
1

Instructions

The company Pure Storage's cloud division uses the GitHub platform for software development

projects. They would like to collect some metrics from that system.

1. Analyze their workflow and how the platform supports it. Study means of automated data collection

from GitHub web API. Traverse the tree of projects, commits, etc. and collect data into a relational

database.

2. Design an application to collect, store, and visualize metrics. Some suggested metrics are Code

Coverage, Pull Request wait time for review, number of PRs per version, etc. It should be possible to

display a dashboard of different repositories based on the project, department etc. with calculated

statistics and see the history of the individual metrics with AI or statistical extrapolation.

3. Implement the application in the Python language with correct object-oriented design.

4. Test it on a big open-source project (such as Docker, Kubernetes) or a mock project that mimics the

company workflow (will be provided).

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 7 November 2021 in Prague.

Assignment of bachelor’s thesis

Title: Metrics of software development workflow

Student: Basel Samy Mohamed Kamaleldin Elshanawany

Supervisor: Ing. Tomáš Vondra, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Metrics of Software Development Workflow

Basel Samy ElShanawany

Department of Theoretical Computer Science
Supervisor: Ing. Tomáš Vondra, PhD

January 6, 2022

Acknowledgements

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on January 6, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Basel Samy ElShanawany. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Samy ElShanawany, Basel. Metrics of Software Development Workflow. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Ćılem této práce je analyzovat metriky pracovńıho toku vývoje softwaru a vy-
tvořit webovou aplikaci, která pomáhá vývojář̊um softwaru vizualizovat a sle-
dovat jejich produktivitu. Analýza vedla ke shromažd’ováńı dat z určitých kon-
cových bod̊u rozhrańı API GitHubu prostřednictv́ım zprostředkovatele zpráv
hostovaného na Heroku a k vytvořeńı fronty úloh pro asynchronńı voláńı a
ukládáńı dat z API mimo hlavńıho cyklu žádost-odpověd’ webové aplikace.
Strana serveru byla vyvinuta v Pythonu s webovým frameworkem Django,
klientská strana komunikuje s REST API Django a integruje se s Plotly Dash,
což umožňuje vytvářeńı interaktivńıch vizualizaćı

Kĺıčová slova Doba cyklu, Django, GitHub API, Architektura MVC, Py-
thon, REST API, webová aplikace

Abstract

The goal of this thesis is to analyze software development workflow metrics and
build a web application that helps software developers visualize and track their
productivity. The analysis lead to data collection from certain endpoints of
GitHub’s API through a message broker hosted on Heroku and a task queue
worker to asynchronously call and store data from the API outside of the

vii

web application’s request-response cycle time. The server side was developed
in Python with Django’s web framework, the client side communicates with
Django’s REST API and integrates with Plotly Dash which allows for the
creation of interactive dashboard visualizations

Keywords Cycle Time, Django, GitHub API, MVC Architecture, Python,
REST API, Web Application

viii

Contents

Introduction 1
Software Development Methodologies 1
Outline . 1

1 Analysis 3
1.1 Software Development Workflow Metrics 3

1.1.1 Existing Metrics . 3
1.1.1.1 Commits . 3
1.1.1.2 Lines of Code 3
1.1.1.3 Pull Request Count 4
1.1.1.4 Velocity Points 4
1.1.1.5 Impact . 4

1.1.2 Why Measure Productivity 4
1.1.2.1 Prompt Action 4
1.1.2.2 Goals & Alignment 5
1.1.2.3 Advocation . 5

1.1.3 What to Measure . 5
1.1.3.1 Process vs Output 5
1.1.3.2 Measuring Against Set Targets 5

1.1.4 Cycle Time Metric . 5
1.1.4.1 Coding Time 6
1.1.4.2 Review Time 6
1.1.4.3 Deploy Time 6

1.1.5 Chosen Metric . 6
1.1.5.1 Pull Request Wait Time 6
1.1.5.2 Pull Request Size 7

1.2 DevOps . 8
1.2.1 GitHub . 8

1.2.1.1 Version Control Systems (VCS) 8

ix

1.2.1.2 GitHub’s Structure 8
1.2.1.3 GitHub’s Flow 8
1.2.1.4 How GitHub Supports Pure Storage’s Workflow 9

1.2.2 CI / CD . 10
1.2.2.1 Continuous Integration (CI) 10
1.2.2.2 Continuous Deployment (CD) 10

1.3 Architectural Patterns in Web Development 10
1.3.1 Client - Server . 10
1.3.2 Model View Controller (MVC) 10
1.3.3 Component Based Architecture (CBA) 11
1.3.4 Single vs Multi Paged Applications 11

1.4 Web App Development Frameworks 12
1.4.1 REST Architecture . 12

1.4.1.1 Architectural Concept 12
1.4.1.2 Architectural Constraints 13
1.4.1.3 Architectural Properties 13

1.4.2 Chosen Framework . 14
1.5 Web API . 14

1.5.1 API Authentication . 14
1.5.2 OAUTH . 14
1.5.3 GitHub API . 15
1.5.4 GitHub Authentication 15
1.5.5 Chosen Method of Authentication 15

2 Design 17
2.1 Technology Stack . 17
2.2 Django . 17

2.2.1 Useful CLI Commands 17
2.2.2 Working with The Database 18
2.2.3 Admin . 18

2.3 Project Structure . 18
2.3.1 Apps & Components . 19

2.4 Data Model . 19
2.5 User Interface . 21

2.5.1 Templates . 21
2.5.2 Static Files . 22
2.5.3 Bootstrap . 23

3 Implementation 25
3.1 MVC Architecture . 25

3.1.1 Request Routing . 26
3.1.2 Django’s Views . 27
3.1.3 Django’s Forms . 27
3.1.4 Django’s Models . 28

x

3.1.5 Django’s Object-Relational-Mapper (ORM) 28
3.1.6 Services . 29
3.1.7 Django’s Setting . 30

3.2 GitHub API Integration . 30
3.2.1 GitHub API Library . 30
3.2.2 Authentication . 30
3.2.3 PR Wait Time . 31
3.2.4 PR Size . 31
3.2.5 Task Queue . 31
3.2.6 Task Scheduler . 32

3.3 Front End . 32
3.3.1 Plotly Dash . 32
3.3.2 Dash Apps . 32
3.3.3 Metric Visualisation . 33

3.4 Security . 34
3.4.1 SQL Injection (SQLi) 35
3.4.2 Cross Site Scripting (XSS) 35
3.4.3 Cross Site Request Forgery (CSRF) 35

4 Testing 37

5 Future Work 39

Conclusion 41

Bibliography 43

A Acronyms 45

B Installation Guide 47

C Screenshots of the Web App 49

D Contents of enclosed USB 59

xi

List of Figures

1.1 Cycle Time Metric in Software Development Workflow 7
1.2 GitHub’s Flow . 9
1.3 Request - Response Cycle . 11
1.4 SPA vs MPA . 12

2.1 Data Model . 20
2.2 User Interface . 21

3.1 Django’s MVC Architecture . 25
3.2 Yearly PR Wait Success Rate with a 72 Hour Goal 34
3.3 Monthly PR Wait Success Rate with a 72 Hour Goal 34

C.1 My Repos - Watchlist . 49
C.2 Profile - Invalid Token . 50
C.3 Profile - Valid Token . 50
C.4 Watchlist - Add a Repository . 51
C.5 Watchlist - Invalid Repository URL 51
C.6 Watchlist - Invalid Repository Name 52
C.7 Watchlist - Repository Already Exists 52
C.8 Watchlist - Successfully Adding a Repository 53
C.9 Watchlist - Updated . 53
C.10 Dashboard Visualisation . 54
C.11 Flow Visualisation . 54
C.12 Lifeline Visualisation . 55
C.13 Celery Worker - Collecting Yearly PR Waits 55
C.14 Celery Worker - Yearly PR Waits Stored 56
C.15 Celery Worker - Weekly PRs Stored 56
C.16 Database - Yearly PR Waits . 57
C.17 Database - Weekly PRs . 57

xiii

List of Listings

2.1 Django - Templates . 22
3.1 Django - URLs . 26
3.2 Django - URL Mapping . 26
3.3 Django - Views . 27
3.4 Django - Forms . 28
3.5 Django - Login View . 28
3.6 Django - Model . 29
3.7 Django - ORM . 29
3.8 Plotly Dash - App . 33

xv

Introduction

In most industries there are established ways of measuring how well an orga-
nization is doing; for example in the sales industry, having more sales would
directly indicate that an organization is healthy and productive. However, in
the software development industry it’s more of a challenge to measure produc-
tivity as there’s no established ways that indicate how well a software product
is doing during its development phase

