
1/6/22, 1:55 AM ProjectsFIT

https://projects.fit.cvut.cz/theses/3986/assignment-print 1/1

Instructions

The aim of the thesis is to follow already started students project called SoundPi and extend it by

particular functionalities.

Follow the steps below:

1. Describe the actual state of the project.

2. Design and implement the following extensions / modules / functionalities:

 - Songs recommendation. Recommender engine is developed in thesis running in parallel. Your

responsibility is appropriate data model extension and integration into the application.

 - “Jukebox” for bar / house party events.

 - Host/admin access to re-edit event details.

 - Addition of a social aspect through user interaction via a comment section per event.

Properly test and document your solution.

Electronically approved by Ing. Michal Valenta, Ph.D. on 29 September 2021 in Prague.

Assignment of bachelor’s thesis

Title: Extensions of SoundPi project by social aspects and machine learning

integration

Student: Egemen Erogul

Supervisor: Ing. Michal Valenta, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Auxbox Project Extension

Egemen Erogul

Department of Software Engineering
Supervisor: Michal Valenta

January 6, 2022

Acknowledgements

I want to thank all of my Software Project team members who worked hard
and helped create the original AuxBox application which I have built up on,
as well as my supervisor Michal Valenta for guiding me through the process
of writing my thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 6, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Egemen Erogul. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Erogul, Egemen. Auxbox Project Extension. Bachelor’s thesis. Czech Techni-
cal University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Tato práce se zabývá rozš́ı̌reńım webové aplikace AuxBox o daľśı funkce, které
přináš́ı nové př́ıpady užit́ı aplikace, poskytuj́ı lepš́ı navigaci, interaktivněǰśı
prostřed́ı a zavád́ı do aplikace prvky sociálńıch śıt́ı. Dále se věnuje př́ıpravě do-
poručovaćıho systému pro výběr ṕısńı založeného na informaćıch o uživateĺıch
v systémech AuxBox a Spotify.

Kĺıčová slova Webová aplikace, Spotify, Sociálńı, Strojové učeńı, Python,
Django, Systém doporučeńı, Hudba.

Abstract

This thesis focuses on extending the web application AuxBox by adding ad-
ditional functionalities which will introduce new use cases allowing the users
to navigate and work with the application in a more interactive, social , con-
venient and extensive way along with a research on recommendation systems
which is going to provide a road map of asserting trained data models that
would be used to build the cores of a recommendation system based on the
data provided by Auxbox/Spotify users.

vii

Keywords Web Application, Spotify, Social , Machine learning , Python,
Django, Recommendation System, Music.

viii

Contents

Introduction 1
Sub Objectives: . 1
Used Technologies And Frameworks 2

Overview . 2
How Django Works - Overview 2
Database Management . 2
Security . 3
Request Handling And Views 3
Further Reading . 3

1 Architecture And Class Design 5
1.1 Directory Structure . 5

1.1.1 auxbox . 6
1.1.2 docs . 6
1.1.3 Documentation . 7
1.1.4 events . 7
1.1.5 dao . 7
1.1.6 daointerface . 7
1.1.7 factory . 7
1.1.8 forms . 7
1.1.9 migrations . 7
1.1.10 models . 7
1.1.11 services . 8
1.1.12 static . 8
1.1.13 templates . 8
1.1.14 tests . 8
1.1.15 views . 8

1.2 Data Layer . 8
1.3 Service Layer . 9

ix

1.3.1 Authentication . 9
1.3.2 Query Processing . 9

1.4 Presentation Layer . 9

2 New Use Cases 11
2.1 User Comments . 11

2.1.1 Model Design . 11
2.1.2 Usage Specification . 12

2.2 Event Likes . 13
2.2.1 Model Design . 13
2.2.2 Usage Specification . 14

2.3 Create House Party . 14
2.3.1 Design . 15
2.3.2 Usage Specification . 16

2.4 Add Playlist To House Party 16
2.4.1 Design . 17
2.4.2 Usage Specification . 18

2.5 Up Vote Playlist . 18
2.5.1 Design . 18
2.5.2 Usage Specification . 19

2.6 Edit Event . 19
2.6.1 Design . 19
2.6.2 Usage Specification . 20

3 Testing 21
3.1 Architecture . 21

3.1.1 Overview . 21
3.1.2 Design . 21

4 Recommendation System 23
4.1 Abstract . 23
4.2 Recommendation Methods . 23

4.2.1 Abstract . 23
4.2.2 Simple Recommendation Methods 24
4.2.3 Content Based Recommendation 25
4.2.4 Collaborative Filtering 26
4.2.5 Collaborative Recommendation System Types 27
4.2.6 Memory-Based Collaborative Filtering 27
4.2.7 User-User filtering . 27
4.2.8 Item-Item filtering . 27
4.2.9 Model-Based Collaborative Filtering 27
4.2.10 Clustering Algorithms 27
4.2.11 Matrix factorization . 28
4.2.12 Deep Learning Methods 28

