
Instructions

One of the positive points of the COVID era was the mass production of materials from online education.

The goal of the diploma project is to develop a service that will be used to index video lectures with help

of various supplementary resources (e.g. slides, TOCs, manual input, etc.). The below steps describe the

project's methodology:

1. Describe the current state of the art in the area of video indexing including existing tools, technologies,

services and algorithms.

2. Design the service to index video from lectures with selected tools and algorithms. Use AM1/AM2

online materials and discuss a general approach to index any lecture video under certain constraints or

limitations. The service should provide both API and UI that can be used to manage the indexing process

and deal with various anomalies in a (semi) automated way.

3. Develop the service in a selected technology.

4. Deploy the service as a container in a selected environment and perform the testing and evaluation.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 31 May 2021 in Prague.

Assignment of master’s thesis

Title: Video lectures indexing service

Student: Bc. Jiří Zdvomka

Supervisor: doc. Ing. Tomáš Vitvar, Ph.D.

Study program: Informatics

Branch / specialization: Web Engineering

Department: Department of Software Engineering

Validity: until the end of winter semester 2022/2023

16.11.2021 23:09
Page 1 of 1

Master’s thesis

Video lectures indexing service

Bc. Jiř́ı Zdvomka

Department of Web Engineering
Supervisor: doc. Ing. Tomáš Vitvar, Ph.D.

January 4, 2022

Acknowledgements

I want to thank my supervisor, doc. Ing. Tomáš Vitvar, PhD, for meaningful
feedback and insights at consultations. I also want to thank my partner and
parents for their support in my education.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on January 4, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Jǐŕı Zdvomka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zdvomka, Jǐŕı. Video lectures indexing service. Master’s thesis. Czech Tech-
nical University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Indexováńı studijńıch video materiál̊u, které neńı tak časté, může vést ke zkva-
litněńı výuky. Tato práce se zaměřuje na implementaci webové služby pro in-
dexováńı video přednášek s pomoćı podp̊urných materiál̊u a ćıĺı na předměty
vyučované na FIT ČVUT. Výsledkem práce je nasazená webová služba pro
indexováńı video přednášek s uspokojivou přesnost́ı. Webová služba poskytuje
API i uživatelské rozhrańı a modul s algoritmem jako Python baĺıček.

Kĺıčová slova video, přednáška, index, web, služba, kontejner

Abstract

Video learning material indexes are rare and could lead to a better studying
experience for students. This thesis aims to implement a web service for video
lecture indexing with the help of supplementary materials as user input with
focus on FIT CTU courses. The result is a deployed web service capable
of video lecture indexing with satisfactory accuracy on the testing dataset,
providing API, UI and core module with algorithm as a Python package.

Keywords video, lecture, indexing, web, service, container

vii

Contents

Introduction 1

1 State of the art 3
1.1 Video Indexing . 3
1.2 Key-frame detection . 4
1.3 Information extraction . 4
1.4 Indexing . 4
1.5 Related work . 5

2 Algorithm 7
2.1 Key-frame detection . 7
2.2 Text extraction . 8
2.3 Indexing . 10
2.4 User input . 10

2.4.1 Text content area . 10
2.4.2 Table of contents . 11

2.5 Generic approach . 11

3 Requirements 13
3.1 Actors . 13
3.2 Functional requirements . 13
3.3 Non-functional requirements . 14

4 Design 15
4.1 Indexing module . 15
4.2 Backend . 16

4.2.1 API Gateway . 16
4.2.2 User Service . 16
4.2.3 Video Service . 18
4.2.4 Index Service . 18

ix

4.2.5 Job Service . 18
4.3 Frontend . 19

5 Implementation 21
5.1 Indexing module . 21

5.1.1 API . 21
5.1.2 CLI . 23

5.2 Backend . 23
5.2.1 Architecture . 23
5.2.2 API documentation . 26
5.2.3 API Gateway . 26
5.2.4 User Service . 26

5.2.4.1 API endpoints 27
5.2.4.2 Services . 27

5.2.5 Video Service . 27
5.2.5.1 API endpoints 28
5.2.5.2 AMQP messages 28
5.2.5.3 Services . 28

5.2.6 Index Service . 28
5.2.6.1 API endpoints 28
5.2.6.2 AMQP messages 29
5.2.6.3 Services . 29

5.2.7 Job Service . 29
5.3 Frontend . 30

5.3.1 Architecture . 30
5.3.2 User Interface . 31

5.3.2.1 Login . 31
5.3.2.2 Videos . 31
5.3.2.3 Index video . 31
5.3.2.4 Mark text content area 33
5.3.2.5 Upload table of contents 33
5.3.2.6 Indexing progress 36
5.3.2.7 Video detail 36
5.3.2.8 Edit index . 36
5.3.2.9 User videos . 38

6 Verification 39
6.1 Precision metric . 39
6.2 Parameters . 40

6.2.1 Frame step . 40
6.2.2 Hash size . 41
6.2.3 Image similarity threshold 41
6.2.4 Text similarity threshold 42

6.3 Evaluation . 42

x

6.4 End-to-end tests . 43
6.4.1 Cypress . 44
6.4.2 Seeding test data . 45
6.4.3 Authentication . 46
6.4.4 Test cases . 46

7 Deployment 47
7.1 Containers . 47

7.1.1 Docker . 48
7.1.2 Docker Compose . 50

7.2 Platform deployment . 51

Conclusion 53

Bibliography 55

A Contents of enclosed memory card 61

xi

List of Figures

1.1 Video indexing pipeline . 4

2.1 A videlo lecture screen example . 9
2.2 Key-frame preprocessing . 9

4.1 Architecture diagram . 16
4.2 Authentication flow . 17
4.3 Index Service messaging . 19

5.1 Login page . 32
5.2 Videos page . 32
5.3 Search indices . 33
5.4 Index video page . 34
5.5 Uploading video page . 34
5.6 Mark text content area page . 35
5.7 Upload table of contents page . 35
5.8 Mark text content area page . 36
5.9 Video detail page . 37
5.10 Edit index page . 37
5.11 My Videos page . 38

6.1 Frame step parameter test results 41
6.2 Hash size parameter test results . 41
6.3 Image similarity threshold parameter test results 42
6.4 Text similarity threshold parameter test results 42
6.5 Full dataset test results . 43
6.6 Cypress tests . 45

7.1 Containerized Applications . 48
7.2 Dockerfile, Image and Container 49
7.3 Deployment diagram . 52

xiii

List of Tables

5.1 Table of libraries used in Indexing module 22
5.2 Algorithm parameters . 22

6.1 Chosen algorithm parameters . 43
6.2 Cypress test cases mapping to the functional requirements 46

xv

Introduction

The COVID pandemic has led to the mass production of learning materials.
Especially lectures have had to be presented online via video calls. While text-
based learning materials are commonly indexed, and there are well-known
methods for indexing and retrieval, video indexing is rare. The ability to
search terms in videos and directly skip to the relevant part in a video could
lead to students’ better understanding of the topic, saving them time man-
ually finding it. There have been attempts to create generic video indexing
platforms, and they are studied in this work, but few of them specialise di-
rectly on the recently produced video lectures with presented slides. Such
specialisation, as well as supplementary user input, could lead to video index-
ing with good performance. Furthermore, providing the video indexing and
retrieval capabilities through a web-based user interface could make it more
accessible and adopted by both teachers and students, not only on the Faculty
of Information Technologies of CTU.

The goal of this master thesis is to design and implement a web service
for video lecture indexing based on prior research in the field, providing both
API and UI. It should specialise on available video lectures from AM1 and
AM2 courses. The service user can provide additional input like text content
area in the video or table of contents for higher accuracy. Technical-wise,
the platform should follow Service-oriented architecture and be deployed into
a cloud environment as application containers. The system should be modular
and extensible.

The thesis is organised as follows. The first chapter (State of the art) anal-
yses the current research in video indexing and describes a few selected existing
methods. The second chapter (Algorithm) presents the designed algorithm for
video indexing based on the findings from the analysis. The third chapter (Re-
quirements) defines requirements for the system. The fourth chapter (Design)
presents a high-level design of the system, its components and their respon-
sibilities. The fifth chapter (Implementation) describes the system’s low-level
design and implementation details, including selected technologies. It also

1

Introduction

presents the UI as a client web application. The sixth chapter (Verification)
measures the core algorithm’s precision and time performance on the test
dataset of video materials. It also presents results from automatic end-to-end
testing of the web platform. The last seventh chapter (Deployment) describes
running the system’s components as application containers and deployment
in a cloud environment.

2

Chapter 1
State of the art

This chapter introduces video indexing and commonly used methods special-
ized for video lectures. Related works with various approaches ranging from
Optical Character Recognition to document clustering or collaborative filter-
ing are studied, including a production proprietary solution.

1.1 Video Indexing

Video indexing is a process of adding a retrieval capability over a collection
of videos by tagging and organizing them [1]. Conventionally, this is achieved
with the help of video metadata like title, description or categories, which
are usually annotated manually. For example, on large video platforms like
YouTube, users upload their videos, annotate them, and other users search
for videos based on the annotations.

On the contrary, content-based video indexing creates indices by automated
processing of the actual video content [1], enabling detailed retrieval capacity
more appropriate for the context of video lectures. Users can search for a spe-
cific topic and retrieve only the relevant part of a video. These methods are
based on text, audio, colours, shapes, objects or scene transitions [2]. This
work focuses on video lectures, where presented slides or notes partially or
fully occupy the whole video scene. More appropriate methods for the video
lectures domain are text-based, audio-based methods or a combination of both.

Based on an analysis of literature overview [2] and research papers on the
topic [3, 4, 5], which are studied in 1.5, common steps for state-of-the-art
methods for lecture video indexing are:

1. segmentation and key-frame detection,

2. information extraction by text or sound,

3. indexing of the extracted information.

3

1. State of the art

Figure 1.1: A common video indexing pipeline

1.2 Key-frame detection

A video is a combination of audio and visual presentation of content. In or-
der to analyse the visual part and extract information from it, segmenting
the video into individual frames is the first step. For performance reasons,
a reasonable rate is one frame every one to three seconds [3]. A key-frame is
a sequence of the same or almost the same frames. In the context of lecture
videos, it is usually a slide. In order to effectively analyse the visual content,
key-frame detection is essential. The studied works use various approaches
described in section 1.5.

1.3 Information extraction

As lecture videos usually contain lecture slides or notes, the information is
extracted from the text. The majority of analysed works use Optical Character
Recognition (OCR), a process of converting input text into a machine-readable
format [6]. The quality of the converted text is crucial. Therefore other
support methods are applied, such as Merged Bounding Boxes detection [4]
or image preprocessing like resizing, sharpening or blurring [7].

