

Bachelor’s thesis

EXAMS MANAGEMENT
AND UX IN
LEARNSHELL

Thanh Hung Le

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Jakub Žitný
January 6, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Thanh Hung Le. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Le Thanh Hung. Exams management and UX in LearnShell. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2022.

Contents

Acknowledgments vi

Declaration vii

Abstrakt viii

List of abbreviations ix

1 Introduction 1

2 Aim of the work 3

3 LearnShell 5
3.1 Overview . 5
3.2 History . 5
3.3 Business process . 6

4 Analysis 9
4.1 Backend . 9

4.1.1 Core . 9
4.1.2 Authentication . 9
4.1.3 Services . 11
4.1.4 GraphQL . 11

4.2 Frontend . 11
4.2.1 TypeScript . 11
4.2.2 React.js . 11
4.2.3 Next.js . 12
4.2.4 State management . 12
4.2.5 Data fetching and caching . 12
4.2.6 Styling . 13
4.2.7 Testing . 13

4.3 Similar applications . 13
4.3.1 MARAST . 13
4.3.2 ProgTest . 14

4.4 Requirements . 15
4.4.1 Functional requirements . 15
4.4.2 Non-functional requirements . 15

5 Design 17
5.1 User interface design . 17
5.2 Exam creation flow . 18
5.3 Wireframes and graphical design . 18

iii

iv Contents

6 Project cleanup 21
6.1 Package managing . 21

6.1.1 npm . 21
6.1.2 Yarn . 21
6.1.3 Yarn 2 . 21
6.1.4 Conclusion . 22

6.2 Code formatting . 22
6.2.1 ESLint . 22
6.2.2 Prettier . 22
6.2.3 EditorConfig . 22

6.3 Data fetching and types generation . 22
6.4 Updating dependencies . 24
6.5 Import paths . 24
6.6 Notifications . 24

7 Implementation 27
7.1 Project structure . 27
7.2 Global state . 27
7.3 Global components . 28

7.3.1 Global navigation . 28
7.3.2 Header . 28

7.4 Exam template . 29
7.4.1 Create Exam template . 29
7.4.2 Exam template list . 29
7.4.3 Exam template detail . 30
7.4.4 Add assignments to Exam template . 30

7.5 Exam . 30
7.5.1 Exam list . 31
7.5.2 Create Exam . 31
7.5.3 Start Exam . 31
7.5.4 Exam detail . 31

7.6 Parallel . 31

8 Testing 33
8.1 Usability testing . 33

8.1.1 The process . 33
8.1.2 Conclusion . 33

8.2 Unit testing . 34
8.3 End-to-end testing . 34

9 Conclusion 37

A Screenshots of the application 39

Contents of the enclosed media 49

List of Figures

3.1 The process of creating and writing Exam . 7

4.1 Architecture of LearnShell . 10
4.2 Screenshot of MARAST . 14

5.1 Graphic design proposal of Parallel detail in Figma 19

A.1 Teachers’ Profile . 39
A.2 Exam template list . 40
A.3 Create Exam template . 40
A.4 Exam template detail . 41
A.5 Exam template detail - edit form . 41
A.6 Create Exam . 42
A.7 Start Exam . 42
A.8 Exam detail - finished exam . 43
A.9 Teacher exam list . 43

List of Tables

3.1 Previous works . 6

List of code listings

1 Example of GraphQL query with fragment . 23
2 Example of generated React Query hook . 23
3 Example of usage of the generated hook . 24
4 Example of old relative paths and new absolute path 24
5 Example of old notification call and new one . 25
6 JSX of Header component . 28
7 Example of form field with validation . 29
8 JSX of Accordion component . 30
9 Example Cypress end-to-end test . 35

v

I would like to thank my supervisor Ing. Jakub Žitný, for the
guidance and helpful advice, Ing. Tomáš Kalvoda, Ph.D. and Ing.
Ladislav Vagner, Ph.D. for insightful interviews about MARAST
and ProgTest. I would also like to thank all teaches of the Unix-
like Operating System course, who were part of the usability testing
for giving out much-needed comments and remarks, and last but
not least, my thanks to my family and friends who supported me
throughout the writing process of this thesis.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modifying the Work, by
combining the Work with another work, by including the Work in a collection of works or by
adapting the Work (including translation), and at the same time make available the source code
of such work at least in a way and scope that are comparable to the way and scope in which the
source code of the Work is made available.

In Prague on January 6, 2022 .

vii

Abstrakt

Tato práce řeší návrh, implementaci a testovaní nového řešení pro správu testů v aplikaci Learn-
Shell. Ve stávajícím řešení chybí uživatelksé rozhraní pro tvorbu a správu testů. Řešení to-
hoto problému začalo analýzou back endu a podobných aplikací. Následoval návrh, vylepšení
nástrojů používaných při programovaní frontendu a implementace řešení. Nakonec byla aplikace
otestována jak uživately tak automatickými testy. Výsledkem je funkční systém pro správu testů,
která se bude používat při výuce na Fakultě informačních technologií ČVUT v Praze.

Klíčová slova LearnShell, TypeScript, React.js, Next.js, GraphQL, UI

Abstract

This thesis is about designing, implementing, and testing a new solution for exam management
in the LearnShell application. The current solution lacks the user interface for creating and
managing exams. The solution started with an analysis of the backend and similar applications.
The next step was creating a design, improving the tooling used to program the frontend, and
implementing the solution. Finally, the application was tested both by usability testing and
automatic tests. The result is a functioning system for exam management, which will be used in
the Faculty of Information Technology CTU in Prague.

Keywords LearnShell, TypeScript, React.js, Next.js, GraphQL, UI

viii

List of abbreviations

API Application Programming Interface
BEM Block Element Modifier

CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets

CTU Czech Technical University
DOM Document Object Model

DX Developer Experience
ES ECMAScript

FIT Faculty of Information Technology
HTML Hypertext Markup Language

JS JavaScript
JSX JavaScript Syntax Extension

KOS Komponenta Studium
LI-DL LearnShell Input-Describing Language
ORM Object-relational mapping

PS1 Programming in Shell 1
REST Representational State Transfer

SQL Structured Query Language
SWR stale-while-revalidate

TS TypeScript
UI User Interface

UOS Unix-like Operating Systems
UX User Experience

ix

x List of abbreviations

Chapter 1

Introduction

Every year, hundreds of new students come to the Faculty of Information Technology to become
IT professionals. In their first semester, they face many challenges, including unknown new
environments, meeting new people, and university subjects. Among mathematical analysis, pro-
gramming, and algorithm development, there is also Unix-like Operating Systems course(formerly
Programming in Shell). Unix-like Operating Systems course explains the basics behind unix-like
operating systems, like architecture, file system principles, and basic scripting in bash command
prompt. Unfortunately, some of the new students have never seen Linux operating system, let
alone bash. This is the point where project LearnShell comes in.

LearnShell 2.0 is a modular system for managing and performing exams with programming
assignments in scripting languages. For teachers, it simplifies the process of creating assignments
with custom-made language for describing the input data. Every student receives generated data
according to the input description, resulting in a better evaluation of their scripting skills. On
top of that, the platform provides a system of gradual evaluation and hints.

Unfortunately, LearnShell lacks a large portion of the user interface for the creation of exams.
Currently, it is done by sending raw requests to the backend server, which creates a bottleneck
because only a few teachers know how to do it correctly. This final thesis should change that,
by providing a better user experience for both teachers and students of the UOS course. More
teachers will be able to participate in the exam creation process and students will be able to look
at their past exams.

This thesis builds on top of numerous previous contributions to LearnShell, which you can
read about in Chapter three, alongside a brief overview of LearnShell and its history. Then you
can learn about the current state of the platform, the analysis of backend and frontend services,
tools, and technologies. Following that, you will find a quick run-through of two similar applica-
tions used in FIT for improving the education and the requirements for the exam management
solution. In Chapter five you can find about the design process of the user interface. Before the
implementation in Chapter Seven, you can find out, how we improved the frontend repository
with better tooling to provide a better developer experience. At the end of this thesis, you can
read about both usability and implementation testing followed by the conclusion.