Software Development Methodologies

There are many software development methodologies that are used by teams
to structure out and tackle software projects. The “Waterfall” methodology is
a traditional, sequential method meaning it’s initially very structured in the
form of requirements which are then developed very rigidly in stages allowing
for very minimal flexibility; this methodology is now a days seen as an out-
dated “oldschool” method. Alternatively, methodologies such as “Agile” or
“SCRUM” allow for a more flexible, collaborative environment where teams
develop in short “sprints” (iterations) each of which has a list of deliverable
outcomes [1]. Agile methodology claims to increase productivity, however,
there are no metrics that are explicitly defined or commonly agreed upon

Software Companies that follow an Agile methodology usually have an auto-
mated Continuous Integration (CI) / Continuous Deployment (CD) pipeline
which allows them to automate the software delivery process and induces a
more rapid development environment

Outline

The first chapter focuses on finding a suitable metric to measure software
productivity as well as the integrated systems within the CI / CD pipeline

1

Introduction

where the data is going to be collected from, afterwards the design phase of the
web application begins where the main structure of the application is outlined,
a suitable data model is devised and a user interface is designed. Then the
implementation phase where the chosen data is collected from the CI / CD
pipeline and the graphical visualisations are built to visualise the metric in a
useful way

2

Chapter 1
Analysis

1.1 Software Development Workflow Metrics

As previously mentioned productivity can be tricky to measure in software
development as the “output” can’t be measured accurately; metrics can also
be a point of controversy as poorly chosen metrics or the way in which they
are presented can incentivize bad habits within a team

1.1.1 Existing Metrics

By researching existing metrics that are used within software development
teams to measure productivity I was able to gain a better understanding of
the areas which are useful to measure as well as identify the points of strength
and weaknesses of these metrics in order to then apply that knowledge towards
my devised metric

1.1.1.1 Commits

This metric is based on the number of commits being pushed to a GitHub
repository. It is a poor measurement of output as the number of commits
doesn’t equally translate into the value of the additions as well as the quality
of the code. However, it can be useful for incentivizing a good habit of having
small, frequent commits which allows for greater transparency, collaboration
and continuous integration

1.1.1.2 Lines of Code

This metric is based on the lines of code being added to a GitHub repository.
It is a poor measurement of output as there’s differences in languages and the
way code is formatted, also, having more line of code is not necessarily a good
thing usually when refactoring code you are trying to achieve the same result

3

1. Analysis

while writing less code. It can however be a useful metric for understanding
the size of a software system and how a code base is changing

1.1.1.3 Pull Request Count

This metric is based on the number of pull requests being added to a GitHub
repository. It is a poor measurement of output as it doesn’t take into account
the amount of effort or difficulty put into the work as well as its value, the
way this metric is used by a team can also encourage unnecessarily small pull
requests. It can however be a useful metric for understanding the release times
in a CD pipeline

1.1.1.4 Velocity Points

This metric is often used in Agile software development where the main idea
is to help teams estimate how much work they can complete based on how
quickly similar work was previously completed [2]. The main two elements
of the metric are the “units” chosen by the team to measure velocity such
as engineer-hours or “story points” as well as the duration of the iteration
most often weekly but in some cases monthly. It is a poor measurement of
output as the sizing (units) are estimated before the work is completed and
not after, therefore, it could incentivize teams to inflate their velocity score by
over estimating the time it takes to complete a task [3]. It can how ever be a
useful metric when not viewed as a measure of team performance and rather
for understanding delivery forecasts based on past estimates

1.1.1.5 Impact

This metric is based on how many files were modified / newly added as well
as how much code was modified / newly added which is then accumulated to
calculate an “impact” score. It has the same flaws as the lines of code and is
too abstract to be actionable

1.1.2 Why Measure Productivity

After analysing some of the existing metrics and understanding why some of
them were not able to capture productivity; it prompted the question of why
should we measure productivity, by identifying these reasons a suitable metric
can then be determined to align with these reasons

1.1.2.1 Prompt Action

Metrics can help justify certain actions that need to be taken to better improve
the workload across a team or shed light on some issues that might have been
overseen; for example the assignment of code reviews could be gathered across

4

1.1. Software Development Workflow Metrics

a team to determine in real-time who should be assigned to the next upcoming
code review or for open source maintainers to help diagnose issues / reviews
that have been opened for a long time and need to be followed up on

1.1.2.2 Goals & Alignment

A more essential reason for measuring productivity is to quantitatively express
a desired goal and verify whether you are actively achieving it or to analyze
previous stages which where successful to advocate certain changes to be made

1.1.2.3 Advocation

On a business level a metric could help provide a valid reasoning for any
changes or additions to be made to a team that could then in turn help
improve the productivity and workflow

1.1.3 What to Measure

An important aspect for devising a valuable metric is in first identifying what
areas to measure within a workflow that would be beneficial towards improving
it, as well as the ways to contextualise the metric data for it to be presented
in a useful way

1.1.3.1 Process vs Output

Measuring the “output” of a software project is not justifiable as seen in the
previously mentioned metrics as there usually isn’t a direct correlation between
the “output” and the productivity. Any high performing software organiza-
tion is not one that necessarily has a high “output” but rather one than is
responsive to one another and collaborates efficiently. Therefore by measuring
a process within an organization and improving it, it directly impacts the day
to day experience of a developer and the overall workflow. On a managerial
level having metrics that measure the process productivity of teams can help
them quantitatively express improvements to their teams

1.1.3.2 Measuring Against Set Targets

Visualising the absolutes or true values of a process doesn’t give much insight
as to how well you are doing and can also incentivize bad habits. Therefore a
better approach is to measure against targets that are self defined which also
allows for flexibility of target goals across different teams and scopes

1.1.4 Cycle Time Metric

Cycle Time can be seen as a measure of process speed, it’s a metric borrowed
from lean thinking and manufacturing disciplines [4]. The process’ beginning

5

1. Analysis

time can be defined by the time the ticket is issued or by the time of the
first commit made to GitHub. The end time is when the production code is
deployed to the end users. Within that larger process time lies other smaller
cycle times such as the coding time, review time and deploy time as seen in
Figure 1.1. The average cycle time can say a lot about a team’s software
development practices and the tools used throughout their CI / CD pipeline
such as their code review tools, automated tests and deployment scripts. It
can help a team quickly identify and diagnose long wait times or bottlenecks
within their pipelines

1.1.4.1 Coding Time

Is the time between the first commit being pushed to a given branch and the
moment a pull request is created for that branch. As each smaller cycle feeds
into the larger overall cycle time, by monitoring the coding time it encourages
dividing the work into smaller more manageable chunks which would then
improve the overall cycle time

1.1.4.2 Review Time

Is the time between the pull request being issued and the pull request being
merged into the master branch. By monitoring this metric it helps teams
process code reviews in a timely manner and helps prevent large pull requests
that are too large to review effectively

1.1.4.3 Deploy Time

Is the time between the pull request being merged into the master branch
and the code being deployed into production. By monitoring this metric it
helps teams that track the deployment time identify certain bottlenecks and
improve streamlining builds and automated deployments

1.1.5 Chosen Metric

As per the analysis made on the existing metrics, why we should measure
productivity and the appropriate way of how measuring productivity should
be approached. I decided on capturing two measurements of productivity
focusing one on a process and one on an “output”. The process I would like
to measure is the review time which lies within the cycle time. As for the
output it would measure the size of pull requests that are being merged into
a repository

1.1.5.1 Pull Request Wait Time

The review time metric is essentially a sub process within the larger process
which is the overall “cycle time” that measures the time it takes from when a

6

1.1. Software Development Workflow Metrics

task is issued to when its deployed into production. The review time focuses
on the process of when the coding is already done and the pull request is issued
on GitHub, the time it takes for a reviewer to thoroughly review the code,
conduct appropriate tests and then merge the code into the master branch for
it to be released. The way of visualising this metric in a useful way may not
be to show the absolute values of how long the review times take but rather
to allow teams to setup personal goals and display a success rate of how well
the are doing with respect to their set goal. I choose to measure this stage of
the cycle time process as it’s the mid point in the code’s life cycle where the
logic of the code is being validated as well as its readability and quality. This
would help teams better identify problems within their continuous integration
pipeline such as the automated testing and better diagnose them to speed up
this process and in turn their overall “cycle time”