x

4.3 Integration With AuxBox . 28

Conclusion 29

Future Work 31

Bibliography 33

A 35

xi

List of Figures

xiii

Introduction

Auxbox is a web application which is designed to create events particularly
taking place in bars and clubs, targeting to achieve a much more interactive
environment by allowing the users to be able to manipulate the music that
is to be played both during, and before the event. The current state of the
application is more of a prototype rather than a complete app which is able
to maintain a relatively simple database and provide simple use cases like cre-
ating and joining events. The main objective of this thesis is to extend the
application in a way which will transform the application in to a much more
responsive, functional and social platform and establishing the initial architec-
ture by doing the necessary research for a recommendation system which will
open the ways of using trained real data related to users music preferences to
make the AuxBox experience even more engaging and dynamically improving
over time.

Sub Objectives:

The thesis focuses on accomplishing the following sub goals:

• Implementation of host / admin access to re-edit event details.

• Addition of a social aspect through user interaction via a comment sec-
tion per event.

• Implementation of a “Jukebox” type event for bars / house parties

• Updating / Reorganizing the database model of the application to fit
the needs of the chosen machine learning model.

• Implementation of a song request feature with the token system

• Analysis of the optimal way to integrate the machine learning model
with the back end of the currently existing application.

1

Introduction

Used Technologies And Frameworks

Overview

Auxbox is written mainly in Python. The reason Python language was cho-
sen is because of its easy to use, well documented frameworks which also have
outstanding communities that makes it convenient to deal with possible bugs
and library issues which are known to be problematic and time consuming.
python is also known for its statistical libraries like Pandas and Numpy along
with frameworks that are designed for handling big data sets and applying
machine learning algorithms on them which is very crucial for the recommen-
dation system aspect of Auxbox.

The main framework Auxbox uses to maintain its web server is the Django.
Django is arguably one of the best frameworks for web development for Python.
It is competitively fast and does a very good job of handling common web
issues And provides very straightforward and easy to understand documenta-
tion. It is fair to say that Django framework is the main technology component
which helped Auxbox become a stable , functional and highly scalable web
application.

Auxbox uses a PostgreSql database for storing maintaining all of its data.
PostgreSql is one of, if not the best database system int the world. It is used
by technology leader companies and its safe to say that it proved itself to
be very reliable and robust. Auxbox aims for simplicity, reliability aspects on
maintaining its database and Posgres was able to full fill those requirements.

How Django Works - Overview

Database Management

One of the key aspects of Django framework is the amount of convenience it
brings to the database management and maintenance problem. It is entirely
possible to use Djnago without an actual database to connect the projects
with.Though, Django comes prepared with a simple and functioning ORM(object-
relational- mapping) component for developers who are looking for more con-
venience in the databse department. The Django object relational mapper
describes the database table layout in Python. Their data model syntax
comes with a lot of useful features to represent the table structure in the
best way possible. This can be observed through the models directory in
AuxBox projects where every table is represented in its own file and class as
models. Once a model is ready to be used, developers only need to execute
a few commands in order to connect to the database and alter/create tables
based on the designed models.

2

Used Technologies And Frameworks

Security

Django provides an administrative interface for professional use which allows
the registered users to change the database objects of a specific model if the
model is registered in the admin site. This way it is possible control user
access among clients and staff.

Request Handling And Views

Django handles request urls in a fast and convenient way. Conventionally,
urls.py file contains the urls as path objects which define a mapping between
url patterns and call back functions called views or view functions. When
a url is requested from the client Django goes through every single defined
path in order and triggers the view function which is associated with the first
url match. These urls are compiled to regular expressions at load time which
makes it very fast.

The view functions(or classes) are responsible for either returning an http
response object according to the request object which was implicitly passed
to it or raising an error. In general, view functions would render a template
after retrieving the necessary data with regards to the parameters.

Django also provides a template system which helps reduce redundancy in
terms of HTML pages which comes with many features.

Further Reading

This section describes only the main components and just a small percentage
of what Django has to offer as a general purpose python framework. For more
information, visit [https://docs.djangoproject.com/]

3

Chapter 1
Architecture And Class Design

1.1 Directory Structure

AuxBox directory structure follows the conventions of Django framework and
python.