1

2 Introduction

Chapter 2

Aim of the work

The goal of this work is to create a new frontend solution for creating, managing, and mentoring
exams in LearnShell 2.0 platform. This will improve the overall quality of education in Unix-
like Operating System Course, by improving the user experience of both teachers and students.
The individual sub-goals follow the software engineering methods. First is an analysis of the
current architecture of LearnShell backend and available APIs, next is to propose, design, and
implement a new UX flow for the creation and monitoring of exams. Along the way, improve the
frontend repository and tooling for rapid development. And lastly, test the solution with both
implementation test and usability tests.

An important part of this final thesis is the continuation of LearnShell development. The
final sub-goal of this thesis is to improve the tooling and refactoring of the frontend git repository
for a better developer experience.

3

4 Aim of the work

Chapter 3

LearnShell

In this chapter, we will cover the current state and functionality of LearnShell, describe the
motivation behind the origin of LearnShell and give a brief history of the project.

3.1 Overview

Currently, LearnShell is used for three purposes: online homework, two big tests in the middle
and the end of the semester, and small tests before each UOS tutorial. The small tests are an
essential part of the course because they promote continuous learning and at the same time give
students confidence and reduce the stress of failing a single test [1].

The main advantage is a custom language explicitly created for LearnShell. LearnShell Input-
Describing Language (LI-DL) [2] is used for describing input data for testing the correctness of
students’ submissions. This makes creating exams easier, however, the system currently lacks
a user interface for creating said exams. This creates a bottleneck because only a few teachers
know how to create new exams by sending raw requests to the backend.

3.2 History

At the start, written paper scripts were evaluated manually by teachers. This was time-consuming,
which meant a limited number of tests and also human error-prone. On the other hand, teachers
were able to give partial points if the script was not entirely correct. Nevertheless, the testing
was moved to the automated examination tool ProgTest a [3], system for evaluating C/C++ pro-
grams already used at FIT. Unfortunately, preparing assignments in this system is complicated
and complex, which also means a limited number of exams in the semester.

Finally, a new platform for automated evaluation was created. LearnShell allowed quick
and easy creation of bash scripting assignments, with semi-randomly generated input data and
gradual evaluation. But the first iteration had several problems. It was coded very quickly in an
un-maintainable way resulting in spaghetti code. Because of that, at the start of winter semester
2019/2020 a new version of LearnShell has started programming. Over the following semesters,
a number of students helped with the development of LearnShell, which you can find in Table
3.1. You can read more about the current version in Chapter 4.

5

6 LearnShell

Table 3.1 Previous works on LearnShell

Karel Jílek Command and script testing system for bash language [4]
Jiří Borský Input data generator for Bash scripts validation [5]
Matěj Karpíšek Smart search module for LearnShell [6]
Tomáš Kalabis Student and teacher analytics module for LearnShell [7]
Samuel Majoroš Cluster infrastructure for LearnShell [8]
Ilya Ryabukhin Cluster infrastructure for LearnShell: monitoring and logging [9]
Ondřej Cihlář Improving LearnShell backend for exams and assignments [10]
Dan Pejchar Improving LearnShell backend for analytics [11]
Pavel Khunt LearnShell Security Audit [12]
Zbyněk Juřica A module for detecting plagiarism in LearnShell [13]
Jaroslav Hampejs A module for grading in LearnShell [14]

3.3 Business process
This section will walk through the process from having a new application without any data
in the database to starting an exam for students. At the start of the new semester, all User,
Parallel, and Course data are imported from KOS (CTU informational system). According to
need, administrators of LearnShell can create multiple Generators and Evaluators services. In
the following list and in 3.1 you can find the process of creating and writing an exam.

1. Create Assignment Template Assignment Template connects Assignments and two ser-
vices described before.

2. Create Assignment Teacher creates Assignment from Assignment Template and adds test
cases.

3. Create Exam template Teacher creates an Exam template from which can be created
multiple exams.

4. Add Assignments to Exam template Teacher can add several previously created Assign-
ments.

5. Create Exam Teacher creates exam from Exam template.

6. Start Exam Generator service creates data for every student’s assignment, and then the
exam starts.

7. Create solution Students create a solution, and the Evaluator service creates correction.

Business process 7

Create
Assignment template

Create
Assignment

Test
Assignment

Create Exam

:Assignment
[Tested]

:Exam
[Created]

Add Assignments
to Exam

Add students
to Exam

Complete enrolment

Start Exam

:Exam
[Created]

:Exam
[Started]

Teacher System

Generate Assignments
for students

Create Correction

End Exam

Student

Create Solution

Submit Solution

Recreate Solution

Correct Solution

Incorrect Solution

Single assignment

Time limit

Multiple assignments

Correct Solution

Incorrect Solution

Single assignment

Time limit

Multiple assignments

Figure 3.1 The process of creating and writing Exam

8 LearnShell

Chapter 4

Analysis

This chapter is about the analysis of both backend and frontend parts of LearnShell and two
similar web applications used in the Faculty of Information Technology. From this analysis, we
will create requirements for the new exam management for LearnShell, which you’ll find at the
end of this chapter.

4.1 Backend

The central part of the LearnShell backend is a Django app called Core. The Core connects two
Flask services Generator and Evaluator, PostgreSQL database and Next.js frontend. Each part
is packaged into a container using Docker and connected with Docker Compose. In Figure 4.1
you can see the architecture of LearnShell.

In the following subsections, you will find a brief overview of LearnShell backend components
mention in the paragraph above. If the kind reader wants to know more about the LearnShell
backend and other features created by other students, they can look into their final theses.
Ondřej Cihlář described in detail LearnShell’s database model [10] or Matěj Karpíšek’s in-depth
look into Docker [6].

4.1.1 Core
The Core is a python app created with the Django framework [15]. Django was made to ease
web development by encouraging rapid development and clean design. Django applications are
divided into smaller parts called apps, each with its purpose. Django also offers its own database
abstraction layer for easier manipulation of data. Each database table is converted to an object
(model) using ORM (object-relational mapping).

For storing data, LearnShell uses PostgreSQL [16], an open-source object-relational database
system that uses and extends the SQL language.

4.1.2 Authentication
To authenticate users, LearnShell extends Django authentication with CTU OAuth 2.0 [17].
OAuth is an open standard for granting third-party applications user information without the
need to give them credentials.

9

10 Analysis

Core

Evaluator Generator

PostgreSQL database

Frontend

ORM

RESTful APIRESTful API

OAuth

Figure 4.1 Architecture of LearnShell

Frontend 11

4.1.3 Services
Both Generator and Evaluator are python apps created with Flask microframework [18]. The
”micro” in microframework means that Flask aims to keep the core small and simple but exten-
sible.

The services take data created by a teacher, including data for generating input data for
testing the students’ written in LI-DL code encoded in base64 (for security). Those are then
compiled to a Python representation and when the scripts is run, it generates bash script. After
users submits a script, the system generates input data from the input description.

To handle asynchronous requests like generating and correcting exams, LearnShell uses dis-
tributed task queue Celery [19] with Redis [20] as a message broker. Celery allows the distribution
of work across threads or machines and communicates via messages using fast key value store
Redis.

4.1.4 GraphQL
GraphQL [21] is a query language for APIs and a server-side runtime for executing queries using
a type system defined based on the data. In the backend, programmers can create typed schemas
to describe the data. On the other side, clients can explore and request the exact data they need.
By creating custom queries or mutations GraphQL prevents under- or over-fetching problems,
which traditional endpoint-based APIs like REST have.