1.1.5.2 Pull Request Size

The pull request size metric is a measure of “output” in a sense where the
measurement is the number of additions and deletions being merged into the
master branch to be deployed into production. This metric doesn’t suffer from
the same flaws as the lines of code metric as it only takes into account code
that has been through the review process and is then successfully merged. It
can be useful for understanding the size of your software system as well as how
the code base is changing, it also is a good indicator for better estimations
of release times within a CD pipeline. By viewing this metric you can also
identify whether you are dividing the tasks into suitable manageable chunks
of work which would in turn help improve your coding time as well as review
time and therefore your overall “cycle time”

Figure 1.1: Cycle Time Metric in Software Development Workflow

7

1. Analysis

1.2 DevOps

DevOps workflow focuses on bridging the gap between the development and
operations teams by:

• Continuous Development / Integration (CI)

• Continuous Monitoring / Feedback (CM)

• Continuous Delivery / Deployment (CD)

1.2.1 GitHub

GitHub is a powerful Version Control System (VCS) that allows developers to
keep track of revisions (versions) and changes in a projects code; it also allows
for a pipeline that automates the software delivery process

1.2.1.1 Version Control Systems (VCS)

Using VCS such as GitHub is a great practice within a high performing soft-
ware and DevOps team as it reduces development time and increases the rate
of successful deployments. Essentially, VCS allow for a logically structured
way to view changes made across the source code in a “file tree” structure
while supporting multiple revisions of the same source code to coexist simul-
taneously allowing for different developers working on separate “branches”
not to be affected by each other changes. The merging of features (branches)
could later result in conflicts or bugs within the code where the VCS provides
a mechanism for reverting the source code back into a previous revision. This
structured overview that VCS provide is essential to the DevOps development
environment as it eases the process of maintaining the code during its devel-
opment, bug tracking as well as the deployment of the code into production

1.2.1.2 GitHub’s Structure

GitHub provides “organization” accounts which allows team members to col-
laborate on several shared projects. Owners and managers can manage each
member’s access through security and administrative features [5] which allows
an organization to emulate the real life schema of the projects being developed
at a company and the development teams working on those projects. Each
project would have its relevant code base (repository) setup within the orga-
nization account where the developers who are working on that project have
read and write access

1.2.1.3 GitHub’s Flow

“Gitflow” is a branching model for Git, created by Vincent Driessen [6]. The
main idea behind this workflow is that the master branch tracks only released

8

1.2. DevOps

code then there’s a main development branch which handles all the constant
integration for new feature branches. When it’s time for deployment a release
branch is based off of the development branch. This code is then tested
thoroughly and any changes or bug fixes are made directly on the release
branch which can then be merged into the master branch to be deployed into
production as well as back into the development branch to ensure any changes
made are maintained throughout the next development cycle. This workflow
allows for ease of parallel development and collaboration as well as a release
staging area for the development branch

Figure 1.2: GitHub’s Flow

1.2.1.4 How GitHub Supports Pure Storage’s Workflow

An organization such as Pure Storage has several repositories for each project
and its relevant code base. As each project has multiple scopes, a team would
have partitions working on different features of a project which is supported by
GitHub via branches that allow multiple unique versions to coexist alongside
the main master branch. Teams may use GitHub’s issues or an external issue
tracking software such as Jira to keep track of tasks. The developers then add
(commit) their code changes to their relevant branches; once a task (issue) is
complete the branch containing all the updated additions (commits) can issue

9

1. Analysis

a pull request. This pull request is assigned to a reviewer that reviews the
code changes and tests it before merging it into the master branch

1.2.2 CI / CD

A CI / CD pipeline enables automation of the software delivery process which
reduces the risk of manual errors and induces a more rapid development en-
vironment

1.2.2.1 Continuous Integration (CI)

CI is the process where developers merge numerous versions of their code
regularly to a central repository; automated “unit” tests are then conducted
on the code and builds are performed to the merged code on the master branch

1.2.2.2 Continuous Deployment (CD)

CD is the process of combing the code with the infrastructure ensuring it has
passed further “integration” testing and policy checks after which it can be
deployed (released) to the production environment for the end users

1.3 Architectural Patterns in Web Development

There are many architectural patterns that lie within the infrastructure of a
web application in terms of its communication model between the client and
the server as well as within the design of the web application itself

1.3.1 Client - Server

The Client - Server model is a distributed application structure that partitions
tasks or workloads between the providers of a resource or service, called servers
and the service requesters called clients [7]. Clients and servers exchange
messages in a request-response cycle, where the client sends a certain request
and the server receives that request, processes it and returns a response as
seen in Figure 1.3

1.3.2 Model View Controller (MVC)

The MVC is an architectural design pattern that divides an application into
3 main interconnected elements; the model, the view and the controller where
each component is built to handle a specific aspect of the application. The
model is the central component of this architecture as it corresponds to all
the data and its related logic, the view component is responsible for the pre-
sentation of the data to the user and the controller component is the interface
between the model and the view components as it processes the incoming user

10

1.3. Architectural Patterns in Web Development

requests and handles the business logic of an application. This design pattern
was originally intended for the use in desktop applications but has grown to
become a widely adopted design pattern for web applications due to its easy
maintenance, test-driven development approach as well as its high scalability

1.3.3 Component Based Architecture (CBA)

CBA focuses on the deconstruction of an application into individual functional
or logical components. The primary objective of this design pattern is to en-
sure component re-usability, it also aligns the architectural view of a software
system with the actual code view making it easier to understand and scale.
A lot of web development frameworks support this design pattern as it pro-
vides a nicely layered architecture with each component encapsulated while
providing flexibility as components don’t have dependencies on each other

Figure 1.3: Request - Response Cycle

1.3.4 Single vs Multi Paged Applications

The main purpose of SPAs is the ability to access all the information from
a single HTTP page; this implies that the application logic all lies within
the client side using client side scripting technologies such as JavaScript and
the server side is only being used for data storage. On the other hand, in
MPAs request rendering happens every time a new page is requested from
the server; meaning all of the processing is performed on the server’s end, it
receives a request, processes it according to the business logic and returns the
relevant content to be displayed to the client. Commonly used server scripting

11

1. Analysis

languages are PHP, Python and Java. The most notable difference between
SPAs and MPAs is speed, SPAs have the advantage of requests being handled
much faster mainly due to caching, they also have a versatile backend which
can be reused for various mediums such as mobile apps. However, SPAs run
on JavaScript which makes them prone to vulnerabilities such as Cross Site
Scripting (XSS)

Figure 1.4: SPA vs MPA

1.4 Web App Development Frameworks

Web application frameworks are an essential part of any web development
process as they provide a backbone that is designed to support web services,
resources and APIs. Many web frameworks provide libraries for database
access, templating, URL mapping, security and session management [8]. A
commonly used architecture in web development frameworks is the MVC ar-
chitecture which helps separate the data and business logic from the user
interface which in turn modularizes the code in a structured manner and pro-
motes code reuse

1.4.1 REST Architecture

Representation State Transfer is a software architectural pattern that defines
a set of rules for creating web services, it provides certain standards that define
how systems across the web should communicate with each other

1.4.1.1 Architectural Concept

The REST architecture is designed for network based applications such as
client-server web apps. It emphasises a loose coupling between the client
and server by creating a layer of abstraction and defining certain resources
(entities) that can be accessed. Clients access these resources through requests

12

1.4. Web App Development Frameworks

to URIs and the servers respond with a representation of the resource in hyper
text format, which allows for the data to be interpreted by a wide number of
client applications.

