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Introduction

In this master’s thesis, we deal with the quantification of preferences in the theory of dynamic
decision-making. Decision-making (DM) is an important part of every man, institution, firm and so-
cietal activity; further on, we refer to them as agents. An agent must make hundreds of decisions per day,
less or more important. Our work concerns cases in which we inspect, how to make optimal decisions
to achieve some predetermined goal. The key problem addressed here is how to describe correctly math-
ematically a certain, incompletely specified, target and our other conditions for the DM problem, then
find the optimal decisions aiming to achieve this goal

Many articles concern this preference elicitation (PE) for various DM set-ups, for example [7], [5]
or [9]. The PE is a process of obtaining the quantitative description of the agent’s preferences. It is an
essential part of DM. We need to know what the agent wants to give them the optimal decisions they may
use as their actions. In this thesis, we try to solve it in a non-standard way. We use the fully probabilistic
design (FPD), which is an alternative to the usual DM based on the Markov decision process (MPD).
Compared to our previous work, we also tune input parameters by asking queries during the DM process.
This should allow the agent to fine-tune their preferences and gain insight into the DM problem.

To characterize our work technically, we must explain the (MDP), see [23], that provides the math-
ematical framework of DM. The MDP works on a system, which is a ’cut out’ part of the world. It is
described by transition probability density between individual states, in which the system may occur.
The MDP calls the DM goal as the preferred state. Thus, a set of all possible goals is a set of states. The
set of individual decisions that can be made is the set of actions. The transition between the individual
states depends on the selected action. A key feature of Markov’s DM process is that it does not matter in
what state the system was a year or a week ago. It only depends on the latest state of the system and on
the action, which is selected.

The agent observes the system, this allows him to determine the latest state (the more general case
of partially observable state from [3] is left aside for simplicity). Based on the observation, the agent
selects the action. The chosen action is selected according to the agent’s decision policy (the adopted
widespread synonym for strategy). The policy maps states on actions. The connection between the agent
and randomly behaving system is called a closed-loop. It is sketched in Figure 1.

The policy consists of a sequence of decision rules, which are applied in every DM step. The decision
rule says which action will be chosen. The decision rule can be randomized and it can be strategically
selected to optimally gain a certain goal. The design of decision policy is influenced by other factors and
information that the agent carries: a model of the system and agent’s preferences. The agent’s model of
the system expresses the agent’s assumptions about the reaction of the system to the action. The agent
gets the model of the system before they start solving the decision problem or estimates it during the DM
process by Bayesian learning, see in [22]. In Bayesian learning, the agent uses a parametric model of
the system. It is a parametric description of transition probability. Their knowledge about the parameters
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Figure 1: Scheme of the closed-loop: model of the system and preference serve to policy design

is given by a prior probability density (pd) 1 and by the past observed data. Then the agent corrects its
incomplete knowledge of the parameters by Bayes’ rule, which together with the parametric model gives
it the predictive pd. We assume that actions and states evolve, but the transition probability density is
time-invariant.

The closer the predictive pd to the real system the better. If the agent knows the transition probability
density between the system states, they can easily select the action that causes the transition to the
preferred state with the highest probability. They are also capable to find the optimal decision rule more
easily. The optimal decision rule selects the action that moves the system to the preferred state with the
highest probability. The policy is evaluated by using dynamic programming, can be found in [1], which
is a technique for solving a complex problem by dividing it into a collection of simpler partial problems.
This method is used from the end of the planning period (horizon) to the beginning. Also, it should be
noted that the world influences the transition probability density of the system because the system is a
part of the world and if something influences the world it influences the system as well.

The fact that preferences affect policy is perhaps already obvious because optimized decision rule is
selected based on preferences, based on the user’s goal. In MDP the preferences are expressed by the
utility function.

The optimal policy should be the one that maximizes the expected utility function. The utility func-
tion quantitatively expresses the ’utility’ of the choice of action and it helps to mathematically measure
the quality of the choice and thus of the decision rule. The preferred states have higher utility for the
agent. So we want to maximize the expected utility/reward of every selected action and the following
state or we want to minimize the expected loss. The loss can be interpreted as a price that has to be paid
for deviation from preferred states and actions.

The utility function is compiled based on preferences and the ’compilation’ process forms the core of
preference elicitation.

1The probability density (pd) means probability density function for continuous values and probability for discrete values.
When handling them, we use often integral notation that means summing in the discrete case.

8



So before the beginning of the decision-making, we need to obtain the set of possibly observed states,
the set of admissible actions, the model of the system, the utility function describing preferences. Then
the decision-making is just an optimization problem. We need to find a sequence of decision rules that
minimizes the expected loss, measure the last observation (state) and generate the action according to the
optimal decision rule.

In this thesis, we work with a fully probabilistic design (FPD), see in [15], instead of MDP. FPD is an
alternative to MDP. FPD uses probability distribution instead of the utility function. Agent’s preferences
are reflected in the ideal probability distribution. FPD tries to get the real density as close as possible to
the ideal probability distribution. The ideal probability distribution assigns high values of probability to
preferred states and low values to undesirable states. The optimal policy is then evaluated as an argu-
ment of the minimum of the Kullback-Leibler divergence, can be found in [18], of the real probability
distribution and the ideal probability distribution. When we talk about preference elicitation it is easier to
work with this mathematical framework than with MDP as it is easier to work with ideal probability dis-
tribution than with the utility function. If the preferences are explicitly specified at the beginning of the
decision-making process, the task was solved satisfactorily as was shown in our previous work [14, 26].
However, if the agent has multiple preferences, the task no longer has a unique solution and it depends
only on the agent, which solution they prefer. Also, it can happen that the preferences can not be reached
because the agent has unfulfillable targets. The agent preferences do not always have to be achievable
because the transition probability density of the system and the probability distribution may differ from
the agent’s expectations. The agent may have completely unrealistic wishes. For example, winning a
marathon without ever running and preparing. It is possible because the agent can have some hidden
talent, but in reality, this probability is minuscule.

The main task of preference elicitation (PE) is to mathematically describe the user’s preferences
and optimally solve the DM problem. Preference elicitation is a process of extracting the necessary
information on preferences from the user. It is based on asking queries about the user’s preferences.
Every query costs the elicitation system some price, that is why it is very important to ask wisely and
limit the number of queries to compile the ideal probability distribution as accurately as possible with
the lowest costs.

Many articles deal with preference elicitation in various ways and use it for different DM problems.
For example in [3], PE is solved for partially observable Markov decision processes, which is the most
general MDP, where only observation is known and not the specific state. Moreover, in [10, 21] PE is
solved for a group recommender system, which tries to elicit a recommendation based on preferences of
individual users that satisfy all groups of individual users. In medicine [19] elicits patient preferences in
shared decision-making. There are groups of specific situations, in which the PE is used in some way.
We focus on observable states and one user’s preferences. The terms user2 and agent in this PE task
merge.