LearnShell uses python library django_describer [22] for auto-generating GraphQL API from
Django models. It was created by one of the LearnShell creators to automate the creation of
GraphQL APIs. We can specify which fields are exposed to the API and which users can access
them. In addition to all of the CRUD operations, we can also create additional operations. From
this, the library generates the GraphQL API, including pagination, filtering, and ordering.

4.2 Frontend
In this section, we will discuss the current frontend solution of LearnShell.

4.2.1 TypeScript
TypeScript [23] is a superset of JavaScript. It provides all JavaScript features and adds a type
system. The main benefit of typing system is that it can highlight unexpected behavior in the
code and lower the chances of bugs. It also improves developer experience by allowing to get
better code completion. On top of the typing system, TypeScript adds helpful data structures
and constructs like tuples, generics, and decorators.

To run the code in browsers, TypeScript files need to be transpiled to JavaScript. Transpilers
take a source code and transform them into equivalent source code in the same or different
programming language. In the case of TypeScript, it allows us to use modern syntax, which is
not part of the official ECMAScript standard yet or is not implemented in all of the browsers
and the transpiler converts it to code, which will run all browsers.

TypeScript first appeared in October 2012, after two years of internal development at Mi-
crosoft. It was made to tackle the shortcomings of JavaScript while working in large-scale
applications.

4.2.2 React.js
React [24] is an open-source JavaScript library for building full-fledged web applications. React
overarching principle is the separation of concerns: reduce coupling (the degree to each program

12 Analysis

module relies on each of the other modules) and increase cohesion (the degree to which elements
of a module belong together). To achieve that, React uses components, highly cohesive building
blocks, loosely coupled with other components.

React uses JSX (JavaScript Syntax Extension) to write declarative views, an optional way to
write with HTML-like syntax with the full power of JavaScript. This means users do not have
to memorize another syntax and focus on JavaScript.

React is also concerned with performance. It utilizes virtual DOM (Document Object Model),
an abstraction of the HTML DOM. This allows faster operations whenever some changes occur.
React builds a new virtual DOM subtree on every update, checks the differences between the
new one and the old one, computes the minimal set of HTML DOM manipulations, puts them
in the queue, and executes the changes in a batch.

In version 16.8, React team introduced hooks, a way how to share stateful logic. Hooks
slowly started to replace class-based components due to their ease of usage. React team found
that working with classes in JavaScript brings many problems like understating this keyword,
worse optimization, and low re-usability. Due to these reasons, React embraces functional style
of programming, which we followed while working on this thesis.

4.2.3 Next.js
Next.js [25] is a framework built on top of React and adds essential features needed for pro-
duction like bundling, search engine optimization, or code splitting. On top of these features,
Next improves developer experience with Fast Refresh (edits are visible within seconds, without
losing component state), easy page-based routing, or built-in support for CSS, CSS-in-JS, and
TypeScript.

Next.js is maintained (and created) by Vercel, which runs the same-named platform as a
service for hosting Next.js and other applications. Vercel provides a smooth developer experience
for deploying and scaling applications, and LearnShell is hosted there.

4.2.4 State management
An important part of frontend development that React leaves to programmers is state manage-
ment. As the complexity of frontend applications increased, so has the amount of the State
inside of it. Redux [26] handles global state management by setting clear action flow and having
three main principles:

Single source of truth The global State of an application is stored in an object called store.
This makes it easier to inspect or debug the application.

State is read-only The global State is immutable and can only be changed by emitting action.

Changes are made with pure functions Reducers are pure functions (no side effects and
their output only depends on arguments) that take in previous State and action and return
next State.

This ensures predictability and makes it easier to work with State in applications.

4.2.5 Data fetching and caching
As an actual data fetcher LearnShell uses graphql-request [27]. It is a simple and lightweight
GraphQL client, featuring TypeScript support (via graphql library) and promise-base API.

Caching allows the reusing of previously fetched data efficiently. With APIs based on end-
points (like REST), clients can easily use HTTP caching to avoid re-fetching resources. With
GraphQL, where we use (usually) just one endpoint, we can utilize this strategy. That is where

Similar applications 13

library SWR [28] comes into play. The name is derived from an HTTP cache invalidation strat-
egy stale-while-revalidate. In this strategy, firstly, the cached data are returned from cache
(possibly old), then a fetch request is sent to revalidate the data, and finally, if the cached data
are truly stale, replace them with the new. This approach improves user experience by serving
immediately some version data, so users do not have to wait and watch loading animations.

4.2.6 Styling
LearnShell uses three main ways to add styling: CSS-in-JS library styled-components [29], UI
library Atlaskit, and global CSS style sheet. CSS-in-JS libraries are another approach for writing
CSS. Their aim is to solve CSS limitations, such as scoping, or low dynamic functionality. There
are a lot of different methodologies to add modularity to CSS, such as BEM, OOCSS, or SMACSS.
These methodologies create rules for naming or organizing CSS classes for better clarity and to
prevent class name collisions. CSS-in-JS libraries solve these issues by generating unique CSS
class names. Another feature of CSS-in-JS libraries is the automatic generation of vendor prefixes.
Due to the complex CSS standardization process, new CSS features could take a long time before
they are available in most popular browsers. Vendor prefixes are one of the approaches to provide
early access to those experimental features.

Styled components use ES Template Literals to write CSS rules inside of a string. This means
we can write with regular kebab-case syntax, but syntax highlighting and code completion must
be added with an editor or editor plugins. ES Template Literals also allow to interpolation of
JavaScript values and dynamic functionality through props.

The next part of LearnShell styling consists of Atlaskit [30]. It is a collection of reusable UI
components made by Atlassian. LearnShell mainly uses structural and navigational packages
like page, page-layout, or global-navigation but also smaller components like button, spinner, or
logo. The components speed up the development process and include additional accessibility,
but they offer little customizability.

The last part of LearnShell styling is the global style sheet. It consists of several utility classes
(similar to Tailwind [31]) to quickly add the margin, padding, or change text size. The style
sheet also contains CSS classes created from previous additions to LearnShell, which should be
converted to Styled components to keep the consistency.

4.2.7 Testing
For unit testing, LearnShell uses JavaScript framework Jest [32]. Jest was originally designed
for testing React applications (Jest and React were created by the same company) but now it
works with other JavaScript libraries. Jest focuses on simplicity and does not require much
configuration.

4.3 Similar applications
This section is about two similar web applications used in FIT to supplement the education in
various courses.

4.3.1 MARAST
MARAST [33] is a platform, used for continuous students’ knowledge testing throughout the
semester and big final exams. It was created during the winter semester of the academic year
2012/2013 for internal usage as a tool for generating paper exams. Nowadays, MARAST offers
a wide selection of questions spanning from mathematical analysis, linear algebra, statistics

14 Analysis

Figure 4.2 Screenshot of MARAST

to graph theory and automata. Among other features belong different color modes, built-in
JavaScript calculators, commenting system, blog, and lectures.

Users can log in to MARAST with three different means: CTU OAuth, local login, and
Google OAuth. Local login can be used when the CTU OAuth is not working, and Google
OAuth is for users not yet enrolled to FIT so that they can view public courses. After login with
CTU OAuth, MARAST sends a request to Usermap API [34] to check users’ roles and grant
them access to different courses. Limited access to an exam for a specific group can be done with
a password. Otherwise, all students have access to all quizzes or exams in the course.

While creating exams, teachers have a wide variety of setting to choose from. They can select
from types of questions, language, questing tags, and much more. Teachers can also see the
complete history of students’ answers (number of tries, length from opening the quiz to finishing
it) and IP addresses, and a hash of the sessions.

Unfortunately, MARAST has not a good way to help students with special needs. One way
to circumvent this is to create another exam/quiz with a password or add all the students to a
different ”semester,” which only contains exams. In case of cheating, the teacher can manually
adjust the score of the assignment/exam. [35]

4.3.2 ProgTest
As mentioned in Chapter 1, ProgTest is used to evaluate C/C++ programs. It is also used to
students’ theoretical knowledge with short single-/multi-choice quizzes.