5

1. Architecture And Class Design

AuxBox
directory structure (SCREENSHOT FROM IntelliJ IDE)

1.1.1 auxbox

The auxbox directory(not to be confused with the main project directory) is
used to hold files regrading project settings and configuration variables like
secret key, client id etc.

1.1.2 docs

The docs directory stores the files which represent automatically generated
documentation of auxbox as rst files.

6

1.1. Directory Structure

1.1.3 Documentation

The Documentation directory is the place where human readable documenta-
tion of AuxBox is stored in the form of md and pdf files.

1.1.4 events

Events is the main directory of AuxBox project where every piece of imple-
mented logic that has direct impact is stored in related directories and files.

1.1.5 dao

Dao directory contains all the files which are classes that represent data access
objects. These classes are responsible for querying the database based on the
requests of the service objects.

1.1.6 daointerface

DaoInterface directory contains interface classes which are used for creating
abstraction over dao classes.

1.1.7 factory

Factory directory consists of a single file which represents the class that is
used by service classes to access data access objects effectively implementing
the classic factory design pattern.

1.1.8 forms

Forms directory is the place where all the Django Form classes take place.
These classes are used by the presentation layer to create form objects which
are then rendered for the user to fill in and send post request to AuxBox for
altering or creating new objects in the database based on the forms fields.

1.1.9 migrations

Django object relational mapping framework generates migration class files
for mapping Django Models to the data base tables. All these auto-generated
files are stored in the migration directory.

1.1.10 models

Models directory contains all the Django Models classes which are created
by the developers. These classes represent the database tables and their at-
tributes. Migrations are generated via these models.

7

1. Architecture And Class Design

1.1.11 services

The service directory is the core of AuxBox business layer. All the service
classes which apply the requested logic(via view functions) are included in
this directory.

1.1.12 static

Static directory contains css and js files which are used to render templates(HTML
files). Static images like logos and album pictures are also stored in thıs di-
rectory.

1.1.13 templates

Templates directory contains every HTML file which are pages that are ren-
dered on the client side browser.

1.1.14 tests

Tests directory contains a base file on the first level which is used to define
test objects. Services directory under Test directory includes a class file for
each unit test.

1.1.15 views

Views directory represents the core of AuxBox front end. All the view func-
tions are included in their own file responsible for forwarding request infor-
mation to other layers.

1.2 Data Layer

AuxBox data layer consists of three separate folders; dao, factory and daoin-
terface. These are sets of classes that follow a traditional approach for im-
plementing simple data access hierarchy. DaoFactory is the way data layer
provides access to its data extraction methods to external classes and methods
which exist outside of the data layer realm. DaoInterface folder represents ab-
straction over the actual data access methods where the definitions of actual
methods take place. Dao is the main folder where all the data access classes
and their method’s implementations are present. Dao classes are responsible
for querying the database according to the requested data set and filtering
over the the dataset therefore allowing access to every table in database when
needed.

Django database framework is used for the execution of the queries.
Overall, the main functionality of the data layer is to provide data accord-

ing to the needs of the service layer.

8

1.3. Service Layer

1.3 Service Layer

Service layer is where all the logic is applied based on the queries we get from
AuxBox/Spotify users including the authentication logic.

1.3.1 Authentication

AuxBox uses the Tekore api in order to handle the authentication process.
Tekore provides high level methods which are easy to use to cope with the
necessary token system which is set by Spotify Api itself. Once the users
connect to our website, they are prompted a page where they need to use their
Spotify account credentials to login and allow the AuxBox application to use
their personal data related to their Spotify account. When the authentication
process is done, users are allowed in AuxBox homepage and are able start
using every aspect of the application.

1.3.2 Query Processing

AuxBox has a simple yet effective way of processing user requests. There
exists a service class for each and every table in the database. These classes
are responsible for taking the information from the presentation layer and
applying the necessary logic that is needed to fulfill the queries demands.
Service objects accomplish this task by their methods that are specifically
designed to be composed together and communicate with the data layer to
apply relatively complex logic therefore becoming the most important building
block of AuxBox business layer. Service objects are created and used inside
the view functions which represent the base of AuxBox presentation layer.
Service methods interact with DaoFactory class in order to access data access
objects which is simply a another layer for providing abstraction over the data
layer

1.4 Presentation Layer

AuxBox presentation layer is fundamentally based off of the Django views
system. The viewing process of every page starts with the ”urls.py” file where
all the urls that are available for users to access take place. Once a url is
triggered by some client, Django makes an implicit call to view functions
which all have their own files that are stored under the views directory. These
functions are responsible for processing the request which was acquired from
the triggered url and they are the very first step of every use case AuxBox
has to provide. View functions operate by constructing and using the service
objects. After confirming the successful execution of a particular query which
is done by the service and data layer, view functions proceed to render and
populate the related HTML page with the current information provided. They

9

1. Architecture And Class Design

are also responsible for handling possible exceptions which might be caused
by anything from false requests to database errors. HTML pages exist under
the templates directory. AuxBox does not use any complex framework for
the front end part other than the latest HTML technology and minimal JS
scripting.