The main problems are contradicting preferences, duration and complexity of PE. The user may have
unreasonable goals, which cannot be achieved under the conditions of this decision-making process.
Allow us to give a few examples to make it easier to understand PE.

2The word ”user” is used more often when we talk about PE.
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Heating example The user wants to have a temperature of 22◦C in a given room and they do
not want to pay a lot of money for heating. The given room is a system, the states are individual
temperatures, the action is to turn up the heater or down and the world is the real surrounding
world of the room. If it is cold outside, it is needed to heat more, turn up the heater, until the
required room temperature has been reached, and vice versa.
Let it be cold outside. We have 19◦C in the room and we want to have 22◦C, but it means that
we must heat but we do not want to pay a lot of money. This is a contradictory preference. We
need to find a balance between the two conditions that will work best for the user. Because if we
only consider the condition for the action (pay less) it could happen that we would not heat at all
and we would not reach the preferred state 22◦C. And if we only consider the condition for the
preferred state, we will pay a lot. So we need to also consider a state, where we would not notice
such a difference from the preferred state, we would save more money and we would reach both
conditions. For example, we cannot feel such a difference when there is 21 or 21, 5◦C in the room
versus 22◦C and we can save more money for heat only for 21 or 21, 5◦C.

It is necessary to find a solution that would optimize both conditions. But every user is different and
they can prefer different combinations. They can also prefer 20◦C because they would rather get dressed
and save money when they find out how much the heating costs. But we do not know that, so we need to
ask questions and find out what combination is the best for the user.

Another example could be from a medical environment.

Pandemic example We have a spreading pandemic and we want to save as many lives as possible.
We want to restrict the movement of people and prevent the spread of a pandemic. On the other
hand, we do not want to affect the economy or education. It is a very complicated decision
problem. We also need to find a balance between saving lives and affecting the economy and
education. Here again, it is up to the user to which requirement he attaches more importance.

Or from the political environment.

Governing example We have a ruling political party that wants to be re-elected. For example,
it can spend money campaigning and getting voters before the election on its side. On the other
hand, it must have enough money in the treasury to be able to continue to govern well.

The biggest problems are:

• the user cannot fully quantify their preferences especially in a multi-attribute decision-making task

• the preference elicitation is prone to contradictions preferences

• the user is unwilling to spend too much deliberation effort and time on this hard decision-making
sub-task.

All these examples face uncertainty and users have inconsistent preferences. We need to find the
balance between the preferences to satisfy all user’s wishes3 as much as possible. This can be achieved
by additional questions and subsequent fine-tuning of the parameters of the preference description (loss
or ideal probability density) so that the user is as satisfied as possible. We need to find a constellation,
where no further improvements are possible.

3We use the term preference for more mathematical description and the wish for an informal human expression.

10



The idea is to reduce the uncertainty about the user’s preferences. The elicitation system has an
available set of queries, and each query associates a finite set of possible responses. We can have two
states which we compare and the query can be ’Do you like the first observation more than the other?’, as
in [11], then the response is Yes/No. Or we can ask ’Compare these two observations.’ The responses can
be ’I prefer first/I prefer second/I do not know.’ It can also be done on a finite set of chosen observations,
as in [27], and the query can be ’Choose the best observation.’

Figure 2: Scheme of the upper-level closed-loop for PE

In this thesis, we focus both on the initial phase of preferences description and then we ask additional
questions dynamically during DM. The foreseen choice of interactions with the agent is more dynamic
than usual. It shows a finite set of observations every unit of time and asks if the agent likes it. The
response is a number from 1 to 5 with the meaning marks at school. So the agent values how much they
like the sequence of the observations which we show them. And the process can end at a time when no
improvement will be possible and the marks will ideally converge to 1. As said above, the agent can
have inconsistent preferences so that the marks may approach 1 but do not need to be 1. We must allow
the sequence of observations long enough to make it clear that no improvement is possible. Also, every
agent will mark differently even if they will have the same wishes at the beginning. Every agent can be
differently demanding or they will understand during the DM process that they formulated their wishes
incorrectly. PE is very individual and it depends on the emotions and perception of the agent.

PE has some resemblance to the estimation of the model of the system. We try to learn about user’s
preferences by observing their marking and based on marks we select parameters of the ideal probability
density. It is a kind of closed-loop as well where parameters (sequences of states and actions of the main
DM closed-loop) are states and marks are actions. The scheme is in Figure 2.
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It is important to have at least some knowledge of preferences before the beginning of decision-
making, finer updating can be made during the process.

In FPD, PE consists of:

• a transformation of user’s wishes into a non-empty set of prospective ideal pds

• a choice of the optimal ideal pd within this set that adds as few additional user’s preferences as
possible.

The solution:

• unambiguously combines multiple attributes, see in [17]

• provides an ambitious, but potentially reachable, goal of the policy design

• suppresses contradictions and decreases the PE-related deliberation burden on the user

• simplifies the PE controlled by queries, see in [5, 7], by decreasing the number of optional meta-
parameters

In this thesis, we provide a methodology on how to compile the ideal probability density and solve
a decision-making problem. The structure of this thesis can be described as follows. Chapter 1 presents
a brief introduction to the mathematical model of MDPs, FPD, and Bayes’ learning. In core Chapter 2,
we find the ideal pd. Finally, we summarize the knowledge of the algorithm. It is used twice because
we have two closed-loops, the main closed-loop and the meta-closed-loop. Then, we talk about PE and
the dialogue with the user in Chapter 3 and we find the appropriate tools. This solution is then tested in
simulations in Chapter 4. Finally, the conclusion summarizes the work that has been done and suggests
future research.
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Chapter 1

Preliminaries

1.1 Notions and definitions

There are some notions and notations in the table below.

notion notation
naturals numbers N

a set of elements m M

m is an element of a setM m ∈ M
a function f
a probability of x or a probability density p(x)
cardinality of the setM |M|

an empty set ∅

definition by equality ≡

proportionality ∝

Table 1.1: Basic notation

• Probability density (pd) is the probability density function for continuous-valued x and the proba-
bility for discrete-valued x. The use of integrals for probability density is to be understood as sums
in the discrete case.

• A conditional probability density p(x|y) of x under the condition y is related to the joint pd p(x, y)
and marginal pd p(y) by the equation p(x|y) =

p(x,y)
p(y) for p(y) > 0.

• A chain rule for two events x, y is the equation p(x, y) = p(x|y)p(y), which is just another expres-
sion of the definition of conditional probability density.

• The argument of the maxima is defined as Argmaxx∈M[f(x)] ≡ {x|x ∈ M ∧ ∀y ∈ M : f(y) ≤ f(x)}.
The argument of the minima is similar.

• A p-norm ||f||p for p > 1 of a real-valued function f(x) on X reads ||f||p ≡
[∫
X
|f(x)|pdx

] 1
p .

