
Instructions

The goal of this thesis is to develop a plugin for the KeePass password manager that allows unlocking

a password database using the Java Card technology.

1. Get familiar with the environment for writing Java applets and figure out how to properly upload

them to a smart card.

2. Write an applet for KeePass that provides the second factor of authentication.

3. Write a program that provides communication with the smart card.

4. Modify the plugin to communicate with the smart card.

5. Create a Java authentication applet.

6. Make the whole test environment work - communication between KeePass plugin and the smart

card (applet), unlocking the database with the card.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 11 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Java Card Second-factor Authentication Plugin for KeePass

Student: Erich Winkler

Supervisor: Ing. Jiří Dostál, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security and Information technology

Department: Department of Computer Systems

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

Java Card Second-factor Authentication
Plugin for KeePass

Erich Winkler

Department of Computer Systems
Supervisor: Ing. Jǐŕı Dostál, Ph.D.

December 12, 2021

Acknowledgements

Writing this thesis was extremely challenging for me, and I had to develop
numerous new skills to fulfill all initial goals successfully. I would like to
thank my family for all the support and understanding, and my supervisor
Ing. Jǐŕı Dostál, Ph.D., for his time, interest, and patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on December 12, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Erich Winkler. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Winkler, Erich. Java Card Second-factor Authentication Plugin for KeePass.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2021.

Abstrakt

Tato práce využ́ıvá Java Card technologii jako druhý stupeň autorizace pro
KeePass. Tento faktor je implementován za použit́ı systému zásuvných mo-
dul̊u, který je součást́ı KeePassu. Pro zajǐstěńı bezpečnosti celého procesu,
práce analyzuje možná bezpečnostńı rizika a implementuje bezpečnostńı
opatřeńı, která tyto rizika snižuje. Největš́ımi riziky jsou emulace Java karty,
odposloucháváńı komunikace a slabý databázový kĺıč. Jako prvńı bezpečnostńı
opatřeńı je použit PIN kódu, který ověřuje uživatele před použit́ım Java karty.
Daľśım, neméně d̊uležitým opatřeńım je šifrováńı komunikace za pomoci RSA
šifry. To je úzce spojeno s použit́ım Secure Channel protokolu, který zajǐst’uje,
že Java karta neposkytne databázový kĺıč žádné jiné entitě než danému Plu-
ginu. Posledńım d̊uležitým krokem bylo použit́ı bezpečného algoritmu, podpo-
rovaného Java Card technologii, ke generováńı databázového kĺıče. Tato práce
je užitečná reference pro kohokoliv, kdo chce zkoumat možnosti vývoje Java
Applet̊u včetně podporovaných bezpečnostńıch prvk̊u a systému zásuvných
modul̊u pro KeePass.

Kĺıčová slova KeePass password manager, Smart Cards, Java Card, Java
Applet, 2FA, KeePass zásuvný modul, RSA, 3DES, Secure Channel Protokol

vii

Abstract

This thesis deals with Java Card Technology as a second-factor of authenti-
cation for KeePass Password Manager. The 2FA is implemented by using the
KeePass Plugin System along with the Java Card applet. To ensure maximum
security, this work analyses possible security threats and implements security
measures that prevent them. The most significant threats are the danger of
emulating the Java Card, communication sniffing, and weak database key. All
of them are prevented by a combination of the following factors. First of all,
protecting the card by PIN code. Second, encrypt the communication by us-
ing the RSA cipher. Third, implementing the Secure Channel Protocol that
ensures the Java Card does not provide the database key to any other entity,
but the KeePass plugin. Last, proper generation of the database key with
a secure random algorithm that is supported by the Java Card. This thesis
is a good reference for anyone who wants to explore the possibilities of Java
Applet development including supported security functions, and the KeePass
Plugin System.

Keywords KeePass password manager, Smart Cards, Java Card, Java Ap-
plet development, 2FA, KeePass Plugin Development, RSA, 3DES, Secure
Channel Protocol

viii

Contents

Introduction 1

1 Goal of the Thesis 3

2 State-of-the-Art 5
2.1 Authentication Factors . 5

2.1.1 Knowledge Factors . 5
2.1.2 Possession Factors . 6
2.1.3 Inherence Factors . 7
2.1.4 2FA Authentication . 7

2.2 Password Managers . 8
2.2.1 Comparison of Popular Password Managers 9

2.2.1.1 1Password Password Manager 9
2.2.1.2 LastPass Password Manager 10
2.2.1.3 KeePass Password Manager 10

2.3 Smart Cards . 11
2.3.1 Contact Cards . 12
2.3.2 Contactless Cards . 12
2.3.3 Memory Cards . 12
2.3.4 CPU/MPU Microprocessor Multifunction Cards 12
2.3.5 Smart Card Readers . 13

2.4 Convenient Technology for this Thesis 14

3 Analysis and Design 15
3.1 KeePass Password Manager . 15

3.1.1 KeePass Plugin System 16
3.1.2 KeePass Key Providers 18

3.2 Java Card . 18
3.2.1 Java Applets . 18

3.2.1.1 Declaring the Package 18

ix

3.2.1.2 Import of the Java Card Framework 20
3.2.1.3 The base Applet Class 20
3.2.1.4 Applet Installation 21
3.2.1.5 Selecting and Deselecting the Applet 22

3.2.2 Communication with Applet 22
3.3 Security Analysis of Naive Implementation 24

3.3.1 Description of the Implementation 24
3.3.2 Threat Model . 25

3.4 Secure Channel Protocol . 27
3.4.1 Entity Authentication 28
3.4.2 Explicit Secure Channel Initiation 29
3.4.3 Message Integrity . 30
3.4.4 Message Data Confidentiality 30
3.4.5 Security Levels . 30
3.4.6 Cryptographic Keys . 30
3.4.7 Usage of Secure Channel for this Thesis 31

3.5 Communication details . 31
3.6 Cryptography . 33

3.6.1 RSA . 33
3.6.2 Triple Des in CBC Mode 34

3.7 Key Handling & Control . 35

4 Implementation 37
4.1 KeePass Authentication Plugin 37

4.1.1 SCP Initiation and Usage 37
4.1.2 RSA Implementation . 38
4.1.3 Database Key Transmission 39
4.1.4 Creating the Database 39
4.1.5 Unlocking the Database 40
4.1.6 Additional Features . 41

4.2 Java Card Applet . 41
4.2.1 Secure Channel Protocol Implementation 41
4.2.2 PIN Authentication . 42
4.2.3 RSA Encryption in Java Applet 43

5 Testing 45
5.1 Unlocking a Database . 45

5.1.1 Positive Testing . 45
5.1.2 Negative Testing . 45

5.2 Pin Authentication & Change 46
5.2.1 Description . 46
5.2.2 Authentication Failed 46

Conclusion 49

x

Bibliography 51

A Acronyms 55

B Installation instructions 57
B.1 KeePass Authentication Plugin 57
B.2 Java Applet . 57

C Contents of the enclosed CD 59

xi

List of Figures

2.1 Smart card types . 11

3.1 A minimal KeePass plugin . 17
3.2 Simple KeePass key provider . 19
3.3 Package declaration . 20
3.4 Import of the Java Card framework 20
3.5 Extending the base Applet class 21
3.6 Applet install method . 21
3.7 Deselect method example . 22
3.8 Process method . 23
3.9 Threat Model . 25
3.10 Stolen database key by using USB sniffing 26
3.11 Attacker’s options to emulate the Java Card 28
3.12 Communication diagram . 32
3.13 RSA encryption . 33
3.14 RSA decryption . 34

4.1 Create initialize update command 38
4.2 Encrypted Data Field in APDU command 38
4.3 Plugin Selection in KeePass . 39
4.4 SELECT APDU command . 40
4.5 Selection of the JavaCard plugin 40
4.6 Usage of processSecurity method 42
4.7 OwnerPIN initialization . 42
4.8 PIN verification . 42
4.9 Usage of isValidated method . 43
4.10 Implementation of Select method 43
4.11 Usage of getInstance method . 44
4.12 Set parameters of Keybuilder object 44
4.13 RSA encryption - Cipher class . 44

xiii

5.1 Error message – incorrect key . 46
5.2 Error message – incorrect shared secret 46

xiv

List of Tables

3.1 Format of APDU commands and responses 24
3.2 INITIALIZE UPDATE command 29
3.3 EXTERNAL AUTHENTICATE command 29
3.4 Secure Channel keys . 31

xv

Introduction

People have been trying to discover the perfect way to authenticate users for
decades. However, the world of technology develops extremely quickly and
what used to be safe in the past is not necessarily safe anymore. Therefore,
the authentication methods need to be modified or combined to reach the
required level of security.

There is a perfect example from everyday life. Passwords have been a pri-
mary method of authentication in most computer systems for decades. Back
in the day, even a relatively simple, easy-to-remember password could be used
to provide a satisfying level of protection to your account. The years passed,
and now the password needs to be complex, therefore very hard to remember,
and with all that exposure to the online world and billions of stolen credentials
every year, all your passwords need to be changed frequently.

To keep this authentication method current, password managers were de-
veloped. They allow the user to keep their password strong and secure, there-
fore increasing the level of protection this authentication factor provides. How-
ever, studies indicate that the best way to protect your accounts and data is
to add a second level of authentication.

KeePass Password manager allows you to create your own authentication
plugins. That means it is relatively easy to add another security layer of your
choice to protect your password database efficiently.

Naturally, the best protection is provided by methods that authenticate
you by your unique physical characteristics, but these methods are usually
costly as they require special hardware and technology. It is better to use
something many people already have, or it is relatively cheap to buy.

Java Cards are commonly used these days for many purposes. They are
relatively cheap to buy, do not require any expensive additional hardware,
and support various cryptographic methods. Besides, it allows you to develop
your own applet.

With all stated above, KeePass Password Manager with Java Card seems
like a perfect fit. Together it allows you to have your password database

1

Introduction

safely stored in your computer protected by two authentication factors. In
summary, the product of this thesis provides a relatively cheap and efficient
way of protecting your password to anyone.

2

Chapter 1
Goal of the Thesis

This thesis aims to develop a plugin for the KeePass password manager that al-
lows unlocking a password database using the Java Card technology.
In other words, add the possession factor into the authentication process.
In order to make it happen, the following steps need to be followed.

Firstly, get familiar with the environment for writing Java applets and
figure out how to properly upload them to a smart card. Create a Java
authentication applet for a smart card, which communicates with a plugin.

Secondly, create a plugin that provides a second factor of authentication
for KeePass. Modify the plugin to communicate with a smart card.

Lastly, make the whole environment work and secure the communication
between the Smart card and the KeePass plugin.

3

Chapter 2
State-of-the-Art

This chapter describes factors of authentication, including its advantages and
drawbacks. It points out the importance of two-factor authentication and
explains the goal of this thesis. Furthermore, it presents popular tools and de-
vices used for authentication, especially password managers and smart cards.