10

Chapter 2
New Use Cases

This chapter explains the usage of the newly added use cases for the AuxBox
application and their technical background.

2.1 User Comments

One of the most popular use cases of almost all social media platforms is
undoubtedly the user comments. It allows people to express their feelings
or ideas regarding whatever interests them on the platform. In the case of
AuxBox, it will allow AuxBox/Spotify users to comment on the event which
they joined and express their thoughts on it. Comments section is a quite
simple but very crucial part of the AuxBox application.

2.1.1 Model Design

Comment model consists of three fields: text: The text of the comment.
Maximum 200 characters. date: The date when the comments was made.
participation: The participation object as Foreign key.

Participation has its own model with the fields event id and user id which
is used to represent a unique relationship between an event and a user. Having
this relationship field in comment model allows AuxBox to distinguish between
comment objects and be aware of who it belongs to on which event.

11

2. New Use Cases

Comment Model
and its relations(screenshot from DataGrip)

2.1.2 Usage Specification

The use case of user comments starts at the presentation layer as soon as
the url is triggered by the user. Comment button takes place on the event
page. When the user triggers the button, view function comment is called
with a parameter of type integer representing the id of the the event to be
commented on. The view calls the participation service and checks whether
user is a part of the event or not. If the user is in the joiner list of the event,
a Django form is created and prompted to the user. Otherwise a warning
message is formed and rendered on the same page indicating that the user
should join the event in order to make a comment. In the case of correctly
filled form, comment service is called and the user comment is registered in
to the database. Another use case present in the comments system is to
show all the comments of a particular event which is obviously vital for such
functionality. There exists another button on the event page which triggers
the show comments view function. The job of this function is simple. It calls
the comment service and gets all the comment objects which have the id of

12

2.2. Event Likes

the event as a part of their participation foreign key and renders an HTML
page to list them.

2.2 Event Likes

Arguably the most effective use case of any social media platform is the ability
of the users to manifest their feelings towards any post with minimal effort,
by just one click. Likes have been around for a while and they are not going
anywhere. The convenience of uplifting any post you see is simply efficient
and has great potential to provide the most simple and use full feedback to the
developers and content creators which helps the platform to enhance. Thus,
AuxBox implements likes so users can like any event that they like and have
an affect on the bigger picture.

2.2.1 Model Design

The like model is relatively simple, it has three fields; date: Holds the date
information regarding when the event was liked. user: The user as foreign key
who liked the event. event: The event as foreign key which was liked by the
user.

User and event are unique together and they are used to distinguish be-
tween like objects.

13

2. New Use Cases

Like Model and
its relations(Screenshot from DataGrip)

2.2.2 Usage Specification

The like button is placed on the event page. When the url is triggered, like
view function is called and the existence of the specific like object is checked.
If there exists a like object with the same event and user, the page is refreshed
with a warning which informs the user that the event was already liked. Oth-
erwise, the like object gets registered in the database and the like count is
refreshed which also takes place on the event page.

2.3 Create House Party

House parties are basically events with additional features. A regular event in
AuxBox is assigned a single playlist which is chosen by the creator of the event.
House parties introduce a collaborative way of handling playlists. As opposed
to a regular event, a house party can have multiple playlists associated with it
and the playlists can be added by any user who is a joiner of the house party.
AuxBox will automatically determine the main playlist of the house party by

14

2.3. Create House Party

simply checking the amount of up votes of every playlist which is associated
with the house party and choosing the one with the most up votes.

2.3.1 Design

House party model is the simplest class model in AuxBox, it only has one
field which represent a pointer to the event table because House Party is im-
plemented as a child class of Event model. AuxBox implements Django’s
Multi-Table inheritance model for representing House Party as a child class of
Event. Django explains Multi-Table inheritance as follows: Each model in the
hierarchy is a model all by itself. Each model corresponds to its own database
table and can be queried and created individually. The inheritance relation-
ship introduces links between the child model and each of its parents (via
an automatically-created OneToOneField). It is entirely possible to add new
fields to the House Party model in the future and they would be represented in
the House Party model itself which is important for AuxBox Events structure
since significant differences could cause unnecessary complications if imple-
mented otherwise. The playlists and their up votes are handled through two
different models called Playlist and Up Vote which are going to be explained
on another section.