• The support of the pd p is defined by supp[p] ≡ {x ∈ M : p(x) > 0}.
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Definition 1.1.1. (Kullback-Leibler divergence, see in [18]) If p, q are two pds on a set of X, then the
similarity of these two pds is measured be the Kullback-Leibler (KL) divergence

D(p||q) ≡
∫

x∈X
p(x) ln

(
p(x)
q(x)

)
dx. (1.1)

D ≥ 0 for all p, q and the equality D(p||q) = 0 occurs if and only if p = q for almost all x ∈ X. These
properties are proved in [18] .

Theorem 1.1.1. (Hölder’s inequality, see in [24] ) Let X be a measurable space with Lebesgue measure
µ. Let f, g : X −→ [0,∞) be a measurable functions on X, 1 < p, q < ∞. Let 1

p + 1
q = 1. Then, Hölder’s

inequality holds ∫
X
|f(x)g(x)|dx ≤

(∫
X
|f(x)|pdx

) 1
p
(∫
X
|g(x)|qdx

) 1
q

= ||f||p||g||q. (1.2)

The equality is reached for |f|p proportional to |g|q on X.

1.2 Markov decision process

Definition 1.2.1. A Markov decision process (MDP) is defined by an ordered set of five elements
{T,S,A,m, l} and policy π, where:

• The element T stands for a discrete, finite set of decision epochs T ≡ {0, 1, 2, · · · , |T|},
|T| ∈ N

• The element S denotes a finite set of possible observable states of the system. The set would
be S ≡ {s1, s2, · · · , s|S|}, for |S| ∈ N, where states are s j ∈ S, for ∀ j ≤ |S| ∈ N and S ⊂ R is a
subset of a space of real numbers R.

• The element A denotes a finite set of possible actions A ≡ {a1, a2, · · · , a|A|}, for |A| ∈ N,
where actions are a j ∈ A, for ∀ j ≤ |A| ∈ N where A ⊂ R is a subset of a space of real
numbers R.

• The element m is the transition pd, meaning that m(st|at, st−1) ≥ 0 and∫
st∈S

m(st|at, st−1)dst = 1, while m(st|at, st−1, vt−1) = m(st|at, st−1) for ∀st, st−1 ∈ S,
∀at ∈ A, ∀t ∈ T, where vt−1 ≡ (at−1, st−2, at−2, . . . ) are past observations to time t − 1 :
at−1, st−2, at−2, . . . , s1, a1, s0.

• A real valued function l = l(s̃, a, s) is called loss function, where s̃, s ∈ S, a ∈ A.

The function assigns a loss to the transition from the state s under the action a to the state
s̃.

• Policy π is a sequence of probability densities rt(a|s), where actions a = at are conditioned
by states s = st−1 and s ∈ S, a ∈ A, t ∈ T. They are called decision rules. They fulfill
rt(a|s) ≥ 0 a

∫
a∈A rt(a|s)da = 1 for ∀a ∈ A, ∀s ∈ S.

Comment: We would like to mention for clarity that the dimension of the transition pd for the
discrete case is |S| × |A| × |S| and the dimension of decision rules is |A| × |S|.
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As it is written in the Introduction, the decision-making problem is defined on the closed-loop formed
by the system and the agent. The system is a “cut out” part of the world. The system is described by
transition probability density between the states, in which the system can occur. The agent (the decision-
maker) observes the state of the system and based on it they choose the action that further influences
the transition of the system to the other state. The action is chosen by the agent’s policy. The policy π
consists of its sequence of decision rules r(a|s). The decision rule decides, which action will be chosen.

We need to find the decision rule in every step of the decision making, thanks to which the system
moves with the highest probability to the state that the agent wants. The best-chosen decision rule we
will call optimal decision rule.

The optimal decision rule chooses the action, which moves the system with the lowest loss to the
preferred state. The loss function can be interpreted as the energy that has to be released or the price that
has to be paid to perform the action and for a deviation from the preferred state. The information about
the preferred state is given before the beginning of the decision-making.

The transition pd m is called the model of the system. It expresses the agent’s assumptions about
the system. Then, they choose (by the model) the action, which moves the system with the highest
probability density to the preferred state. The model has to be given before the beginning of the decision
making and then we will improve it by Bayes learning 1.4 during the decision process. In the considered
discrete cases, the model of the system is described by transition probability between the states.

The transition probability is given only by the current state and the chosen action m(s̃|a, s, v) =

m(s̃|a, s). This is the key property of the Markov decision process.
So before the decision making we have to know

• the set of possibly observed states S

• the set of admissible actions A

• the model of the system m(s̃|a, s)

• the loss l(s̃, a, s) quantifying the information about preferences, typically characterized by a set of
preferred states Si and a set of preferred actions Ai

Then the decision making is just an optimization problem and we are looking for optimal policy. We
have to

• find a sequence of decision rules that minimizes the expected loss

• measure the last observation (state) and generate the action according to the optimal decision rule

1.3 Decision making via fully probabilistic design

As it is written above, we try to solve the decision problem. We have already described the mathe-
matical framework that is the most often used for solving the DM problems in Section 1.2. It refers to the
agent associated with its uncertain system into the closed-loop. The standard Markov decision process
solution is based on the minimization of the expected values of the loss function (or the maximization
of the expected utility). It is the basis for the majority of the systematic solutions for decision-making
tasks. However, it has various limitations (e.g. computational complexity or difficulty of combining
partial preferences). Therefore, an alternative was sought and a fully probabilistic design (FPD), can be
found in [14], was proposed.

FPD is less computationally demanding in terms of this thesis and its main advantage is that it in-
troduces the so-called ideal probability density of behaviour, that reflects the agent’s preferences and to
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which the real probability density of behaviour tries to get closer. It means that the agent says the prefer-
ences and based on that the ideal probability of behaviour (defined below) is compiled. The probability
of behaviour consists of the transition pd and the decision rules, as in the Markov decision process, from
which it was derived. Then, the real pd of the behaviour and the ideal pd tries to get as close as possible
by selecting an appropriate policy. This proposal is based on the fact that the minimization of the loss
function can be understood as an attempt to the influence probability density of the closed-loop variables.

We have outlined where the fully probabilistic design comes from and what it has in common with
the Markov decision process, and now we move on to the more mathematical definitions of the design.

So first the agent observes the state of the system in every decision epoch and according to it they
choose the action at ∈ A , ∅ at every discrete time t ∈ T, which influences the closed-loop by stimulating
transitions of the system from the state st−1 ∈ S to state st ∈ S. A collection of actions and states to the
horizon T ≡ |T| describing the behaviour of the closed-loop (agent-system) is

b ≡ (s0, a1, s1, a2, s2, . . . , aT , sT ) ∈ B. (1.3)

The choice of the actions at, t ∈ |T| is made by the decision policy of the agent π ∈ Π consisting of the
sequence of the decision rules

π ≡ (r(a1|s0), r(a2|s1), . . . , r(aT |sT−1)). (1.4)

As it can be seen in the definition of the decision rule r(at|st−1), the decision rule chooses the next
action based on the state, in which the system is situated at the moment.