2.1 Authentication Factors

An authentication factor is used to verify the identity and authorization of a
user. In the past, unique usernames and self-selected passwords were used as
the primary method of authentication. With the increasing computing power
of the hardware, it turned out that creating more and more complex passwords
is not sufficient. Let’s take a look a closer look at all types of authentication
factors one by one.

2.1.1 Knowledge Factors

Knowledge-based factors require the user to provide some information in order
to get access to a secure system. This information can be anything you know,
e.g., PIN or password. Multiple major drawbacks come with this type of
authentication.

Firstly, an average user uses multiple services where authentication is
needed. Unfortunately, they also tend to use the same password for all their
logins. [1] This practice presents a significant security risk in case your pass-
word gets compromised. There are now more than 15 billion stolen credentials
from 100,000 data breaches available to cybercrime actors. Of this number,
some 5 billion are said to be unique, with no repeated credential pairs. The
number is increasing, and even with proper habits in the online world, no user
can be sure that his credential has been compromised. [2]

Secondly, the exponentially increasing computational power of the hard-
ware makes the passwords vulnerable to brute force attacks. To prevent this

5

2. State-of-the-Art

type of attack, the passwords need to get longer and more complex. That also
makes them harder to remember, which results in using well-known patterns
as replacing “o” with “0”. Even according to the National Cyber Security
Council: “Imposing additional password complexity requirements on such ac-
counts will increase the burden on these users, but may not provide any more
protection.” [3]

Thirdly, even if the credentials are not compromised by the data breach,
there are multiple ways how to steal passwords directly from the user.

• Keylogging

– Secretly recording the keys struck on a keyboard.

• Phishing

– Fraudulent practice in which an attacker masquerades as a rep-
utable entity, trying to trick the victim to click on malicious links
or attachments.

• Pharming

– Producing fake websites and redirecting users to it in order to steal
confidential information. [4]

Despite its drawbacks, knowledge factors are a primary method of authen-
tication in the majority of systems. It seems the future is not in replacing this
factor. Bill Gates predicted that the password will be replaced by an alter-
native method 15 years ago. It clearly did not happen. In fact, the surge of
online services has risen significantly. Mainly because it is a well-understood
concept by the general public. Also, it is often seen as an easily-implemented,
low-cost security measure that does not require special hardware. [5] That
is why instead of replacing them, solutions to their disadvantages have been
found in the form of MFA and password managers.

2.1.2 Possession Factors

Possession factors are commonly described as “something the user has”. They
require the user to possess a specific device or specific piece of information to
get access to a secure system. It is essential to distinguish between connected
and disconnected tokens.

Connected security tokens are physical items that require a physical con-
nection to generate automated authentication data transfer. The most com-
mon examples are Smart Cards, USB tokens, or RSA SecureID tokens. Dis-
connected tokens don’t need or require to physically connect the item to the
device. In this case, a one-time code generated by the token is required to get
access to the system. It can be a text message with a code or app on your
phone. [6]

6

2.1. Authentication Factors

Regardless of the type of token, the advantages and disadvantages mostly
stay the same. Naturally, one of the most significant advantages is that it
cannot be easily compromised without physical access to an item, unlike the
knowledge-based factors where the password can be compromised remotely or
stolen from a weakly secured database. On the other hand, if the token is lost
or stolen, it cannot be used to access the system. In a worse case, an attacker
gains unauthorized access. That is why the token should be protected by
another layer of security, e.g., PIN code.

It is not recommended to use possession factors for SFA. The risk of losing
the item is significant. Although, they fit perfectly to a multi-factor authenti-
cation concept. It provides a relatively cheap and very efficient way to improve
the security of a system.

2.1.3 Inherence Factors

Inherence factors commonly described as “Something you are” have been in-
creasing their popularity significantly in the past few years, especially for
everyday use as unlocking a user’s phone using a fingerprint. These factors
generally take the form of biometrics, e.g., face recognition, fingerprints, or
iris imprint.

For obvious reasons, they are the most unique and reliable authentica-
tion factors possible. Unfortunately, also the most difficult to manage. They
require special hardware as a fingerprint scanner. That also means that the
system or account can be accessed only on devices with hardware that supports
that specific authentication factor. This restriction is undoubtedly useful for
security but could be inconvenient for many use-cases. [7] On the other hand,
the user does not need to remember or carry anything in order to access the
system. [8]

2.1.4 2FA Authentication

Two-factor authentication is a security process to better protect users and
resources by asking users to verify identity in two ways. It always uses two
of the above-described factors. By adding an additional security layer to the
authentication process, it provides a higher level of security than SFA.

The idea behind 2FA is simple. It is significantly harder for the attacker
to get everything needed to access the account or service. A combination of
factors compensates for the majority of each other’s drawbacks. In the major-
ity of implementation, knowledge factors are the first factor of authentication,
and either possession or inference factors are the second. In this case, even if
the password is compromised, it is still not enough to login into the account.
Therefore, it protects against identity theft via stolen passwords.

In addition, 2FA provides reliable protection against various attacks and
frauds as keylogging, phishing, or pharming. Even if the user gets tricked by

7

2. State-of-the-Art

the phishing email or click on a malicious link and give the credentials to the
attacker, the second factor is still there to prevent a successful takeover of the
account. [9]

To conclude, according to a 2019 security report from Microsoft, there are
300 million fraudulent sign-in attempts to their cloud services every single day.
The same report says that providing an extra layer of security blocks over 99.9
percent of account compromise attacks. That is why it is the most efficient
method, which has already become very popular and commonly used. [10]

2.2 Password Managers

Password managers are computer programs that allow users to store, generate
and manage their passwords. This section will take a look at their functionality
and essential features and briefly describe their advantages and disadvantages.

In section 2.1.1 multiple drawbacks of the password method of authenti-
cation have been mentioned. Password managers provide a solution to most
of them. All user’s passwords are securely stored in an encrypted database.
That prevents users from storing passwords in plain text or excel tables. The
database is usually encrypted using AES-256, which is generally considered se-
cure and impenetrable using brute-force methods. For unlocking the database,
you need a master key. That could be, e.g., password or key file.

Furthermore, if the password manager provides an option to store the
password on their cloud, the zero-knowledge architecture is used. That enables
a provider to encrypt and store user’s data with zero knowledge about the
data they are storing. This means, even if your provider becomes a victim
of a successful attack, your data are not in danger. The user is the only one
who can decrypt them, so even if the attacker steals the database file from
the provider, he can’t read get the passwords or any other sensitive data out
of it.

Another typical issue is using weak passwords or reusing passwords for
multiple services. Both of them are solved by generating a strong, unique,
and complex password for each service. It is no secret that the weakest part
of the password type of authentication is the user. Both of the issues above
are caused by users. This is why it is convenient to let the password manager
manage their passwords for them because it is much more likely for the ma-
jority of users to remember one strong password as a master password than
follow all the safety practices to keep their accounts safe.

Despite all the advantages, every tool has its drawbacks. And even for
password managers, there are guidelines, which prevent users from making a
mistake while using them. The most obvious security threat is a weak master
password. Choosing a long passphrase for the master password is crucial to
protect your password database from being stolen. The passphrase needs to be
sufficiently long to protect against attacks while still allowing memorization.

8

2.2. Password Managers

The threat of a weak master password can be significantly decreased by using
2FA. This way, even if your master password is compromised, your database
is still protected by the second security layer. [11]

NIST guidance on password managers:

• “Choose a long passphrase for the master password to the password
manager and protect it from being stolen. A passphrase can be made
sufficiently long to protect against attacks while still allowing memoriza-
tion.”

• “C reate unique passwords for all accounts or use the capability of most
program managers to generate random, unique, complex passwords for
each account.”

• “Avoid password managers that allow recovery of the master password.
Any compromise of the master password through account recovery tools
can compromise the entire password vault.”

• “U se multi-factor authentication for program manager applications that
allow that capability.”

• “U se the password generator capability in most password managers to
generate complex, random text answers to online “security” questions
for those sites still using them.” [11]

2.2.1 Comparison of Popular Password Managers

As for every other software, every password manager is better or worse for
different use-cases. We will try to compare them by the following criteria:
Platform compatibility, security, features, and extensibility.

2.2.1.1 1Password Password Manager

1Password app is available for all common platforms like Windows, Mac, iOS,
Android, and Linux. That is indubitably great for users who often change their
devices. Interesting is that 1Password has its own stand-alone browser exten-
sion for Brave, Chrome, Edge, Firefox, and Safari. So even with browsers,
they are trying to be compatible with as many as possible. Furthermore, the
plugins now support biometric logins, which, as you know from section 2.1.2
is the most reliable factor of authentication.

This password manager supports 2FA, which is important for multiple
reasons described in subsection 2.1.4. The database itself is encrypted using
256-bit AES, which makes it resistant to brute force attacks. Another feature
is called “Travel Mode”. This mode deletes all sensitive data from devices,
which is useful particularly while you are traveling. And what every user

9

2. State-of-the-Art

should appreciate is Password monitoring. It alerts you if your password is
weak, vulnerable, breached, or duplicated.

For the purposes of this thesis, one parameter is particularly important.
1Password does not allow users to create their own plugins. This approach
means that you cannot add a new feature. On the other hand, it also means
that all the plugins are checked by the creators of 1Password, and the company
guarantees their security.

2.2.1.2 LastPass Password Manager

LastPass password is very similar to 1Password. It is available for the same
platforms and also offers plugins for multiple browsers like Chrome, Firefox,
Safari, Edge, and Opera. Therefore, when it comes to compatibility, this
password manager is an excellent choice.

LastPass also provides a password generator, which generates a strong,
unique password. Although, you cannot customize the parameters of the
password generator. That could be an issue if the generated password does
not meet the given requirements. The password manager stores all password
databases on the cloud using zero-knowledge architecture. All user’s data are
locally encrypted before they are sent to the cloud. Hence, it is safe to transfer
them over the internet.

The biggest drawback of this password manager is that it does not support
2FA. As you can read in section 2.1.4, 2FA is extremely increasing the security
of the login process. Moreover, LastPass does not support creating your own
plugins, so you cannot add this feature by yourself.

2.2.1.3 KeePass Password Manager

KeePass is a completely open-source-based password manager. It is available
for Windows and for other platforms as Linux or macOS using Mono. This
means that compatibility is significantly worse than the password managers
above have. Auto-fill is provided by a plugin, which is supported by all com-
monly used browsers.

The most significant difference between KeePass and most other password
managers is storing the data locally on your device instead of on clouds. This
solution is excellent for people who do not like the idea of not having com-
plete control over their password database. Although, if you need to access
your database from multiple computers, there is an option of uploading your
database to services like OneDrive or Google Drive.