A different approach for information extraction from a video is from the
spoken word. As well as optical frames, the audiotrack is partitioned into
segments, which are then converted to a transcript with Automatic Speech
Recognition (ASR) [4]. A contemporary example of such a service is Google
Speech-to-Text 1.

1.4 Indexing

An output from the information extraction discussed in 1.3 is text. Therefore,
classic approaches for text document indexing are appropriate. Representing
the text content of slides as Bag of Words [8] and calculating Term Frequency
Inverse Document Frequency (TF-IDF) score, reflecting the importance of
a term to a document [9], is an example of such method. The document
is either a video or a single key-frame, and document terms are extracted
from the video content. An advantage of indexing individual key-frames is

1https://cloud.google.com/speech-to-text

4

https://cloud.google.com/speech-to-text

1.5. Related work

granularity. A search query can be responded with an exact time occurrence
of the search term in a video.

1.5 Related work

In [3], Yang and Meinel presented a content-based lecture video retrieval
framework using speech and video text information. Compared to older works
(e.g., [10]) using pixel-level-differencing metrics for key-frame detection vul-
nerable to noise, they focused on a more robust solution dealing with slide
animations and build-ups. They segmented videos using differencing metrics
with Connected Components (CCs). For example, those are text lines, figures
or tables. Combined with other support methods like Support Vector Machine
classifier (SVM) or image intensity histogram features, they achieved good re-
sults even for videos with scene switching (e.g. slide and speaker scene). In the
second stage, they detect text areas in the key-frames and use a standard OCR
engine to extract the frame’s text. Afterwards, they applied spell check to filter
poorly recognised words. In the third stage, they constructed the key-frame
outline with a premise that the slide’s title and subtitle are more significant
than the slide text. They used text stroke width and geometry analysis to
classify titles and subtitles. The authors applied Automatic Speech Recog-
nition (ASR) to construct a speech transcript as a complementary method
using a custom acoustic model trained on a video lectures dataset. However,
the word error rate of ASR is generally still high, around 40 - 80 %. The OCR
and ASR extracted keywords were combined by aligning them in an appro-
priate timestamp in the video and computing the TFIDF score with different
weights for OCR and ASR as ASR keywords are less accurate.

Medida and Ramani [4] introduced a content-based indexing framework
based on audio and video as well, but with a different approach for individual
steps of the indexing pipeline. For text content on a key-frame, they detect
merged bounding boxes and apply OCR for each one. For the key-frame detec-
tion, the authors calculate image hashes and filter similar frames with the hash
difference. They partition the audio content into segments and use Google
Speech Recognition technology for extracting the transcript. At this point,
the authors perform summarization and keyword extraction from the whole
video lecture document. Furthermore, the document is assigned a category
based on Naive Bayes classifier modelled on a prepared dataset. With cate-
gories for each document, the dataset is clustered with K-means method to
reduce the search time. When searching, a user either assigns one of the prede-
fined categories to the query manually, or the classifier automatically assigns
the category. Then classic TFIDF method with Cosine Similarity is used, but
only within the category cluster. The authors achieved relevancy 95% with
an average search time of 1.42 seconds on their dataset.

5

1. State of the art

A more generic approach focused not only on lecture videos was introduced
by Wang et al. [5] as inVideo platform. They do not list concrete implemented
methods and only state it uses artificial intelligence and machine learning.
Keyword search from audio analysis, image references and object recognition
is incorporated as well as image search. The platform supports multilanguage
videos. It is designed for usage in a cloud with decentralized indexing and
search and thus scales well. Collaborative filtering, a process leveraging user
feedback for improved accuracy, is a unique feature of the platform. Users can
comment on videos, tag keywords and even play in-place quizzes. The authors
state that this interactive enhancement improved the accuracy of video index-
ing search and increased an average grade of a university course for which the
system was deployed.

Last but not least, a representative of proprietary software, Microsoft
Video Analyzer 2 is a complex cloud-based tool for extracting insights from
video built upon artificial intelligence. Among 30+ features listed on the tool’s
website, it can extract timestamped keywords, identify topics, classify named
entities or even detect emotions from video. The service offers to process up to
10 hours of video content for free. Otherwise, the pricing is based on the dura-
tion of the input file. The exact numbers are $0.04 / minute for audio analysis
and $0.15 / minute for video analysis, approximately $18 for a 1.5-hour video.
The service provides REST API for usage in third-party applications. To ex-
plore the tool, I indexed [11] video lecture. The result was 12 topics and 30
keywords indexed in 36 minutes, which does not include all lecture content as
some slide titles were not indexed.

2https://vi.microsoft.com/

6

https://vi.microsoft.com/

Chapter 2
Algorithm

This chapter describes the algorithm for video lecture indexing used in this
work, including auxiliary user input like text content area or table of con-
tents as a support material. The indexing process follows the common steps
described in section 1.1 - key-frame detection, information extraction and in-
dexing. The input to the algorithm is a video file with presented lecture slides.
The output is a list of lecture topics identified by a timestamp of occurrence
in the video, a title and text content. An indexing engine further indexes
the list with TFIDF method. The chapter is closed with a discussion of algo-
rithm constraints and possible improvements to index any video lecture.

2.1 Key-frame detection

The first step in the key-frame detection is to convert a video file into frames
and associate a time of occurrence in the video with the frame. A reasonable
interval for one frame in video lectures is one to three seconds, as a lecture
slide is usually presented for a few minutes. A shorter interval would be
more accurate in detecting the exact timestamp of a lecture topic, which
also means more frames, thus more processing time. A deviation of a few
seconds is acceptable. The most suitable value for this parameter based on
measurements is evaluated in section 6.2 of this work.

Now that we have a list of image frames associated with the timestamp of
appearance, the next step is to filter the same frames with image similarity
methods. There are many ways to compare images based on individual pix-
els, histograms [12], SIFT descriptors [13] or convolutional neural networks
[14]. However, I chose a perceptual image hashing method, which generates
a fingerprint of the image. Compared to classic hash functions like SHA-256
it has the property of perceptual robustness, which means that perceptually
identical images should have similar fingerprints [15]. Perceptual hashing is
prone to scaling, aspect ratios or colour differences.

7

2. Algorithm

The frame filtering algorithm 1 iterates over a list of all video frames.
It fingerprints each frame as well as the successive one and calculates nor-
malized Levenshtein similarity between them. If the similarity is greater or
equal to a defined threshold (e.g. 90%), the algorithm discards it from the
list. At the end of the loop, the list contains only distinct frames. However,
it can happen that two frames of the same lecture slide still pass through this
filter either because of hashing function error or inadequate threshold value.
The next step, text extraction, handles these anomalies.

Algorithm 1 Similar frames filter
L← list of video frames
t← similarity threshold
for c← current frame of L do

n← the successive frame of c
hc ← fingerprint of c
hn ← fingerprint of h
if normalized Levenhstein similarity of hc and hn ≥ t then

remove c from L
end if

end for
L contains all distinct frames

2.2 Text extraction

A video lecture scene usually consists of an area with the teacher written
notes on a whiteboard and lecture slides. Sometimes, it contains teacher
scratches on a tablet in an online lecture. Figure 2.1 is an example of such
scene. The lecture slide area is important for the algorithm as it contains the
presented content as a text. The algorithm does not use speech as the source
of information and does not work for lectures without slides.

It is wise to preprocess the key-frames prior to detecting text and applying
OCR for better accuracy. Two basic preprocessing techniques are applied -
binarization and noise removal.

Binarization means converting a coloured frame into grayscale, which can
be achieved by establishing a colour threshold value from 0 to 255 and all
pixels greater than the threshold are converted to black and less the threshold
to white. Adaptive thresholding improves the binarization by establishing
different thresholds for smaller parts of the whole image [16].

Noise removal should smoothen the image and remove small dots and
patches. A median filter method is applied in the preprocessing phase after
binarization [17]. An example of these transformations applied on a video
lecture frame is depicted in figure 2.2

8

2.2. Text extraction

Figure 2.1: An example of a video lecture scene consisting of a slide and
presenter scratches (snapshoted from a recording of [11])

Figure 2.2: An example of an original slide (on the left) and the binarised
version with noise removal (on the right)

Finally, with the preprocessed key-frame, the algorithm applies OCR on
the key-frame and filters out newlines from the extracted text. We are inter-
ested in extracting the slide’s title as well as the rest of text content. The title
is usually located at the top of the slide, so we take only the first line from the
extracted text. The algorithm also compares the title with a title from the
previous key-frame to double-check that they are indeed different, address-
ing issues with some false positive key-frames mentioned in 2.1. This phase’s
output is final key-frames, extracted slide titles and text, ready for indexing
and providing full-text search. An example of such output in JSON format is
listed in 2.1.

9

2. Algorithm

1 [
2 { " second ": 4, "title ": " Overview " },
3 { " second ": 62, "title ": " Compute Instances " },
4 { " second ": 212 , "title ": "Image" },
5 { " second ": 342 , "title ": " Autoscaling " },
6 { " second ": 598 , "title ": "Load Balancer " },
7 { " second ": 1752 , "title ": " Overview " },
8 { " second ": 1768 , "title ": " Object Storage " }
9]

Listing 2.1: Example algorith output without the slide text content

2.3 Indexing

Designing a complete TFIDF indexing process is outside of the scope of this
work. Therefore, an existing indexing solution capable of indexing classic
text documents as a Bag of Words is used. In this context, a document
is a collection of key-frames from a lecture. Each key-frame’s text content in
the lecture is indexed and associated with a timestamp, so we have information
when the key-frame is retrieved for a search query. A user of the index can
search for any topic that appeared in lecture slide titles or text and directly
jump to the moment of the lecture when it is presented. Skipping directly to
the exact moment when a topic is presented is the most significant benefit of
this work.

2.4 User input

The slide text content extraction approach does not handle all cases well.
Sometimes, there can be unmeaningful characters or words on lines preced-
ing the title. Typically, this can be a header of the slide or a system time
on a presenting device. A possible solution is Natural Language Processing
and text correction. That can filter out the corrupted content and fix poorly
converted words. Instead of increasing processing complexity with such tech-
niques, I designed two methods for handling such situations with the help
of complementary user input - a location of text content in the video and
a lecture’s table of contents.

2.4.1 Text content area

If we only care for the text content of a slide, not the whole scene, and OCR
output can be noisy, what if we let a user choose the content area on the scene,
defined by origin coordinates (x, y), width and height? The content area
is usually static throughout the lecture. For example in figure 2.1 the text

10

2.5. Generic approach

occupies only half of the scene. If we are not interested in all content but only
the title, the area is even smaller.