15

2. New Use Cases

House Party model
and its relations(Screenshot from DATAGRIP)

2.3.2 Usage Specification

In order to create a house party event, the user needs to trigger the House
Party button which is located in the homepage of AuxBox. The HouseParty
button will trigger the create house party function and render an empty form,
for the user to fill in the details of the House Party. After filling in the form
the user triggers the create button right under the form and sends the POST
request to AuxBox. Then the House Party object is created and registered
in the database.The creation part works very similar to the Event creation.
Usage of other features of House Party like adding and up voting playlists are
going to be explained in the next sections.

2.4 Add Playlist To House Party

House Party playlists work in a collaborative way as opposed to regular Events.
Unlike events, House Party can be associated with multiple playlists which can

16

2.4. Add Playlist To House Party

be added by all of the joiners of the House Party. This use case represents the
functionality of adding playlists to a House Party which everyone can see.

2.4.1 Design

Playlist model consists of four fields: playlist id; Holds the Spotify id of the
playlist. house party id(Foreign key); Holds the Event/House Party instance
id which the playlist is associated with. user id(Foreign key); Holds the id of
the user who added the playlist. name; Holds the name of the playlist.

The user id and the house party id are the main foreign key fields which
establish the association with the House Party model. The name field is au-
tomatically assigned by the Tekore API through spotifyidprovidedbytheuser.

Playlist model and
its relations(Screenshot from Datagrip)

17

2. New Use Cases

2.4.2 Usage Specification

The Add Playlist button is located on the House Party page. When the user
triggers the button, add playlist view function is triggered which then creates a
playlist form and prompts it for the user to fill on the browser. When the user
submits the playlist form, the view function proceeds to create and register
the playlist instance and saves it to the database by calling Playlist Service
methods right after checking the validity of the playlist.

2.5 Up Vote Playlist

One of the defining features of House Party is the joiners ability to up vote
the playlists which AuxBox uses to determine the main playlist of the House
Party by counting the up votes. This use case aims to make the event more
interactive and dynamic by allowing the users to participate in a simple and
effective way.

2.5.1 Design

The Up Vote model has four fields: date: Holds the date which the up vote
was registered. spotify playlist: Holds the Spotify id of the playlist. event
id: Holds the id of the House Party which the playlist that got up voted was
added to. user id: The id of the user who up voted the playlist.

The event id is used to filter the up vote objects by event and user id
associates the user with the up vote. Both of these fields play the key role on
establishing their relationship with the Up Vote model.

Up Vote model and
its relations(Screenshot from DataGrip

18

2.6. Edit Event

2.5.2 Usage Specification

In order to up vote a playlist, a user should go through a three step process.
First, the show playlists button should be triggered which takes place in the
House Party/Event page. This button triggers the show house party playlists
view function which renders all the playlists associated with the current House
party and presents it to the user. Every Playlist item on the page is represented
as a card with two buttons attached to it. The up vote button sends a post
request to AuxBox and the upvote gets registered in the system. The view
playlist button triggers the playlist view function which renders a window
that allows the users to go through the playlist and play any song on it.This
functionality is accomplished by querying the Spotify API directly.

2.6 Edit Event

The ability of Event hosts to edit and update the event is introduced to
AuxBox with this new use case. Hosts became able to change every field
which defines the event like date, name, playlist etc after the creation of the
Event.

2.6.1 Design

The Event model consists of nine fields which makes it the most complex
model in AuxBox. name: Name of the event. description: Brief description
of the Event’s concept. spotify genre: The genre of the playlist to be played
during the Event. location: The location of the Event. min request price:
The minimum price a user has to pay in order to make a song request to the
Event host. date: The date which the event will take place on. time: The
time which the event will take place on. user id: ID of the user/host who
created the event. playlist id: The Spotify ID of the Event’s playlist.

19

2. New Use Cases

Event model (Screen-
shot from DataGrip)

2.6.2 Usage Specification

In order to edit an Event, the user needs to view the even they created. In
the Event page, only host users are presented with an edit event button. Edit
event button triggers the edit event view function which loads the form using
the current Event instance and renders it for the user with all fields filled in
from the original information of the Event. At this stage, the user is allowed
to change every field of the Event and submit it to update the information in
the database. Django implicitly queries the database and updates the Event
fields of the Event instance when the form is successfully submitted.