KeePass creators are very proud of the security strength of their program.
It checks itself with every run and alerts if an algorithm fails the test. Also,
it provides complete database encryption, including all notes and details. It
supports 256-bit AES and Twofish. Also, KeePass has process memory pro-
tection, which prevents using the process of dumping memory to disk and

10

2.3. Smart Cards

revealing your passwords. Moreover, 2FA is supported. It is possible to com-
bine a master password with other ways of authentication as a key file. The
key file can also be carried by a physical piece of hardware as a Smart Card.
[12]

Most of the features and extensions are provided by plugins. Most of the
plugins are available on KeePass official website. If you do not find a suitable
plugin for your issue, you can either create your own plugin or modify any of
the ones available. That gives you a lot of options on how to improve your
password manager but also could be a security threat. However, there are
instructions and templates for plugins on the official KeePass website, which
makes it easier to implement the new plugin correctly.

2.3 Smart Cards

There is much debate over what is the exact definition of a smart card. But for
this thesis, a smart card will be defined as a physical electronic authorization
device used to control access to a resource. It is typically a type of chip
card that contains an embedded computer chip. The chip is either a memory
or microprocessor type that stores and transacts data. There are multiple
characteristics that we use to categorize smart cards.

Figure 2.1: Smart card types

11

2. State-of-the-Art

2.3.1 Contact Cards

Contact cards are the most common type of smart card. The card is connected
to a reader by electronic contacts located on the outside of the card. This
connector is bound to the encapsulated chip in the card.

2.3.2 Contactless Cards

Contactless smart cards communicate with a reader without the physical in-
sertion of the card. That is possible thanks to RFID, which is a technology
that uses radio waves.

2.3.3 Memory Cards

It is important to know that memory cards have no processing power for
data management and cannot manage files in any way. They all communicate
through synchronous protocols.

[13] Three types of memory cards are recognized:

• Straight Memory Cards

– just store data and have no data processing capabilities

• Protected / Segmented Memory Cards

– built-in logic to control the access to the memory of the card

• Stored Value Memory Cards

– designed for the specific purpose of storing values
– incorporate permanent security measures - password keys or logic

hard-coded into the chip

2.3.4 CPU/MPU Microprocessor Multifunction Cards

Unlike memory cards, multifunction cards are capable of data processing.
Their memory is allocated into independent sections or files assigned to a
specific function or application. All that is managed by a microprocessor or
microcontroller chip.

The chip is similar to those found inside a personal computer. To be able to
manage data in organized structures, it uses a card operating system. Besides
typical features, the COS controls access to the on-card user memory. This
feature allows the card to be multinational and serve multiple purposes. That
brings great convenience for the card user, simply because multiple cards can
be replaced by one. [13]

12

2.3. Smart Cards

For the purposes of this thesis, one particular feature is important. There
are configurations of chips that support PKI. Either by using an onboard math
co-processor or Java Card with virtual machine hardware blocks. [14]

A Java Card is a smart card that can be programmed in a high-level
language instead of assembly language. Nowadays, it is the most commonly
used type of smart card mainly because it is easily programmable, including
security methods. [14]

2.3.5 Smart Card Readers

The main purpose of readers is to send and receive information to the smart
card. Typically, a reader interfaces with a PC for the majority of its pro-
cessing requirements. Same as smart cards, we recognize two types of readers
depending on the way they communicate. There are contact and contactless
readers.

Contact readers require a physical connection to the card. Direct coupling
provides relatively fast a reliable communication. A communication protocol
and electric interface of contacts cards are defined in ISO7816.
[15] ISO7816 protocols specifies:

• I SO/IEC 7816-1 specifies physical characteristics for cards with con-
tacts.

• I SO/IEC 7816-2 specifies dimensions and location of the contacts.

• I SO/IEC 7816-3 specifies electrical interface and transmission protocols
for asynchronous cards.

• I SO/IEC 7816-4 specifies organization, security and commands for in-
terchange.

Contactless readers work with a radio frequency which allows communication
while the card is close to the reader. This type of communication is called
NFC. Same as the contact readers, there are set of standards that define
the requirements for the smart card, communication, and the reader. The
set of standards is named NFC ISO/IEC14443 and it is divided into four
separate layers same as ISO7816.
[16] ISO14443 layers define:

• physical characteristics

• radio frequency

• initialization and anti-collision and transmission protocol

• signal interface

13

2. State-of-the-Art

Smart cards which use NFC are widely used these days. The most common
example from everyday life is credit/debit cards, which usually support both
contact and contactless communication. NFC is generally considered less re-
liable than a physical connection. On the other hand, the NFC chip is less
likely to get damaged while you are wearing it in your wallet.

2.4 Convenient Technology for this Thesis

As it is described in chapter 1, the goal of this thesis is to create a plugin
for KeePass that adds a second factor into the authentication process. A
KeePass password manager is very convenient for this project because it can
create new plugins, including key providers. It is one of the very few open-
source password managers, which are considered safe at the same time. On
top of that, I personally prefer to store the password database locally instead
of sending it into the provider’s cloud.

The second factor of authentication is the possession factor. Smart cards,
especially Java cards, are easily programmable. Besides running your own
Java applets on the card, they support cryptographic functions that allow
securing the communication between the card and the plugin. Also, it stores
a database safely in its memory, protected by a pin. Moreover, the card can
be programmable to be very difficult to emulate and to communicate with the
plugin exclusively. All this makes it very difficult for the attacker to break this
layer of security even if he gets in possession of the card. For these reasons,
Java cards proved themselves useful for the purposes of this thesis.

Adding another layer of security into the authentication process makes it
significantly more challenging for the attacker to get access to the database.

14

Chapter 3
Analysis and Design

In this chapter, we analyze the technology and algorithms used for our im-
plementation. Then we describe the KeePass plugin system alongside Java
applets. Special attention will be given to communication between the plu-
gin and Java card same as to cryptographic methods used for encrypting the
communication channel.

3.1 KeePass Password Manager

KeePass is a free, open-source password manager. It is licensed under GNU
General Public License. Besides passwords, KeePass stores all associated
data such as usernames, URLs, or notes. Everything is stored in a single
database encrypted using the most secure encryption algorithms as ASE-256,
ChaCha20, and Twofish. The database is locked with a master key. The mas-
ter key is based on one or multiple key sources. Each of the sources may be
used on its own or in combination with others.

[17] There are 3 possible sources for a master key:

• master password

• key file - any file located on the system or external storage(Smart card,
USB drive)

• Windows user account - Windows Data Protection API is used

KeePass is primarily compatible with Windows operating system. However,
it can be run on other systems via Mono or Wine. This thesis is focused on
KeePass running on Windows operating system. Therefore, our plugin is not
compatible with other platforms.

15

3. Analysis and Design

3.1.1 KeePass Plugin System

Keepass offers an extensive plugin system. At the official KeePass website is
many plugins and extension created by either user themselves. Plugins are di-
vided into categories, according to their functionality.

[18] KeePass plugin categories:

• Cryptography & Key Providers

– allow you to use new encryption methods, use different key sources
or add 2FA

• Backup

– provides new methods to backup your database or provide automa-
tisation

• I/O & Synchronization

– loading, uploading and synchronizing a database with a remote
storage provider

• Utilities

– modify or add functions directly related with using the KeePass
app e.g. reminds you to change entry password once in a while

• Integration & Transfer

– improving the way KeePass communicates with web browsers or
any other software

• Import & Export

– Allow you to import/export your database to/from different for-
mats as JSON, CVL etc.

All KeePass plugins need to be written in C#, using the .NET Framework.
The reason is that the plugin needs to derive from the KeePass plugin class. By
overriding the methods and properties of the plugin class, you can customize
the behavior of your plugin. In Figure 3.1 you can see a minimal plugin, which
shows how it derives from the KeePass plugin class.

The IPluginHost is an interface providing you access to KeePass’s internals
as the KeePass main menu or currently opened database. Two functions are
more important than the others and always need to be overridden. It is
Initialize and Terminate.

In the Initialize function is called immediately after KeePass loads your
plugin. The first thing you get is an IPluginHost interface reference, and then

16

3.1. KeePass Password Manager

it is up to you to initialize everything you need. If everything is initialized
successfully, you must return true. In case you return false, KeePass will
unload your plugin immediately.

The Terminate function is called shortly before KeePass unloads your plu-
gin. You cannot abort this process, but you can, and you should use it as the
last chance to clean your resources. [19]

Besides already mentioned functions, there are some other important con-
ventions, which must be followed:

• “The namespace must be named like the DLL file without extension

• The main plugin class (which KeePass will instantiate when it loads your
plugin) must be called exactly the same as the namespace plus “Ext”

• The main plugin class must be derived from the KeePass.Plugins.Plugin
base class” [19]

After all the conventions are followed, you just move your plugin folder
including its DLL files into KeePass plugin folder. This folder can be accessed
in KeePass by clicking on “Tools” → “Plugins” → button “Open Folder”.
Then you just restart KeePass and your plugin will be loaded and ready to
use.

using System;
using System.Collections.Generic;
using KeePass.Plugins;
namespace SimplePlugin
{

public sealed class SimplePluginExt : Plugin
{

private IPluginHost m_host = null;

public override bool Initialize(IPluginHost host)
{

if(host == null) return false;
m_host = host;
return true;

}
}

}

Figure 3.1: A minimal KeePass plugin [19]

17

3. Analysis and Design

3.1.2 KeePass Key Providers

KeePass key providers are the most important category for the purposes of
this thesis. They allow you to implement alternative ways of unlocking the
database. A key provider plugin derives from the KeePassLib.Keys.KeyProvider
class. Using the Add method of the KeyProviderPool class in the KeyProvider-
Pool interface, the plugin registers itself into the key provider pool.

As you can see in Figure 3.2, the most important function is GetKey. It
gets the key from you and uses it for opening the database. A key source is
optional, and it is completely up to you where you get it from. In section 2.4
is briefly described why Smart card, particularly Java card is a good choice
for storing your database key.

If you look at existing plugins, you find out that there are multiple types
of this category of plugins. The first type is focused on quick unlock, e.g.,
KeePassWinHello. After unlocking the database regularly, the plugin uses
Windows Hello technology for reopening the database, so you do not have
to use your password every time. This plugin indeed makes KeePass more
user-friendly but does not improve the security of your database.

Another type, the one we are about to create, provides a new method to
unlock the database. The method can be either used by itself or combined
with other already existing methods. As you can read in section 2.1.4, it is
highly recommended to use multiple factors of authentication. Therefore, you
should always use one of the original methods, such as a master password with
your authentication plugin.

3.2 Java Card

Java Card is a Smart Card that allows Java-based applications called applets
to be run. This section describes significant parts of Java applets, installation
process, communication protocols, and commands, which the card can process.