The input can be applied in the first phase of the algorithm when the video
is converted to frames. The frames can be cropped only to the input area.
That decreases frame size, thus improving the performance of computing im-
age hashes, reducing noise in the image and increasing the precision of OCR.

2.4.2 Table of contents

Another valuable user input is a table of contents (ToC), more precisely a se-
quence of topics appearing in slides, which serves as a list of anticipated titles.
With ToC, we know successive slides at any moment of the video and compare
a current extracted text content with it. If it is similar to the expected title,
we have identified a new key-frame and can use text from the ToC instead of
the OCR output. This approach’s advantage is that we can skip some slides
we do not want to have in the index, such as an overview slide or a part of
the lecture, when a presenter switches to a command line window.

However, there could be an issue as well. If the algorithm is process-
ing a frame and there is a problem with extracting the title, it can happen
that the frame will be skipped entirely. At that point, the algorithm expects
the already passed slide from the ToC, which will never be there. Comparing
a current frame’s title with not only one but two or more anticipated titles
may help to solve the issue.

The situation may be more clear from an example. Let A, B be two frames
with different content and TA, TB the corresponding slide titles from a ToC.
Processing of frame A fails (e.g. the OCR accuracy is poor), but B suc-
ceeds. The algorithm compares content extracted from A with TA and decides
the content is not similar to TA. It continues and compares content extracted
from B with TA, which is not similar either and therefore, the algorithm will
continue comparing all successive frames with TA resulting in a corrupted in-
dex. However, if the algorithm compares B with TA and then TB, it finds
a match with TB, marks TB as processed, and continues with successive titles
from ToC.

In reality, a lecturer does not always present a lecture from start to end
but can finish one lecture and start another halfway. That can cause problems
if we have a way to automatically provide ToC to the tool for a whole lecture.
For such lectures, the ToC would have to be adjusted manually or not used
at all.

2.5 Generic approach

This work is constrained to video lectures from AM1 and AM2 coursers on
FIT CTU, which have materials available in English. The algorithm is capable
of indexing video lectures not only from these courses but any course with

11

2. Algorithm

English slides presented on a screen. In order to index other languages, their
support would have to be configured in the OCR engine, as it usually supports
only English by default.

The algorithm’s content extraction quality depends on the presented text
quality and OCR engine performance. If a video is of low quality or there are
handwritten notes on a whiteboard instead of slides, the algorithm does not
perform well. What could also help to improve the extraction performance is
post OCR text correction with a dictionary.

Furthermore, what this work is not focused on is Automatic Speech Recog-
nition. Adding it to the algorithm would also generalize its usage and result
in more complex indexed content. Usually, important information is included
in the verbal content as well as in the text content. However, ASR would
not work very well on AM1 / AM2 lectures because their verbal content is
presented in Czech, whereas text content is in English.

12

Chapter 3
Requirements

A goal of this work is to introduce a web service for indexing video lectures with
the help of various supplementary resources. The service should implement
the algorithm described in chapter 2 and provide both API and UI. This
chapter defines the functional and nonfunctional requirements of the service
as well as its actors.

3.1 Actors

There are two actors in the system based on a user role. A user represents
any of these two actors.

1. Teacher - has access to video lectures, is eligible to index and publish
them in the system.

2. Student - can view published video indexes and search them. The user
with role student is not authorized to publish videos.

3.2 Functional requirements

F1: A user can sign in to the system with his FIT CTU identity.

F2: A user can sign out of the system.

F3: A teacher can upload a video lecture file and index it. He can attach
supplementary resources like a table of contents and slide content area
in the video scene.

F4: A teacher can display a video processing progress.

F5: A teacher can download the video index in JSON format.

F6: A teacher can display a list of his video indices.

13

3. Requirements

F7: A teacher can update the title or indexed topics of his uploaded video
index.

F8: A teacher can remove an uploaded video index.

F9: A user can display video indices published to the platform in chrono-
logical order.

F10: A user can play a published video lecture, display indexed topics and
skip the video to a specific time when a topic is discussed.

F11: A user can search published videos by a name or topic present within
the video. The results are ordered by relevance to the query.

3.3 Non-functional requirements

NF1: The system is implemented as a web platform with frontend and
backend.

NF2: The system uses FIT CTU OAuth 2.0 server 3 for authentication.

NF3: The system’s architecture is designed as service-oriented architecture
(SOA) [18].

NF4: The system must be easily extensible, meaning the core algorithm is
portable and independent on the rest of the system.

NF5: The system’s services run in application containers with an orches-
trating system.

NF6: The system is deployed to a virtual machine.

3https://rozvoj.fit.cvut.cz/Main/oauth2

14

https://rozvoj.fit.cvut.cz/Main/oauth2

Chapter 4
Design

This chapter describes the high-level design of the system. The indexing web
service consists of three main components - an indexing module, a backend
and a frontend. The indexing module is an implementation of the algorithm
described in chapter 2. The frontend is a client web application. The back-
end provides REST API is decomposed into multiple isolated components,
including tiny services, databases and proxy servers.

The system’s architecture follows service-oriented architecture (SOA) prin-
ciples such as loose coupling, encapsulation, or contracting. A single service
in the system only solves a limited set of operations, usually around a single
resource [18]. For instance, Video Service only handles uploading, removing
and serving of videos, nothing more. The services exchange information via
HTTP protocol or asynchronous messaging.

Figure 4.1 depicts the overall system architecture. There are four services
- UserService, VideoService, IndexService and JobService. The only compo-
nent accessible from the outside is API Gateway, which routes clients’ HTTP
requests to the receiving services. Furthermore, it performs authentication
with User Service before forwarding them on. There are multiple types of
data storage - a document database for storing indices, disk storage for stor-
ing video files, a key-value database for caching and a full-text index engine
providing search capability over lecture topics.

4.1 Indexing module

The indexing module’s responsibility is to run the video indexing process
described in chapter 2. The module is independent of the rest of the services.
It provides both API and command-line interface (CLI).

15

4. Design

IndexService
Deno

UserService
Deno

API gateway
NGINX

Database
MongoDB

JobService
Python

Client

REST API

ČVUT OAuth server

Video storage
Disk

VideoServiceProxy
NGINX

Redis

Message Broker
RabbitMQ

Elastic Search
Legend

HTTP

AMPQ

Other

VideoService
Node.js

Backend

Indexing
module

Figure 4.1: Architecture diagram of the indexing service components

4.2 Backend

4.2.1 API Gateway

The API Gateway serves as the only entry point to the REST API. It has
two purposes. First, it routes incoming requests to destination services [19].
Second, it performs authentication with User Service before forwarding the re-
quests. Details are described in section 4.2.2. Apart from that, it configures
CORS policy [20].

4.2.2 User Service

The primary responsibility of User Service is authentication of requests in-
coming to protected API endpoints in cooperation with the API gateway.
The secondary responsibility is providing an endpoint for the user resource.

Figure 4.2 illustrates the complete authentication flow for an incoming
request.

16

4.2. Backend

Figure 4.2: A sequence diagram illustrating the authentication flow for an in-
coming request

1. The entry point of the request is the API gateway.

2. The API gateway sends an authentication subrequest to User Service
with a request’s access token as its payload before routing it to the des-
tination service [21].

3. User Service validates the received access token with the school’s OAuth
2.0 4 server [22]. There is a caching mechanism to avoid a high number
of requests to the OAuth server. The service first checks the access token
with the cache and only sends a request to the OAuth server if there is
no cache hit.

4. If the access token is not valid, User Service notifies the API gateway
that the access token is invalid, which forwards it to the client. If the ac-
cess token is valid, User Service issues a new JSON Web Token (JWT)
containing user info and a role as its payload. The JWT is used for inter-
system authentication and authorization by other services. The main
advantage of JWT is the complexity of token verification. There is no
need to make an additional request to the OAuth server, as each ser-
vice can verify the JWT with a private key [23]. The service replaces
the received token with the new JWT and responds to the API gateway.

4https://rozvoj.fit.cvut.cz/Main/oauth2

17

https://rozvoj.fit.cvut.cz/Main/oauth2

4. Design

5. If the original request is authenticated, the API gateway finally routes it
to the destination service, which authorizes the request based on the user
role in the JWT payload and responds.

6. If the original request is not authenticated, the API gateway directly
responds to the client with Unauthenticated status.

4.2.3 Video Service

The Video Service’s responsibility is to handle video files upload, store the files
on a disk, save video info in the database, serve videos to clients and delete
them. In the architecture diagram 4.1, a proxy server is placed before the ser-
vice to handle file uploads and video serving efficiently.

4.2.4 Index Service

Index Service provides CRUD operations API for the video index resource as
well as the index search endpoint. It also provides an endpoint for reading
progress of the video indexing process, called a job. Compared to the other
services, this one does quite a lot of work in the background.

For inter-system communication, the service uses asynchronous messaging
pattern. Asynchronous messages are unidirectional, meaning a sender does
not expect a direct response from a receiver. In fact, it does not have to know
the receiver at all, or there may be multiple receivers [24]. Asynchronous
messaging makes Index Service loosely coupled because the service does not
care which service or an instance of service indexes the video. Figure 4.3
illustrates the message flow of Index Service.

1. When creating a new index, the service sends an asynchronous message
to the message queue to start indexing the video.

2. The service also subscribes to messages about the indexing progress so
that it can forward it to clients.

3. When the service receives an indexing completed message, it indexes
the textual content of each slide in the video with TF-IDF along with
a timestamp of occurrence in the presentation.

4.2.5 Job Service

Job Service’s responsibility is to run video indexing jobs. It subscribes to index
video messages emitted to the message queue and starts processing the video
for each message. It monitors the progress of the job and publishes messages
with the progress information. After the job finishes, it saves the newly created
index into the database and publishes a success message. In case of an error,

18

4.3. Frontend

Figure 4.3: A sequence diagram illustrating the flow of messages between
Index Service, message queue and Job Service

it emits an error message and retries the job with exponential backoff. Figure
4.3 illustrates the message flow.

4.3 Frontend

The frontend is an isomorphic web application, which provides user interface
for the system. An isomorphic web application is a combination of statically
rendered Single Page Application (SPA) and server-side code [25].

The reason for choosing both server and client-side code for the fron-
tend is the authentication. FIT CTU OAuth server only supports Code Au-
thentication Grant [22] with a client secret. Storing the secret in a client-
side JavaScript application is a security risk as anyone can see the secret in
the source code and disguise as our application. However, the server can
securely store it. The proper OAuth flow for client-side JavaScript applica-
tions is Authorization Code Flow with Proof Key for Code Exchange (PKCE),
which does not operate with a client secret [26]. Apart from authentication,

19

4. Design

there is no reason for server-side code, since there are no public pages requiring
search engine optimizations.