ProgTest allows to test students’ programs to the smallest details and such it offers an enor-
mous selection of settings and tuning to set how will the programs will be tested. According to
the author [36], over the years, more and more setting options were added resulting in a bit of a

Requirements 15

feature creep. These settings made creating assignments feel bloated and over-complicated.
ProgTest offers good features for students with special needs. Every student has additional

information in their profile and according to this info, the time limit of an exam automatically
changes.

4.4 Requirements
This section analyzes the requirements for the solution. They originate from the assignment,
communication with the supervisor, and analysis of LearnShell and similar applications.

4.4.1 Functional requirements
Functional requirements determine the behavior and functionality of an application.

F1: Exam templates Teacher will be able to create and manage Exam templates.

F2: Add assignments to an Exam template Teacher will be able to and remove assign-
ments from the Exam template.

F3: Exams Teacher will be able to create and manage Exams.

F4: Add students to exam Teacher will be able to add students from their parallel and any
other parallel.

F5: Manage students during an exam Teacher will be able to prolong exam duration for a
specific student with special needs. The teacher will also be able to kick a student from the
exam if he notices suspicious behavior during the exam.

4.4.2 Non-functional requirements
Non-functional requirements determine the limitations and standards for an application.

NF1: Language The solution will be written in TypeScript using modern (ES6 and higher)
syntax.

NF2: Platform The solution will be integrated to the existing LearnShell platform.

NF2: Framework The solution will use features provided by React.js and Next.js.

NF4: Styling The solution will extend current styling through Atlaskit components and Styled
components.

Next.js uses Babel to handle Typescript, which means we automatically get e backward
compatible JavaScript code that can run on all browsers. As for CSS styles, we will be mostly
using Styled components, which provide vendor prefixes for all browsers. And lastly, because
creating and managing exams will be mostly done on desktop computers, the responsibility of
the application has a small priority.

16 Analysis

Chapter 5

Design

In this chapter, we show the process of designing the user experience and user interface for
LearnShell. We had a somewhat easier job because the target audience is just one group: teachers
of Unix-like Operating System course (formerly Programming in Shell 1). This means the users
are more or less knowledgeable about the LearnShell application.

5.1 User interface design
While designing the new user interface for exam management, we followed 10 Usability Heuristics
for User Interface Design by Jakob Nielsen [37]. These principles were developed over 20 years
ago, but they are still relevant. The list consists of:

Visibility of system status “The design should always keep users informed about what is going
on, through appropriate feedback within a reasonable amount of time.”
Every page in LearnShell has a clear heading. In the main navigation, the user can clearly
see what part of the website the user locates, and the result of every user action is displayed
with notification.

Match between system and the real world “The design should speak the users’ language.
Use words, phrases, and concepts familiar to the user, rather than internal jargon. Follow
real-world conventions, making information appear in a natural and logical order.”

User control and freedom “Users often perform actions by mistake. They need a clearly
marked ”emergency exit” to leave the unwanted action without having to go through an
extended process.”
Users can go back and forth on multi-step forms.

Consistency and standards “Users should not have to wonder whether different words, situ-
ations, or actions mean the same thing. Follow platform and industry conventions.”
The new pages and components follow the same design system as the old ones as well as the
Atlassian Design System, which are the Atlaskit UI components made with.

Error prevention “Good error messages are important, but the best designs carefully prevent
problems from occurring in the first place. Either eliminate error-prone conditions or check
for them and present users with a confirmation option before they commit to the action.”

17

18 Design

Recognition rather than recall “Minimize the user’s memory load by making elements, ac-
tions, and options visible. The user should not have to remember information from one part
of the interface to another. Information required to use the design (e.g., field labels or menu
items) should be visible or easily retrievable when needed.”
In the multi-step forms, users can see already filled information and also on which step they
are on.

Flexibility and efficiency of use “Shortcuts — hidden from novice users — may speed up
the interaction for the expert user such that the design can cater to both inexperienced and
experienced users. Allow users to tailor frequent actions.”
After every successful user action, there is a link to the next step, which pre-fills inputs.

Aesthetic and minimalist design “Interfaces should not contain information that is irrele-
vant or rarely needed. Every extra unit of information in an interface competes with the
relevant units of information and diminishes their relative visibility.”

Help users recognize, diagnose, and recover from errors “Error messages should be ex-
pressed in plain language (no error codes), precisely indicate the problem, and constructively
suggest a solution.”
Error messages and notifications are clear and simple.

Help and documentation “It is best if the system does not need any additional explanation.
However, it may be necessary to provide documentation to help users understand how to
complete their tasks.”
On the help page of LearnShell, users can learn about the new exam management workflow,
and on strategic parts of the website are placed icon tooltips which help users to quickly get
the information without the need of the help page.

5.2 Exam creation flow
At the start of the designing process, the thought was to put multiple steps of the exam creation
process on the same page (Create Exam template and Add assignments, create and start Exam).
This approach would speed up the creation, but the usability testing (more about that in Section
8.1) made it clear, that the page was cluttered and un-intuitive. Following the advice, [38]: “User
is the most happy if the interface contains only one control element.” we decided to put each of
the steps on its own page.

5.3 Wireframes and graphical design
To plan out the page structure and relation between pages, we used wireframes. Wireframes
are a rough representation of a website created to arrange the elements. For the creation of
wireframes, we used the website Miro [39]. We drew the frames on a tablet and pencil and then
reviewed them on PC. For the graphical design, we used Figma [40].

Wireframes and graphical design 19

Figure 5.1 Graphic design proposal of Parallel detail in Figma

20 Design

Chapter 6

Project cleanup

Before implementation, the frontend repository cleanup and package update were due. In this
chapter, we will show which parts needed service and why. On top of that, we will revisit some
tools described in Chapter 3 and explain why we replaced them.

6.1 Package managing

Package managers are key tools for modern (frontend) development. They simplify downloading,
updating, and auditing JavaScript packages. This allows faster development through using al-
ready created utilities, functions, or whole applications instead of programming everything from
scratch.

6.1.1 npm
npm (Node package manager) [41] is the default package manager for the JavaScript runtime
environment Node.js and the world’s largest software registry. Its main features are broad support
and community adoption.

6.1.2 Yarn
Yarn [42] was created in 2016 as an answer to npm problems (at that time). It offers enhanced
security, better stability, and it is faster. Another great feature is interoperability between it and
npm. This means that both Yarn and npm can be used in the same project. On top of that
Yarn offers online mode, workspaces, and resolving issues around versioning.

6.1.3 Yarn 2
Yarn 2 is brought drastic changes (so big the authors gave it another name: Berry) over Yarn and
it caused a huge divide between programmers. It introduced Plug’n’Play model which removes
node_modules directory. This solves one of the problems of npm (node_modules can get very
big in size), but it broke compatibility with many projects relying on the node_modules folder
structure (mainly projects using React Native). Backward compatibility was later added but
due to that Yarn 2 is likely to have a slow adoption rate for the foreseeable future.

21

22 Project cleanup

6.1.4 Conclusion
In the end Yarn 2 was chosen for the future proof, efficiency, preference, and mainly speed.
The Plug’n’Play model does not break any changes in the project (but we choose to keep
node_modules).

6.2 Code formatting
This section will introduce essential tools called code formatters. The objective of these tools
is to make more consistent code across developers and to detect problematic code patterns that
could lead to potential bugs. All tools mentioned below were installed/configured and used in
the LearnShell project.

6.2.1 ESLint
ESLint [43] statically analyzes JavaScript/TypeScript code to quickly find problems. ESLint can
fix many of those problems automatically (on file save or with a command), so users can avoid
errors with find-and-replace algorithms. Rules in ESLint are configurable and can be loaded.
ESLint covers both code quality and coding style issues. It is built into most text editors and
was immediately added to the frontend project.