The behaviour of closed-loop is fully described by the probability density cπ(b) depending on the
policy π. The probability density can be written by the chain rule as

cπ(b) =
∏
t∈T

m(st|at, st−1)r(at|st−1), 1 (1.5)

where probability density m(st|at, st−1) describes transitions of the states of the system. It is the model of
the system. It stores the agent’s assumptions about the transitions of the system’s states. It can be known
or it can be estimated and improved during the decision process according to the observed states and
chosen actions. This will be more explained in Section 1.4. The sequence of the probability densities is
briefly denoted

m ≡ (m(s1|a1, s0),m(s2|a2, s1), . . . ,m(sT |aT , sT−1)). (1.6)

This defines pd modelling the real behaviour of the agent. Now let us focus on the ideal behaviour,
which gives the FPD peculiarity and “simplicity” and it is the main property of FPD. As it was said
before FPD uses ideal probability density, which reflects the agent’s preferences. The ideal pd gives high
values of pds to preferred states and actions and low values to undesirable states and actions. The ideal
model of the system mi should have high values of transition pd to the preferred state. If we denote the
preferred state as s j, the ideal model should fulfil follows.

mi(si|at, st−1) ≥ mi(s j|at, st−1), (1.7)

where si , s j ∈ S for ∀ j ≤ n ∈ N, where n indicates the number of all states.
The FPD tries to get the real probability density (1.5) as close as possible to the ideal probability

density written as follows
ci(b) =

∏
t∈T

mi(st|at, st−1)ri(at|st−1), (1.8)

1The initial state s0 is given before the beginning of the decision-making and we take it as deterministic. The initial state
also cannot be influenced by the agent.
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where mi(st|at, st−1) is an ideal model of the system representing the ideal dynamic of the system (tran-
sition probability density between states) and ri(at|st−1) is an ideal decision rule. Both of these factors of
the ideal probability density of behaviour give high values to the preferred ones. So the ideal model of
the system gives high probability values to transitions to the preferred states and the ideal decision rule
gives high probability values to the preferred actions. The ideal probability density of behaviour reflects
the agent’s preferences and has the same factors as the real probability density (1.5). We try to bring each
real factor as close as possible to the ideal factors. How to find the ideal factors is described in Chapter
2.

The optimal policy is found as the argument of the minimum of the Kullback-Leibler divergence,
defined in Definition 1.1.1, of the real probability density to the ideal one. The ideal pd expresses
the agent’s preferences. So it has to be given before the decision making. But often it is not given
unambiguously, this case is addressed in detail in the next chapter.

The two models of the closed-loop cπ(b), ci(b) can be brought near by minimization of the Kullback-
Leibler divergence. The optimal decision policy, can be found in [14], is given by

πo ∈ Arg min
π∈Π

D(cπ||ci) = Arg min
π∈Π

∫
b∈B

cπ(b) ln
(cπ(b)

ci(b)

)
db. (1.9)

Theorem 1.3.1. (FPD, see in [25]) Decision rules, which constitute the optimal decision policy π0, are
computed as follows

ro(at|st−1) ≡ ri(at|st−1)
exp[−d(at, st−1)]

h(st−1)
, (1.10)

where

d(at, st−1) ≡
∫

st∈S
m(st|at, st−1) ln

[
m(st|at, st−1)

h(st)mi(st|at, st−1)

]
dst

h(st−1) ≡
∫

at∈A
ri(at|st−1) exp[−d(at, st−1)]dat,

(1.11)

t = T,T − 1, . . . , 1 and h(st) ∈ [0, 1], h(sT ) ≡ 1.
Backwards recursion starts in h(sT ) = 1 ≥ h(st),∀t ∈ T. The achieved minimum is

min
π∈Π

D(cπ||ci) = − ln(h(s0)). (1.12)

The proof can be found in [25].

Remark The − ln(h(s0)) is the FPD version of value function in MDP, defined in [23].

1.4 Bayesian learning of Markov Chain

The FPD presupposes the knowledge of the model of the system for finding the optimal policy. But if
we do not have enough knowledge about the model of the system we have to estimate it. It can be guessed
at first subjectively and the initial ideas can be improved by Bayes’ learning, can be found in [22], during
the decision making.

So we have a parametric model of the system m(st|at,Kt−1, θ),where Kt−1 ≡ (st−1, at−1, . . . , s1, a1, s0)
are the past observation up to time t − 1.
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Theorem 1.4.1. (Bayesian Learning, see in [13], [22]) Let θ be unknown to the designed decision rules.
This postulates independence of at and θ when conditioned by the knowledge Kt−1 (cf. natural conditions
of control)

r(at|Kt−1) = f(at|θ,Kt−1) ⇐⇒ r(θ|at,Kt−1) = f(θ|Kt−1). (1.13)

The parametric model m(st|at,Kt−1, θ) with this unknown2 θ ∈ Θ is given. Then, the predictive pd reads

m(st|at,Kt−1) =

∫
Θ

m(st|at,Kt−1, θ)p(θ|Kt−1)dθ, (1.14)

It uses the Bayesian parameter estimation, which evolves posterior pd p(θ|Kt−1), t > 1. It is the sufficient
statistic for constructing parameter estimators. The data updating evolves p(θ|Kt−1), independently of
r(at|Kt−1),

p(θ|Kt) =
m(st|at,Kt−1, θ)p(θ|Kt−1)

m(st|at,Kt−1)
∝ m(st|at,Kt−1, θ)p(θ|Kt−1). (1.15)

The recursion is initiated by the prior pd p(θ) ≡ p(θ|a1,K0) = p(θ|K0).

The assumed parametric model belongs to the exponential family, i.e. it has the form

m(st|at,Kt−1, θ) = m(Ψt, θ) = A(θ) exp〈B(Ψt),C(θ)〉, (1.16)

where Ψt is data vector combining st and a regression vector ψt = ψ(at,Kt−1). A(.) is a non-negative
scalar function defined on Θ,B(.),C(.) are functions of 〈., .〉− compatible and finite dimensions on sets
of data vectors and parameter. The symbol 〈., .〉 is the scalar-valued function, linear in the first argument.

We assume the Markov property ψt ≡ (at, st−1) and the finite amount of realizations of data vector.
Then, the most general parametric model is Markov chain with unknown transition pds, described via
Kronecker’s delta

m(st|ψt,Θ) =
∏

Ψ=(s,ψ)

θδ(Ψ,Ψt)
s|ψ = exp[

∑
Ψ=(s,ψ)

δ(Ψ,Ψt)︸   ︷︷   ︸
Bs|ψ(Ψ)

ln(θs|ψ)︸  ︷︷  ︸
Cs|ψ(Θ)

]

θ ∈ Θ ≡ {θs|ψ > 0,
∑
s∈S

θs|ψ = 1}. (1.17)

It belongs to the exponential family and has Dirichlet pd as the conjugate prior

p(θ) = Diθ(V0) =
∏
ψ∈ψ∗

∏
s∈S θ

V0(s|ψ)−1
s|ψ

Be(V0(.|ψ))
(1.18)

Be(V(.|ψ)) ≡
∏

s∈S Γ(V(s|ψ))
Γ(

∑
s∈S V(s|ψ))

,

where Γ(.) is gamma function. It can be re-written as follows

p(θ|K0) ∝
∏

Ψ

θ
V0(s|ψ)−1
s|ψ = exp

 ∑
Ψ=(s,ψ)

V0(s|ψ) ln(θs|ψ)

 = p(θ|V0). (1.19)

Obviously, then the Bayes rule (1.15) preserves the shape and

p(θ|Kt) = p(θ|Vt) (1.20)

for Vt(s|ψ) = Vt−1(s|ψ) + δ(Ψ,Ψt), where Ψt = (st, ψt) = (st, at, st−1) is made of the observed data.
This provides the needed learning.