3.2.1 Java Applets

Java applets are small applications written in Java that compiles to Java
bytecode. As you already know, this bytecode is executed within Java virtual
machine. Similar to KeePass plugins, some conventions have to be followed in
order to create a functional Java card app. In this section, we will look at the
Java applet development process and describe how to follow these conventions.
[20]

3.2.1.1 Declaring the Package

Typically, you can bundle related Java Card applets into a package. Therefore,
it is necessary to specify the package the applet belongs to. To make it

18

3.2. Java Card

using System;
using KeePass.Plugins;
using KeePassLib.Keys;

namespace KeyProviderTest
{

public sealed class KeyProviderTestExt : Plugin
{

private IPluginHost m_host = null;
private SampleKeyProvider m_prov
= new SampleKeyProvider();

public override bool Initialize(IPluginHost host)
{

m_host = host;

m_host.KeyProviderPool.Add(m_prov);
return true;

}

public override void Terminate()
{

m_host.KeyProviderPool.Remove(m_prov);
}

}

public sealed class SampleKeyProvider : KeyProvider
{

public override string Name
{

get { return "Sample Key Provider"; }
}

public override byte[] GetKey(KeyProviderQueryContext ctx)
{

return new byte[]{ 2, 3, 5, 7, 11, 13 };
}

}

Figure 3.2: Simple KeePass key provider [19]

19

3. Analysis and Design

easier to develop your own packages, sample packages are usually part of
the development kits and can be used. [20]

package com.sun.javacard.samples.wallet;

Figure 3.3: Package declaration [20]

3.2.1.2 Import of the Java Card Framework

A set of classes and interfaces for Java Card application programming is de-
fined by Java Card technology. A package named javacard.framework defines
classes and interfaces that are essential for developing Java Card applets. The
most important class in this package is the base Applet class.

import javacard.framework.*;

Figure 3.4: Import of Java Card framework [20]

3.2.1.3 The base Applet Class

All Java Card applets extend from the base class, which is defined by javac-
ard.framework package. The base Applet class defines methods that a Java
Card applet uses to communicate with the JCRE.
javacard.framework.Applet methods:

• deselect()

• install (byte[] bArray, short bOffset, byte length)

• process (APDU apdu)

• register()

• select()

20

3.2. Java Card

public class ClassicApplet1 extends Applet

Figure 3.5: Extending the base Applet class

3.2.1.4 Applet Installation

The base Applet class defines the install method. This method must be
implemented in all Java Card applets. You can imagine it as the main func-
tion in programming languages like C or C++. This method is always the
very first called by the JCRE. The purpose of the method is to create an
instance of an applet and give it control. What the implementation of this
method does is up to the applet designer. However, it is necessary to call
the applet’s constructor to create and initialize an instance of the applet.[20]

public static void install(byte[] bArray,
short bOffset, byte bLength)

{
new ClassicApplet1(bArray, bOffset, bLength);
}

Figure 3.6: javacard.framework.Applet install method

As you can notice in Figure 3.6, the install method accepts three param-
eters:

• “bArray is an array of type byte that contains installation parameters.”

• “bOffset is a variable of type short that contains the starting offset into
the array.”

• “bLength is a variable of type byte that contains the length, in bytes, of
the parameter data in the array.”

Simply speaking, the method accepts byte array with installation parame-
ters, which usually includes applet configuration values as the size of internal
files and applet initialization values. [20]

21

3. Analysis and Design

3.2.1.5 Selecting and Deselecting the Applet

After the Applet is successfully initialized, it waits in a suspended state until
JCRE selects it. This process starts when the JCRE receives a SELECT
APDU command. This command is recognized by a specific header value and
once it is recognized JCRE compares the AID values in the data field with a
list of registered applets on the Smart card. If the applet with matching AID
is found, the select method from javacard.framework.Applet class is called.
The method informs JCRE if the applet is ready to process a request, by
returning true. If it is not, it returns false. How the select method decides
whether or not return true, it up to the applet’s constructor. Typically, it
checks if the number of remaining tries to unlock the card by using a pin is
greater than zero. This way, if anybody were trying to authenticate himself
with an incorrect pin, the applet refuse to be selected. [20]

It is possible to run only one applet at a time. So in case you need to
use another applet registered on the card, you need to deselect the one you
are currently using. This process is automatically triggered once the APDU
SELECT command with different AID is received. Similarly to the select
method, the deselect method is defined in the base Applet Class. On the
other hand, deselect method is a void function, which means it does not return
anything. It is supposed to allow the applet’s constructor to clean up all the
resources. Typically, it serves to reset a pin flag that indicates if the PIN is
validated.[20]

public void deselect() {
pin.reset();

}

Figure 3.7: Deselect method example

3.2.2 Communication with Applet

All incoming requests are sent to the Java card through the APDU object.
This object is an instance of the javacard. framework.APDU class. Under-
standing an APDU format is crucial for Java Applet development. The host
application sends APDU Command to request any action from the Java Card.
The APDU command consists of multiple fields, as you can see in the table
3.1.

The first byte of the APDU command is CLA, which indicates a category
of APDU commands. The second byte determines an instruction that is sup-
posed to be executed. The third and fourth bytes are instruction parameters

22

3.2. Java Card

for the command, e.g., offset into a file at which to write the data. Those four
bytes are mandatory, unlike the following bytes. [21]

There is the “Lc field”, which carries a piece of information about the
number of bytes in the data field. The “Data field” is supposed to be as big as
the Lc byte says. However, if there is no command data, both of these fields
are absent. Similarly, if there are no data expected in the APDU response,
the “LE field” is not present in the APDU command. [21]

An APDU response has only two fields. The first of them is optional, and
it is called “Response data” field. Therefore, if no data is expected, only the
“Response status” is sent back to the host app. The response status a return
value that informs the host app if the instruction were executed or if there
were an issue. This is necessary to keep in mind, if you are developing an app
along with an applet. [21]

All APDU commands are processed by the applets process method. This
method is defined, along with the earlier mentioned, in
javacard.framework.Applet. As you can see in Figure 3.8, the method accepts
only one parameter, and that is the APDU object. To properly process the
APDU object, you must first get a pointer to the APDU buffer encapsulated
in the object. All the data from an APDU command, including its header,
are written into the buffer by JCRE after receiving the APDU command. As
the given example of implementation of the process method shows, a switch
method is typically used for recognizing which of the implemented instructions
should be executed. [20]

public void process(APDU apdu) {
byte buffer[] = apdu.getBuffer();
switch (buffer[ISO7816.OFFSET_INS]) {

case INSTRUCTION1: INSOneFuntion(apdu);
ISOException.throwIt

(ISO7816.SW_NO_ERROR);
case INSTRUCTION2: INSTwoFunction(apdu);

ISOException.throwIt
(ISO7816.SW_NO_ERROR);

default: ISOException.throwIt
(ISO7816.SW_INS_NOT_SUPPORTED);

}
}

Figure 3.8: Process method

23

3. Analysis and Design

Table 3.1: Format of APDU commands and responses

APDU Command
Field Description Length (bytes)

CLA Instruction class - indicates type
command 1

INS Instruction code - indicates specific
command 1

P1- P2 Instruction parameters 2

LC Field Number of bytes present in
the data field 0, 1 or 3

Data Field Command data Command data length

LE Field Number of data expected in APDU
Response 0, 1, 2 or 3

APDU Response
Response
Data Response Data Response length

Response
Status Status bytes SW1 and SW2 2

3.3 Security Analysis of Naive Implementation

As you already know, this thesis aims to use a Java card as the second factor
of authentication to unlock the KeePass database. A naive, simple implemen-
tation of this process will be used to point out possible security threats.

3.3.1 Description of the Implementation

The naive implementation consists of Java Applet and KeePass plugin. The
applet is very simple. After receiving the correct APDU command, it sends
a 6-byte array in the APDU response, used as a database key in the plugin.
The key is hardcoded in the Java applet code by the author of the applet.
The KeePass plugin is from “Key Providers” category, which is described in
subsection 3.1.2. That means its goal is to get the database key from the Java
Card and use it to unlock the database. This process gets done in a few simple
steps:

• KeePass plugin identifies if there is a smart card reader connected to the
PC

• Detect Smart card and send APDU command to select the authentica-
tion applet

• The plugin sends APDU command in order to receive a database key

24

3.3. Security Analysis of Naive Implementation

• Unlock the database with the received database key

This very simple implementation provides some level of protection, but it has
significant issues that will be pointed out in this section.

3.3.2 Threat Model

To analyze possible threats, you need to look at all of the components par-
ticipating in the authentication process and analyze their communication. As
figure 3.9 shows, there are three of them. Each one of them has its weak points
in this implementation.

Figure 3.9: Threat model of naive implementation

First of all, with the Java applet described above, the Smart Card is easily
emulated. That presents a significant security threat, especially with other
factors such as unencrypted communication or allowing the attacker to get
physical access to your card. All the attacker needs to know to emulate the
behavior of your card is the applet’s AID (Application Identifier) and the
database key.

25

3. Analysis and Design

One of the ways to get this information is to sniff the communication be-
tween the Smart Card and other participants. That can be done in multiple
ways. One option is an attack by a rogue terminal, where the Smart Card
reader either record or influence the communication between the Smart Card
and the off-card entity. That means the reader can be a weak point, and it
needs to be considered as a threat. Another way of getting the information
needed for emulating the card requires physical access. As the AID is hard-
coded in the KeePass plugin, the attacker can find it there. Once he has the
AID, there are less than 28 possibilities for INS byte. Therefore, it is a matter
of minutes to try all possible values of the instruction byte and try which one
of them makes the Java card return the database key.

Although, the easiest way to get needed information is by scanning the
USB port to which the Smart Card reader is connected. This attack is called
USB sniffing, and it does not require any special equipment nor advanced
knowledge. That makes them very likely to happen and presents a significant
security threat. Especially because in this implementation, no encryption
is used. Moreover, the USB communication is typically not encrypted, and
CCID(chip card interface device) protocol is no different. That means the
attacker can create a copy of your Java Card by following these steps:

1. Start scanning the USB port - It can be a background process, so a
common user probably will not notice anything unusual

2. Wait until the user uses his card to open the KeePass database

3. Read the communication between the Java Card and the plugin - find
AID and Database key

4. Write an applet that responds in the same way as the original one and
has the same AID

5. Install the applet on the new Java Card

Figure 3.10: Stolen database key by using USB sniffing

This attack requires just a basic understanding of Java Applets development
and the KeePass plugin system. As Figure 3.10 shows, the database key is
sent in plain text with no encryption. And with very little communication
between the plugin and the applet, the key can be found pretty quickly.

In addition, there is an even easier way to unlock the database. If the
attacker sniffs the database key, there is no need to develop the Java applet.

26

3.4. Secure Channel Protocol

The original KeePass plugin can be replaced with a plugin with the database
key hardcoded in its code. Therefore, the attacker does not even need a Java
card to open the database. Besides, the database key is only a 6-byte array
created by the author of the applet. That does not meet the requirements of
the safe as it is described in section 3.7.