6.2.2 Prettier
“By far the biggest reason for adopting Prettier is to stop all the ongoing debates over styles. It is
generally accepted that having a common style guide is valuable for a project and team but getting
there is a very painful and unrewarding process. People get very emotional around particular
ways of writing code, and nobody likes spending time writing and receiving nits.” [44]

Prettier is an opinionated code formatter, which improves code readability, especially in
projects with more than one person. Prettier set a generally accepted code style and helps
current and future programmers of LearnShell.

6.2.3 EditorConfig
“EditorConfig helps maintain consistent coding styles for multiple developers working on the
same project across various editors and IDEs (Integrated Development Environment). The Edi-
torConfig project consists of a file format for defining coding styles and a collection of text editor
plugins that enable editors to read the file format and adhere to defined styles. EditorConfig files
are easily readable and they work nicely with version control systems.” [45]

6.3 Data fetching and types generation
While SWR provided a lightweight and simple way to cache fetched data, it did not quite work
for LearnShell. The decision was to replace it with either Apollo Client or react-query. Apollo
Client is the most popular caching GraphQL client. It offers a wide variety of features, but those
features were not relevant to LearnShell, so react-query was selected as a good middle ground
between Apollo Client and SWR. react-query offers stale-while-revalidate strategy as SWR but
includes more customizability. For example, it allows setting custom time periods where the
fetched data are considered ”fresh” (in LS used for authentication). Other features include
garbage collection (automatic disposal of old data), powerful dev tools, and render optimization.

Data fetching and types generation 23

React query has also nice plugin integration with GraphQL Code Generator (graphql-codegen)
library. graphql-codegen was added to LearnShell because it can generate TypeScript types
from GraphQL schema. On top of generating types, graphql-codegen can also generate types
for GraphQL operations (queries and mutations) and fragments. From these operations, we can
use another plugin to generate ready-to-use react-query hooks. This saves a lot of time and
massively improves developer experience.

In Code listing 1, you can see example of a query operation in .gql file. Using this file and
types generated with GraphQL Code Generator we can call yarn codegen:hooks in terminal in
generate React hook shown in Code listing 2. We can then easily use this hook inside our React
components like in Code listing 3.

// ExamTemplateList.gql

#import '@/gql/fragments/CourseBasicInfo.gql'

query ExamTemplateList($courseId: ID) {
ExamTemplateList(courseId: $courseId) {

results {
course {

...CourseBasicInfo
}
id
name
timelimit

}
totalCount

}
}

Code listing 1 Example of GraphQL query with fragment

export const useExamTemplateListQuery = <
TData = Types.ExamTemplateListQuery,
TError = unknown

>(
variables?: Types.ExamTemplateListQueryVariables,
options?: UseQueryOptions<Types.ExamTemplateListQuery, TError, TData>

) =>
useQuery<Types.ExamTemplateListQuery, TError, TData>(

variables === undefined ?
['ExamTemplateList'] :
['ExamTemplateList', variables],

graphQLRequest<Types.ExamTemplateListQuery,
Types.ExamTemplateListQueryVariables>(ExamTemplateListDocument, variables),
options

);

Code listing 2 Example of generated React Query hook

24 Project cleanup

import { useExamTemplateListQuery } from '@/src/react-query-hooks'

const { data, error} = useExamTemplateListQuery()

Code listing 3 Example of usage of the generated hook

6.4 Updating dependencies
Even though a project might work just fine without the need to update dependencies, there are
several advantages of keeping them up to date.

The main reason is to prevent security vulnerabilities. Despite the fact that our code might
be secure, any third-party code we use, directly or indirectly as a dependency of another package,
can contain security issues. By updating dependencies, we try to stay on top of these problems,
as well as get bug fixes or performance improvements.

The next reason is to prevent major breaking changes later when we are forced to upgrade
for one reason or another. If we did not upgrade our dependencies for a long time, we could face
an enormous refactor of the codebase when needing to upgrade to the latest version.

Due to these reasons, we updated the dependencies we use. There we no breaking changes
but updating Next.js package brought several performance improvements and features.

6.5 Import paths
Import paths are used to locate files while importing them as JavaScript modules. These paths
can be either relative or absolute. While relative import paths are working out-of-the-box ab-
solute paths brings many advantages. To enable an absolute path, configure jsconfig or tsconfig
file for JavaScript or TypeScript project respectively. By using absolute path we will be able to:

Copy import paths from another file without changing them.

Easily locate file location by looking at the path.

Move files without needing to change import paths.

Have generally shorter import paths.

import { fetcher } from '../../../modules/api'

import { fetcher } from '@/modules/api'

Code listing 4 Example of old relative paths and new absolute path

6.6 Notifications
Notifications are an important part of an application because they help clarify events on the
website and show what is happening after a user action. LearnShell uses a custom notification
system based on Redux. Notifications flags were saved in a global state and called with dispatch
function from Redux. This brought no advantages over a third-party package, so we replaced
it with Node package react-toastify [46]. It adds simple, customizable notifications with an easy

Notifications 25

way to create them. This change decluttered the codebase and added a clearer way to show users
what is happening in the application.

dispatch(assignmentCreatedFlag('error', 'Failed to generate assignment
for students'))

toast.error('Failed to generate assignment for students')

Code listing 5 Example of old notification call and new one

26 Project cleanup

Chapter 7

Implementation

In this chapter, we will show the implementation of our solution. The basic workflow for each
part of the application was to create GraphQL operations, generate react-query hooks using the
GraphQL Code Generator library, and create components and pages.

In the next sections, you can find the file structure of the project and the detailed implemen-
tation of individual parts of the application.

7.1 Project structure

The project follows the structure set by Next.js and previous contributors.
.yarn... folder with Yarn 2 configuration files
components...folder with reusable React components
gql..folder GraphQL operations and fragments

impl...zdrojové kódy implementace
layout..folder for page layouts
modules

core...folder containing Redux files
api.ts..file with functions for fetching data

pages..folder containing individual pages
pages-styles... folder with styled-components
public...folder with media
src... folder with generated types and operations
styles...shared CSS and styled-components styles
utils..utility functions

7.2 Global state
To improve user experience, we use the global state to preserve users’ work. Before transitioning
to a next/previous step, we save information about the Exam template/Exam/Parallel to pre-fill
it, saving users’ time. If the user is not coming to a page from one of those links but rather
through the global navigation, the application will notice this and reset the global state.

27

28 Implementation

7.3 Global components
In the following subsections you can read about components used throughout the whole appli-
cation.

7.3.1 Global navigation
Global navigation consists of a list of links to main pages and a sidebar containing drawers. The
drawer is a collapsible element containing additional control elements in our case search drawer
and drawer with shortcuts links for the creation of Assignments, Templates, and exams.

7.3.2 Header
The header component is used on all pages to display breadcrumb navigation and main heading.
Heading can be passed either as a prop or as a custom component as a child. Breadcrumb
navigation uses Atlaskit same-named component, but we replace the last breadcrumb item with
our own element because the last item should not be a link (not empty nor cyclic link).

export default function Header({ title, breadcrumbs, children }: Props) {
const CustomBreadcrumb = React.forwardRef((props, ref) =>

{title})
CustomBreadcrumb.displayName = "CustomBreadcrumb"

return (
<PageHeader

breadcrumbs={
<Breadcrumbs>

{breadcrumbs?.map(breadcrumb => (
<BreadcrumbsItem

key={breadcrumb.link}
text={breadcrumb.text}
href={breadcrumb.link}

/>
))}
{/* last item not link */}
<BreadcrumbsItem component={CustomBreadcrumb} text={''} />

</Breadcrumbs>
}
disableTitleStyles

>
{children ? children : <h1>{title}</h1>}

</PageHeader>
)

}

Code listing 6 JSX of Header component

Exam template 29

7.4 Exam template
Exam template consists of four pages: list of all Exam templates, detail of the template, create
a template page, and page for adding assignments to a template.