20

Chapter 5
Implementation

This chapter describes the low-level design and implementation of the system
components in selected technologies and some of the implementation details.
As mentioned in chapter 4, there are three main components in the system -
the indexing module, backend and frontend.

5.1 Indexing module

Indexing module is a Python package implementing the algorithm described in
chapter 2. Python programming language has been chosen because the Python
ecosystem provides a rich set of libraries required to implement the algorithm.
Used libraries are listed in table 5.1 The source code is stored in a public
Github repository 5 or can be found at src/fit-lecture-indexer directory
of the enclosed memory card. The package is also published into Python
Package Index 6.

5.1.1 API

The module exports LectureVideoIndexer class, which can be used for index-
ing videos in any Python program. Code 5.1 presents the interface and code
5.2 usage example. The class constructor accepts two parameters - config
and progress_callback. The first parameter is an object with settings for
the algorithm. The second is a function that is called every time video progress
changes, which is useful for displaying indexing progress. Parameters of the
configuration object are listed in table 5.2.

The class has index method which can index a video lecture. It has
the following parameters:

• video_path - path to a video file
5https://github.com/jstorm31/fit-lecture-indexer
6https://pypi.org/project/fit-lecture-indexer/

21

https://github.com/jstorm31/fit-lecture-indexer
https://pypi.org/project/fit-lecture-indexer/

5. Implementation

Library name Description

imagehash Perceptual hashing library

strsimpy
String comparison package implementing nor-
malised Levenshtein distance used as a similarity
measure

opencv-python-
headless

OpenCV python library used for video conversion
to frames and image preprocessing before applica-
tion of OCR

pytesseract Python port of tesseract binary for OCR

tqdm A package for displaying processing progress in a
command line

Table 5.1: Table of libraries used in Indexing module

Parameter Description

frame_step create a frame every x seconds of the video

img_sim_threshold
a threshold when two images are considered sim-
ilar

txt_sim_threshold
a threshold when two strings are considered sim-
ilar

hash_size
number of bytes for image phash x seconds of the
video

Table 5.2: Algorithm parameters

• skip_converting - skips conerting the video into frames (useful when
running the method multiple times or the conversion is executed exter-
nally)

• crop_region - a crop region for frames a slide content is expected to be
located, a tuple in format (x_from, x_to, y_from, y_to)

• toc - a path to a table of contents file in JSON format with an array of
slide titles

22

https://github.com/jgraving/imagehash
https://github.com/luozhouyang/python-string-similarity
https://github.com/opencv/opencv-python
https://github.com/opencv/opencv-python
https://github.com/madmaze/pytesseract
https://github.com/tqdm/tqdm

5.2. Backend

1 LectureVideoIndexer (config : Config , progress_callback :
ProgressCallback)

2
3 index(video_path : os.PathLike , skip_converting : bool ,

crop_region : CropRegion , toc: TableOfContents = None) ->
VideoIndex

Listing 5.1: LectureVideoIndexer class interface

1 from indexer import LectureVideoIndexer , CropRegion
2
3 indexer = LectureVideoIndexer ()
4 index = indexer .index(video_path =’video/ example .mp4 ’, crop_region

= CropRegion (890 , 1700 , 0, 80) , toc=’toc.json ’)

Listing 5.2: Example usage of Indexing module

5.1.2 CLI

The package also provides a command-line interface. It can index a video by
running python cli.py -i example.mp4 command in the package’s direc-
tory. Availabel parameters can be printed by running python cli.py -h.

5.2 Backend

5.2.1 Architecture

The backend consists of multiple individual web services that communicate
through HTTP protocol or asynchronous messages via RabbitMQ message
broker 7. The services also provide RESTful API [27]. Apart from JobSer-
vice, which is specific, all backend services follow two-layer architecture, which
consists of controller and service layer 8.

The controller layer handles HTTP request-response communication, pro-
vides routes for resources, connects them with services and converts errors
to correct response status codes. Code 5.3 shows an example of controller
function to return index detail. The service layer contains business logic and
directly communicates with databases. Code 5.4 shows an example of a ser-
vice function that queries a database for indices. There is usually also a data
layer, often following Repository Pattern, which is an abstraction for access-
ing databases [28]. However, since the backend services are not very complex,
they access databases directly on the service layer.

7https://www.rabbitmq.com
8We must distinguish a web service as a high-level design system’s component and service

as a layer of architecture - code implementing some business logic.

23

https://www.rabbitmq.com

5. Implementation

1 import * as indexService from ’../ services /index. service .ts ’
2
3 const getIndex = async (ctx: Context) => {
4 const { id } = helpers . getQuery (ctx , { mergeParams : true })
5 const index = await indexService . getIndex (id)
6
7 if (! index) {
8 ctx. response . status = 404
9 } else {

10 ctx. response . status = 200
11 ctx. response .body = index
12 }
13 }
14
15 router .get (’/ indices /:id ’, getIndex)

Listing 5.3: An example of a route handler on controller layer

1 import { Index } from ’../db.ts ’
2
3 export const getIndices = async (params : GetIndicesParams = {})

=> {
4 const options : Record <string , unknown > = {}
5 const page = params .page ?? 1
6 const limit = params .limit ?? 10
7
8 if (params .user) {
9 options . username = params .user

10 }
11
12 if (params .q) {
13 options [’video.name ’] = { $regex : ‘${ params .q}‘, $options

: ’i’ }
14 }
15
16 const total = await Index.count(options)
17 const indices = await Index.find(options)
18 .sort ({ _id: -1 })
19 .limit(limit)
20 .skip ((page - 1) * limit)
21 . toArray ()
22
23 return {
24 data: indices ,
25 total ,
26 }
27 }

Listing 5.4: An example of a function on service layer querying a database for
indices

24

5.2. Backend

Furthermore, on the controller layer, the app also uses middleware for
sharing some common logic. A middleware is a function executed on every
request. It receives the request and response entity, can modify them, and
return to other middleware in the chain, ending with a controller [29]. Typical
use cases for middleware are logging or authentication/authorization. Code 5.5
shows an example of a middleware that extracts JWT token from the request
Authorization header and verifies it. If the token is valid, it extracts user
information from the JWT payload, adds it to the HTTP context object and
calls the next middleware. If the token is invalid, it directly returns 401 HTTP
response status code and does not call the next middleware.

1 import * as jwtService from ’../ services /jwt. service .ts ’
2 import { extractToken } from ’../ utils.ts ’
3
4 export const authenticate = async (
5 ctx: Context ,
6 next: () => Promise <unknown >
7) => {
8 const token = extractToken (ctx)
9

10 if (! token) {
11 ctx. response . status = 401
12 ctx. response .body = { error: ’missing_token ’ }
13 return
14 }
15
16 try {
17 ctx.user = await jwtService . verifyToken (token)
18 await next ()
19 } catch (error) {
20 ctx. response . status = 401
21 ctx. response .body = {
22 error: ’invalid_token ’,
23 message : error.message ,
24 }
25 }
26 }

Listing 5.5: An example of authentication middleware on controller layer

All services apart from Job Service are implemented in TypeScript 9,
a strongly typed programming language, which extends JavaScript and makes
it safer with compile-time type checks. In some runtimes, it needs to be tran-
spiled into JavaScript (browser or Node.js), whereas others support it directly
(Deno).

As might be visible from the code examples, the programming style is
functional, not object-oriented. It comes from the nature of JavaScript, where

9https://www.typescriptlang.org

25

https://www.typescriptlang.org

5. Implementation

functions are first-class, meaning they can be assigned to a variable, passed
to a function or even returned by one (higher-order function) [30]. Further-
more, JavaScript modules allow encapsulation of variables and functions in
a module and can be imported into other modules [31]. Therefore, the object-
oriented paradigm is not necessary, although possible in both JavaScript and
TypeScript.

5.2.2 API documentation

Documentation is an integral part of every HTTP API so consumers know
which resources they can access, how to use the API or what errors it returns.
OpenAPI is a widely used documentation standard for HTTP APIs [32]. It is
programming-language agnostic, therefore, suitable for any API.

The OpenAPI version 3.1 specification for the platform’s REST API in
YAML format can be found at src/fit-stream/docs directory of the enclosed
memory card. It is also published as an HTML page 10 powered by Swagger UI
11.

5.2.3 API Gateway

For the implementation of API gateway, I chose Nginx 12 HTTP server,
which offers rich capabilities, high performance and simple configuration [33].
The configuration defines publicly accessible HTTP locations, which are for-
warded to appropriate platform services by the Nginx server. Furthermore,
the configuration sets CORS policy to allow requests only from known origins.
Last but not least, it uses http_auth_request_module to authenticate incom-
ing requests based on subrequest results from User Service [21]. Detailed flow
of the authentication is presented in diagram 4.2. The source code is stored
in a GIT repository and can be found at src/fit-stream/api-gateway di-
rectory of the enclosed memory card.

Code 5.6 shows an example configuration for /auth/user location. First,
it sends an authentication subrequest to User Service with Authorization
header from the original request and replaces its value with a newly issued
JWT token obtained from the subrequest response header. Then it forwards
the request to http://user_service:8003 located on a private virtual net-
work, keeping the original Host header and IP address.

5.2.4 User Service

The selected technology for User Service implementation is Deno, an asyn-
chronous, event-drivend JavaScript runtime for server-side code 13 similar to

10http://10.38.5.10:81/docs/
11https://swagger.io/tools/swagger-ui/
12https://www.nginx.com/
13https://deno.land

26

http://10.38.5.10:81/docs/
https://swagger.io/tools/swagger-ui/
https://www.nginx.com/
https://deno.land

5.2. Backend

1 location /auth/user {
2 auth_request /auth/token/check;
3 auth_request_set $authorization $upstream_http_authorization ;
4 proxy_set_header Authorization $authorization ;
5
6 proxy_pass http :// user_service :8003;
7 proxy_set_header Host $host;
8 proxy_set_header X-Real -IP $remote_addr ;
9 }

Listing 5.6: Nginx proxy configuration for a location

Node.js. The service uses in-memory Redis database 14 for caching of user
authentication tokens and roles to improve performance by avoiding requests
send to the OAuth server. The source code is stored in a GIT repository and
can be found at src/fit-stream/user-service directory of the enclosed
memory card.