To prevent this type of attack, the card’s behavior needs to be much harder
to emulate. The first thing that makes it harder for the attacker is implement-
ing a PIN. If a PIN protects the card, it stops the attacker from trying all
possible values of INS and getting a key. On the other hand, as long as the
communication is not encrypted, the attacker is able to read the PIN along
with the AID and the database key. Therefore, the communication needs to
be encrypted in both directions.

In conclusion, the biggest threat presents non-encrypted communication
along with a very simple applet that is easy to emulate. The diagram 3.11
shows the attacker’s options to overcome this layer of security. As was already
mentioned, one of the goals of this thesis is to prevent the attacker from doing
so. That can be done by encrypting the communication, implementing Secure
channel, protecting the card with a PIN, using longer and correctly generated
database key, and handling unexpected behavior of both the card and the
KeePass plugin.

3.4 Secure Channel Protocol

As is pointed out in the previous section, it is crucial to prevent the database
key from being stolen. The biggest security threat presents non-encrypted
communication, but there is more. Besides scanning the USB port and read-
ing the communication, the attacker can influence the communication and
perform a “Man-in-the-middle” attack. Secure Channel Protocol is supposed
to prevent all this from happening. The protocol provides the three followings
levels of security:

• Entity authentication

– the card authenticates the off-card entity, and the off-card entity
may authenticate the card by proving they both have knowledge of
the same secret

• Integrity and Data origin authentication

– receiving entity ensures that the data being received actually came
from the authenticated sending entity

• Confidentiality

– the transmitting data is not viewable by an unauthorized entity

27

3. Analysis and Design

Figure 3.11: Attacker’s options to emulate the Java Card

To achieve all this, a Security Domains are used. The domains act as
the off-card representatives of off-card authorities. Therefore, once the SCP
is initialized, the KeePass plugin actually communicates with the security do-
main, not the Java applet itself. This way, the applet is protected against
processing APDU commands from the unauthorized off-card entity and en-
sures the card will not provide any confidential information to an attacker.
[22]

3.4.1 Entity Authentication

Off-card entity authentication is extremely useful for the purposes of this
thesis. The Java Card must not send the database key to anybody unless it
is evident it is the KeePass plugin that it is communicating with. This way,
it keeps the database key safely stored in the card’s memory with minimal
options for the attacker to steal the key.

The Secure Channel initiation and off-card entity authentication imply the
creation of session keys. Those are derived from card static keys that have to
be shared secret between both participants. Therefore, the static keys need
to be safely stored. Because if the attacker gets to know them, he can act as

28

3.4. Secure Channel Protocol

the original off-card entity and the Secure Channel is compromised.

3.4.2 Explicit Secure Channel Initiation

The off-card entity may explicitly initiate the Secure Channel. Two commands
allow the entity to do so. The initialization always starts with INITIALIZE
UPDATE command sent by the off-card entity. This command is coded ac-
cording to the table 3.2. In “Data field” is a host challenge, which is random

Table 3.2: INITIALIZE UPDATE command
Field Value Meaning

CLA 80-83 or C0 - CF CLA - Secure messaging
ISO/IEC 7816 standard

INS 50 INITIALIZE UPDATE
P1 xx Key Version Number
P2 00 Reference control parameter P2
Lc 08 Length of host challenge
Data xx xx.. host challenge

data unique to this session. The card on receipt of this challenge generates the
session keys and first cryptographic value. Then the card cryptogram, along
with the Sequence Counter, The Secure Channel Protocol Identifier, and the
“card” challenge, is sent back to the off-card entity via APDU Response.

During the processing of the APDU response that includes the “card”
challenge, the off-card entity creates a second cryptographic value, also called
host cryptogram. The cryptogram is passed to the card by using EXTERNAL
AUTHENTICATE command that is coded as table 3.3 shows. Along with the
cryptogram, the off-card entity creates and sends a Message Authentication
Code.

Table 3.3: EXTERNAL AUTHENTICATE command
Field Value Meaning

CLA 84 - 87 or E0 - EF CLA - Secure messaging
ISO/IEC 7816 standard

INS 82 EXTERNAL AUTHENTICATE
P1 xx Security level
P2 00 Reference control parameter P2
Lc 10 Length of host cryptogram and MAC
Data xx xx.. Host cryptogram and MAC

After the card receives the command, it verifies the MAC and uses it to
create the Initial Chaining Vector used for the verification of C-MAC and/or
R-MAC.

29

3. Analysis and Design

In summary, during the Secure Channel initiation, the card and the
KeePass plugin (off-card entity) verify each other by generating and veri-
fying each other’s cryptograms. Furthermore, they generate session keys and
initialize ICV, later used for verification of C-MAC or R-MAC.

3.4.3 Message Integrity

The message integrity is provided by verifying a MAC. The MAC can be
generated by both the off-card entity and the card. The entities both have
the same session keys. That means the receiving entity is able to perform the
same operations and compare its generated MAC with the one it received.

During the Explicit Secure Channel Initiation, the SCP02 mandates the
use of MAC for EXTERNAL AUTHENTICATE command.

To algorithm ensuring the integrity is Triple-DES in CBC mode described
in section 3.6.2. All 8 bytes of an Initial Chaining Value is equal to zero, and
it is always a part of the EXTERNAL AUTHENTICATE command. [22]

3.4.4 Message Data Confidentiality

The message data confidentiality is provided by encrypting the data field by
applying multiple chained DES operations. For the encryption, the session
keys generated during the Secure Channel Initiation are used. The data can
be encrypted both ways if the Java Card supports it. Commonly, the card
does not support data encryption in the APDU Response data field.

3.4.5 Security Levels

The Security level determines how the Secure Channel Protocol operates. Dur-
ing the Secure Channel Initiation, the minimum acceptable secure messaging
protection is set. However, the security level can be increased or decreased for
a single message.

The Security level is established based on a bitmap combination of the fol-
lowing values: C MAC, R MAC, AUTHENTICATED, and C DECRYPTION.
Each value determines if the corresponding operation needs to be performed.
If the C MAC value equals one, the command MAC check is required after
receiving the message from an off-card entity. R Mac level corresponds to Re-
sponse MAC check, and C DECRYPTION informs that the data field needs
to be decrypted using the session keys. [22]

3.4.6 Cryptographic Keys

A Secure Channel Protocol is based on the shared secret principle. The se-
cret is 3 double length DES keys that are being used only during the Secure
Channel Initiation. Each one of them has its own purpose.

30

3.5. Communication details

The Secure Channel encryption key that the protocol uses for Secure Chan-
nel authentication and encryption. The Secure Channel MAC key that is being
used for MAC verification and generation. And the sensitive data during the
initiation is being encrypted and decrypted using the data encryption key. [22]

Table 3.4: Secure Channel keys

Key Usage Length
Secure Channel
encryption key (S-ENC)

Authentication
& encryption(DES) 16 bytes

Message authentication
code key (S-MAC)

MAC varification
and generation 16 bytes

Data encryption key(DEK) Sensitive data encyption
and decryption 16 bytes

3.4.7 Usage of Secure Channel for this Thesis

The Secure Channel protocol is widely used in the implementation part of
this thesis. It needs to be pointed out that this protocol has three versions:
SCP01, SCP02, and SCP03. The main difference between the version is the
ciphers they use for encryption and decryption.

SCP02 uses a 3DES cipher, and the NIST organization recommends re-
placing it with a newer SCP03 that uses a cryptographically more secure AES
cipher. However, only a new Java Cards support SCP03, and there are still a
significant amount of cards that are being used and support only SCP02. The
authentication applet is supposed to extend the functionality of Java Cards
that are currently being used. Moreover, all Java Cards that support SCP03
also support SCP02.

Even though SCP03 is undoubtedly more secure, currently, it is better to
ensure all kinds of users can use the the authentication applet. Therefore,
in this thesis, SCP02 is used. As the 3DES cipher is recommended to be
replaced by more secure AES-256, additional security measures need to be
added. For this reason, the database key itself is encrypted by using the RSA
cipher during the transmission.

In conclusion, the compromise between common use-cases and security
needed to be found. That is why the SCP02 with other security measures as
the use of RSA encryption that partially compensates its drawbacks.

3.5 Communication details

In this section, the communication between the Java authentication applet
and the KeePass plugin will be described.

31

3. Analysis and Design

In the beginning, the applet needs to be selected by using the SELECT
Command(3.2.1.5). If the applet is selected successfully, the applet initiates
the SCP02 as it is described in section 3.4.2.

From the moment the SCP is established, the communication between
participants is encrypted. Therefore, confidentiality information can be sent
as a PIN code that protects the Java Card. After receiving the correct PIN,
the authentication is over. The user proved knowledge of the shared secret
and the PIN.

For additional encryption of the database key during the transmission, the
RSA cipher is used. Hence, the plugin needs to provide its public RSA key to
the card. After receiving the Public key, the plugin requests for the database
key itself.

After the plugin receives the key, it opens the database. And the connec-
tion terminated. The plugin is deselected, and the card is locked again.

Figure 3.12: Communication diagram

32

3.6. Cryptography

3.6 Cryptography

3.6.1 RSA

The name of this encryption algorithm stands for the MIT scientists (Rivest,
Shamir, and Adleman) who first described it in 1977. It is an asymmetric
algorithm, which means it uses two different keys to perform the encryption
and decryption. Its security relies on the practical difficulty of factoring two
prime numbers. also called the Factoring problem. It cannot be solved in a
reasonable amount of time, thus there is no known way how to break RSA
encryption if a large enough key is used.

The RSA algorithm involves four steps. In the first steps the keys gen-
eration takes place. They are typically 1024, 2048 or 4096 bits long and the
following algorithm is used to generate them. [23]

1. Two distinct prime numbers p and q are chosen at random

2. The modulo n=pq is computed

3. Compute Φ(n), where Φ(n) = (p-1)(q-1)

4. Choose integer e, 1 < e < Φ(n) and gcd(e, Φ(n)) =1

• gcd = greatest common divisor

5. Determine integer d where e · d≡ 1 (mod Φ(n))

After the key generation, the key distribution takes place. The integers n
and d are used as a Private key. Public key consists of the integers n and e.
The Public key is published, while the Private key needs to stay a secret. [23]

c ≡ me (mod n); c = ciphertext, m = plaintext (3.1)

Figure 3.13: RSA encryption

Anyone who wants to send you encrypted data, use your Public key to
encrypt the data. After the data is received, you decrypt them by using your
Private key. Because you are the only one who has access to your Private key
and it cannot be derived from the Public key, there is no way the data will be
decrypted by anyone else in a reasonable amount of time. [23]

Even the increasing computing power of today’s computers, the RSA is
still considered safe and it is widely used. It is very convenient cipher for
establishing secure connections between two participants and therefore it is
perfect for the purposes of this thesis.