7.4.1 Create Exam template
Create Exam template is a simple page containing a form and info about the newly created
template. The form is made using the Atlaskit form component, which offers an easy way to add
forms with validation. This is just enough functionality, so there is no need for another form
library like formik [47].

const TimeLimitField = () => (
<Field

aria-required={true}
name='time-limit'
defaultValue={template.timelimit / 60}
validate={value => {

if (!value) return
if (+value < 1) return 'TOO_SMALL'
if (!Number.isInteger(+value)) return 'NOT_INTEGER'

}}
label='Time Limit (in minutes)'
isRequired

>
{({ fieldProps, error, valid }) => (

<>
<TextField

testId="timilimit-input" type='number' min={1} {...fieldProps}
/>
{error === 'TOO_SMALL' &&

<HelperMessage>
Time limit must be greater than 1 minute

</HelperMessage>}
{error === 'NOT_INTEGER' &&

<HelperMessage>
Time limit must be whole number

</HelperMessage>}
</>

)}
</Field>

)

Code listing 7 Example of form field with validation

7.4.2 Exam template list
Exam template list is a basic page containing a list of all Exam templates created with the Atlaskit
Dynamic table package. The dynamic table displays rows of data with built-in pagination and
sorting. We show ID, name, time limit, course, and icon with a link to detail.

30 Implementation

7.4.3 Exam template detail
Exam template detail contains basic info about the template and a list of assignments added to
it. Template edit (reusing the create template component form) and delete operations, as well
as deleting added assignments, are done using Atlaskit modal. Upon clicking on a button/link
modal popup opens, where users can complete the action.

7.4.4 Add assignments to Exam template
Add assignments to Exam template page consists of two select inputs to find the Exam template
we want to work with and component AssignmentList used in two slightly different ways. One
is to display assignments already added to an Exam template, and the second is to display all
assignments that we can add to the template. AssignmentList returns a list of Assignments
inside of Accordion component, a collapsible element, which can, on click show the description
of the Assignment.

<AccordionWrapper>
<AccordionTitleWrapper>

<Link href={link} passHref>
<a>

<Tooltip content='Detail'>
<ShortcutIcon label='Detail' />

</Tooltip>

</Link>
<AccordionTitle>{title}</AccordionTitle>
{collapsible && (

<AccordionIcon AccordionIcon onClick={e => handleCollapse(e)}>
<Tooltip content={collapsed ? 'Show description' : 'Hide description'}>

{collapsed ? (
<HipchatChevronDownIcon label='Show description' />

) : (
<HipchatChevronUpIcon label='Hide description' />

)}
</Tooltip>

</AccordionIcon>
)}

</AccordionTitleWrapper>
{!collapsed && <AccordionContent>{children}</AccordionContent>}

</AccordionWrapper>

Code listing 8 JSX of Accordion component

7.5 Exam
The exam part of the application consists of redesigned exam detail for teachers, Exams page
now displays either exam created by teacher or students’ exams they attended, and new create
and start Exam pages.

Parallel 31

7.5.1 Exam list
There are three exam lists available: teachers can see exams that they created, administrators
can access a list of all exams, and students can now see a list of the exams that they participated
in. All of that lists are made using the Atlaskit dynamic table component.

7.5.2 Create Exam
Create Exam page is a multi-step form where teaches can go back and forth on each step.
Progress can be seen in the progress tracker (another Atlaskit component). It is wrapped around
a component that controls the logic of the step. The wrapper takes in an array of steps object,
current step, and the completed step number as props. Depending on the step and completed
step ProgressTracker component allows you to visit the previous or next step or even click on
the name and jump back and forth. Bellow the progress tracker, users can see info about what
they selected.

The form consists of three simple steps: selecting the course, choosing an Exam template,
and confirming step.

7.5.3 Start Exam
Star Exam page is also a multi-step form similar to Create exam, containing progress tracker
and info about selected Exam template, Parallel and added students. Instead of the traditional
selection of students, LearnShell uses text input for usernames. In all of the classrooms used for
the UOS course, there is a bash script that periodically checks all computers, and if a student is
logged in, it prints their usernames to terminal/file. This ensures that students cannot join the
exam from outside the classroom and makes the process of adding students easier.

Adding students is done through the text area element, which is then parsed by trimming and
squishing all white space characters. This string is then parsed and cross-checked with students
in the selected parallel. If a username has not been found, it is searched in the backend and
added to the displayed list of students. The list of inputted students is color-coded (students
from selected parallel, different parallel, and not found students), and the summary is visible in
the info section below the progress tracker. With this approach, teachers can be more confident
that all students in the classroom are added, and it is a good middle ground between fetching
all the students (like in the previous version) and fetching one student at a time.

7.5.4 Exam detail
Improved Exam detail now provides better information to teachers. The most significant im-
provement is a list of students taking the exam. Teachers can now see their name, username,
additional time, and score. In addition, teachers can manage the student while writing the exam.
Teachers can prolong the time limit for students with special needs and kick students from the
exam if they notice suspicious behavior.

7.6 Parallel
For convenience, we added teachers’ Parallel list and detail pages. In the Parallel detail, teachers
can now see information about the parallel as well as a detailed list of students in the parallel.
The user score is not unfortunately taken from the database, it is calculated in the backend from
all students’ assignments, so it might take a long time. Because of that, we at first fetch and
display data without the score while sending the second request, and after the second response
containing the user score arrives, we re-write the data.

32 Implementation

Chapter 8

Testing

In this chapter, we will explain how the new additions of LearnShell were tested. In the following
sections, you can read about usability testing of the LearnShell website and about two ways of
testing the implementation: unit and end-to-end testing. To make the implementation testing
more manageable, we added data-testid attributes to some of the HTML elements to create better
queries for locating the elements on the page and the DOM.

8.1 Usability testing
Usability testing is a method of testing to gather feedback from real users. In usability testing
sessions, participants are being observed while performing certain tasks in the application. The
goal is to uncover areas of confusion and to find elements of the application, which improve the
overall user experience.

8.1.1 The process
The process of usability testing of LearnShell was inspired by [48]. The target group for this
testing was teachers of Unix-like Operating Systems. The testing took place in person with
the following setup: one camera focused on the keyboard and mouse, the second facing the
test subject, and the last was screen capture. Because of previous teaches’ knowledge of the
LearnShell application, we chose unmoderated and explorative usability testing. This approach
can reveal users’ thinking processes and give us their immediate feedback. During the session, we
occasionally asked follow-up questions to their comments, and if the users got stuck, we directed
them in the right direction.

8.1.2 Conclusion
As mention in Section 5.2, the usability testing revealed that Create Exam template and Add
assignments to Exam template too cluttered and needs to be split. Similarly Create Exam and
Started exam had same problem and were split. Other than this Other than this, there were
some problems with consistency of some elements.

33

34 Testing

8.2 Unit testing
Unit tests check the functionality of the smallest units in applications - in our case, React
components. Components are tested independently to isolate issues that might arise.

Alongside Jest, we used React Testing Library a [49], lightweight solution for testing React
components. Its primary guideline is: “The more your tests resemble the way your software is
used, the more confidence they can give you.” Rather than working with instances of rendered
React components, React Testing library provides a way to work with actual rendered DOM
nodes.

The next tool used in unit testing is Chrome extension Testing-Playground. Testing-Playground
helps find the best queries to select elements for the open-source Testing-Library family. It adds
a new tab to Chrome DevTools, which allows us to hover/select an element in the browser, and
the extension displays the best queries to select the element, as well as some other alternative
queries.

To ensure proper functionality of all components, we created a custom render, which contains
our theme and Redux store provider, React Query client, and toast notification container. Instead
of importing the renderer from the testing library, we use our custom renderer in our test files.