2Lack of fonts forced us to violate our agreement on the set notation
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Theorem 1.4.2. (Bayesian Learning of Markov Chain)
Let the initial value V0 of the statistic V be given, V0 > 0, and let st, at, st−1 be specific measured

values at the time t ∈ T. Then the value of the statistic Vt updates as

Vt(s̃|a, s) =

{
Vt−1(s̃|a, s) (s̃, a, s) , (st, at, st−1)

Vt−1(s̃|a, s) + 1 (s̃, a, s) = (st, at, st−1)
(1.21)

where st, st−1, s̃, s ∈ S, a, at ∈ A.

The model of the system is the predictive pd

m(s̃|a, s,V = Vt−1) =
V(s̃|a, s)∑

s̃∈S V(s̃|a, s)
. (1.22)

Its used certainly-equivalent approximation fixes Vt−1 during the optimization of decision rules, i.e. sets
m(s̃|a, s) ≈ m(s̃|a, s,V).
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Chapter 2

Generic and Specific PE in FPD

This chapter is based on the research from the article [16]. Its theorems are presented with proofs
as [16] is yet unpublished. We are going to define the equations of how to assemble the components of
the ideal distribution. At first, we will talk about the ideal distribution in general and then we will define
equations first for the ideal model of the system and then for the ideal decision rule.

The ideal pd ci (1.8) expresses the agent’s preferences. PE within FPD is to find the optimal ideal
pd cio. However, the specification of preferences is not always complete due to misrepresentation to
the agent of preference. The generic incomplete description of the the agent’s preferences partially
characterizes the suitable ideal joint pd. The incompleteness of the description implies that the set

Ci ≡ {ideal pds ci(b), b ∈ B, respecting agent’s preferences} (2.1)

includes more pds. On the other hand it can be also empty because of the agent’s inconsistencies. The
agent’s preferences can be in contradiction or the agent can have unachievable goals.

The PE then consists of the choice of:

• the non-empty set Ci that overcomes inconsistencies of agent’s preferences

• the optimal closed-loop ideal pd cio from the set (2.1).

The PE principle from [15] recommends to choose as the optimal ideal closed-loop pd

cio ∈ Arg min
ci∈Ci

min
π∈Π

D(cπ||ci). (2.2)

Its use in FPD ensures that no additional preferences are added to those expressed by the agent. Then,
cf. (1.11), (1.12), (2.2), the optimal closed-loop ideal pd cio reads

cio ∈ Arg min
ci∈Ci

min
π∈Π

D(cπ||ci)
(1.12)

= Arg min
ci∈Ci

(− ln(h(s0))) = Arg min
ci∈Ci

ln
(

1
h(s0)

)
(2.3)

If ln
(

1
h(s0)

)
should be minimal and ln() is increasing function then the argument must be also minimal.

And the fraction 1
h(s0) is minimal if h(s0) is maximal. Then the optimization can be written as follows

Arg min
ci∈Ci

ln
(

1
h(s0)

)
= Arg min

ci∈Ci

1
h(s0)

= Arg max
ci∈Ci

h(s0) = Arg max
ci∈Ci

∫
a1∈A

ri(a1|s0) exp[−d(a1, s0)]da1.

(2.4)
In summary, the overall result is as follows

20



cio ≡ miorio ∈ Arg max
ri∈Ri

[
max
mi∈Mi

∫
a1∈A

ri(a1|s0) exp[−d(a1, s0)]da
]

d(a1, s0) =

∫
s1∈S

m(s1|a1, s0) ln
( m(s1|a1, s0)
h(s0)mi(s1|a1, s0)

)
ds1, (2.5)

h(s0) comes from the previous backward recursion via step (1.11).
The minimization over a ci- factor (ci(st|at, st−1) = mi(st|at, st−1)r(at|st−1)) in any decision epoch

t ∈ T and for any realized state st−1 are formally identical. Therefore, we can suppress t and st−1 ∈ S and
deal with m(s|a) ≡ m(st = s|at = a, st−1), mi(s|a) ≡ mi(st = s|at = a, st−1), r(a) ≡ r(at = a|st−1), ri(a) ≡
ri(at = a|st−1) and h(s) = h(st = s).

The optimization (2.5) considers the given h(s) and runs overMi (a set of mi-s) of Ci determined by
a given ri and over the set Ri (a set of ri-s) for which ci = miri- factors are in the set

{ci(s, a) : ci(s, a) = mi(s|a)ri(a), s ∈ S, a ∈ A, respecting agent’s preferences}. (2.6)

We first perform the optimization (2.5) for a quite general choice of setsMi,Ri (Sections 2.1, 2.2). Then
we specialize it to a specific but still general case.

2.1 The generic choice of optimal ideal model of the system

Theorem 2.1.1. (Optimal mio-Factor) Let ri ∈ Ri be a fixed ideal decision rule, which defines a non-
empty cross-empty Mi ≡ {mi : miri ∈ set (2.6)}. Let mi(s|a) ∈ Mi exist such that d(a) < ∞, ∀a ∈ A
(1.11). Then, the optimal ideal mio−factor minimises d(a), s ∈ S, a ∈ A, i.e.

mio(s|a) ∈ Arg max
mi∈Mi

∫
A

ri(a) exp[−d(a)]da = Arg min
mi∈Mi

d(a). (2.7)

Proof We first start with a simple consideration and then we will formally prove it. For the fixed ri

the integral is maximal if the exp[−d(a)] is maximal. And because e−x is decreasing function of x ≥ 0,
the maximum of exp[−d(a)] is reached by the minimal d(a).