33

3. Analysis and Design

m ≡ cd (mod n) (3.2)

Figure 3.14: RSA decryption

3.6.2 Triple Des in CBC Mode

DES stands for “Data encryption standard” and the algorithm was developed
in the early 1970s by IBM company. It is a symmetric-key algorithm, which
means it uses the same key during the encryption and decryption.

The algorithm is based on confusion and diffusion. The confusion means
that each bit of the ciphertext depends on several parts of the key. This
property is needed for hiding the relationship between the ciphertext and the
key. The diffusion that if a single bit of the plaintext is changed, then multiple
bits in the ciphertext change. This effect is supposed to hide the statistical
relationship between the ciphertext and plaintext.

DES is a block cipher, and the data is encrypted in 64-bit blocks. There-
fore, the input is 64 bits of plain text that is encrypted into 64 bits of cipher-
text. The size of the initial key is 64 bits, but every eighth bit of the key is a
parity bit. Thus, the actual key is only 56-bit long.

The algorithm consists of 16 steps. The step of the algorithm is called a
round. In each round, both confusion and diffusion are performed on the 32-bit
blocks.
[24] DES algorithm:

1. the plain text block is handed over to an IP(Initial Permutation) function

2. the IP is performed on plain text

3. the permuted block is split in half; Left Plain Text(LPT) and Right
Plain Text(RPT)

4. both blocks go through 16 rounds of the encryption process

5. LTP and RPT are rejoined

6. A Final Permutation is performed on the block that consists of LTP and
RPT

Triple DES expands the key size by running the algorithm in succession
with three different keys. That means the plain text is encrypted in 48 rounds,
and the resulting key is 168 bits. Simply speaking, triple DES is just running
the DES algorithm three times with three different keys.

Block ciphers can operate in numerous modes: Electronic Codebook, Ci-
pher Block Chaining, Cipher Feedback Block, Output Feedback, Counter

34

3.7. Key Handling & Control

Method. The Secure Channel Protocol uses the 3DES in CBC mode. This
mode is supposed to expand the diffusion by chaining the blocks of cipher-
text. Each block of plaintext before being encrypted is modified(XORed) by
the previous block of ciphertext. For the very first block, an Initial Vector is
used.

3.7 Key Handling & Control

In this section, the importance of a strong database key will be explained. It
needs to be pointed out that the attacker does not need any Java Card as
he can develop his own Applet and perform a brute-force attack where all
possible combinations of the key are tried for opening the database. That
means the longer the key is, the longer it takes to find the right combination.

On the other hand, we are limited by the size of the Java Card stor-
age. Although, even with older Java Cards, there is enough storage for 2048
bytes long database key. Just to put this length in context, even the biggest
supported RSA key is 4096 bits. Thus, it is reasonable to consider the key,
which is four times longer, resistant against brute-force attacks as long as it
is generated by using a secure algorithm.

There are various C# libraries that use secure algorithms to generate keys.
However, generating the key in the off-card entity means additional exposure
during the transmission to the card. Hence, it is better to minimize the
exposure and generate the key on the card itself as long as it provides a secure
algorithm.

The majority of Java Cards supports Class RandomData from
javacard.security library. The class provides an option to generate random
data by using a secure random algorithm. Therefore, there is no reason to
generate the key outside the card and risk additional exposure during the
transmission. [25]

35

Chapter 4
Implementation

This chapter describes the implementation of the final part of this thesis. Both,
the KeePass authentication plugin and the Java Card Applet, are described
with special focus on implementation of security measures described in the
analysis part of this thesis.

4.1 KeePass Authentication Plugin

The authentication plugin is a key provider type of plugin from KeePass plu-
gin system described in section 3.1.2. This section describes the details of
the implementation, how it implements required security measures and what
action take place while you use the plugin.

4.1.1 SCP Initiation and Usage

For a SCP initiation the plugin uses an open source implementation, im-
ported as a DLL(available at [26])The implementation allows the plugin to
create instance of GlobalPlatform class. The class stores information about
a Secure Channel that is being currently used. It also provides an option
to create APDU commands as INITIALIZE UPDATE or EXTERNAL AU-
THENTICATE and process card responses. All APDU commands needs to
be processed by a wrap method, that modify the APDU according to the
current Security Levels.

As you can see in figure 4.1, the Secure Channel established with the Java
Applet is set to use C DECRYPTION and C MAC. Thus, if you use a wrap
method on a APDU command, the data field is encrypted and the C MAC is
added to the APDU.

With established Secure Channel, the communication is encrypted by us-
ing the three session keys. A figure 4.2 shows the APDU command with
instruction code equal to 0x20. The command is supposed to unlock the card
by using a correct PIN. As you can see, the PIN(1,2,3,4) is encrypted as the

37

4. Implementation

CommandAPDU initUpdate = gp.CreateInitUpdateCommand(scKeys,
SecurityLevel.C_DECRYPTION| SecurityLevel.C_MAC,
GlobalPlatform.SCP_02, GlobalPlatform.IMPL_OPTION_I_15);

Figure 4.1: Create initialize update command

command was modified before the transmission by the wrap method from the
Open Source implementation.

Figure 4.2: Encrypted Data Field in APDU command

The SCP is based on shared secret that is represented by three keys. There-
fore, the keys needs to be stored somewhere in your computer. As it cannot
be guaranteed that the attacker will not get access to the file where the keys
are stored, they are encrypted by using a ProtectedData class. It provides a
data protection by user credentials. Simply speaking, the data encrypted by
using this class, can only by decrypted by the process that is running under
the same Windows user. The drawback of this solution is the plugins is no
longer compatible with other platforms than Windows. If you want to use
the applet on other platforms, the plugin can be modified and use different
platform specific encryption.

4.1.2 RSA Implementation

The RSA cipher is used to encrypt the database key during the transmission
from the Java Card to the authentication plugin. It means the plugin needs
to generate RSA key pair and provide the card with its public key.

The key pair is generated via RSACryptoServiceProvider class that is part
of the System.Security.Cryptography. Naturally, the longer the RSA key is,
the better for the security of the communication. However, the RSA key needs
to be stored in the Java Card with a very limited storage size. Thus, the size
of the key is 2048 bits, which is a convenient compromise.

After the key pair is generated, it needs to be sent to the Java Card. The
issue is, it cannot be sent in a single APDU as the length of a data field is
only 256 bytes. Moreover, the SCP needs to add a C MAC into the data field
to allow the card to verify it is the authentication plugin that sends the key.
For these reasons, the RSA key is transmitted in four 64-byte parts. RSA

38

4.1. KeePass Authentication Plugin

exponent is sent separately after the modulus. After the card receives the
plugin’s public key, it is used for the database key encryption.

4.1.3 Database Key Transmission

The length of the database key is 2048 bytes. Thus, it has to be divided into
smaller parts in order to be transmitted in 256-bytes data fields. Each part
is encrypted by using the plugin’s RSA public key before it is sent as the
section 4.2.3 describes. After each part of the key is received, it is decrypted
and stored. Once the key is complete, then it is used to open the KeePass
database.

4.1.4 Creating the Database

If you decide to use the authentication plugin to protect your database, you
need to select it during the creation of the KeePass database, as is shown in
Figure 4.3. The applet is supposed to be used as a 2FA. Therefore it is strongly
recommended to use it along with the knowledge factor(Master password).

Figure 4.3: Plugin Selection in KeePass

Once the plugin is selected, the plugin initiates the communication with
the Java Card. The plugin gives you a list of available Smart Card readers.
After you choose the correct reader, the plugin sends the SELECT APDU
command(4.4) and establishes Secure Channel as it is described in section
4.1.1.

With a successfully established Secure Channel, the communication is en-
crypted. Therefore, it is safe to send APDU with the required PIN code and

39

4. Implementation

var apdu = new CommandApdu(IsoCase.Case3Short,
isoReader.ActiveProtocol)
{

CLA = 0x00,
INS = Constants.SelectAppletINS,
P1 = 0x04, // Parameter 1
P2 = 0x00, // Parameter 2
Data = new byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x00 },

};

Figure 4.4: SELECT APDU command

unlock the card. If the PIN is incorrect, the plugin terminates the authenti-
cation process and interrupts the communication with the Java Card.

If the communication is successfully established and the card unlocked, the
plugin sends an APDU command to generate a Database key and transmit it
to the plugin so it can be set as a database key.

4.1.5 Unlocking the Database

Unlocking the database is very similar process to its creation. After you
select the applet as figure 4.5 shows, the communication with Java Card is
established exactly the same as in the previous chapter.

Figure 4.5: Selection of the JavaCard plugin

First of all, the Secure Channel is established. Then the plugin asks you
for a PIN code and provides it to a card so you can be authenticated. If both

40

4.2. Java Card Applet

of these operations are successful, the plugin sends its RSA public key to the
card. Then the encrypted database key is transmitted from the card to the
plugin and is used for unlocking the database.

In summary, the only difference is that the database key already stored
on the Java Card is transmitted to the plugin instead of generating a new
database key.

4.1.6 Additional Features

Two additional features were implemented for the authentication plugin. The
first feature allows you to change the PIN that protects the card. The default
PIN is “1234”, which means it should be changed as soon as possible.

The second feature is called “Invalidate Database Key”. It sends an APDU
command that invalidates the key that is stored on the Java Card. This
feature should only be used if you want to use the card for a new database
and generate a new database key.

4.2 Java Card Applet

This section describes the implementation of Java Card authentication applet.
It shows how it encrypt the communication and describes security measures
as PIN code.

4.2.1 Secure Channel Protocol Implementation

Secure Channel Protocol is implemented in the Java applet by using an inter-
face that is imported from org.globalplatform. The Secure Channel Interface
is exposed through the GPSystem.getSecureChannel method.

To establish the secure channel, the INITIALIZE UPDATE and EXTER-
NAL AUTHENTICATE commands need to be processed as section 3.4.2 de-
scribes. Both these commands are processed by processSecurity method. Be-
sides processing the commands, the method generates corresponding responses
and sets a Security Level bit map that indicates whether Entity Authentica-
tion has occurred and what level of security will be applied.

Once the Secure Channel is established, the authentication plugin sends
all commands modified by using method wrap. Considering the Security Level
the plugin uses, the data field is encrypted with session keys, and the C MAC
needs to be verified. To be able to read the command data, the unwrap
methods needs to be invoked. Besides the data decryption, the method verifies
if the C MAC is correct to make sure the command was sent by the KeePass
plugin.