5.2.4.1 API endpoints

• GET /auth/user - returns a user info object including roles

• GET /auth/token/check - non-public endpoint used by API gateway to
check an OAuth authentication token and return an internal JWT token

5.2.4.2 Services

• jwt.service.ts - creates and verifies JWT tokens

• oauth.service.ts - communicates with the OAuth server, can check
and refresh an OAuth authentication token

• user.service.ts - can fetch user info and user roles

5.2.5 Video Service

The selected technology for Video Service implementation is Node.js 15 be-
cause Deno does not have a stable library for parsing multipart/form-data
content type of HTTP request at the time of writing. The source code is stored
in a GIT repository and can be found at src/fit-stream/video-service di-
rectory of the enclosed memory card.

The proxy server placed before Video Service is an Nginx server same
as the API gateway. The proxy server handles file uploads and forwards
the requests to the Node.js server [34], which performs related business logic.

14https://redis.io
15https://nodejs.org

27

https://redis.io
https://nodejs.org

5. Implementation

5.2.5.1 API endpoints

• POST /videos - upload a video

• DELETE /videos/:id - delete an uploaded video

5.2.5.2 AMQP messages

• DeleteIndexMessage (consumer) - delete an uploaded video (requests
from within the system)

5.2.5.3 Services

• videoService.ts - creates a video database entry, generates image
thumbnails for a video, deletes a video from the database

5.2.6 Index Service

Index Service is implemented in Deno and TypeScript, same as User Ser-
vice. The source code is stored in a GIT repository and can be found at
src/fit-stream/index-service directory of the enclosed memory card.

It stores data in two types of storage. Primary, indexed content of a video
is stored in a MongoDB database along with video data 16 as a collection of
denormalized documents. Storing indexed content and video data together in
a document without strict schema allows flexibility [35, slide 48]. Secondary,
Index Service uses Elastic Search 17 engine for indexing video content, includ-
ing all text content of slides. Elastic Search provides full-text search, and for
a given query, it can return video lectures sorted by relevance to the query.
The search results include timestamps of a match for the query when it occurs
in the lecture.

The service provides an endpoint for real-time progress of the indexing
process implementing server-sent events (SSE). SSE is a technique for pushing
messages from a server to client. The client makes only the initial request
and then receives messages automatically [36]. While SSE from server to
client directly works well, there can be issues 18 with proxies between server
and client, which can buffer the connection, breaking the real-time delivery of
the messages. Fortunately, Nginx in the role of API gateway can be configured
not to buffer or cache the connection for the progress endpoint.

5.2.6.1 API endpoints

• GET /indices - fetch indices, supports pagination and filter by user-
name

16https://www.mongodb.com
17https://www.elastic.co
18https://community.cloudflare.com/t/server-sent-events-buffering/179526

28

https://www.mongodb.com
https://www.elastic.co
https://community.cloudflare.com/t/server-sent-events-buffering/179526

5.2. Backend

• GET /indices/:id - fetch index detail

• POST /indices - create a new index for an uploaded video and start
the indexing process

• PUT /indices/:id - replace an index

• DELETE /indices/:id - delete an index

• GET /indices/search - full-text search indices for a given query

• GET /indices/:id/progress - provides real-time progress information
about indexing progress for a video

5.2.6.2 AMQP messages

• JobMessage (producer) - starts video indexing process

• JobProgressMessage (consumer) - contains information about video in-
dexing progress

• JobCompletedMessage (consumer) - signals a video indexing process has
been finished

• JobErrorMessage (consumer) - reports a failed video indexing process

5.2.6.3 Services

• index.service.ts - provides CRUD operations over index resource

• job.service.ts - publishes JobMessage to start video indexing process,
observes a job progress, updates Elastic Search index after a job finish

• jwt.service.ts - verifies JWT token

• search.service.ts - can index or delete a video document in Elastic
Search and search video documents for a given full-text query

5.2.7 Job Service

The selected technology for Job Service is Python to be compatible with In-
dexing module, which is implemented as a Python package, and the service
uses it. The source code is stored in a GIT repository and can be found at
src/fit-stream/job-service directory of the enclosed memory card.

Job Service has a different architecture than the other services. It does not
provide API endpoints for a client and only publishes or subscribes to asyn-
chronous messages via the RabbitMQ broker. Therefore it does not have con-
troller and service layer. The service is implemented using Dramatiq Python
package 19 for background task processing. It only contains a so-called Actor,

19https://dramatiq.io/

29

https://dramatiq.io/

5. Implementation

which is a function executed on a worker process [37]. The Actor subscribes
to start indexing messages, runs the video indexing process via Indexing mod-
ule and publishes a message for completed or error state. Dramatiq library
handles job scheduling, retrying and error handling.

The service saves the created index directly in the Mongo database and
does not send it in a message payload. That creates tight coupling with Index
Service indirectly through the database. It does not have to be a good practice
on a large scale, but it is generally not advised to send large payloads of data
through messages [24].

5.3 Frontend

The frontend is implemented in TypeScript and Next.js framework 20, which
supports hybrid static and server rendering. Next.js is based on React 21,
a JavaScript library for building user interfaces. The source code is stored in
a GIT repository and can be found at src/fit-stream/frontend directory
of the enclosed memory card.

5.3.1 Architecture

React is a component-based library. A component is a simple JavaScript /
TypeScript function that returns a part of a user interface (UI) for input
properties and an internal state of the component [38]. Components can be
composed together into complex UIs. Code 5.7 presents an example of Loader
component.

Next.js framework supports file-based routing, meaning each file in pages
project’s directory exporting a React component is an individual web page [39].
The frontend follows modular architecture. A module is a part of the appli-
cation focusing on a complete isolated functionality. For instance, a list of
videos can be implemented as a module called index-list and contain a set
of React components, CSS styles and business logic for fetching data from
the backend REST API. The module exports one component that is rendered
in a page file. The modular architecture encourages loose coupling between
modules.

The frontend uses several libraries:

• Next Auth - authentication library supporting OAuth 2.0,

• SWR - fetching data from the backend REST API and caching,

• Ant Design - a design system UI library,

• React Player - a video player library for React,
20https://nextjs.org
21https://reactjs.org

30

https://next-auth.js.org/
https://swr.vercel.app/
https://ant.design/
https://github.com/cookpete/react-player
https://nextjs.org
https://reactjs.org

5.3. Frontend

• React Region Select - a library for selecting a rectangular area for React.

1 import { Spin , SpinProps } from ’antd ’;
2
3 import styles from ’./ Loader . module .scss ’;
4
5 export interface LoaderProps extends SpinProps {
6 loading ?: boolean ;
7 }
8
9 const Loader = ({ loading = false , ... props }: LoaderProps) =>

10 loading ? (
11 <div className ={ styles . loader }>
12 <Spin {... props} />
13 </div >
14) : null;
15
16 export default Loader

Listing 5.7: An example of React Loader component

5.3.2 User Interface

This section describes the front-end web application’s user interface, including
screenshots.

5.3.2.1 Login

There is nothing complex on the login page, just a login button that starts
the OAuth flow redirects the user to the OAuth provider page.

5.3.2.2 Videos

Video page contains a grid of indexed video previews. Each preview contains
a thumbnail from the video and a title. By clicking on a video preview,
the user navigates to Video detail page. Initially, twelve videos are loaded,
and the user can load more with a button at the bottom of the page. Above
the grid, there is a search text field, where a user can search any query that
will match the content of indexed videos. At the top in the navigation bar,
the user can go to Index video page, User Videos page or sign out.

5.3.2.3 Index video

The index video page contains a file upload area where a user can drag and
drop a video file, which gets uploaded. The application starts uploading
the video directly after it has been dropped, signalling upload progress by

31

https://github.com/casavi/react-region-select

5. Implementation

Figure 5.1: Login page

Figure 5.2: Videos page

32

5.3. Frontend

Figure 5.3: Search indices

a progress bar. The application starts uploading the video directly after it
has been dropped. Under the upload area, there is a video name text field
and continue button, which navigates user to the next step - Mark text content
area page.

5.3.2.4 Mark text content area

In the second step of the index creation process, the user is prompted to mark
a region with text content in the slides presented in the video. He can play
the video to locate the text area conveniently. He can either hit the continue
button or clear the video draft.

5.3.2.5 Upload table of contents

At the last step of the index creation process, a user can attach a table of
contents (TOC) in JSON format into another file upload area. The TOC
format is validated instantly on the client. If it is valid, the user can start
the indexing process by hitting Index video button. Then he is redirected to
Indexing progress page.

33

5. Implementation

Figure 5.4: Index video page

Figure 5.5: Uploading video page

34

5.3. Frontend

Figure 5.6: Mark text content area page

Figure 5.7: Upload table of contents page

35

5. Implementation

Figure 5.8: Mark text content area page

5.3.2.6 Indexing progress

Indexing progress page contains three steps with a circular progress bar for
each indexing process step. The processing progress is displayed in real time.
After the processing has finished, the user is redirected to Edit index page.

5.3.2.7 Video detail

At the top of Video detail page, there is a video title on the left and actions on
the right - Download index as JSON, Edit and Delete buttons. Under the title,
there is the video player. On the right side of the video player, there is a list
of the video topics and a search field. If the user clicks on a topic, the video
is skipped to the timestamp of the topic. The search works on the client-side,
and the user can only search for words occurring among the topics.

5.3.2.8 Edit index

At the Edit index page, a user can change the name of the video, video topics
(e.g. fix mistakes in topic detection) and their timestamps. The user can also
delete selected index entries if they were detected incorrectly. There is a video
player so the user can verify detected topics with the video.

36

5.3. Frontend

Figure 5.9: Video detail page

Figure 5.10: Edit index page

37

5. Implementation

Figure 5.11: My Videos page

5.3.2.9 User videos

User videos page contains a list of videos the user uploaded, including videos
in processing. In this list, he can delete a video or go to Edit index page.

38

Chapter 6
Verification

In this chapter, I first introduce a custom-designed precision metric to evaluate
the indexing algorithm. The precision and running time is then used to find
the best possible algorithm parameters (listed in table 5.2). The algorithm
is evaluated on a dataset of video lectures from AM1 and AM2 courses at
FIT CTU. Lastly, I describe how the indexing web platform was tested with
end-to-end tests to verify correct functionality.

6.1 Precision metric

The algorithm’s primary task is to correctly extract timestamps of presented
slides from a video lecture. Therefore its output is an array of timestamps.
To measure the accuracy of the presented algorithm, I designed a specific
precision metric, which compares the algorithm’s output with a reference so-
lution.

Let E be a set of extracted timestamps, R a set of correct reference times-
tamps and I their intersection. The precision p is defined as

p = |I| − |E − I| ∗ r

|R|
, (6.1)

where r ∈ (0, 1⟩ is a constant expressing a weight of surplus timestamps in
the output.