20

Chapter 3
Testing

This chapter explains how and with what technologies and frameworks AuxBox
implements unit testing.

3.1 Architecture

3.1.1 Overview

AuxBox uses Django’s testing framework for unit testing. Django uses the
standard python library module unittest. Django provides isolation over tests
by introducing Test Case model and running each test inside a transaction.
Python unittest defines tests with a class based approach. Classes can be
used as test classes once they are passed the Test Case module as a parame-
ter. Django’s testing framework also comes with the functionality of creating a
temporary mock database so the original database is not used during the test-
ing session. By default, the mock database which was created gets destroyed
when the execution of a particular test ends. In order to create objects in the
mock database to use for testing, a set up method is used where objects and
their fields are defined and saved.

3.1.2 Design

AuxBox stores all the test files under the tests directory. The base file under
the tests directory is used to define all the mock objects which are going to be
used for testing via the set up method under the Base Test Case class. The
service directory under the tests directory consists of several classes/files which
represent the test classes of several different use cases. These classes inherit the
Base Test Class which allows them to use all the defined mock objects.These
classes have methods for testing different outcomes of a particular use case by
simple assertions that validate the result of the use case process.

21

Chapter 4
Recommendation System

4.1 Abstract

Recommendation systems are widely used all over the world by most of the
big and small enterprises in their applications in order the enhance the user
experience by processing user data with the help of machine learning algo-
rithms.These systems are essentially sub sets of Information Filtering systems
and that is exactly what they are designed to do, filtering and analyzing
user data in search of predicting a users preference in terms of content on a
particular context. Complex recommendation systems target building up on
a specific part of user data and the relationships across thousands or even
millions of users. The most successful companies like Netflix, YouTube, Face-
book, Instagram and many others have successfully implemented at least one
type of recommendation system in their web applications. They all have a
way of presenting specific type of content for every user which might relate to
their taste. Thus, AuxBox thrives to build a recommendation system which
will certainly improve user experience and help the application get bigger and
better by constantly processing more data and producing meaningful results
to recommend Events or maybe even playlists and songs to the users in the
future. AuxBox database consists of a fair amount of tables and relatively
simple relationships between them which most of the time involve the users
themselves. These relationships are quite suitable as a core building block of
an effective recommendation system.

4.2 Recommendation Methods

4.2.1 Abstract

There are a lot of ways to make a recommendation system work, but over
the past 10 - 15 years, numerous methods have been used, tested and an-
alyzed which allows us to generalize these methods in three different cate-

23

4. Recommendation System

gories. Recom-
mendation systems Diagram(SCREENSHOT FROM [1]

4.2.2 Simple Recommendation Methods

The most general and straight forward implementation of a Recommendation
system focuses only on the history of popularity of the data to be presented
to the end user. Simple recommendation methods analyze the popularity of
a certain content and predict the likelihood of a users preference based on
that since a type of content is more likely to attract users if it was liked or
shared by a bigger amount of users compared to the average. This kind of
approach is seen to be successful on simple data sets and simple use cases
like listing the top rated movies on a single database by simply counting the
stars/votes. Even though such methods mostly work fine to some extent, it
fails to see the bigger picture where thousands of parameters come in to play
which can be used to provide a much more accurate prediction. User similarity
and specific user data like age, gender and location are other ignored aspects
in the these simple recommendation methods. Only focusing on the general
opinion of the user base is going to miss out on more intricate relationships
among the users which our system could have build up on and define user
groups to analyze user behavior in a much more extensive way. Thus, better
recommendation systems were crafted which are explained in the following
sections. For context, the below image shows a table of top rated movies and
their ratings. Such output can be achieved by a weighted calculation of the
ratings which considers the amount of ratings as well as the average rating of
a movie.

24

4.2. Recommendation Methods

4.2.3 Content Based Recommendation

Content based recommendation systems focus on content features/items asso-
ciated with a user. By observing how a user reacts to features of some content
and determining whether a users taste corresponds to a feature in a positive
way or not, we can predict the probability of a user enjoying another item
which is similar in terms of features and that would lead to a recommendation
as an output. Content based recommendation systems are capable of provid-
ing more accurate results due to the fact that they can use a huge amount
of parameter scale therefore training a much more data rich model as well as
correlations among them. An important aspect of content based systems is
that they do not need other users data in order to produce a recommendation
for a user. Thus, it focuses on the history of the users preferences with re-
spect to the content and then proceeds to find other content which would be
relevant for the user. In order to achieve this , the similarity measurements

25

4. Recommendation System

are calculated through the content vector which includes the features of the
content and users vector that includes his/her previous records about contents
features.