41

4. Implementation

switch (buf[ISO7816.OFFSET_INS])
{

case INIT_UPDATE:

case EXT_AUTHENTICATE:
inlength = apdu.setIncomingAndReceive();
// process the data from plugin - creating a session key
respLen = sc.processSecurity(apdu);
apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, respLen);
break;

}

Figure 4.6: Usage of processSecurity method

4.2.2 PIN Authentication

In order to unlock the card, the PIN is required. The PIN is implemented
by using a OwnerPIN object. The object defines methods as isValidated,
check or getTriesRemaining. Method isValidated is at the beginning of each

OwnerPIN pin = new OwnerPIN((byte) 3, (byte) 4);

Figure 4.7: OwnerPIN initialization

instruction case and check if the PIN has been validated. If not, the method
returns false and the applet throws ISOException with corresponding APDU
Response code.

if(pin.check(buf, ISO7816.OFFSET_CDATA, (byte) 4)){
ISOException.throwIt(ISO7816.SW_NO_ERROR);

}else{
ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);
}

Figure 4.8: PIN verification

To validate the PIN, the check method is used4.8. If the PIN is correct, it

42

4.2. Java Card Applet

changes a flag in OwnerPIN class that is checked by isvalidated method. In
case the PIN is incorrect, the flag stays the same and the method return false.

if(!pin.isValidated()){
ISOException.throwIt(IncorrectPIN);
break;

}

Figure 4.9: Usage of isValidated method

If incorrect PIN is inserted three times, the JCRE deselect the applet
and terminate the communication with the plugin. If you try to select the
applet again, it refuses to get selected thanks to the overridden SELECT
method(4.10).

In summary, you need to authenticate yourself in order to communicate
with a Java Card applet. Moreover, if incorrect pin is inserted three times,
you will not be able to select the applet anymore. Thus, the database key is
permanently lost.

public boolean select() {
if (pin.getTriesRemaining() == 0){return false;}
return true;

}

Figure 4.10: Implementation of Select method

4.2.3 RSA Encryption in Java Applet

The RSA cipher encrypts a key from the KeePass database before being trans-
mitted to the plugin. The RSA encryption is provided by a class named Ci-
pher. The class forms the core of the Java Cryptographic Extension framework
and is defined in javacardx.crypto library.

The first thing that you need to do in order to use this class for encryption
is to use method getInstance. As the name of the method suggests, the method
returns an instance of the Cipher class. In this thesis, the instance of the class
is named “cipherENC” as the figure 4.11 shows.

Once the instance is created, you need to create the RSA key object
necessary for the encryption. The RSA key object is an instance of an-

43

4. Implementation

Cipher cipherENC = Cipher.getInstance(Cipher.ALG_RSA_PKCS1,false);

Figure 4.11: Usage of getInstance method

other class named KeyBuilder, imported from javacard.security. The in-
stance of Keybuilder is used by the Cipher class to encrypt the database
key. To build a key object consisting of the plugin’s RSA Public Key, you
need to set RSA exponent and RSA modulus by using corresponding meth-
ods as figure 4.12 shows. Both exponent and modulus were received from the
KeePass plugin and stored in byte arrays “RSA PUBLIC KEY EXPONENT”
and “RSA KEY MODULUS”.

rsaPublicKey.setExponent(RSA_PUBLIC_KEY_EXPONENT,
(short) 0 ,(short) RSA_PUBLIC_KEY_EXPONENT.length);
rsaPublicKey.setModulus(RSA_KEY_MODULUS, (short) 0,
(short)RSA_KEY_MODULUS.length);

Figure 4.12: Set parameters of Keybuilder object

For the encryption itself, two Cipher class methods are used. The first
method is named init. It activates the encryption mode of the class and sets
a given RSA key as an encryption key. After the encrypt mode is activated, a
method doFinal encrypts any given array and returns a size of the encrypted
data.

In this thesis, the RSA cipher is used for the database key protection
during the transmission. In order to transmit the database key, the key is
split into sixteen 128-bit fragments, where each fragment is encrypted before
the transmission.

cipherENC.init(rsaPublicKey, Cipher.MODE_ENCRYPT);
short length = cipherENC.doFinal(BigDatabaseKey, (short)
(SizeOfAPDU*counter), (short)(SizeOfAPDU),outbuffer,(short)0);

Figure 4.13: RSA encryption - Cipher class

44

Chapter 5
Testing

This chapter describes typical use-cases and how the plugin was tested. Test-
ing of each operation is divided into positive and negative testing.

5.1 Unlocking a Database

5.1.1 Positive Testing

A database is opened in following steps:

1. Click on “File” → “Open” → “Open File”

2. Select “JavaCard Plugin” and insert Master Password

3. Choose a reader that will be used for the communication with Java Card

4. Insert PIN code

In case the the key stored in the card is correct, the database is opened.

5.1.2 Negative Testing

There are three possible errors may occur. First of all, incorrect PIN code is
inserted by the user. This case is described in section 5.2.1. Then there can
be an issue with a file that contains shared secret for SCP. If the shared secret
is not found or is incorrect, an error message shown in figure 5.2 appears and
the authentication process gets interrupted.

Last error that may occur is cause by incorrect key stored in the Java
Card. In this case, error message 5.1 appears and the database stays locked.

All the APDU responses are checked by the plugin and in case of any irreg-
ularities, the plugin interrupts the authentication process with corresponding
error message.

45

5. Testing

Figure 5.1: Error message – incorrect key

Figure 5.2: Error message – incorrect shared secret

5.2 Pin Authentication & Change

5.2.1 Description

For any communication, the card always require a pin for authenticate a user.
The PIN can be changed in following steps:

1. Click on “Tools” → “Change Pin”

2. Choose a reader

3. Insert old PIN to authenticate yourself

4. Insert new PIN

In case the old PIN is correct, the PIN is changed.

5.2.2 Authentication Failed

The first thing that is checked is the length of the given PIN. If the length is
incorrect, the plugin does not send it to Java Card and immediately interrupts
the authentication process.

If the size is correct, the PIN is sent in the APDU command into the card.
If the card returns APDU response with code “Authentication failed”, the

46

5.2. Pin Authentication & Change

plugin interrupts the authentication process along with the communication
with Java Card. It should be pointed out that there are only three attempts
for inserting the correct PIN code.

47

Conclusion

The main goals of this thesis were to develop a second-factor authentication
plugin that allows unlocking a database using the Java Card technology, ana-
lyze possible security threats, and implement security measures that prevent
an attacker from getting access to the KeePass database. To fulfill these goals,
numerous steps needed to be followed.

Firstly, get familiar with the environment for writing Java Applets and
analyze how to properly write them. Upload the Applets and install them to
the Java Card. This analysis is covered in section 3.2. At the same time, it
was necessary to get familiar with the KeePass plugin system. All important
information about the system is described in section 3.1.1.

Secondly, create a naive implementation of both the Java Applet and
KeePass authentication plugin. The implementation Recognizes its security
threats and analyse what security measures are required. This analysis is
covered in section 3.3.

Thirdly, implement security measures that provide protection against se-
curity threats from the previous analysis. That basically means to use Secure
Channel Protocol described in section 3.4, encrypt the communication be-
tween both participants by using RSA cipher as described in section 4.1.2,
and protect the Java Card with a PIN code.

Lastly, make the whole environment work and test if the security measures
were implemented correctly. The testing is described in chapter 5.

Even though many technical obstacles occurred on the way, all the initial
goals were fulfilled. Thanks to the result of this thesis, anyone can install the
plugin and use it as an additional security layer that protects the password
database.

In conclusion, the plugin and the Java Applet are ready to be used, al-
though there is room for improvement and extensions. Currently, the plugin
does not. provide an option to change the shared secret for SCP and an ex-
ternal tool has to be used. In future versions, the plugin should provide this
option and allow the user to change this secret and inform the Java Card.

49

Bibliography

1. CRAFFORD, Lindsay. 7 Bad Password Habits to Break Now [online].
2021. Available also from: https://blog.lastpass.com/2021/01/7-
bad-password-habits-to-break-now-2/.

2. DIGITAL SHADOWS PHOTON RESEARCH TEAM. From exposure
to takeover [online]. 2020. Available also from: https://resources.
digitalshadows.com/whitepapers- and- reports/from- exposure-
to-takeover.

3. NATIONAL CYBER SECURITY CENTRE. Password administration
for system owners [online]. 2018. Available also from: https://www.
ncsc.gov.uk/collection/passwords/updating-your-approach.

4. NETWORKS, Barracuda. Best Practices to Defend against evolving [on-
line]. 2020. Available also from: https://media.bitpipe.com/io_
15x/io_150458/item_2091587/Barracuda_Spear-Phishing-Vol5-
Dec2020.pdf.

5. NATIONAL CYBER SECURITY CENTRE. Password policy: Updating
your approach. ncsc.gov.uk [online]. 2018. Available also from: https://
www.ncsc.gov.uk/collection/passwords/updating-your-approach.

6. TECHOPEDIA. What is a Security Token? - Definition from Techope-
dia. Techopedia.com [online]. 2017. Available also from: https://www.
techopedia.com/definition/16148/security-token.

7. KAUR, Rupandeep. Multi-Factor Authentication: Meaning, Advantages
and Disadvantages. Techthirsty [online]. 2021. Available also from: https:
//www.techthirsty.com/multi-factor-authentication-meaning-
advantages-and-disadvantages/.

8. LI, Stan Z; JAIN, Anil K. Encyclopedia of biometrics [online]. 2015.
Available from doi: https://doi.org/10.1007/978-1-4899-7488-4.

51

https://blog.lastpass.com/2021/01/7-bad-password-habits-to-break-now-2/
https://blog.lastpass.com/2021/01/7-bad-password-habits-to-break-now-2/
https://resources.digitalshadows.com/whitepapers-and-reports/from-exposure-to-takeover
https://resources.digitalshadows.com/whitepapers-and-reports/from-exposure-to-takeover
https://resources.digitalshadows.com/whitepapers-and-reports/from-exposure-to-takeover
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://media.bitpipe.com/io_15x/io_150458/item_2091587/Barracuda_Spear-Phishing-Vol5-Dec2020.pdf
https://media.bitpipe.com/io_15x/io_150458/item_2091587/Barracuda_Spear-Phishing-Vol5-Dec2020.pdf
https://media.bitpipe.com/io_15x/io_150458/item_2091587/Barracuda_Spear-Phishing-Vol5-Dec2020.pdf
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.ncsc.gov.uk/collection/passwords/updating-your-approach
https://www.techopedia.com/definition/16148/security-token
https://www.techopedia.com/definition/16148/security-token
https://www.techthirsty.com/multi-factor-authentication-meaning-advantages-and-disadvantages/
https://www.techthirsty.com/multi-factor-authentication-meaning-advantages-and-disadvantages/
https://www.techthirsty.com/multi-factor-authentication-meaning-advantages-and-disadvantages/
https://doi.org/https://doi.org/10.1007/978-1-4899-7488-4

Bibliography

9. ROSENCRANCE, Linda; LOSHIN, Peter; COBB, Michael. What is Two-
Factor Authentication (2FA) and How Does It Work? [Online]. TechTar-
get, 2021. Available also from: https://searchsecurity.techtarget.
com/definition/two-factor-authentication.