1.4.1.2 Architectural Constraints

The REST architectural pattern defines 6 main guiding constraints [9]:

• A “Uniform Interface” that implies there should be a uniform way of
communicating with the server regardless of the device or application
type

• “Statelessness” of the server as it retains no information about a client’s
previous requests for context. Each request made by the client must
include all the information required for the server to fulfill the request

• “Cacheablility” of responses as each response should include whether it’s
cacheable or not as well as the duration of the caching on the client side

• A “Client - Server” architecture which enforces the principle of separa-
tion of concerns, where the client requests resources and is not concerned
with the data storage and the server holds resources and is not concerned
with the user interface or user state

• A “Layered System” which further separates the client and server as
applications can be deployed on multiple servers each providing different
resources where intermediary servers can enable load balancing

• “Code On Demand” which is an optional feature where servers can ad-
ditionally provide executable code to the client such as Java applets or
client side scripts such as JavaScript

1.4.1.3 Architectural Properties

When the REST architectural constraints are applied to a system it gains
certain desirable non-functional requirements such as [10]:

• “Scalability” as the REST architecture supports load balancing via the
layered system as well as the statelessness constraint which structures
interactions as request-response pairs that are handled independently of
other requests

• “Performance” as the REST architecture supports caching which helps
keep the data more readily available and minimizes the overhead

• “Simplicity” due to the REST architecture’s uniform interface where the
functionality of services is abstracted to a simple interface

13

1. Analysis

• “Modifiability” of the requirements as any architecture is bound to
change over time, due to the loose coupling between components within
this architecture changes can be incorporated with ease within it

1.4.2 Chosen Framework

I chose Django as my web app development framework for a number of reasons
such as the fact that it follows the MVC architecture which encourages the
creation of maintainable, reusable code as well as a test-driven development
approach. It is also highly scalable as it supports a component based ar-
chitecture which promotes the grouping of related functionality into reusable
applications or components. Django also provides libraries for authentica-
tion, HTML templating, URL routing, session management and an Object
Relational Mapper for interacting with the database

1.5 Web API

An Application Programming Interface is a set of constructs that allow de-
velopers to create complex functionality more easily by abstracting away the
complexities of implementation and providing some syntax to be used in place
[11]. A web API that follows the REST constraints is often referred to as a
RESTful API, RESTful web APIs consist of one or more publicly exposed
endpoints that define a request-response message system. These endpoints
allow for access of resources by HTTP requests to certain URLs with encoded
parameters after which JSON or XML is used to transfer the resource data

1.5.1 API Authentication

Since APIs have the ability to respond to protected resource requests they
must have a way of authenticating whether the user trying to access the data is
authentic, after which they can be authorized access to the protected resources.
There are 3 main methods of authentication that are commonly used with
APIs, basic HTTP authentication, API keys and OAUTH

1.5.2 OAUTH

OAUTH is a method used for authentication and authorization where a user
requests authentication in the form of a token forwarded to the authentication
server, after which the authorization server either rejects or accepts the request
and issues an access token. This approach allows for even more control over the
access of resources as it introduces scopes which is a list of permissions bound
to an access token that are used to authorize access to different resources from
the resource server

14

1.5. Web API

1.5.3 GitHub API

GitHub provides a RESTful API which has a list of endpoints giving access
to the many resources available within GitHub such as repositories, issues,
commits, pull requests and much more

1.5.4 GitHub Authentication

GitHub’s API allows for 3 main ways of authentication, firstly the basic HTTP
authentication method using a username and password which is not a good
approach due to security vulnerabilities. The two other approaches rely on
OAUTH to gain an access token and vary in the way it is obtained which is
either through an OAUTH GitHub App where a user is redirected to a GitHub
login page and grants the application access to the required scopes or through
a GitHub App which is an installation made directly onto an organization or
repository granting access to the defined scopes via the access token

1.5.5 Chosen Method of Authentication

Depending on the chosen method of authentication there could be two separate
parts that require user authentication. One for accessing the web application
itself, for example with a username and password and another for accessing
GitHub’s API. This is dependant on the way the authentication is approached
as they could both be combined into a single “sign in using GitHub” redirect
which authenticates users through an “OAUTH GitHub App” and its API
keys. I have chosen to keep the authentications separate by firstly having
a user authentication for accessing the web application via a username and
password and then another for authenticating to the GitHub API via gener-
ating an access token with the necessary scopes to authorize and access the
required endpoints needed to collect the suited data for this web app. The
main reason for this is that from a design perspective this allows for scalability
of the application later on via the integration of other APIs from the CI / CD
pipeline

15

Chapter 2
Design

2.1 Technology Stack

During the development, I used PyCharm developed by JetBrains as it’s a ro-
bust and extensive development environment for Python which includes many
features such as code completion and debugging tools. As for the development
using Python it was all done within a virtual environment to encapsulate all
the dependencies of the project in a simple and accessible way. For the de-
velopment of the web application; Django’s web framework was used which
provides a structured backbone for the implementation. The backend is writ-
ten in Python using Django’s built in libraries as well as some external Python
libraries. The frontend is based of HTML5 pages that have CSS styling from
the Bootstrap library and the database engine used throughout the develop-
ment was an SQLite database

2.2 Django

This section provides an overall basis for creating a Django project and the
applications (components) within that project as well as some CLI commands
and their uses during the development for running and debugging the Django
application. It also describes the workflow with the database as well as how
to make use of the admin panel provided by Django

2.2.1 Useful CLI Commands

• To start off the development this bash command django-admin start-
project name auto generates some code that establishes a Django ap-
plication and its initial configuration such as the database configuration
and some application specific settings. This provides the basis structured
file tree for the root django application from which other applications
(components) can be built and structured within

17

2. Design

• Now that an initial project is setup you can start building apps (com-
ponents) to encapsulate certain functionalities within the application by
python manage.py startapp name

• To start a lightweight development web server on your local machine
you can run the server by using python manage.py runserver which
runs the application on the localhost via port 8000

• For debugging there are a couple useful commands such as running a
python interpreter by python manage.py shell or a database com-
mand line client by python manage.py dbshell

• For inspecting the current database tables based off the models and
migrations made you can run python manage.py inspectdb

2.2.2 Working with The Database

Django works with relational databases such as PostgreSQL or SQLite, it in-
terfaces with them via Django’s Object Relational Mapper (ORM) to modify,
filter or delete instances of certain objects. During the development cycle
a lot of changes are made to the models such as new fields being added or
deleted or field types being changed. This is supported by Django through
migrations that propagate the changes made to your models into the database
schema. A common flow to follow for working with the database is after mak-
ing any changes to the models to create migrations using python manage.py
makemigrations and then to apply these migrations to the database schema
using python manage.py migrate

2.2.3 Admin

Django comes automatically bundled with an admin dashboard panel that
allows you to view and manage your model data in an intuitive way which is
useful for debugging and testing the application. To gain access to the admin
panel you need to create a superuser by running python manage.py create-
superuser which prompts you for a username and password which you can
then use to login into the admin panel via http://localhost:8000/admin

2.3 Project Structure

After creating a project, an initial project structure is constructed after which
other application (components) can be created within it as directories where
each application has a similar file tree structure within

18

2.4. Data Model

git................................“GitHub” Application / Component
migrations Database Migrations
admin.py..Admin Dashboard
apps.py..................................Application Configuration
forms.py ... Forms
models.py..Data Models
tests.py .. Tests
urls.py..URL Routing
views.py..Views

metrics...........................“Metrics” Application / Component
migrations Database Migrations
admin.py..Admin Dashboard
apps.py..................................Application Configuration
forms.py ... Forms
models.py..Data Models
tests.py .. Tests
urls.py..URL Routing
views.py..Views

project....................................“Root” Django Application
asgi.py .. ASGI Server
settings.py .. Settings
urls.py..URL Routing
wsgi.py..WSGI Server

manage.py..Django’s main script

2.3.1 Apps & Components

I chose to breakdown the architecture of my web application into two main
components one that handles the user interface of the web application as well
as the graphical data visualisations and another component for GitHub that
handles all the data models and interacts with the API via the wrapper class
to gather the data using certain specified logic. Within each application or
component the MVC architecture is followed; this separation of the compo-
nents promotes scalability of the application as integration with another API
can be easily added by creating a new component to encapsulate that logic
and then reusing the existing component for presenting the data through the
user interface

2.4 Data Model

The data model consists of the data from the git application, the task worker
data used for scheduling asynchronous tasks and the Dash application data.
The user model has a username and password for logging into the application

19

2. Design

as well as their access token for querying the GitHub API. Each user can then
add as many repositories to their watchlist as they desire and each repository
consists of many pull request waits that are used for the PR wait time metric
as well as pull requests which are used for the PR size metric. The task worker
model is used for scheduling periodic tasks as well as logging and monitoring
their results. The Dash application model is used for storing the dynamic
graphical application data

Figure 2.1: Data Model

20

2.5. User Interface

2.5 User Interface

The UI was based of a bootstrap template that was adapted to fit the needs
of the web application. There’s a main landing page where users can login /
register a new account. After which they are redirected to the homepage of
the application where they are instructed on how to setup their GitHub access
token. The sidebar is used to navigate to the different interfaces within the
application, the profile page allows the users to quickly update and validate
their GitHub access tokens, the main “dashboard” page provides a yearly
overview or the PR wait time success rate, the “flow” page allows for a more
detailed view of the metric as you can filter and view the success rate monthly,
the “lifeline” page shows a weekly timeline of PR size metric. You can then
edit your watchlist by removing existing repositories or adding new public
GitHub repositories or any of your personal GitHub repositories from the
“my repos” and “watchlist” pages