And formally, for Mi , ∅ and any a ∈ A, a minimiser mi? ∈ Mi of d(a) ≥ 0 exists giving the value
d?(a) ≤ d(a), where d(a) is the value obtained for an arbitrary mi ∈ Mi and the same h see (1.11). This
implies that d?(a) < ∞ and exp(−d?(a)) ≥ exp(−d(a)). Multiplication of this inequality by ri(a) ≥ 0 and
the integration over the set A implies that mio = mi?. �

2.2 The generic choice of optimal ideal decision rule

The decision rule decides, which action will be chosen. So the decision rules must work on the set
of admissible actions. Then, the support supp[r] of an admissible r-factor should be included in the set
of possible actions A. The form of the FPD-optimal ro-factor of the optimal ideal pd cio, Theorem 1.3.1
implies that supp[ro] ⊆ supp[ri]. Therefore, only the ideal ri-factors

ri ∈ Ri ≡

{
ri : supp[ri] = A

}
(2.8)

keep actions a ∈ A and exclude none.
Consequently, (2.8) is the generic constraint on the setRi ≡ {ri : miori ∈ (2.6) while mio is given by (2.7)}.
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Theorem 2.2.1. (Optimal rio-Factor Meeting (2.8)) Let assumptions of Theorem 2.1.1 hold and for a
scalar p > 1

Ri ≡

{
ri : supp[ri] = A and ||ri||p ≡

[∫
A

(ri(a))pda
]1/p

< ∞

}
(2.9)

while
|A| ≡

∫
A

da < ∞. (2.10)

Then, the optimal ideal rio-factor reads, cf. (1.11), (2.7)

rio ∝ χA(a) exp[−νdo(a)], ν ≡
1

p − 1
, (2.11)

do(a) ≡
∫
S

m(s|a) ln
(

m(s|a)
h(s)mio(s|a)

)
ds

(2.7)
≤ d(a)

where χA(a) is the indicator function of the set A. The rio-factor (2.11) belongs to (2.9) and meets (2.8).

Proof The non-negativity of d(a) implies that exp(−d(a)) ∈ [0, 1], which with (2.10) provides that
|| exp(−do)||q < ∞ on A for q ≡ p

p−1 = pν. We are looking for the optimal ideal decision rule which will
fulfil the equation

rio(a) ∈ Arg max
ri∈Ri

∫
A

ri(a) exp[−do(a)]da.

At first, we will bound the integral using of Hölder’s inequality defined in Theorem 1.1.1,

∫
A

ri(a) exp[−do(a)]da =

∫
A
|ri(a) exp[−do(a)]|da ≤

(∫
A
|(ri(a))|pda

) 1
p
(∫
A
|(exp[−do(a)])|qda

) 1
q

=

||ri(a)||p|| exp[−do(a)]||q, (2.12)

We talk about pd so all of these functions are non-negative, i.e. we do not need absolute values. To have
both sides of (2.12) equal, we need the factors integrated on the left-hand side linearly dependent. So it
can be seen that

(rio(a))p ∝ (exp[−do(a)])q

rio(a) ∝ (exp[−do(a)])
q
p

rio(a) ∝ exp[−
q
p

do(a)] = exp[−νdo(a)]. (2.13)

The finiteness of do(a) < ∞ on A is guaranteed by assumptions of Theorem 2.1.1. This makes rio

(2.13) positive on A therefore (2.8) is met. �

Remarks

• The generic constraint (2.8) implies that the ideal ri-factors support exploration, which makes
Bayesian learning efficient. It is well seen on Section 1.4: if some action a ∈ A is unused the
corresponding V(s̃, a, s) does not evolve. No action from A is a priori forbidden.

• The value function − ln(h(s)) from Theorem 1.3.1 influences the rio-factor (2.11) via do(a) but not
the mio-factor.
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2.3 The specific choice ofMi making Ci , ∅

This section makes the generic solutions of Sections 2.1, 2.2 more specific and guarantees thatCi = ∅.
The optimal ideal rio-factor is uniquely given by choice of mio (and by the opted ν) via (2.11). The
description of the agent’s preferences is thus reduced to those given by a non-empty setMi. This means
that a wide range of practical cases will be covered with a few additional PE-oriented queries. Our
specific case concerns the following general wish of the agent.

The agent wants to reach given sets of ideal statesSi and actionsAi, ∅ , Si ⊂ S, ∅ , Ai ⊆ A. (2.14)

This requirement is quantified as the preference to assign the highest probability to the set of ideal
states Si and actions Ai (2.14) by closing the loop of the given model of the system m and of the optimal
ideal decision rule rio. So we define the optimized functional by the equation∫
A
ρ(a)rio(a)da ≡

∫
A

[∫
S
χSi(s)m(s|a)ds + wχAi(a)

]
rio(a)da and we want it as large as possible. (2.15)

The introduced weight w ∈W ≡ [0,∞) parametrize how much the agent prefers to stay in Ai relative
to being in Si.

The inspected problem has a meaningful solution if

ρ(a) =

∫
S
χSi(s)m(s|a)ds + wχAi(a) > 0, on A. (2.16)

If the functional (2.15) is large, then the probability of the preferred sets is also large. The part∫
S
χSi(s)m(s|a)ds forces the model of the system to have the highest probability of the set Si. And the

part wχAi(a)rio(a) should guarantee that the ideal decision rule will choose the actions from the set Ai

relatively often. The weight w balances these probabilities.

Remarks

• The weight is here fixed at 0 ≤ w < ∞. Its fine-tuning is to be made by PE controlled by additional
queries. However, the weight cannot be too high, because then only the set of actions Ai would be
preferred and staying in Si would be neglected. Therefore, we will examine the weight w ∈ [0, 1].

• The function determining ρ(a) qualitatively plays the role of the reward of MDP. Our construction
of the optimal ideal pd cio quantifies the agent’s preferences in an ambitious but realistic way.

Maximization of (2.15) with rio given by (2.11) is complicated and it will be addressed in a few steps.

Theorem 2.3.1. (Optimal Value of do) Under assumptions of Theorem 2.2.1, covering those of The-
orem 2.1.1, and under (2.16), the optimal ideal model mio fulfilling (2.15) determines do(a), giving
rio = ri(mio) (2.11), a ∈ A, as a function meeting the equation

do(a) = do(ā) + ln
(
ρ(ā)
ρ(a)

)
≡ do(ā) + ln

(
maxa∈A(ρ(a))

ρ(a)

)
, ā ∈ Arg max

a∈A
(ρ(a)) ≡ Ā. (2.17)

Proof By construction ||rio||p < ∞ and the finite volume of A (2.10) implies ||ρ||q < ∞ for q =
p

p−1 = pν.
Hölder’s inequality, Theorem 1.1.1, applied to (2.15)

∫
A
|ρ(a)rio(a)|da ≤

(∫
A
|(rio(a))|pda

) 1
p
(∫
A
|(ρ(a))|qda

) 1
q

(2.18)
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implies that the inequality becomes equality on A if the arguments are linearly dependent. For ν =
q
p

(rio(a))p = κp(ρ(a))q

rio(a) = κρ
q
p (a) = κρν(a)

(2.11)︷︸︸︷
=

exp[−νdo(a)]∫
A

exp[−νdo(a)]da
, a ∈ A. (2.19)

The factor κ is determined by the normalization requirement

κ =
1∫

A
ρν(a)da

> 0 (2.20)

due to the finite volume of the set of actions. Also, the normalizing factor

J(do) ≡
∫
A

exp(−νdo(a))da ∈ (0,∞) (2.21)

due to the finiteness of do and the finite volume of the action set. The logarithmic version of equation
(2.19)

ln(ρν(a)) = ln
(
exp[−νdo(a)]

κJ(do)

)
=⇒ ln(ρν(a)) + ln(κJ(do)) = −νdo(a)

do(a) = −
1
ν

ln(κJ(do)) − ln(ρ(a)) ≡ Φ − ln(ρ(a)), a ∈ A. (2.22)

The scalar value Φ does not depend on a specific action value. Thus, it has to meet (2.22) for any
fixed ā. The choice we made is

Φ = do(ā) + ln
(

max
a∈A

(ρ(a))
)
, ā ∈ Arg max

a∈A
(ρ(a)) ⇔ ā ∈ Arg min

a∈A
do(a), (2.23)

which gives (2.17). �

2.3.1 The specific choice of mi

Theorem 2.3.2 (Solvability of (2.17)). Under (2.16) and |A| < ∞, the smallest do(ā) exists such that
(2.17) has a solution mio(s|a), s ∈ S, ∀a ∈ A (2.23).