10. MICROSOFT. One simple action you can take to prevent 99.9 percent
of attacks on your accounts. Microsoft Security Blog [online]. 2021. Avail-
able also from: https://www.microsoft.com/security/blog/2019/
08/20/one- simple- action- you- can- take- to- prevent- 99- 9-
percent-of-account-attacks/.

11. NIST SP 800-63 Digital Identity Guidelines-FAQ [online]. 2021. Avail-
able also from: https://pages.nist.gov/800-63-FAQ/%5C#q-b12.

12. REICHL, Dominik. Keepass password safe [online]. 2021. Available also
from: https://keepass.info/.

13. NGUYEN, Anthony. Types of Smart Card [online]. CardLogix Corpora-
tion, 2021. Available also from: http://www.smartcardbasics.com/
smart-card-types.html.

14. KASMI, Mohammed Amine; MOSTAFA, Azizi; LANET, Jean Louis.
Methodology to reverse engineer a scrambled Java card virtual machine
using electromagnetic analysis. In: 2014 International Conference on
Next Generation Networks and Services (NGNS) [online]. 2014. Avail-
able from doi: 10.1109/NGNS.2014.6990264.

15. GUO, Norman. Smart Card Operation Using Freescale Microcontrollers
[online]. 2012. Available also from: https://www.nxp.com/docs/en/
application-note/AN4453.pdf.

16. CHEN, I-Fong; PENG, Chia-Mei; YAN, Zhi-Da. 2019 IEEE Interna-
tional Conference on RFID Technology and Applications (RFID-TA). A
simple NFC parameters measurement method based on ISO/IEC 14443
standard [online]. 2019. Available from doi: 10.1109/RFID-TA.2019.
8892221.

17. REICHL, Dominik. Master key - keepass [online]. 2021. Available also
from: https://keepass.info/help/base/keys.html.

18. REICHL, Dominik. Plugins - keepass [online]. 2021. Available also from:
https://keepass.info/plugins.html.

19. REICHL, Dominik. Plugin development (2.x) - keepass. Get KeePass
[online]. 2021. Available also from: https://keepass.info/help/v2_
dev/plg_index.html%5C#conventions.

20. ORACLE CORPORATION. Writing a Java Card Applet [online]. 2001.
Available also from: https://www.oracle.com/java/technologies/
java-card/writing-javacard-applet.html.

52

https://searchsecurity.techtarget.com/definition/two-factor-authentication
https://searchsecurity.techtarget.com/definition/two-factor-authentication
https://www.microsoft.com/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://www.microsoft.com/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://www.microsoft.com/security/blog/2019/08/20/one-simple-action-you-can-take-to-prevent-99-9-percent-of-account-attacks/
https://pages.nist.gov/800-63-FAQ/%5C#q-b12
https://keepass.info/
http://www.smartcardbasics.com/smart-card-types.html
http://www.smartcardbasics.com/smart-card-types.html
https://doi.org/10.1109/NGNS.2014.6990264
https://www.nxp.com/docs/en/application-note/AN4453.pdf
https://www.nxp.com/docs/en/application-note/AN4453.pdf
https://doi.org/10.1109/RFID-TA.2019.8892221
https://doi.org/10.1109/RFID-TA.2019.8892221
https://keepass.info/help/base/keys.html
https://keepass.info/plugins.html
https://keepass.info/help/v2_dev/plg_index.html%5C#conventions
https://keepass.info/help/v2_dev/plg_index.html%5C#conventions
https://www.oracle.com/java/technologies/java-card/writing-javacard-applet.html
https://www.oracle.com/java/technologies/java-card/writing-javacard-applet.html

Bibliography

21. ORACLE CORPORATION. Development kit user guide [online] [on-
line]. 2021. Available also from: https://docs.oracle.com/en/java/
javacard / 3 . 1 / guide / extended - apdu - format . html % 5C # GUID -
0F452782-9402-43E9-B39C-337772C200DF.

22. GLOBALPLATFORM, Inc. GlobalPlatform Technology Card Specifica-
tion [online]. 2018. Available also from: https://globalplatform.org/
wp- content/uploads/2018/05/GPC_CardSpecification_v2.3.1_
PublicRelease_CC.pdf.

23. RIVEST, R.L.; SHAMIR, A.; ADLEMAN, L. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems [online]. 2018. Avail-
able also from: http://people.csail.mit.edu/rivest/Rsapaper.pdf.

24. LÓRENCZ, Róbert. Blokové šifry, DES, 3DES, AES, operacńı módy
blokových šifer [online]. CVUT FIT, 2020. Available also from: https:
//courses.fit.cvut.cz/BI-BEZ/media/lectures/bez4.pdf.

25. ORACLE CORPORATION. RandomData Class. RandomData (Java
Card API, Classic edition) [online]. 2015. Available also from: https:
//docs.oracle.com/javacard/3.0.5/api/javacard/security/
RandomData.html.

26. SEPULO [https://github.com/sepulo/globalplatform.net?fbclid=
IwAR07PvQPH5t4KaPnYX6Mw3okUJmDdhijHrvdBjb5oGOpmLgM_UE_R32eWa8].
2019. [online].

53

https://docs.oracle.com/en/java/javacard/3.1/guide/extended-apdu-format.html%5C#GUID-0F452782-9402-43E9-B39C-337772C200DF
https://docs.oracle.com/en/java/javacard/3.1/guide/extended-apdu-format.html%5C#GUID-0F452782-9402-43E9-B39C-337772C200DF
https://docs.oracle.com/en/java/javacard/3.1/guide/extended-apdu-format.html%5C#GUID-0F452782-9402-43E9-B39C-337772C200DF
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
http://people.csail.mit.edu/rivest/Rsapaper.pdf
https://courses.fit.cvut.cz/BI-BEZ/media/lectures/bez4.pdf
https://courses.fit.cvut.cz/BI-BEZ/media/lectures/bez4.pdf
https://docs.oracle.com/javacard/3.0.5/api/javacard/security/RandomData.html
https://docs.oracle.com/javacard/3.0.5/api/javacard/security/RandomData.html
https://docs.oracle.com/javacard/3.0.5/api/javacard/security/RandomData.html
https://github.com/sepulo/globalplatform.net?fbclid=IwAR07PvQPH5t4KaPnYX6Mw3okUJmDdhijHrvdBjb5oGOpmLgM_UE_R32eWa8
https://github.com/sepulo/globalplatform.net?fbclid=IwAR07PvQPH5t4KaPnYX6Mw3okUJmDdhijHrvdBjb5oGOpmLgM_UE_R32eWa8

Appendix A
Acronyms

2FA Two-factor Authentication

3DES Triple Data Encryption Standard

APDU Application protocol data unit

C MAC Command Message Authentication Code

DES Data Encryption Standard

ICV Integrity Check Value

JCRE Java Card Runtime Environment

MAC Message Authentication Code

MFA Multi-factor Authentication

NFC Near Field Communication

PIN Personal Identification Number

RFID Radio Frequency Identification System

RSA Rivest-Shamir-Adleman

R MAC Response Message Authentication Code

SCP Secure Channel Protocol

SFA Single-factor Authentication

55

Appendix B
Installation instructions

B.1 KeePass Authentication Plugin

To install the authentication Plugin, all you need to do is move a folder named
the “JavaCard plugin” and move it to “KeePass Password Safe 2/Plugins”. No
additional action is required.

B.2 Java Applet

To install Java Applet to Java Card, I recommend using “GPshell” available
at: https://sourceforge.net/p/globalplatform/wiki/GPShell/.

Firstly, you use “gp -install Java Applet
bin
FinalTest
javacard
FinalTest.cap”, where the Java Applet folder is one of the attachments of this
thesis.

After the applet is successfully installed, it is necessary to properly store
a shared secret for Secure Channel to your “Documents” folder. The default
shared secret is three keys, all set to “404142434445464748494A4B4C4D4E4F”
(“@ABCDEFGHIJKLMNO”).
These keys need to be stored in the following steps:

1. Create a file where each line is one key (MAC key, ENC key, KEK key)

2. Name the file “Cardkey.txt”

3. Encrypt the file content by using the EncryptSecret program

4. Save the file named “CardkeyEncrypted.txt” to your “Documents” folder

57

B. Installation instructions

After creating the file with the shared secret, the applet is ready for a
test run. The default pin is “1234” and can be changed as described in the
implementation chapter of this thesis.

58

Appendix C
Contents of the enclosed CD

readme.txt.......................................Contents description
JavaCardPlugin........................KeePass Authentication Plugin

Documentation............................Doxygen Documentation
JavaCardPlugin..................................Project Directory
JavaCardPlugin.sln..........................VS Code Project File

Authentication Applet..............Java Card Authentication Applet
src Source code of the Applet
bin.....................................Executable files – CAP File
Authentication Applet.jcsproj.......................Project File

EncryptSecret...............Program for encrypting the Shared Secret
EncryptSecret .. Source code
EncryptSecret.sln...........................VS Code Project File

Thesis.pdf..................................PDF version of the thesis

59

	Introduction
	Goal of the Thesis
	State-of-the-Art
	Authentication Factors
	Knowledge Factors
	Possession Factors
	Inherence Factors
	2FA Authentication

	Password Managers
	Comparison of Popular Password Managers
	1Password Password Manager
	LastPass Password Manager
	KeePass Password Manager

	Smart Cards
	Contact Cards
	Contactless Cards
	Memory Cards
	CPU/MPU Microprocessor Multifunction Cards
	Smart Card Readers

	Convenient Technology for this Thesis

	Analysis and Design
	KeePass Password Manager
	KeePass Plugin System
	KeePass Key Providers

	Java Card
	Java Applets
	Declaring the Package
	Import of the Java Card Framework
	The base Applet Class
	Applet Installation
	Selecting and Deselecting the Applet

	Communication with Applet

	Security Analysis of Naive Implementation
	Description of the Implementation
	Threat Model

	Secure Channel Protocol
	Entity Authentication
	Explicit Secure Channel Initiation
	Message Integrity
	Message Data Confidentiality
	Security Levels
	Cryptographic Keys
	Usage of Secure Channel for this Thesis

	Communication details
	Cryptography
	RSA
	Triple Des in CBC Mode

	Key Handling & Control

	Implementation
	KeePass Authentication Plugin
	SCP Initiation and Usage
	RSA Implementation
	Database Key Transmission
	Creating the Database
	Unlocking the Database
	Additional Features

	 Java Card Applet
	Secure Channel Protocol Implementation
	PIN Authentication
	RSA Encryption in Java Applet

	Testing
	Unlocking a Database
	Positive Testing
	Negative Testing

	Pin Authentication & Change
	Description
	Authentication Failed

	Conclusion
	Bibliography
	Acronyms
	Installation instructions
	KeePass Authentication Plugin
	Java Applet

	Contents of the enclosed CD

