-SN MQTT For Sensor Networks.

MTU Maximum Transmission Unit.

NAT Network Address Translation.

NIST National Institute of Standards and Technology.

OASIS Organization for the Advancement of Structured Information Stan-
dards.

OS Operating System.

QoS Quality of Service.

RAM Random Access Memory.

RFC Request for Comments.

SASL Simple Authentication and Security Layer.

SCRAM Salted Challenge Response Authentication Mechanism.

SCTP Stream Control Transmission Protocol.

SPI Serial Peripheral Intrface.
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Acronyms

SSH Secure Shell.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

URI Unique Resource Identifier.

URL Unique Resource Location.

USB Universal Serial Bus.
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Appendix B
Contents of Enclosed Flash

Drive

text..........................................The thesis text directory
thesis.pdf..........................The thesis text in PDF format

src......................................The directory of source codes
thesis.............The directory of LATEX source codes of the thesis
code ................. The directory source codes for the experiments

server.........Go source code to run a CoAP and HTTP servers
esp......................Source codes for the ESP32 experiments
rpi ............... Source codes for the Raspberry Pi experiments

wireshark .................................... Wiresharek capture files
results.................Files containing measured times of experiments

esp.......................................Experiments with ESP32
rpi3................................Experiments with Raspberry Pi

small....................Experiments with many small messages
large ................... Experiments with a single large message
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