Proof Properties of the KLD conditioned by a ∈ A (and implicitly on st−1) imply that the values
do(a) ∈ [−

∫
S

m(s|a) ln(h(s))ds,∞] ⊂ [0,∞]. Indeed, the option mio(s|a) ≡ m(s|a) attains the lower
bound. The upper bound is reached for mio(s|a) singular with respect to m(s|a), i.e. being zero on a subset
of S to which m(s|a) assigns a positive probability. Thus, the smallest do(ā) guaranteeing solvability of
(2.17) ∀a ∈ A is

0 ≤ do(ā) ≤ max
a∈A

∫
S

m(s|a) ln
[

ρ(a)
ρ(ā)h(s)

]
ds. (2.24)

Because it applies

max
a∈A

∫
S

m(s|a) ln
[

ρ(a)
ρ(ā)h(s)

]
ds ≥

∫
S

m(s|ā) ln
[

ρ(ā)
ρ(ā)h(s)

]
ds =

∫
S

m(s|ā) ln
[

1
h(s)

]
ds (2.25)
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for |A| < ∞, h(s) ∈ (0, 1] and ρ(a) > 0. The maximum in (2.24) is finite and the range of do(ā) implies
existence of mio(s|ā) with do(ā) (2.24). �

The ideal mio gives do(a) (1.11) and rio(mio) via (2.7). The next proposition provides it for generic
pds m(s|a). It requires to find mio giving do (2.17) on A.

Theorem 2.3.3. (mio Meeting (2.15), Generic m(s|a)) Let m(s|a), f orsomea ∈ A, be non-uniform on S
and Theorem (2.2.1) hold. Then, the mio−factor meeting (2.15) has the form

mi(s|a) =
m(s|a) exp(−e(a)m(s|a))∫
S

m(s|a) exp(−e(a)m(s|a))ds
. (2.26)

It is well defined at least for |S| ≡

∫
S

ds < ∞. (2.27)

The real valued e(a) in (2.26) is the existing solution of L(e(a)) = R(a). For do(ā) meeting (2.24) with
ā ∈ Arg maxa∈A, the left- and right-hand sides of this equation are

L(e(a)) ≡ e(a)Λ(a) + ln
(∫
S

m(s|a) exp[−e(a)m(s|a)]ds
)
,

Λ(a) ≡
∫
S

m2(s|a)ds > 0

R(a) ≡ −

∫
S

m(s|a) ln
(
m(s|a)
h(s)

)
ds + do(ā) + ln

(
ρ(ā)
ρ(a)

)
, ā ∈ Arg max

a∈A
ρ(a) ≡ Ā. (2.28)

Proof Substituting (1.11) into the equation (2.17) we get

do(ā) + ln
(
maxa∈A(ρ(a))

ρ(a)

)
=

∫
S

m(s|a) ln
[

m(s|a)
h(s)mi(s|a)

]
ds (2.29)

−

∫
S

m(s|a) ln(mi(s|a))ds =

∫
S

m(s|a) ln
(

h(s)
m(s|a)

)
ds + do(ā) + ln

(
maxa∈A(ρ(a))

ρ(a)

)
. (2.30)

For a fixed a ∈ A and non-uniform m(s|a), the equation (2.30) is integral equation for an unknown
function − ln(mi(s|a)). We want to find its particular solution − ln(mi(s|a)) = e(a)m(s|a) + v(a) with
the optional scalar-valued e(a) and v(a). Formally, − ln(mi(s|a)) has a constituent o(s|a) orthogonal to
m(s|a), i.e. meeting

∫
S

m(s|a)o(s|a)ds = 0. This part has no influence on the do(a) value so we did not
need to use it in generic case. The inspected form of − ln(mi(s|a)) and the normalization give (2.26).

By substituting the equation for mi(s|a) (2.26) into (2.30) for a ∈ A \ Ā we get the equations for the
opted e(a) in (2.26)
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L(e(a)) = R(a), where

L(e(a)) ≡ e(a)Λ(a) + ln
(∫
S

m(s|a) exp[−e(a)m(s|a)]ds
) ∫
S

m(s|a)ds︸        ︷︷        ︸
=1

= e(a)Λ(a) + ln
(∫
S

m(s|a) exp[−e(a)m(s|a)]ds
)
,

Λ(a) ≡
∫
S

m2(s|a)ds > 0

R(a) ≡ −

∫
S

m(s|a) ln
(
m(s|a)
h(s)

)
ds + do(ā) + ln

(
maxa∈A ρ(a)

ρ(a)

)
≥ 0

= −

∫
S

m(s|a) ln
(
m(s|a)
h(s)

)
ds + do(ā) + ln

(
ρ(ā)
ρ(a)

)
, ā ∈ Arg max

a∈A
ρ(a) ≡ Ā.

Under (2.16), the right-hand side R(a) is bounded on A. It remains to verify existence of e(a) solving
(2.28) for each a ∈ A. The first derivative of L(e(a)) with respect to e(a), a ∈ A, reads

dL(e(a))
de(a)

= Λ(a) +
1∫

S
m(s|a) exp[−e(a)m(s|a)]ds

d
(∫
S

m(s|a) exp[−e(a)m(s|a)]ds
)

de(a)

= Λ(a) +
1∫

S
m(s|a) exp[−e(a)m(s|a)]ds

∫
S

∂

∂e(a)
m(s|a) exp[−e(a)m(s|a)]ds

= Λ(a) +
1∫

S
m(s|a) exp[−e(a)m(s|a)]ds

∫
S

m(s|a) exp[−e(a)m(s|a)](−m(s|a))ds

= Λ(a) −
∫
S

m(s|a)mi(s|a)ds. (2.31)

The second derivative is the positive variance of m(s|a) concerning mi(s|a)

d2L(e(a))
de2(a)

= −

∫
S

m2(s|a)
exp[−e(a)m(s|a)](−m(s|a))∫
S

m(s|a) exp[−e(a)m(s|a)]ds
ds

−

∫
S

m2(s|a) exp[−e(a)m(s|a)]ds(∫
S

m(s|a) exp[−e(a)m(s|a)]ds
)2

∫
S

m(s|a) exp[−e(a)m(s|a)](−m(s|a))ds

=

∫
S

m2(s|a)mi(s|a)ds −
[∫
S

m(s|a)mi(s|a)ds
]2

> 0.