Figure 2.2: User Interface

2.5.1 Templates

Django uses templates as a convenient way to generate HTML dynamically,
they provide a basis for the static content of a HTML page as well as syntax for
inserting dynamic context into them. The most powerful aspect of Django’s
templating engine is the template inheritance which allows you to build a base
“skeleton” template that includes all the common elements and static files of
your user interface as well as defining certain “blocks” that child templates can
then override. This basis of inheritance was used to build my user interface
as the different pages of my web app all share a common theme and they

21

2. Design

only differ in the main body content displayed within each of them. The
dynamic content within the pages is passed to the templates via Django’s
views layer as a context dictionary of variables which can then be accessed,
filtered and rendered using certain syntax within the HTML template. As seen
in the template file in Listing 2.1 the inheritance from base.html simplifies
the overall structure of the template where only certain blocks are overridden
such as the main block content that encapsulates the main body of the HTML
page, you can also see a use case for the context being passed from a view
as the variable ‘repos’ which is then iterated through using a for loop and
filtered with an if statement

{% extends "base.html" %}
{% block title %} REPOS {% endblock %}
{% block content %}
<h4 class="title" style="text-align: center">

ADD YOUR REPOS TO THE WATCH LIST
</h4>
<div class="card-body all-icons">

<div class="row">
{% for repo, watched in repos %}
<div class="font-icon-list">

<div class="font-icon-detail">
<i class="tim-icons icon-planet"></i>
<h5>

 {{ repo.full_name }}
{% if watched %}
 WATCHED
{% else %}
 WATCH
{% endif %}

</h5>
</div>

</div>
{% endfor %}

</div>
</div>
{% endblock content %}

Listing 2.1: Django - Templates

2.5.2 Static Files

Websites usually need to serve additional static files such as images, JavaScript
or CSS. In Django this is managed by configuring a path to your static file
directory which includes all the static files which can then be loaded into a
template. This was used mainly in the base “skeleton” template where all
the static file dependencies where loaded and are then inherited by the child
template pages

22

2.5. User Interface

2.5.3 Bootstrap

Django is mainly a more powerful backend web development framework, while
it does provide certain libraries and functionalities that help with the frontend
that is not its main domain. For that I used bootstrap which is one of the
most popular frontend frameworks used by companies such as Twitter and
Spotify. It consists of CSS classes and JavaScript code that can be integrated
into the frontend by linking them within HTML elements

23

Chapter 3
Implementation

3.1 MVC Architecture

As previously mentioned Django follows an MVC design pattern, it uses
slightly different terminology to name the different components where the
model remains the same as Django’s models, the view component is Django’s
templates and the controller is Django’s views so essentially Django follows
an Model-View-Template (MVT) design pattern

Figure 3.1: Django’s MVC Architecture

25

3. Implementation

3.1.1 Request Routing

A clean URL scheme is an important detail when building a web application,
this is support by Django by mapping URL patterns to Django’s views. When
a user requests a page, Django sequentially checks it against all the URL
patterns and stops at the first match, it then imports and calls the associated
view and passes an instance of the HTTP request as well as any keyword
arguments specified in the URL to it. The URL scheme was designed within
my root Django application where the views from the two applications were
imported and mapped to a suitable URL pattern as shown in Listing 3.1. Each
mapping is also given a suitable name which can then be referenced within
HTML elements in Django’s templates for redirects as well as for passing
keyword arguments as shown in Listing 3.2

from django.urls import path, include
GIT
from git.views import register, login, logout
METRICS
from metrics.views.homepage import homepage
from metrics.views.profile import profile
urlpatterns = [
HOMEPAGE
path('', homepage, name='homepage'),
PROFILE / LOGIN / REGISTER / LOGOUT
path('profile/', profile, name='profile'),
path('login/', login, name='login'),
path('register/', register, name='register'),
path('logout/', logout, name='logout'),
WATCHLIST
path('watchlist/<int:repo_id>', delete_repo, name='delete_repo'),
...
]

Listing 3.1: Django - URLs

...
{% for i in watchlist %}

<div class="font-icon-list">
<div class="font-icon-detail">

<i class="tim-icons icon-planet"></i>
<h5>

 {{ i.repo.owner }}/{{ i.repo.name }}
</h5>
 REMOVE

</div>
</div>

{% endfor %}
...

Listing 3.2: Django - URL Mapping

26

3.1. MVC Architecture

3.1.2 Django’s Views

Django’s views is the “controller” component of the MVC architecture as it
serves as a layer between the model component and the view component which
is Django’s templates. It receives the user’s HTTP request handles it and
returns a response. Besides the login and registration, most of the views lie
within the metrics application as it’s responsible for the user interface. Django
provides two helper functions ‘render’ and ‘redirect’ that help span multiple
levels of the MVC architecture. The ‘render’ function combines a given Django
template with a context dictionary and returns an HTTP response as shown
in Listing 3.3. The ‘redirect’ function as the name states returns an HTTP
redirect response to the given URL passed as an argument. The main purpose
of the view is to control the flow of the HTTP request-response cycle, the
actual business logic is handled by another layer (services) where the views
only contextualises the results from the business logic into context data passed
to a Django template to be rendered in the HTTP response

from django.shortcuts import render, redirect
GITHUB API LIBRARY SERVICES
from git.services.git import GitWrapper as git
def homepage(request):

if not request.user.is_authenticated:
return redirect('login')

context = {}
token = request.user.token
valid_token = git(token).validate_login()
if valid_token:

context['valid_token'] = True
return render(request, 'homepage.html', context)

Listing 3.3: Django - Views

3.1.3 Django’s Forms

Any modern website supports user input that can be used to create, update or
delete certain data model instances. This is supported by Django via forms.
The two main areas that I used forms within my application were for the login
and registration as they required user data that needs to be validated in order
to create or update certain data model instances. Each Django form consists
of the form fields as well as the data model object bound to those fields as
shown in Listing 3.4. The form can then be rendered into a template while
being protected by a CSRF token, once a user submits the form, the browser
encodes the grouped form data and sends an HTTP POST request to the
server which is then processed by a Django view, usually the same view that
published the form it self as shown in Listing 3.5

27

3. Implementation

USER LOGIN FORM
class LoginForm(forms.Form):

username = forms.CharField(max_length=20)
password = forms.CharField(widget=forms.PasswordInput)
model = User
fields = ("username", "password")
def clean(self):

if self.is_valid():
username = self.cleaned_data['username']
password = self.cleaned_data['password']
if not authenticate(username=username, password=password):

raise forms.ValidationError("INVALID LOGIN")

Listing 3.4: Django - Forms

def login(request):
context = {}
if request.user.is_authenticated:

return redirect('homepage')
if request.POST:

form = LoginForm(request.POST)
if form.is_valid():

username = request.POST['username']
password = request.POST['password']
user = authenticate(username=username, password=password)
if user:

auth_login(request, user)
return redirect('homepage')

else:
form = LoginForm()

context['login_form'] = form
return render(request, 'login.html', context)

Listing 3.5: Django - Login View

3.1.4 Django’s Models

Django models is the component used to design the data models for the
database schema, it handles all the fields of a data model as well as their
relations and characteristics. As shown in Listing 3.6 the one to many rela-
tionship between a repository instance and its pull request wait instances is
achieved by having a foreign key field in the pull request wait model. Each
field is assigned an appropriate type and certain fields have arguments such
as blank or null that allow them to have specific characteristics

3.1.5 Django’s Object-Relational-Mapper (ORM)

One of Django’s most powerful features is its ORM which allows for interaction
with an application data models for various relational databases such as Post-
greSQL and SQLite. The ORM was used within the service layer where the

28

3.1. MVC Architecture

business logic of the application is developed. This abstraction gives you ac-
cess to functions that let you create, filter, update and delete object instances
as shown in Listing 3.7.