8.3 End-to-end testing
End-to-end testing focuses on testing high-value parts of an application. This technique tests the
entire application from start to end to make sure that the application flow behaves as expected.
It basically automates manual testing in the browser and ensures that all integrated parts work
correctly.

For end-to-end testing of LearnShell, we chose Cypress [50], an all-in-one testing framework,
assertion library, with mocking and stubbing. Cypress bundles other testing tools like Mocha
and Chai to provide their best features. For better developer experience, we also added Cypress
Testing Library, which allows us to add DOM Testing Library commands, which we used in
React Testing Library. This is especially helpful in end-to-end tests because we want to query
elements as a user would - by role and inner text (for example, a button with the text ’Create
Exam’). If this type of querying is not possible, we can fall back to custom data-testid attributes.

Before each test, we need to log in to LearnShell, which poses quite a challenge because
of OAuth. This process of authentication makes several redirects between different servers,
and unfortunately, Cypress block all cross-platform request. Because of that, we made in the
particular backend endpoint to log us just for this kind of testing, and before each test, we call
custom command to log us in.

In Code listing 9, you can see an example of short end-to-end test. After login, we visit the
Profile page (while developing the server runs on localhost port 3000). Then we navigate through
main navigation to the Create Exam template page, where we fill out the info about our new
Exam template and create it. Afterwards we visit the detail and delete it to restore the state of
application. This short example shows how we automate the manual testing we would need to
do, to ensure that our changes did not break our application.

End-to-end testing 35

it('create and delete Exam template', () => {
cy.visit('http://localhost:3000/profile')

// create Exam template
cy.findByRole('link', { name: /Exam templates/i }).click()
cy.findByRole('link',

{ name: /create new Exam template/i }).click()
cy.wait(2000)
cy.get('.course-select__control').type('{enter}')
cy.findByRole('textbox',

{ name: /name/i }).type('cypress test Exam template')
cy.findByRole('button', { name: /create template/i }).click()
cy.findByText(/Exam template created successfully/i).should('exist')

// delete Exam template
cy.findByRole('link',

{ name: /go to Exam template detail/i }).click()
cy.findByRole('button',

{ name: /delete this template delete this template/i }).click()
cy.findByRole('button', { name: /confirm delete/i }).click()
cy.findByText(/^Successfully DELETED Exam template .*/i).should('exist')

}

Code listing 9 Example Cypress end-to-end test

36 Testing

Chapter 9

Conclusion

The main goal of this thesis was to create a solution for creating and managing exams in the
LearnShell application, used in the Unix-like Operating Systems course at the Faculty of Infor-
mation Technology CTU in Prague. After analyzing the architecture of the LearnShell backend,
we proposed a new UI and implemented it. Along the way, we also took a look at the fron-
tend repository and refactored and added tooling for improved developer experience. We also
performed usability testing and changed the application accordingly, and last but not least, we
added an implementation test to make sure that the application worked as intended.

The solution covers all the functional and non-functional requirements described in Section
4.4. The result of this thesis is working on exam creation and management of exams in the
LearnShell application. This work also helps the future development of LearnShell by improving
the tooling used in the frontend repository, which will increase the speed and frequency of
subsequent updates.

This solution is a good base for future exam management and the writing process. Among the
following needed features is better filtering of Assignments and Exam templates (like the system
of tags in MARAST) or changeable exam names (not the same name as the Exam template).
LearnShell would also benefit from general features like localization, responsibility, or themes.

37

38 Conclusion

Appendix A

Screenshots of the application

Figure A.1 Teachers’ Profile

39

40 Screenshots of the application

Figure A.2 Exam template list

Figure A.3 Create Exam template

41

Figure A.4 Exam template detail

Figure A.5 Exam template detail - edit form

42 Screenshots of the application

Figure A.6 Create Exam

Figure A.7 Start Exam

43

Figure A.8 Exam detail - finished exam

Figure A.9 Teacher exam list

44 Screenshots of the application

Bibliography

1. KAŠPAR, Jiří; MUZIKÁŘ, Zdeněk. Evaluation of Student Skills in Unix Base Script-
ing Course. In: Proceedings of the 2019 3rd International Conference on E-Education,
E-Business and E-Technology [online]. New York, NY, USA: Association for Computing
Machinery, 2019, pp. 23–27 [visited on 2021-12-25]. ICEBT 2019. isbn 978-1-4503-7256-5.
Available from doi: 10.1145/3355166.3355169.

2. JILEK, Karel. Welcome to LI-DL’s documentation! — LI-DL documentation [online]. 2018
[visited on 2021-12-30]. Available from: https://li-dl.readthedocs.io/en/latest/.

3. VAGNER, Ladislav. progtest.fit.cvut.cz - ProgTest [online]. 2021 [visited on 2021-12-29].
Available from: https://progtest.fit.cvut.cz/.

4. JILEK, Karel. Command and script testing system for bash language. 2018. Bachelor’s
Thesis. Czech Technical University in Prague, Faculty of Information Technology.

5. BORSKÝ, Jiří. Input data generator for Bash scripts validation. 2019. Bachelor’s Thesis.
Czech Technical University in Prague, Faculty of Information Technology.

6. KARPÍŠEK, Matěj. Smart search module for LearnShell. 2021. Bachelor’s Thesis. Czech
Technical University in Prague, Faculty of Information Technology.

7. KALABIS, Tomáš. Student and teacher analytics module for LearnShell. 2021. Bachelor’s
Thesis. Czech Technical University in Prague, Faculty of Information Technology.

8. MAJOROŠ, Samuel. Cluster infrastructure for LearnShell. 2021. Bachelor’s Thesis. Czech
Technical University in Prague, Faculty of Information Technology.

9. RYABUKHIN, Ilya. Cluster infrastructure for LearnShell: monitoring and logging. 2021.
Bachelor’s Thesis. Czech Technical University in Prague, Faculty of Information Technology.

10. CIHLÁŘ, Ondřej. Improving LearnShell backend for exams and assignments. 2021. Bache-
lor’s Thesis. Czech Technical University in Prague, Faculty of Information Technology.

11. PEJCHAR, Dan. Improving LearnShell backend for analytics. 2021. Bachelor’s Thesis.
Czech Technical University in Prague, Faculty of Information Technology.

12. KHUNT, Pavel. LearnShell Security Audit. 2021. Bachelor’s Thesis. Czech Technical Uni-
versity in Prague, Faculty of Information Technology.

13. JUŘICA, Zbyněk. A module for detecting plagiarism in LearnShell [online]. 2021 [visited
on 2021-11-21]. Available from: http://hdl.handle.net/10467/95113. Bachelor’s Thesis.
Czech Technical University in Prague, Faculty of Information Technology.

14. HAMPEJS, Jaroslav. A module for grading in LearnShell. 2021. Bachelor’s Thesis. Czech
Technical University in Prague, Faculty of Information Technology.

45

https://doi.org/10.1145/3355166.3355169
https://li-dl.readthedocs.io/en/latest/
https://progtest.fit.cvut.cz/
http://hdl.handle.net/10467/95113

46 Bibliography

15. FOUNDATION, Django Software. Django [online]. 2021 [visited on 2021-12-06]. Available
from: https://www.djangoproject.com/.

16. GROUP, PostgreSQL Global Development. PostgreSQL [online]. 2021 [visited on 2021-12-
25]. Available from: https://www.postgresql.org/.

17. JIRŮTKA, Jakub. OAuth 2.0 (Main.oauth2) [online]. 2017 [visited on 2021-12-25]. Available
from: https://rozvoj.fit.cvut.cz/Main/oauth2.

18. PALLETS. Flask [online]. 2010 [visited on 2021-12-29]. Available from: https://flask.
palletsprojects.com/en/2.0.x/.

19. SOLEM, Ask. Celery - Distributed Task Queue — Celery 5.2.3 documentation [online]. 2021
[visited on 2021-12-29]. Available from: https://docs.celeryproject.org/en/stable/.