The below table shows how multiple users and their ratings with regards
to movie types(action, comedy) can be represented.

4.2.4 Collaborative Filtering

As opposed to content based recommendation systems, collaborative filtering
method focuses on similarities among users rather than the features of an
item/content. Users are mapped as feature vectors or some type of mapping
of users to their preferences based on features. Therefore users and contents
are both embedded in the same space. The collaborative method works by
filtering users and creating subsets of users who has similar preferences. The
items which the users liked are combined to form a list of recommendation
candidates. Many different techniques can be used in order combine user
preferences and create a list of recommendations. The below image shows a
matrix representation of user vectors consisting of the ratings the users gave
to items.

26

4.2. Recommendation Methods

4.2.5 Collaborative Recommendation System Types

4.2.6 Memory-Based Collaborative Filtering

Memory based filtering methods depend on memorizing tables/matrices which
describe the relationship between a user and an item and how the user rated
the item. There are two kinds.

4.2.7 User-User filtering

As the name suggests user-user filtering is based on the comparison of users
with regards to their preferences on certain items and finding out similarities
between them. A users liked items may be found suitable and be recommended
to a another user if the system can detect enough similarities. It is important
to note that the system should also handle biases among users. A user might
be biased to give low ratings which is not related to whether the user is similar
to other users or not. Thus, some normalization method is usually used to
eliminate the bias.

4.2.8 Item-Item filtering

This method is purely item based. If a users preferred/liked item shows simi-
larities to another item, that item is recommended to the user. The similar-
ity between user vectors can be calculated via different measures like Cosine
Similarity(cosine angle between vectors), Euclidian Distance(squared distance
between two vectors).

4.2.9 Model-Based Collaborative Filtering

Instead of remembering the matrices, model based filtering tries to learn users
behavior on items from the large matrix of user - item interactions via reduc-
tion and clustering algorithms. Machine learning models are used in order to
predict a users rating on an arbitrary item. Multiple methods can be used
to achieve this goal like clustering algorithms, matrix factorization and deep
learning methods.

4.2.10 Clustering Algorithms

Clustering algorithms target the efficient categorization of the available data.
These algorithms make use of creating groups out of a big data set and classi-
fying those groups based on properties like density or frequency with respect
to their similarities which leads to users being associated with certain data
groups, therefore providing more precise predictions on what a user would
prefer in his/her future interactions with new content. Thus, recommenda-
tion systems can benefit from the final product of the clustering algorithms

27

4. Recommendation System

which define relationships between users and items based on the probability
of a user being subscribed to a certain group.

4.2.11 Matrix factorization

Matrix factorization works by factorizing user-item relationship matrices in to
smaller ones which can then be used to generate a more accurate interaction
matrix. Factorization algorithms are similar to clustering algorithms on the
surface but fundamentally different on a deeper practical level. These two
algorithms both focus on some sort of classification of the provided data but
the main objective of factorization is to simplify the data in order to come to
a conclusion with regards to user-item similarities by factor analysis. Factor
analysis is a statistical data reduction and analysis technique that strives to
explain correlations among multiple outcomes as the result of one or more
factors.

4.2.12 Deep Learning Methods

Deep learning methods usually outperform other traditional methods due to
their ability to interact with and process non-linear complex data. This is a
huge benefit since a lot of the data available all around the globe can only be
represented as non-linear data structures like trees. Deep learning methods
focus on higher level data analysis and are able to provide precise predictions
due to a deeper user - item analysis capability. One of the most successful
recommendation systems belongs to YouTube which makes use of deep learn-
ing methods in order to enhance user experience. It is fair to say that deep
learning methods are the most advanced prediction and analysis tools and
they still continue to get better and better over time.

4.3 Integration With AuxBox

AuxBox database tables contain a fair amount of information which can be
used to define relationships between users and items either via collaborative
filtering or content based filtering. Precisely the Like, Up Vote, Playlist to-
gether with Event and User tables represent meaningful connections within
users and items(events , playlists). Moreover, factorization and clustering can
be applied on the data sets created out of the relationships within the ta-
bles.These algorithms usually require a good amount of data in order to make
precise predictions for a recommendation system. To achieve that in the early
stages of the application being deployed, synthetic data can be generated us-
ing the small amount of real data available. Various legit data sources are
available on the internet as well which contain information about general re-
lationships between music and users that can be valuable for the AuxBox
recommendation system.