The denominator takes a count of correctly extracted timestamps and
subtract the number of surplus timestamps (not in the reference solution)
weighted by a constant r. Missing timestamps are more critical in the solution
than extra timestamps, which can be easily removed, but the missing ones are
harder to find. That is the reason for weighting the number of extra slides by
r, which is set to 0.5 in the tests. The value of the denominator is divided by
the reference solution timestamps count, which makes p relative to the size of
the solution.

39

6. Verification

For example let

E = {4, 275, 455}, R = {4, 275, 300}, I = {4, 275}, r = 0.5 (6.2)

Two timestamps are extracted correctly, one is missing and one is extra.
The precision is then

p = 3− 1 ∗ 0.5
3 ≈ 0.83. (6.3)

Because the extracted timestamp values depend on frame_step parameter
of the algorithm from table 5.2, they can be extracted with an error and shifted
up to frame_step forward or backward. Therefore, the set intersection is
calculated with a custom equivalence operator e considering the error.

e(x, y) = |x− y| ≤ frame step (6.4)

6.2 Parameters

In order to have the best possible precision and performance tradeoff, I ran
a set of tests to find appropriate values for the algorithm’s parameters listed
in table 5.2. The tests are run over a reference collection of video indexes and
focus on two observed metrics - precision introduced in 6.1 and processing
time. The reference collection consists of three different lecture videos from
AM1/AM2 courses and corresponding indexes evaluated manually. Each video
has a slightly different layout.

There are four test cases for each algorithm parameter. The algorithm is
executed with different values for the observed parameter in each test case
while keeping the other parameters fixed. The observed value is an average
precision and processing time in seconds from all videos. Each test case is
executed twice, and the results are averaged.

6.2.1 Frame step

Chart 6.1 depicts results from frame_step parameter test. The tested values
were {1, 2, 4, 8}. The precision is more or less the same. The results are as
expected for the running time - value 1 has the highest running time and 8
the lowest. There are more frames to process with a lower value of the parame-
ter. Choosing the highest frame_step value would be natural. However, that
would lead to inaccurate timestamps. A video keyframe with some topic could
start at time t, but the algorithm would return timestamp t ± frame step.
That is acceptable for up to 2 or 4 seconds, not more.

40

6.2. Parameters

Figure 6.1: Frame step parameter test results

Figure 6.2: Hash size parameter test results

6.2.2 Hash size

The results for hash_size parameter are similar to frame_step parameter
when looking at the precision - no value has significantly higher precision
than the other (depicted in chart 6.2). Therefore, we can conclude that the
size of a hash does not significantly impact the precision for the testing data.
It is slightly different with observed running time. The largest hash size value
runs significantly longer than smaller sizes, which have similar running times.

6.2.3 Image similarity threshold

Chart 6.4 depicts results for image_similarity_threshold. The best pre-
sision was achieved for the lowest value 0.7, altought the differences are not
significant. The four lowest values from 0.7 to 0.9 ran the fastest. The slowest
time, almost three times higher, was achieved for value 0.99.

41

6. Verification

Figure 6.3: Image similarity threshold parameter test results

Figure 6.4: Text similarity threshold parameter test results

6.2.4 Text similarity threshold

For text_similarity_threshold parameter, the precision is higher for lower
parameter values (chart 6.4). For this case, running time is the same for all
values.

6.3 Evaluation

The measurements in section 6.2 show that various parameter values do not
have a very high impact on the precision (with the given testing data). What
they have an impact on, though, is speed. Based on the results, I chose a set of
used parameters listed in table 6.1 and ran a set of tests on a complete dataset.
The full dataset contains ten video lectures from AM1 and AM2 courses.
The goal of the tests was to evaluate the precision and speed of the algorithm.

42

6.4. End-to-end tests

Figure 6.5: Full dataset test results

Parameter Chosen value

frame_step 2

img_sim_threshold 0.85

txt_sim_threshold 0.85

hash_size 16

Table 6.1: Chosen algorithm parameters

The first test ran without a text content area as supplementary input and
the second with the text content area input to compare the two methods.

The test results are presented in chart 6.5. The average precision for
the test without supplementary input is 0.785 and 0.83 for the test with a text
content area. The average running time for the first test is 9 minutes 52
seconds, whereas it is 5 minutes for the second test. The first test has worse
precision because the algorithm can detect noise from the non-content area of
frames. The second test is faster because, after the first phase of converting
a video to frames, only the content area of frames is passed to the other stages
of the algorithm, which naturally process fewer data. The tests have proven
that supplementary material improves both precision and running time.

6.4 End-to-end tests

Generally, there are three types of tests from “how large part of a system they
test” point of view - unit, integration and end-to-end. Unit tests cover small
isolated units (typically functions), integration tests cover composing these
units together, and end-to-end tests cover the whole system in the same way

43

6. Verification

a user experiences it [40]. Since the indexing platform consists of the fron-
tend with UI and the backend, I chose to test it with automated end-to-end
tests using the UI because it covers the system as a whole and verifies its
functionality and requirements presented in chapter 3.

6.4.1 Cypress

Cypress22 is a testing engine for web applications. It provides rich capabilities
for visual testing, intercepting network requests, debugging and overall devel-
oper experience. Cypress can be used both for testing a frontend application
in isolation by intercepting requests to a backend and defining custom mocked
responses or, as a whole, connected to the backend. I chose the latter way for
testing the indexing system.

Tests in Cypress are written in JavaScript or TypeScript and are organized
into test cases (individual files). Cypress provides an interface for interaction
with a website, like finding elements on a page, triggering a button click or
waiting for a network request to complete. The tests are a codification of
what a real user would do on a page. An example of a test case is presented
in code 6.1. Cypress opens a web browser, executes the sequence of test case
steps and reports on it. An example report of a successful test run is depicted
in figure 6.6. It can also run in a command line environment, which is usefull
for automation and Continues Integration systems [41].

1 it(’a user can search published videos by a topic name ’, () => {
2 cy. authenticate ()
3 cy.visit (’/’);
4
5 cy.get(’input[type =" search "]’).type(’ architecture ’);
6 cy. getByTestId (’search -option ’)
7 . should (’have. length .gte ’, 2)
8 .eq (1)
9 .click ();

10
11 cy. location (). should ((loc) => {
12 expect (loc. pathname).to.match (/\/ video \/*/);
13 expect (loc. search).to.match (/t=*/);
14 });
15 });

Listing 6.1: Cypress test case

However, there are some challenges in running automated UI tests. First,
they must be executed in a dedicated testing environment with seeded data
not to interfere with development or staging environments. Second, there are
usually issues with authentication, especially with OAuth 2.0 integration, and

22https://www.cypress.io

44

https://www.cypress.io

6.4. End-to-end tests

Figure 6.6: Cypress tests example

signing in with UI is not recommended in tests due to performance reasons
[42]. Last but not least, to keep each test case isolated and independent of
others, the test engine clears browser cookies before each run, which can also
cause problems with authentication. One can then authenticate before each
test or preserve cookies with a special Cypress command [43].

6.4.2 Seeding test data

The testing environment needs to be seeded with some initial data in order for
the tests to work correctly. Concretely, there have to be some video indexes.
There are two options for data seeding -

1. add the test data directly to the database, storage and Elastic Search,

2. create them via the provided REST API.

I chose the latter to decouple the test from the internal implementation
and the need to communicate with multiple services. That way, the seeding
script only makes two HTTP requests for uploading a video and indexing it.
The downside is, we have to wait for the indexing process to finish, which
adds approximately 20 seconds of test execution time. The seeding script is
written directly in Cypress and executed before test running.

45

6. Verification

Test case Functional requirements

Authentication F1, F2

Video upload F3, F4

Index list F9, F11

Index detail F5, F10, F8

User index list F6, F8

Edit index F7

Table 6.2: Cypress test cases mapping to the functional requirements

6.4.3 Authentication

For a programmatic sign-in, I leveraged the refresh token endpoint of the
OAuth server to obtain a new access token and use it in HTTP requests.
The programmatic way is faster than using the UI to sign in, plus the OAuth
server website for signing in does not redirect back to the application after
successful authentication with automated software. In order to save calling
the refresh token endpoint multiple times for each test case, the access token is
stored in the browser’s Local Storage and preserved throughout the test run.
The authentication script is also written directly in Cypress and executed
before a test run.

6.4.4 Test cases

The test cases are part of the frontend GIT repository, which can be found at
src/fit-stream/frontend/cypress directory of the enclosed memory card.
Table 6.2 presents the mapping from the functional requirements listed in
chapter 3 to Cypress test cases. The tests verify that all functional require-
ments have been met.

46

Chapter 7
Deployment

The first section of this chapter explains application containers, their advan-
tages compared to the traditional deployment and how they can be practi-
cally used with Docker and Docker Compose. The second section presents
how the video lectures indexing platform is deployed on a virtual machine as
application containers.

7.1 Containers

Conventionally, software used to be deployed on a physical or virtual server.
There could be many applications running on the same server. Administrators
had to ensure the application was correctly configured for each application and
environment pair, and the server had all required dependencies like libraries
or a database installed. That is fine for simple applications running in one
environment that have a few dependencies. However, how does such a way
of deployment scale for multiple environments? What if we upgrade a library
version for one application but keep the older version installed on the sys-
tem for another application? Deployment management becomes a nightmare
for developers and administrators with an increased number of applications,
dependencies, and environments.

Recently, the deployment of applications using containers has become
the new standard. “A container is a standard unit of software that packages
up code and all its dependencies so the application runs quickly and reliably
from one computing environment to another [44].” Containers eliminate the
problem of dependencies because each application has its own installed in the
container, and containers do not conflict among themselves. Combined with
Virtual Machines (VM), they consume system resources efficiently while keep-
ing the isolation [45]. The downside of containers and their orchestrators is
a steep learning curve and configuration complexity. Therefore, automation
is a must and pays off in the long term.

47

7. Deployment

Figure 7.1: Containerized application scheme powered by Docker [44]

7.1.1 Docker

Docker23 is the most popular container engine for deploying applications.
It caused market disruption by deciding to resolve the problem of application
deployment. Docker standardized the format and distribution of containers.
Using Docker brings developers and administrators easy way to manage

• application dependencies (libraries, frameworks, services),

• multiple environments (local, testing, staging and production) and mi-
gration among them,

• automatic deployment on any host (VM, physical machine),

• scaling and reproducibility [46].