20. REDIS. Redis [online]. 2021 [visited on 2021-12-25]. Available from: https://redis.io/.
21. FOUNDATION, The GraphQL. GraphQL | A query language for your API [online]. 2021

[visited on 2021-12-29]. Available from: https://graphql.org/.
22. JILEK, Karel. django-describer: A tool for automated generation of several APIs from a

Django webapp. [Online]. 2020 [visited on 2021-12-29]. Available from: https://github.
com/karlosss/django_describer.

23. MICROSOFT. JavaScript With Syntax For Types. [Online]. 2021 [visited on 2021-12-20].
Available from: https://www.typescriptlang.org/.

24. INC., Meta Platforms. React – A JavaScript library for building user interfaces [online].
2021 [visited on 2021-12-17]. Available from: https://reactjs.org/.

25. VERCEL. Next.js by Vercel - The React Framework [online]. 2021 [visited on 2021-12-17].
Available from: https://nextjs.org.

26. ABRAMOV, Dan. Redux - A predictable state container for JavaScript apps. | Redux [on-
line]. 2021 [visited on 2021-12-22]. Available from: https://redux.js.org/.

27. PRISMA. graphql-request [online]. Prisma Labs, 2022 [visited on 2022-01-05]. Available
from: https://github.com/prisma- labs/graphql- request. original-date: 2017-05-
10T20:05:07Z.

28. VERCEL. React Hooks for Data Fetching – SWR [online]. 2021 [visited on 2021-12-29].
Available from: https://swr.vercel.app/.

29. STYLED-COMPONENTS. styled-components [online]. 2021 [visited on 2021-12-20]. Avail-
able from: https://www.styled-components.com.

30. ATLASSIAN. Atlaskit by Atlassian [online]. 2021 [visited on 2021-12-20]. Available from:
https://atlaskit.atlassian.com/.

31. INC., Tailwind Labs. Tailwind CSS - Rapidly build modern websites without ever leaving
your HTML. [Online]. 2021 [visited on 2021-12-29]. Available from: https://tailwindcss.
com/.

32. META, Platforms. Jest · Delightful JavaScript Testing [online]. 2021 [visited on 2021-12-
29]. Available from: https://jestjs.io/.

33. KALVODA, Tomáš; KLOUDA, Karel. MARAST [online]. 2021 [visited on 2021-12-29].
Available from: https://marast.fit.cvut.cz/.

34. JIRŮTKA, Jakob. Usermap API (Main.usermap-api) [online]. 2015 [visited on 2021-12-29].
Available from: https://rozvoj.fit.cvut.cz/Main/usermap-api.

35. KALVODA, Tomáš. MARAST [personal interview]. 2021.
36. VAGNER, Ladislav. ProgTest [personal interview]. 2021.

https://www.djangoproject.com/
https://www.postgresql.org/
https://rozvoj.fit.cvut.cz/Main/oauth2
https://flask.palletsprojects.com/en/2.0.x/
https://flask.palletsprojects.com/en/2.0.x/
https://docs.celeryproject.org/en/stable/
https://redis.io/
https://graphql.org/
https://github.com/karlosss/django_describer
https://github.com/karlosss/django_describer
https://www.typescriptlang.org/
https://reactjs.org/
https://nextjs.org
https://redux.js.org/
https://github.com/prisma-labs/graphql-request
https://swr.vercel.app/
https://www.styled-components.com
https://atlaskit.atlassian.com/
https://tailwindcss.com/
https://tailwindcss.com/
https://jestjs.io/
https://marast.fit.cvut.cz/
https://rozvoj.fit.cvut.cz/Main/usermap-api

Bibliography 47

37. NIELSEN, Jakob. 10 Usability Heuristics for User Interface Design [online]. 2020 [visited
on 2021-12-25]. Available from: https://www.nngroup.com/articles/ten-usability-
heuristics/.

38. STANÍČEK, Petr. Dobrý designér to všechno ví! First Edition. Kamenné Žehrovice, 2016.
isbn 978-80-260-9427-2.

39. The Visual Collaboration Platform for Every Team | Miro [online]. 2022 [visited on 2022-
01-02]. Available from: https://miro.com/.

40. Figma: the collaborative interface design tool. [Online]. 2022 [visited on 2022-01-02]. Avail-
able from: https://www.figma.com/.

41. NPM. npm [online]. 2021 [visited on 2021-12-19]. Available from: https://www.npmjs.com/.
42. INC., Meta Platforms. Yarn Platforms [online]. 2021 [visited on 2021-12-19]. Available from:

https://yarnpkg.com/.
43. OPENJS, Foundation. ESLint - Pluggable JavaScript linter [online]. 2021 [visited on 2021-

12-29]. Available from: https://eslint.org/.
44. Prettier · Opinionated Code Formatter [online]. 2021 [visited on 2021-12-29]. Available

from: https://prettier.io/index.html.
45. HUNNER, Trey; XU, Hong. EditorConfig [online]. 2021 [visited on 2021-12-19]. Available

from: https://editorconfig.org/.
46. KHADRA, Fadi. React-toastify | React-Toastify [online]. 2021 [visited on 2021-12-19]. Avail-

able from: https://fkhadra.github.io//react-toastify/introduction.
47. FORMIUM. Formik [online]. 2020 [visited on 2021-12-29]. Available from: https://formik.

org/.
48. HOTJAR, Ltd. What is Usability Testing? (and What it Isn’t) | Hotjar [online]. 2021 [visited

on 2022-01-04]. Available from: https://www.hotjar.com/usability-testing/.
49. DODDS, Kent C. Testing Library | Testing Library [online]. 2021 [visited on 2021-12-29].

Available from: https://testing-library.com/.
50. CYPRESS.IO. JavaScript End to End Testing Framework [online]. 2021 [visited on 2021-

12-29]. Available from: https://www.cypress.io/.

https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://miro.com/
https://www.figma.com/
https://www.npmjs.com/
https://yarnpkg.com/
https://eslint.org/
https://prettier.io/index.html
https://editorconfig.org/
https://fkhadra.github.io//react-toastify/introduction
https://formik.org/
https://formik.org/
https://www.hotjar.com/usability-testing/
https://testing-library.com/
https://www.cypress.io/

48 Bibliography

Contents of the enclosed media

readme.txt..................................brief description of the content of the medium
src..source code of implementation

ls-web...frontend of LearnShell
ls..backend of LearnShell
ls-ps1-generator..Generator service
ls-ps1-evaluator..Evaluator service

text.. thesis text
thesis ... thesis text in LATEX
thesis.pdf .. thesis text in PDF format

usability_testing..................................folder with videos of usability testing
cypress_test.mp4............................. screen recording of Cypress end-to-end test

49

	Acknowledgments
	Declaration
	Abstrakt
	List of abbreviations
	Introduction
	Aim of the work
	LearnShell
	Overview
	History
	Business process

	Analysis
	Backend
	Core
	Authentication
	Services
	GraphQL

	Frontend
	TypeScript
	React.js
	Next.js
	State management
	Data fetching and caching
	Styling
	Testing

	Similar applications
	MARAST
	ProgTest

	Requirements
	Functional requirements
	Non-functional requirements

	Design
	User interface design
	Exam creation flow
	Wireframes and graphical design

	Project cleanup
	Package managing
	npm
	Yarn
	Yarn 2
	Conclusion

	Code formatting
	ESLint
	Prettier
	EditorConfig

	Data fetching and types generation
	Updating dependencies
	Import paths
	Notifications

	Implementation
	Project structure
	Global state
	Global components
	Global navigation
	Header

	Exam template
	Create Exam template
	Exam template list
	Exam template detail
	Add assignments to Exam template

	Exam
	Exam list
	Create Exam
	Start Exam
	Exam detail

	Parallel

	Testing
	Usability testing
	The process
	Conclusion

	Unit testing
	End-to-end testing

	Conclusion
	Screenshots of the application
	Contents of the enclosed media