28

Conclusion

The overall objective of this thesis was to extend the AuxBox application
in order to make it a much more interactive and user friendly environment
and make research on the possible ways of implementing a recommendation
system. Overall, via all the newly introduced interactive use cases which
allow users to be more in control and interact with the events they create
or join while also providing feedback both for users and developers by their
likes, comments and added playlists, AuxBox certainly improved overall user
experience and productivity.

The research on the possible ways and methodologies of implementing a
recommendation system provides a road map on how to prepare and take
the first steps so that AuxBox and AuxBox users can benefit from accurate
recommendations. The prerequisites of a database structure which would com-
pliment the recommendation system became much more clear. The additional
database tables provide a better overview on how to proceed with the data
processing for use with user recommendations since tables; like, playlist and
comment allow us to visualize and analyze the possible correlations between
users , events and playlists more clearly which truly represents the core of
every recommendation system.

AuxBox is built as a quite scalable and extendable application but there
are still important design decisions to be made before it gets too complex for
that to be done. More detailed explanation on possible design improvements
are explained in the next chapter.

29

Future Work

The most ambitious and self evident future work for AuxBox to be done is
no doubt a recommendation system. The research on the issue in this thesis
sheds light on the possibilities of implementing user recommendations and it
can certainly be implemented in the future but very important design decisions
and a fair amount of rework should most certainly be done in order for AuxBox
to reach its full potential.For example, even though the Django view functions
are very simple and easy to use, they come with their restrictions because they
are not complex structures by any means which almost completely eliminates
the possibility of inheritance among views which then leads to repeated and
unnecessary code.Django provides class based views which could be a much
more logical option for a more complex system as AuxBox thrives to be.

One of, if not the most crucial aspect of a social web application is by no
doubt, the user interface. AuxBox does not make use of a front end framework
like Angular or React which is a huge drawback because the capabilities and
effects of these types of frameworks are huge and used all over the world to
create the best looking user interfaces. The integration of a front end focused
framework has to be a priority for AuxBox in order to attract music lovers
attention.

AuxBox application is currently not deployed on any cloud service.The
future deployment plan is to use Microsoft Azure platform for deployment.
Azure is a cloud platform which allows its users to build , run and manage
their applications with a large set of framework choices. Django apps which
use a Postgre SQL database are fully supported as well and its relatively easy
to set up the configuration using Azure command line interface.

Lastly , the factory design pattern which is used all throughout the ap-
plication and does not seem to fit in perfectly with the overall design. It
can be altered to be more beneficial or changed to a completely different one
which is not necessarily too difficult to accomplish in the current state of the
application.

mybibliographyfile.bib [DjangoProject] [6] [4] [1] [5] [2] [3]

31

Bibliography

[1] “Data Camp”. In: (). url: https://www.datacamp.com/.
[2] “Developers Google”. In: (). url: https://developers.google.com/.
[3] “Medium”. In: (). url: https://medium.com/.
[4] “Real Python”. In: (). url: https://realpython.com/.
[5] “Towards Science”. In: (). url: https://towardsdatascience.com/.
[6] “Wikipedia”. In: (). url: https://en.wikipedia.org/.

33

https://www.datacamp.com/
https://developers.google.com/
https://medium.com/
https://realpython.com/
https://towardsdatascience.com/
https://en.wikipedia.org/

Appendix A

35

	Introduction
	Sub Objectives:
	Used Technologies And Frameworks
	Overview
	How Django Works - Overview
	Database Management
	Security
	Request Handling And Views
	Further Reading

	Architecture And Class Design
	Directory Structure
	auxbox
	docs
	Documentation
	events
	dao
	daointerface
	factory
	forms
	migrations
	models
	services
	static
	templates
	tests
	views

	Data Layer
	Service Layer
	Authentication
	Query Processing

	Presentation Layer

	New Use Cases
	User Comments
	Model Design
	Usage Specification

	Event Likes
	Model Design
	Usage Specification

	Create House Party
	Design
	Usage Specification

	Add Playlist To House Party
	Design
	Usage Specification

	Up Vote Playlist
	Design
	Usage Specification

	Edit Event
	Design
	Usage Specification

	Testing
	Architecture
	Overview
	Design

	Recommendation System
	Abstract
	Recommendation Methods
	Abstract
	Simple Recommendation Methods
	Content Based Recommendation
	Collaborative Filtering
	Collaborative Recommendation System Types
	Memory-Based Collaborative Filtering
	User-User filtering
	Item-Item filtering
	Model-Based Collaborative Filtering
	Clustering Algorithms
	Matrix factorization
	Deep Learning Methods

	Integration With AuxBox

	Conclusion
	Future Work
	Bibliography
	