In Docker, there is a concept of a layered filesystem called a container
image. An image contains the container’s filesystem and includes everything
needed to run an application - binaries, libraries, configuration, environment
variables, and other dependencies. It also specifies a default command to run
after starting the container [47]. The individual layers are shared across all

23https://www.docker.com

48

https://www.docker.com

7.1. Containers

Figure 7.2: Relationship between Dockerfile, Image and Container

images and can be arbitrarily extended. For example, if we have one image
for running a Java application and another for a database, they can share
the operating system layer or libraries. This approach of sharing layers is
space-efficient.

An image is defined in Dockerfile. Each line of Dockerfile is an individual
filesystem layer. If we build an image and run it with Docker, the result is
a running container - a process running in the isolated filesystem [45]. Another
advantage of the layered filesystem is that it can be cached. After building
a container and then changing its Dockerfile, only the changed layers are
rebuilt.

1 FROM denoland /deno:alpine -1.12.0
2 EXPOSE 8004
3 WORKDIR /app
4 COPY deps.ts .
5 RUN deno cache deps.ts
6 ADD . .
7 RUN deno cache app.ts
8 CMD [" run", "--allow -net", "--allow -env", "app.ts"]

Listing 7.1: Index Service Dockerfile

Code example 7.1 is Dockerfile for Index Service. Each line is a filesystem
layer and does the following:

1. defines a base image including OS and a version,

2. exposes a TCP port on which the server is running,

3. changes the working directory,

4. copies a dependency file into the working directory,

49

7. Deployment

5. installes dependencies,

6. adds source code into the working directory,

7. builds the source code,

8. specifies the default command run when the container is started.

We can build the image by running docker build -t index-service .
in a directory with the Dockerfile and then start a container with docker run
-p 8004:8004 -it index-service. The running server TCP port 8004 in
the container is mapped to the same port on localhost.

7.1.2 Docker Compose

While Docker supports communication between containers via various net-
working options [48] other orchestration tasks like restarting containers or
managing dependencies among them have to be managed manually. Docker
Compose is a tool that automates complex configuration of multiple container
applications. It uses YAML file for application configuration and can run
multiple containers with a single command. Docker Compose also supports
multiple configuration files for different environments and can share a common
configuration [49].

Generally, Docker Compose is a good solution for local development. There
are more advanced orchestration solutions for production, like Kubernetes 24

supporting multiple running instances of a service, rollouts and rollbacks,
load balancing, autoscaling and many more. For a simple deployment on one
physical or virtual machine, Docker Compose can usually serve well too.

Code listing 7.2 shows an example configuration of two services - a back-
end server and a database. For each service, we specify either image, which
is an existing image pulled from a Docker repository or a path to a local di-
rectory with a custom Dockerfile as build option. The services communicate
over a virtual network net_mongo Docker Compose automatically creates [50].
We can specify restart policy for the containers in case of an error or a con-
tainer stops [51]. Some services usually need to wait for others before starting.
Docker Compose allows specifying these dependencies with depends_on op-
tion. Last but not least, the database service needs to persist data. Defining
volumes ensures the data are persisted even when the container is stopped
[49]. All services can be built with docker compose build command and
then started on the background with docker compose up -d.

24https://kubernetes.io/

50

https://kubernetes.io/

7.2. Platform deployment

1 version : ’3.8’
2 services :
3 index_service :
4 restart : always
5 build:
6 context : ./ index - service
7 depends_on :
8 - mongodb
9 networks :

10 - net_mongo
11 mongodb :
12 image: mongo
13 restart : always
14 networks :
15 - net_mongo
16 volumes :
17 - mongodb_data :/ data/db
18 networks :
19 net_mongo
20 volumes :
21 mongodb_data

Listing 7.2: Docker Compose configuration for two containers

7.2 Platform deployment

Each service described in chapter 4 has its Dockerfile in a GIT repository with
the source code and runs as a container. The repositories can be found on
the memory card attached to this work. Docker Compose manages the con-
tainers with both local and production configurations. Environment specific
configuration, like URLs or API keys, is stored in a .env file and provided
to Docker Compose. The indexing platform, including all services, databases
and frontend, is deployed on a virtual machine provided by FIT CTU on their
private cloud 25. The virtual machine is accessible through SSH and Virtual
Private Network (VPN).f

Docker Context is employed to manage the remote Docker node from
the local CLI for the deployment process. It uses SSH to connect to the remote
server, build and run commands are executed locally, but have effect remotely
[52]. For example, to start the services on the VM, we execute the following
command on a local machine: docker --context fit-stream-vm compose
--env -f docker-compose.production.yml up -d.

The platform needs persistent storage for video files and image thumb-
nails. That is achieved by mounting a disk connected to the VM to individual
containers that work with it as a Compose volume. Compose volumes are also
created for Mongo DB, Redis and Elastic Search.

25https://cloud.fit.cvut.cz/

51

https://cloud.fit.cvut.cz/

7. Deployment

Figure 7.3: Deployment diagram of the indexing platform

To access both the frontend and backend from a machine other than
the VM itself, we need to map TCP ports exposed by the containers correctly
in Compose configuration. The frontend is mapped to the default HTTP port
80, so it is accessible without port specification in a browser. The backend is
mapped to port 81. The application runs on IP address 10.38.5.10. Note
that a user must be still connected to the VPN.

The next steps for production deployment are mapping a domain to the
server’s IP address and setting up TLS for both the frontend and backend due
to security concerns. These steps are outside the scope of this work.

52

Conclusion

This thesis aimed to create a web service capable of indexing video lectures
with the help of supplementary resources, mainly for courses on FIT CTU.
Among the thesis’ goals were: analyse the current research in video index-
ing, design the web service, develop it including API and UI, deploy it as
application containers, test it and evaluate its accuracy and performance.

The video lecture indexing service is valuable for students in providing
them with a possibility to search topics in a video lectures collection and skip
directly to the relevant parts. It all happens in a semi-automated way, saving
teachers time in creating video indexes.

The service was designed as multiple components - core algorithm as an in-
dependent module, backend services providing a REST API and a frontend
with UI. It was developed in both Python and TypeScript. The evaluation
was performed with good precision on the testing dataset, and the service
was tested with end-to-end tests, verifying the requirements were met. Last
but not least, the service was deployed on a virtual machine as application
containers.

Apart from successfully indexing video lectures, one of the work’s findings
was that providing a text content area as supplementary input to the indexing
algorithm helps improve accuracy and processing time. Providing a lecture’s
table of contents solves a problem with a teacher skipping some slides or
jumping back in slides.

The service can be further extended by incorporating lecture speech pro-
cessing with Automatic Speech Recognition and including it into the indexed
content. Another extension could be integrating the service into FIT CTU
learning portals like Courses.

53

Bibliography

[1] Patel, B. V.; Meshram, B. B. Content Based Video Retrieval Systems.
International Journal of UbiComp (IJU), Vol. 3, No. 2, 4 2012.

[2] Chand, D.; H., O. Content-Based Search in Lecture Video: A System-
atic Literature Review. 3rd International Conference on Information and
Computer Technologies (ICICT], 2020.

[3] Yang, H.; Meinel, C. Content Based Lecture Video Retrieval Using Speech
and Video Text Information. IEE Transactions On Learning Technolo-
gies, vol. 7, no. 2, 2014.

[4] Medida, L. H.; Ramani, K. An Optimized e-Lecture Video Search and
Indexing framework. International Journal of Computer Science and Net-
work Security, vol. 21, No. 8, 8 2021.

[5] Wang, S. P.; Xiaolong, C.; et al. InVideo: An Automatic Video Index
and Search Engine for Large Video Collections. 2017, ISBN 978-1-61208-
559-3.

[6] Tappert, C.; Suen, C.; et al. The state of the art in online handwriting
recognition. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, volume 12, no. 8, 1990: pp. 787–808, doi:10.1109/34.57669.

[7] Brisinello, M.; Grbić, R.; et al. Improving optical character recognition
performance for low quality images. In 2017 International Symposium
ELMAR, 2017, pp. 167–171, doi:10.23919/ELMAR.2017.8124460.

[8] Skopal, T. Lecture 3: Text-based and bag-of-features mod-
els. In NI-VMM, 2020, p. 12, [cit. 2021-09-21]. Available from:
https://moodle-vyuka.cvut.cz/pluginfile.php/428983/course/
section/70484/lecture03.pdf

55

https://moodle-vyuka.cvut.cz/pluginfile.php/428983/course/section/70484/lecture03.pdf
https://moodle-vyuka.cvut.cz/pluginfile.php/428983/course/section/70484/lecture03.pdf

Bibliography

[9] Rajaraman, A.; Ullman, J. D. Mining of Massive Datasets. 2011, ISBN
978-1-139-05845-2, 1-17 pp.

[10] Adcock, J.; M., C.; et al. TalkMiner: A Lecture Webcast Search Engine.
Proc. ACM Int. Conf. Multimedia, 2010.

[11] Vitvar, T. Lecture 2: Cloud Architectures. In Middleware Architectures
2, 2021, [cit. 2021-09-17]. Available from: https://w20.vitvar.com

[12] Lee, S. M.; Xin, J. H.; et al. Evaluation of Image Similarity by Histogram
Intersection. Color Research and Application, volume 30, 2005: pp. 265–
274.

[13] Kang, L.-W.; Hsu, C.-Y.; et al. Feature-Based Sparse Representation
for Image Similarity Assessment. IEEE Transactions on Multimedia, vol-
ume 13, no. 5, 2011: pp. 1019–1030, doi:10.1109/TMM.2011.2159197.

[14] Wang, J.; song, Y.; et al. Learning Fine-Grained Image Similarity with
Deep Ranking. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 04 2014: pp. 1386–1393,
doi:10.1109/CVPR.2014.180.

[15] Lv, X.; Wang, Z. J. Perceptual Image Hashing Based on Shape Con-
texts and Local Feature Points. IEEE Transactions on Information
Forensics and Security, volume 7, no. 3, 2012: pp. 1081–1093, doi:
10.1109/TIFS.2012.2190594.