PULL REQUEST WAIT MODEL
class PullRequestWait(models.Model):

repo = models.ForeignKey(Repository, on_delete=models.CASCADE)
number = models.PositiveIntegerField()
created_at = models.DateTimeField()
merged_at = models.DateTimeField(blank=True, null=True)
updated_at = models.DateTimeField(blank=True, null=True)
closed_at = models.DateTimeField(blank=True, null=True)
merged = models.BooleanField()

class Meta:
unique_together = ["repo", "number"]
verbose_name = "PR WAIT"
verbose_name_plural = "PR WAITs"

Listing 3.6: Django - Model

def watchlist_remove(user, repo):
try:

obj = WatchList.objects.all().get(user_id=user.id, repo_id=repo.id)
obj.delete()

except WatchList.DoesNotExist:
print("WATCHLIST OBJECT DOES NOT EXIST")

def watchlist_add(user, repo):
try:

obj = WatchList(user_id=user.id, repo_id=repo.id)
obj.save()

except (OperationalError, IntegrityError):
print("DB ERROR")
return HttpResponse('DB ERROR')

def repo_watched(user, owner, name):
result = WatchList.objects.all().filter(user_id=user, repo__owner=owner, repo__name=name)
if result:

return True
else:

return False

Listing 3.7: Django - ORM

3.1.6 Services

The services layer was not in the initial Django structure of the application
but was added during the development to encapsulate the business logic of the
application, it consists of a list of functions that are grouped into packages.

29

3. Implementation

There’s a service package for the pull requests, repositories, users as well as one
for general utility functions. The services layer also includes the Git wrapper
class which is used for interacting with the GitHub API. The addition of this
layer allowed for the abstraction of the business logic into these packages which
can then be reused across the application

3.1.7 Django’s Setting

The Django settings file lies within the root application and contains all the
configuration options of the Django installation as well as some application
specific settings. As new packages or libraries are added new module setting
variables are edited or newly added such as the redis broker url, celery worker
timezone, the custom user model to override the base user model as well as
the task schedules for scheduling background tasks. Some module setting
variables may contain sensitive information such as the secret key where a
good practice is to create a .env file to store all your environment variables
locally which can then be read into the settings file that way the sensitive
information is not directly included in the source code

3.2 GitHub API Integration

After the basis of the application was structured, the main functionality came
from integrating with the GitHub API. GitHub’s API is a RESTful API that
has certain endpoints exposed giving access to the many resources within
GitHub, by going through the API’s documentation I was able to authenticate
users through the OAUTH authentication process and collect the data needed
for the metrics from the API’s endpoints into the database

3.2.1 GitHub API Library

Instead of building the wrapper class from scratch and having to directly
construct the HTTP requests to the API as well as decode the JSON responses
from the API, I used github3.py which is a wrapper for the GitHub API
written in python as a basis to construct my own GitHub wrapper class. The
wrapper class encapsulates a “GitHub” object which is the central point from
where all the other functionality is accessed through its member functions

3.2.2 Authentication

Authenticating to the GitHub API was essential not only for allowing access
to private user and organizational resources but also to avoid running into the
API’s rate limitations. The authentication was done using the access token
that users had in their data model, when the wrapper class is initially con-
structed the login function provided by the GitHub API library is called which

30

3.2. GitHub API Integration

authenticates the user and returns a GitHub object. The GitHub object is
then stored as a member attribute in the wrapper class allowing class member
functions to access the authorized GitHub object at any time to achieve their
functionality

3.2.3 PR Wait Time

A member function of the wrapper class was developed to collect one year of
pull requests for a repository into the database starting from the date/time
at which the call to the function was made. Each pull request has certain
attributes that were stored to be later used for devising the metric visualisa-
tions; The unique number that identifies the pull request on GitHub as well
as the date and time it was created, updated, closed and merged at

3.2.4 PR Size

Another member function was developed to collect more detailed information
for the last week of pull requests on a repository into the database starting
from the date/time at which the call to the function was made. The attributes
associated with this model were; The unique number that identifies the pull
request on GitHub as well as the number of additions, deletions, commits and
whether the pull request was merged or not

3.2.5 Task Queue

During the development phase, as I was testing interacting with the API on a
big open source project I came across a major stumbling block which was that
the interaction was all occurring within the request - response cycle of the
web application which significantly decreased the responsiveness of the web
application, this then lead to the introduction of a task queue that allowed
for asynchronously executing time consuming tasks in the background outside
of the request-response cycle which helped greatly increase the responsiveness
of the web application. This was achieved by integrating with Celery which
is a distributed task queue that focuses on real-time processing while also
supporting task scheduling. A Redis message broker was hosted on Heroku
that relayed the tasks to the Celery worker which then executed them. The
task worker also allows for concurrency which enables running the tasks asyn-
chronously using different “pools”. There are two main pool options one for
multi-processing by creating child processes which is useful for CPU bound
tasks and the one I used for this application which is for multi-threading and
is useful for I/O bound tasks such as calling a web API. This multi-threading
pool option makes use of so called “green threads” that are different than the
conventional normal threads as their context switching is managed within the
application space and not the operating system kernel space which further
enhances their performance

31

3. Implementation

3.2.6 Task Scheduler

There was a couple ideas initially about the way the “automation” of the data
collection should be approached, one idea was to use webhooks that listen to
certain actions such as a pull request being merged to notify the application to
then directly query the API and update the relevant data. This approach was
however neglected as webhooks are vulnerable to some security and network
issues and therefore can’t be mainly relied upon, they also would have to be
directly setup onto a repository in order to function which poses as a kind of
limitation to the set of repositories that can be used within the application. By
incorporating the task worker the automated collection of data was enabled
by making use of periodic tasks which can iteratively issue tasks every hour,
day or sync to a timezone to trigger tasks at certain times, on certain days. I
used this to update the pull request data in the database on a daily basis at
midnight to keep the records in the database up to date with GitHub

3.3 Front End

After the integration with the GitHub API where the desired data was col-
lected into the database it was time to to devise some suitable graphical visu-
alisations to present the data in a useful way. This was achieved by integrating
with a widely used Python graphing library called Plotly. The main Plotly
library allows for the creation of static graphical visualisations but there’s an
extension called Plotly Dash that allows for creating interactive web graphical
visualisations

3.3.1 Plotly Dash

The Django Plotly Dash library enables Plotly Dash applications to be served
as part of a Django application. This works by wrapping around the Dash
object and mapping the HTTP endpoints of the Dash object to the Django
ones after which a Dash application can be embedded into a Django template
through the use of template tags

3.3.2 Dash Apps

Dash Apps allow for live updating of an application’s state by making use of
Django’s channels which extends the Asynchronous Server Gateway Interface
(ASGI) to handle web sockets as well as a message broker backend such as
Redis. This is achieved by using callback functions that are automatically
called by Dash whenever an input component’s value changes in order to
update the output components. As seen in Listing 3.8 the callback function
gets called whenever the input of selecting a target goal changes which then
reevaluates the data and updates the graph

32

3.3. Front End

app = DjangoDash('yearly_pr_wait')
app.layout = html.Div([

html.H5('YEARLY PR WAIT TIME'),
html.P('SELECT A GOAL'),
dcc.Slider(

id='select-goal',
marks={

6: '6 HOURS', 12: '12 HOURS', 18: '18 HOURS',
24: '24 HOURS', 30: '30 HOURS', 36: '36 HOURS',
42: '42 HOURS', 48: '48 HOURS', 54: '54 HOURS',
60: '60 HOURS', 66: '66 HOURS', 72: '72 HOURS'

},
min=1,
max=78,
value=72,
step=None,
updatemode='drag',

),
dcc.Graph(id='slider-graph', animate=True),

])

@app.callback(
Output('slider-graph', 'figure'),
[Input('select-goal', 'value')])

def display_value(*args, **kwargs):
...
fig = px.line(pr_wait, x="day", y=["success", "MA"])
return fig

Listing 3.8: Plotly Dash - App

3.3.3 Metric Visualisation

As previously mentioned the way metrics are displayed is essential to capture
the true essence of a metric in a useful way. During the development pro-
cess, the data from the database was exported as a CSV file which was then
imported into a Jupyter notebook to test out and analyse the different possi-
ble visualisations. Each data feature was analysed and then preprocessed to
obtain the desired metric data, after which static Plotly visualisations were
created. I then took the same logic and applied it within my application by
building a Plotly Dash application that interfaced with the database and al-
lowed for dynamic visualisations by incorporating user input. For the pull
request wait time instead of presenting the actual time it took to complete
the reviews, the user is allowed to set a goal of how long they would like to
complete code reviews within, the review time data is then aggregated to show
a success rate of how well the review times were relative to the goal as seen in
Figure 3.2. A moving average is also used to smooth out the trend line and
better contextualises how “successful” a data point is in relation to the data
points before and after it as seen in Figure 3.3