[16] Reddy, S. Pre-Processing in OCR. Towards Data Science, 3 2019, [cit.
2021-10-08]. Available from: https://towardsdatascience.com/pre-
processing-in-ocr-fc231c6035a7

[17] Sekhon, M. Image Filters in Python. Towards Data Science, 10 2019, [cit.
2021-10-08]. Available from: https://towardsdatascience.com/image-
filters-in-python-26ee938e57d2

[18] Vitvar, T. Lecture 3: Service Oriented Architecture. In Middleware
Architectures 1, 2020, [cit. 2021-09-10]. Available from: https://
mdw.vitvar.com

[19] Richardson, C. Pattern: API Gateway / Backends for Frontends. [cit.
2021-10-04]. Available from: https://microservices.io/patterns/
apigateway.html

[20] Mozilla; individual contributors. Cross-Origin Resource Sharing
(CORS]. 10 2021, [cit. 2021-10-04]. Available from: https://
developer.mozilla.org/en-US/docs/Web/HTTP/CORS

56

https://w20.vitvar.com
https://towardsdatascience.com/pre-processing-in-ocr-fc231c6035a7
https://towardsdatascience.com/pre-processing-in-ocr-fc231c6035a7
https://towardsdatascience.com/image-filters-in-python-26ee938e57d2
https://towardsdatascience.com/image-filters-in-python-26ee938e57d2
https://mdw.vitvar.com
https://mdw.vitvar.com
https://microservices.io/patterns/apigateway.html
https://microservices.io/patterns/apigateway.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Bibliography

[21] F5, Inc. Authentication Based on Subrequest Result. [cit. 2021-09-
28]. Available from: https://docs.nginx.com/nginx/admin-guide/
security-controls/configuring-subrequest-authentication

[22] D. hardt, E. The OAuth 2.0 Authorization Framework. RFC, 2012,
[cit. 2021-09-21]. Available from: https://datatracker.ietf.org/doc/
html/rfc6749

[23] Jones, M.; Bradley, J. JSON Web Token (JWT). RFC, 2015. Available
from: https://datatracker.ietf.org/doc/html/rfc7519

[24] Rodger, R. The Tao of Microservices. chapter 3.1.1, 3.5.7, Manning
Publications Co., 2017, ISBN 9781617293146. Available from: https:
//www.manning.com/books/the-tao-of-microservices

[25] Gordon, E. K. Isomorphic Web Applications. chapter 1, Manning Pub-
lications Co., 2018, ISBN 9781617294396. Available from: https://
livebook.manning.com/book/isomorphic-web-applications

[26] Sakimura, N. E.; Bradley, J.; et al. Proof Key for Code Exchange
by OAuth Public Clients. RFC, 9 2015. Available from: https://
datatracker.ietf.org/doc/html/rfc7636

[27] Vitvar, T. Lecture 5: Representational State Transfer. In Middle-
ware Architectures 1, 2020, [cit. 2021-09-17]. Available from: https:
//mdw.vitvar.com

[28] Spasojevic, M. ASP.NET Core Web API – Repository Pattern. 6 2021,
[cit. 2021-11-22]. Available from: https://code-maze.com/net-core-
web-development-part4/

[29] StrongLoop, IBM, and other expressjs.com contributors. Using middle-
ware. 2017, [cit. 2021-11-22]. Available from: https://expressjs.com/
en/guide/using-middleware.html

[30] Mozilla and individual contributors. First-class Function. [cit. 2021-
11-27]. Available from: https://developer.mozilla.org/en-US/docs/
Glossary/First-class_Function

[31] Mozilla and individual contributors. JavaScript modules. [cit. 2021-
11-27]. Available from: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Guide/Modules

[32] D. Miller, E. OpenAPI Specification v3.1.0. 2 2021. Available from:
https://spec.openapis.org/oas/v3.1.0.html

[33] Nginx documentation. [cit. 2021-11-17]. Available from: https://
nginx.org/en/docs/

57

https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-subrequest-authentication
https://docs.nginx.com/nginx/admin-guide/security-controls/configuring-subrequest-authentication
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc7519
https://www.manning.com/books/the-tao-of-microservices
https://www.manning.com/books/the-tao-of-microservices
https://livebook.manning.com/book/isomorphic-web-applications
https://livebook.manning.com/book/isomorphic-web-applications
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7636
https://mdw.vitvar.com
https://mdw.vitvar.com
https://code-maze.com/net-core-web-development-part4/
https://code-maze.com/net-core-web-development-part4/
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://spec.openapis.org/oas/v3.1.0.html
https://nginx.org/en/docs/
https://nginx.org/en/docs/

Bibliography

[34] F5, Inc. NGINX upload module. [cit. 2021-10-04]. Available from: https:
//www.nginx.com/resources/wiki/modules/upload/

[35] Svoboda, M. Lecture 1: Introduction. In Advanced Database Systems,
2020, [cit. 2021-03-11]. Available from: https://www.ksi.mff.cuni.cz/
˜svoboda/courses/201-MIE-PDB/lectures/MIEPDB16-Lecture-01-
Introduction.pdf

[36] Richardson, C. Server-sent events. [cit. 2021-10-04]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_
events

[37] Popa, B. Dramatiq: User Guide. [cit. 2021-11-28]. Available from: https:
//dramatiq.io/guide.html

[38] Meta Platforms, Inc. Components and Props. [cit. 2021-11-30]. Available
from: https://reactjs.org/docs/components-and-props.html

[39] Vercel, Inc. Routing. [cit. 2021-11-30]. Available from: https://
nextjs.org/docs/routing/introduction

[40] Testim Inc. End-to-End Testing vs Integration Testing. 3 2021, [cit.
2021-12-21]. Available from: https://www.testim.io/blog/end-to-
end-testing-vs-integration-testing

[41] Cypress Inc. Command Line. [cit. 2021-12-21]. Available from: https:
//docs.cypress.io/guides/guides/command-line

[42] Cypress Inc. Testing Your App. [cit. 2021-12-21]. Available from: https:
//docs.cypress.io/guides/getting-started/testing-your-app

[43] Cypress Inc. Cypress.Cookies. [cit. 2021-12-21]. Available from: https:
//docs.cypress.io/api/cypress-api/cookies

[44] Docker, Inc. Use containers to Build, Share and Run your applications.
[cit. 2021-11-14]. Available from: https://www.docker.com/resources/
what-container

[45] Vitvar, T. Lecture 3: Cloud Native and Microservices. In Middle-
ware Architectures 2, 2020, [cit. 2021-09-10]. Available from: https:
//w20.vitvar.com

[46] Vondra, T. Lecture 8: Docker. In Virtualization and Cloud Computing,
2021, [cit. 2021-09-17]. Available from: https://courses.fit.cvut.cz/
NI-VCC/

[47] Docker, Inc. Docker: Orientation and setup. [cit. 2021-11-16]. Available
from: https://docs.docker.com/get-started

58

https://www.nginx.com/resources/wiki/modules/upload/
https://www.nginx.com/resources/wiki/modules/upload/
https://www.ksi.mff.cuni.cz/~svoboda/courses/201-MIE-PDB/lectures/MIEPDB16-Lecture-01-Introduction.pdf
https://www.ksi.mff.cuni.cz/~svoboda/courses/201-MIE-PDB/lectures/MIEPDB16-Lecture-01-Introduction.pdf
https://www.ksi.mff.cuni.cz/~svoboda/courses/201-MIE-PDB/lectures/MIEPDB16-Lecture-01-Introduction.pdf
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://dramatiq.io/guide.html
https://dramatiq.io/guide.html
https://reactjs.org/docs/components-and-props.html
https://nextjs.org/docs/routing/introduction
https://nextjs.org/docs/routing/introduction
https://www.testim.io/blog/end-to-end-testing-vs-integration-testing
https://www.testim.io/blog/end-to-end-testing-vs-integration-testing
https://docs.cypress.io/guides/guides/command-line
https://docs.cypress.io/guides/guides/command-line
https://docs.cypress.io/guides/getting-started/testing-your-app
https://docs.cypress.io/guides/getting-started/testing-your-app
https://docs.cypress.io/api/cypress-api/cookies
https://docs.cypress.io/api/cypress-api/cookies
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://w20.vitvar.com
https://w20.vitvar.com
https://courses.fit.cvut.cz/NI-VCC/
https://courses.fit.cvut.cz/NI-VCC/
https://docs.docker.com/get-started

Bibliography

[48] Docker, Inc. Networking overview. [cit. 2021-11-17]. Available from:
https://docs.docker.com/network/

[49] Docker, Inc. Overview of Docker Compose. [cit. 2021-11-17]. Available
from: https://docs.docker.com/compose/

[50] Docker, Inc. Networking in Compose. [cit. 2021-11-17]. Available from:
https://docs.docker.com/compose/networking/

[51] Docker, Inc. Start containers automatically. [cit. 2021-11-17]. Avail-
able from: https://docs.docker.com/config/containers/start-
containers-automatically/

[52] Docker, Inc. Docker Context. [cit. 2021-11-17]. Available from: https:
//docs.docker.com/engine/context/working-with-contexts/

59

https://docs.docker.com/network/
https://docs.docker.com/compose/
https://docs.docker.com/compose/networking/
https://docs.docker.com/config/containers/start-containers-automatically/
https://docs.docker.com/config/containers/start-containers-automatically/
https://docs.docker.com/engine/context/working-with-contexts/
https://docs.docker.com/engine/context/working-with-contexts/

Appendix A
Contents of enclosed memory

card

readme.txt the file with memory card contents description
src.......................................the directory of source codes

installation.md.................................Installation guide
fit-lecture-indexer Core algorithm package
fit-stream

api-gateway..........................API gateway configuration
docs..API documentation
frontend..Frontend
index-service....................................Index Service
video-service....................................Video Service
user-service......................................User Service
job-service..Job Service
data...Data storage

thesis..............the directory of LATEX source codes of the thesis
thesis.pdf..............................the thesis text in PDF format

61

	Introduction
	State of the art
	Video Indexing
	Key-frame detection
	Information extraction
	Indexing
	Related work

	Algorithm
	Key-frame detection
	Text extraction
	Indexing
	User input
	Text content area
	Table of contents

	Generic approach

	Requirements
	Actors
	Functional requirements
	Non-functional requirements

	Design
	Indexing module
	Backend
	API Gateway
	User Service
	Video Service
	Index Service
	Job Service

	Frontend

	Implementation
	Indexing module
	API
	CLI

	Backend
	Architecture
	API documentation
	API Gateway
	User Service
	API endpoints
	Services

	Video Service
	API endpoints
	AMQP messages
	Services

	Index Service
	API endpoints
	AMQP messages
	Services

	Job Service

	Frontend
	Architecture
	User Interface
	Login
	Videos
	Index video
	Mark text content area
	Upload table of contents
	Indexing progress
	Video detail
	Edit index
	User videos

	Verification
	Precision metric
	Parameters
	Frame step
	Hash size
	Image similarity threshold
	Text similarity threshold

	Evaluation
	End-to-end tests
	Cypress
	Seeding test data
	Authentication
	Test cases

	Deployment
	Containers
	Docker
	Docker Compose

	Platform deployment

	Conclusion
	Bibliography
	Contents of enclosed memory card