33

3. Implementation

Figure 3.2: Yearly PR Wait Success Rate with a 72 Hour Goal

Figure 3.3: Monthly PR Wait Success Rate with a 72 Hour Goal

3.4 Security

Another essential bundled feature of the Django framework is that it comes
equipped to handle many of the common security threats with websites such
as SQL Injection (SQLi), Cross Site Scripting (XSS) and Cross Site Request
Forgery (CSRF) [12]

34

3.4. Security

3.4.1 SQL Injection (SQLi)

SQLi vulnerabilities enable malicious users to execute SQL code on a database
allowing data to be accessed, modified or deleted irrespective of the user’s
permissions. As the main interaction with the database in Django is through
models and the ORM, any raw SQL queries will be escaped by the database
driver

3.4.2 Cross Site Scripting (XSS)

XSS is used to describe a class of attacks where an attacker injects client side
scripts into the browsers of other users. This is usually achieved by storing
malicious scripts into the database where they can be retrieved and displayed
to other users. Django’s template system protects against the majority of XSS
attacks by escaping the specific characters that are dangerous in HTML

3.4.3 Cross Site Request Forgery (CSRF)

CSRF attacks allow a malicious user to execute actions using the credentials
of another user without that user’s knowledge or consent. Django provides
protection against these attacks as any templates that use forms have a CSRF
token tag which generates a user and browser specific key that is then validated
with every HTTP POST request

35

Chapter 4
Testing

During the development I was using a test-driven approach of constantly test-
ing the different units and functionality within my application as they were
being developed. This was achieved through the python interactive shell or
custom data through the admin panel. I also prepared a personal GitHub
repository where I emulated actions to test capturing certain data through
the GitHub API. Once I was happy with the initial functionality I would then
test it on big open source GitHub repositories such as docker/compose and
kubernetes/kubernetes. As I have collected data from a couple different open
source repositories the one that deemed to be a more active project and had a
large number of daily interactions was the kubernetes repository so I decided
to test my application on it

Initially when a user first register they are advised on how to setup their
GitHub access token and can then validate their token via the profile page
which authorizes and authenticates that the token has the necessary scopes
to access the API as show in Figure C.2 and Figure C.3

After the initial setup, the main flow of the web application is to add a GitHub
repository via the watchlist page (Figure C.4) by its GitHub URL or repos-
itory name which are first validated (Figure C.5, Figure C.6) and then if
valid another check occurs to see whether this repository already exists in the
user’s watchlist (Figure C.7) if not it’s successfully added to their watchlist
(Figure C.8, Figure C.9)

In the background this action triggers a check to see whether the data for
this repository already exists in the database and if not a task is issued to
the message broker hosted on Heroku which assigns the work to the Celery
worker to collect and store the required data into the database asynchronously
(Figure C.13, Figure C.16, Figure C.17). Once this is complete the data can
then be graphically visualised in the user interface via the different dashboard

37

4. Testing

pages (Figure C.10, Figure C.11, FigureC.12)

38

Chapter 5
Future Work

During the analysis phase of this paper, realising the “cycle time” as the
appropriate metric to measure productivity was essential. However, I was not
able to capture the whole essence of the metric as it would require integration
with many different tools and APIs so I decided to focus on a sub process
within that which was the review time. To achieve a more complete measure
of productivity, I think that integrating with the other tools in the CI / CD
pipeline to obtain the two remaining sub processes within the “cycle time”
which are the coding time and deploy time would help provide a more full
resolved picture of the productivity of a development team. Integrating with
those other CI / CD pipeline tools can also provide some other individual
metrics which may be useful to measure and track such as the change failure
rate or mean time to restore after a failure

39

Conclusion

The goal of this thesis was to discover a suitable way to measure productiv-
ity within the software development environment. By analysing the different
methodologies used within the software development field and the many ex-
isting metrics which are currently used, understanding their benefits as well
as their weaknesses, it prompted the question to reevaluate why productivity
should be measured and what approach should be taken to capture produc-
tivity into a valuable metric. This resolved into the “cycle time” metric which
essentially measures the process speed of how quickly a software development
team can develop and deploy their ideas into production for their end users.
The main metric that this paper focuses on is a sub process within the overall
“cycle time” which was the code review time that was collected from GitHub,
this part of the cycle falls within the continuous integration pipeline therefore
visualising this metric would help teams better diagnose and resolve problems
within their pipeline to speed up this process and in turn their overall “cycle
time”

Since this web application was built from scratch I had the freedom to choose
any technologies, by analysing different architectural patterns that are used
in web development and their advantages I chose to use Django as my web
development framework which allowed for a nicely structured MVC architec-
ture that separates the data models and business logic from the user interface
as well as a CBA that incentivized deconstructing the application into com-
ponents based on their functionality. Having these two architectures in place
while developing the application helped provide an easier development process
as each newly added feature could be independently tested. It also allows for
future scalability of the application as new components with additional func-
tionality can easily be integrated into the currently existing architecture

The main bulk of the implementation was based around integrating with the
GitHub API to collect and store the suited data into the database and then

41

Conclusion

building the suited graphical visualisations to display the metric data. The
integration was done through a GitHub wrapper class where functions were
designed to capture data from different endpoints of the API. During the de-
velopment process, while testing some of the functionality that incorporated
collecting data from the API for a big open source GitHub repository I came
across a major hurdle which was that this process of interacting with the API
was all occurring within the request-response cycle of the web application
which served as a big problem for the responsiveness of the user interface.
This then lead to the introduction of a message broker and a background
worker that allowed for time consuming tasks to be run asynchronously in
the background allowing for a much more responsive user interface. This also
allowed for the automation of data collection from the API in the background
to synchronize the data in the database on a daily basis

The building of suitable graphical visualisations was the final step within the
development process of this web application. Each data feature was analysed
to determine which would be useful for presenting the data, these were then
preprocessed to capture the desired metric data. Then, by integrating with a
widely used graphing tool I was able to create interactive dynamic visualisa-
tions that allowed for user input which influenced the resulting visualisations
in real-time

There’s a couple aspects of the application that I wish I had more time to
better incorporate. One being a single unified dashboard page that allows for
multiple visualisations to be structured out on a single page, as well as a way
to allow users to customize different layouts. The other addition is for having
an organizational login setup that allows organizations to register and setup
their teams and projects accordingly where teams can then login and view
their productivity or a project manager can login and track the productivity
of the different teams across an organization

42

Bibliography

[1] Majewski, M. Top 6 software development methodologies - blog: Plan-
view. Mar 2021. Available from: https://blog.planview.com/top-6-
software-development-methodologies/

[2] Szalvay, V. Glossary of Scrum terms. Mar 2007. Available
from: https://web.archive.org/web/20101129205330/http:
//scrumalliance.org/articles/39-glossary-of-scrum-terms

[3] Rubin, K. S. Essential scrum: A practical guide to the most popular agile
process. Addison-Wesley, 2013.

[4] Pourshahid, A. Why cycle time may be the most important met-
ric in software development. Feb 2017. Available from: https://
www.klipfolio.com/blog/cycle-time-software-development

[5] About organizations. Available from: https://docs.github.com/en/
organizations/collaborating-with-groups-in-organizations/
about-organizations

[6] Introducing GitFlow. Available from: https://datasift.github.io/
gitflow/IntroducingGitFlow.html

[7] Distributed Application Architecture. Available from: https:
//web.archive.org/web/20110406121920/http://java.sun.com/
developer/Books/jdbc/ch07.pdf

[8] Web application framework. Available from: https://web.archive.org/
web/20150723163302/http://docforge.com/wiki/Web_application_
framework

[9] Rubin, K. S. Essential scrum: A practical guide to the most popular agile
process. Addison-Wesley, 2013.

43

https://blog.planview.com/top-6-software-development-methodologies/
https://blog.planview.com/top-6-software-development-methodologies/
https://web.archive.org/web/20101129205330/http://scrumalliance.org/articles/39-glossary-of-scrum-terms
https://web.archive.org/web/20101129205330/http://scrumalliance.org/articles/39-glossary-of-scrum-terms
https://www.klipfolio.com/blog/cycle-time-software-development
https://www.klipfolio.com/blog/cycle-time-software-development
https://docs.github.com/en/organizations/collaborating-with-groups-in-organizations/about-organizations
https://docs.github.com/en/organizations/collaborating-with-groups-in-organizations/about-organizations
https://docs.github.com/en/organizations/collaborating-with-groups-in-organizations/about-organizations
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://web.archive.org/web/20110406121920/http://java.sun.com/developer/Books/jdbc/ch07.pdf
https://web.archive.org/web/20110406121920/http://java.sun.com/developer/Books/jdbc/ch07.pdf
https://web.archive.org/web/20110406121920/http://java.sun.com/developer/Books/jdbc/ch07.pdf
https://web.archive.org/web/20150723163302/http://docforge.com/wiki/Web_application_framework
https://web.archive.org/web/20150723163302/http://docforge.com/wiki/Web_application_framework
https://web.archive.org/web/20150723163302/http://docforge.com/wiki/Web_application_framework

Bibliography

[10] Fadatare, R. Rest API - rest architectural properties. Jan 2021. Available
from: https://www.javaguides.net/2018/06/rest-architectural-
properties.html

[11] Introduction to web APIs. Available from: https://
developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-
side_web_APIs/Introduction

[12] Security in Django. Available from: https://docs.djangoproject.com/
en/4.0/topics/security/

44

https://www.javaguides.net/2018/06/rest-architectural-properties.html
https://www.javaguides.net/2018/06/rest-architectural-properties.html
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://docs.djangoproject.com/en/4.0/topics/security/
https://docs.djangoproject.com/en/4.0/topics/security/

Appendix A
Acronyms

API Application Programming Interface

CI Continuous Integration

CM Continuous Monitoring

CD Continuous Deployment / Delivery

CLI Command Line Interface

CBA Component Based Architecture

CSS Cascading Style Sheets

CSV Comma Separated Values

CSRF Cross Site Request Forgery

DevOps Development & Operations

HTTP Hyper Text Transfer Protocol

JSON JavaScript Object Notation

MVC Model View Controller

MVT Model View Template

MPA Multi Page Application

ORM Object Relational Mapping

OAUTH Open Authorization

PR Pull Request

REST Representational State Transfer

45

A. Acronyms

SQLi SQL Injection

SPA Single Page Application

URL Uniform Resource Locator

URI Uniform Resource Identifier

VCS Version Control System

XSS Cross Site Scripting

XML Extensible Markup Language

46

Appendix B
Installation Guide

• Using an IDE is highly recommended during the development as it pro-
vides a nice structured file tree overview and navigation. It also comes
with tools such as code completion and debugging. I used PyCharm but
any Python IDE should serve well

• Ensure you have an up to date version of Python installed on your
machine, you can check this by running python --version, Python
version 3.7 or higher is required

• Clone the repository code from https://github.com/bisooo/Metrics
or if you already have it on your local machine then navigate into the
root directory of the project

• You can then setup a Python virtual environment to install all the
project dependencies into using python -m venv name where the
‘name’ specifies the path where you would like to setup your virtual
environment directory

• To activate the virtual environment you can run source name/bin/activate

• After activating the virtual environment you can now install all the
requirements into it using pip install -r requirements.txt

• To setup your Django environment there is a required secret key that
you need to generate after which you can update the .env file to include
that

• The last setup step that is required is migrating the models into the
database schema which can be done by python manage.py makem-
igrations and then python manage.py migrate

• Finally, you can now run the server on your localhost at port 8000 using
python manage.py runserver

47

B. Installation Guide

• To setup the Redis message broker hosted on Heroku, head over to
https://dashboard.heroku.com/apps, sign up and create a new app,
choose a name for the app and the region where the server is hosted. Af-
ter creating the app, head over to the resources tab and under Add-ons
search for Heroku Redis and add that. Once it’s succesfully installed
open the add-on service and head over to the settings where you can
view the datastore credentials. Copy the URI of the redis server and
update the .env file to include that

• The celery worker will then receive the tasks from the message broker
and can be hosted on your local machine to run asynchronous tasks by
running celery -A thesis worker -l info

• The celery task scheduler can be run alongside that by running celery
-A thesis beat -l info

48

Appendix C
Screenshots of the Web App

Figure C.1: My Repos - Watchlist

49

C. Screenshots of the Web App

Figure C.2: Profile - Invalid Token

Figure C.3: Profile - Valid Token

50

Figure C.4: Watchlist - Add a Repository

Figure C.5: Watchlist - Invalid Repository URL

51

C. Screenshots of the Web App

Figure C.6: Watchlist - Invalid Repository Name

Figure C.7: Watchlist - Repository Already Exists

52

Figure C.8: Watchlist - Successfully Adding a Repository

Figure C.9: Watchlist - Updated

53

C. Screenshots of the Web App

Figure C.10: Dashboard Visualisation

Figure C.11: Flow Visualisation

54

Figure C.12: Lifeline Visualisation

Figure C.13: Celery Worker - Collecting Yearly PR Waits

55

C. Screenshots of the Web App

Figure C.14: Celery Worker - Yearly PR Waits Stored

Figure C.15: Celery Worker - Weekly PRs Stored

56

Figure C.16: Database - Yearly PR Waits

Figure C.17: Database - Weekly PRs

57

Appendix D
Contents of enclosed USB

59

D. Contents of enclosed USB

thesis...................................Web Application Source Code
git.................................“Git” Application / Component

migrations Database Migrations
services Service Packages

git.py...........................GitHub API Wrapper Class
prs.py.................................Pull Request Services
repo.py..................................Repository Services
user.py..User Services
utils.py...................................Utility Functions

admin.py.....................................Admin Dashboard
apps.py......................................App Configuration
forms.py .. Forms
models.py...Data Models
tasks.py........................Asynchronous Worker Functions
tests.py ... Tests
views.py...Views

metrics........................“Metrics” Application / Component
migrations Database Migrations
static..Static Files
templates....................................HTML Templates
views..Views
visuals.......................................Plotly Dash Apps
admin.py.....................................Admin Dashboard
apps.py......................................App Configuration
models.py .. Models
tests.py ... Tests

thesis..................................“Root” Django Application
asgi.py..................Asynchronous Server Gateway Interface
celery.py....................Asynchronous Worker Initialization
routing.py............................Plotly Dash App Routing
settings.py ... Settings
urls.py .. URL Routing
wsgi.py...........................Web Server Gateway Interface

.env..Environment Variables
manage.py Django’s main script
requirements.txt List of Python library dependencies

thesis.pdf.................................Thesis text in PDF format

60

	Introduction
	Software Development Methodologies
	Outline

	Analysis
	Software Development Workflow Metrics
	Existing Metrics
	Commits
	Lines of Code
	Pull Request Count
	Velocity Points
	Impact

	Why Measure Productivity
	Prompt Action
	Goals & Alignment
	Advocation

	What to Measure
	Process vs Output
	Measuring Against Set Targets

	Cycle Time Metric
	Coding Time
	Review Time
	Deploy Time

	Chosen Metric
	Pull Request Wait Time
	Pull Request Size

	DevOps
	GitHub
	Version Control Systems (VCS)
	GitHub's Structure
	GitHub's Flow
	How GitHub Supports Pure Storage's Workflow

	CI / CD
	Continuous Integration (CI)
	Continuous Deployment (CD)

	Architectural Patterns in Web Development
	Client - Server
	Model View Controller (MVC)
	Component Based Architecture (CBA)
	Single vs Multi Paged Applications

	Web App Development Frameworks
	REST Architecture
	Architectural Concept
	Architectural Constraints
	Architectural Properties

	Chosen Framework

	Web API
	API Authentication
	OAUTH
	GitHub API
	GitHub Authentication
	Chosen Method of Authentication

	Design
	Technology Stack
	Django
	Useful CLI Commands
	Working with The Database
	Admin

	Project Structure
	Apps & Components

	Data Model
	User Interface
	Templates
	Static Files
	Bootstrap

	Implementation
	MVC Architecture
	Request Routing
	Django's Views
	Django's Forms
	Django's Models
	Django's Object-Relational-Mapper (ORM)
	Services
	Django's Setting

	GitHub API Integration
	GitHub API Library
	Authentication
	PR Wait Time
	PR Size
	Task Queue
	Task Scheduler

	Front End
	Plotly Dash
	Dash Apps
	Metric Visualisation

	Security
	SQL Injection (SQLi)
	Cross Site Scripting (XSS)
	Cross Site Request Forgery (CSRF)

	Testing
	Future Work
	Conclusion
	Bibliography
	Acronyms
	Installation Guide
	Screenshots of the Web App
	Contents of enclosed USB