Thus, L(e(a)) is a convex function of e(a), which is monotonous whenever the derivative (2.31) non-zero.
The zero variance i.e. excluded constant m(s|a). For e(a) = 0, L(0) = 0 ≤ R(a) as R(a) ≥ 0 due to (2.24)
and (2.17). For the non-constant m(s|a), lime(a)→∞ L(e(a)) = ∞ as Λ(a) > 0. The case Λ(a) = 0 is
excluded by the normalisation

∫
∼

m(s|a)ds = 1.
Thus, the left-hand side L(e(a)), continuously dependent on e(a), intersects R(a) at most for two

values of e(a) solving the inspected equation. The solution leading to the smaller (non-negative) value
do(a) is the proper one. The strict convexity guarantees that the numerical search for the solution is
trouble-less. �
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Theorem 2.3.4. [mio Meeting (2.15), Uniform m(s|a)] For uniform pd m(s|a) on S with |S| < ∞, the
optimal mio-factor meeting (2.17) has the form

mi(s|a) =
exp[−e(a)o(s|a)]∫
S

exp[−e(a)o(s|a)]ds
(2.32)

for an arbitrary non-zero o(s|a) with
∫

s o(s|a)ds = 0. The real valued e(a) is that of the pair existing
solutions of (2.33), which makes the corresponding do(a) smaller.

L(e(a)) ≡ ln


∫
S

exp[−e(a)o(s|a)]ds

|S|

 (2.33)

= R(a) ≡ do(ā) +

∫
S
m(s|a) ln

[
h(s)ρ(ā)
ρ(a)

]
ds.

Proof Let us consider a ∈ A with a uniform m(s|a). Then, (2.17) with do(ā) given by (2.24) is Fred-
holm’s integral equation for the unknown function ln( m(s|a)

mio(s|a) ), s ∈ S. Its particular solution is searched

in the form ln( m(s|a)
mi(s|a) ) = e(a)o(s|a) + v(a). The choice

∫
S

o(s|a)ds = 0 makes o(s|a) orthogonal to the
uniform m(s|a) and gives (2.32). The definition of d(a) (1.11) and the equation (2.17) provides (2.33).

Inspection of the 1st and 2nd derivatives of L(e(a)) in (2.33) with respect to e(a) shows that it is
convex function for inevitably non-constant o(s|a).

The left-hand side L(e(a)) of (2.33) is zero for e(a) = 0, while right-hand side is non-negative for
do(ā) (2.24). Also, lime(a)→±∞ L(e(a)) = ∞ as o(s) must be negative (positive) on a subset of S of a
positive volume. This implies nature and existence of the solution of (2.33). �

2.4 Algorithmic summary for discrete-valued states and actions

The obtained optimization is summarized in Algorithm 1. It is written for the simple case of the
closed-loop with a finite amount of possible states and actions. We show the overall evaluation structure
without the need to cope with nontrivial integrations and potential violations of finiteness assumptions
(2.10), (2.27). The conditioning state s̃ = st−1 is explicitly written there.
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Algorithm 1 FPD with Preference Quantification for Behaviours with a Finite Number of Realisations

Inputs
X Finite sets of states S and actions A, subsets of ideal states ∅ , Si ⊂ S and actions ∅ , Ai ⊂ A

X The relative weight w ≥ 0 of sets Si, Ai % (2.15)
X Environment model m(s|a, s̃), s, s̃ ∈ S, a ∈ A
X Design horizon T , the exploration controlling ν > 1 and the value function h(s) ≡ 1, ∀s ∈ S%(1.11)

Evaluation of h-independent variables
For s̃ ∈ S do

For a ∈ A do
ρ(a|s̃) =

∑
s∈Si m(s|a, s̃) + χAi(a)w % (2.15)

Λ(a|s̃) ≡
∑

s∈Sm2(s|a, s̃) % (2.28)
end of a ∈ A

ā(s̃) ∈ Arg maxa∈A ρ(a|s̃) % (2.17)
ρ̄(s̃) = ρ(ā(s̃)|s̃) % (2.17)

end of s̃ ∈ S
Design cycle for t = T,T − 1, . . . , 1:

Evaluation of h-dependent variables
For s̃ ∈ S do

do(ā(s̃)) ≡ max
{
0,maxa∈A

[∑
s∈Sm(s|a, s̃) ln

[ ρ(a|s̃)
ρ̄(s̃)h(s)

]] }
% (2.24)

For a ∈ A do
do(a|s̃) = do(ā(s̃)) + ln

(
ρ̄(s̃)
ρ(a|s̃)

)
% (2.17)

If m(s|a, s̃) is not uniform
R(a|s̃) = do(a|s̃) +

∑
s∈Sm(s|a, s̃) ln(h(s)) % (2.28)

Find e(a|s̃) in R(a|s̃) = e(a|s̃)Λ(a|s̃) + ln
(∑
S exp[−e(a|s̃)m(s|a, s̃)]

)
% (2.28)

mio(s|a, s̃) ∝ exp(−e(a|s̃)m(s|a, s̃)) % (2.26)
else
Choose o(s) such that

∑
s∈S o(s) = 0

Find e(a|s̃) in ln
[∑

s∈S
exp[−e(a|s̃)o(s)]

|S|

]
= do(ā(s̃) + 1

|S|

∑
s∈S ln

[
h(s)ρ̄(s̃)
ρ(a|s̃)

]
Set mio(s|a) ∝ exp[−e(a|s̃)o(s)]. % (2.32)
end if on uniform m
rio(a|s̃) = exp[−νdo(a|s̃)] % (2.11)

end of a ∈ A
rio(a|s̃) =

rio(a|s̃)∑
A rio(a|s̃) , a ∈ A % (2.11)

n(s̃) =
∑

a∈A rio(a|s̃) exp[−do(a|s̃)] % (1.11)
ro(a|s̃) =

exp[−(ν+1)do(a|s̃)]
n(s̃) , a ∈ A % (1.11)

end of s̃ ∈ S
h(s) = n(s), ∀ ∈ S % (1.11)

end of the design cycle

Outputs
X Optimal ideal mio-factors over whole design horizon
X Optimal ideal rio-factors over whole design horizon
X Optimal decision rules ro-factors over whole design horizon.
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Chapter 3

Preference elicitation as a dialogue with
the user

Before the DM, a model of the system and preferences have to be specified. Because we already
described how to define the model of the system or how to use Bayesian learning to estimate the model
in Section 1.4, it remains to specify how we will find out the preferences of the agent. In the previous
thesis, the agent specified the state and action, which are preferred, before the beginning of the DM.
There was this problem if the agent1 wished two opposite things. In this case, we needed to choose the
weight w part of (2.15), which determines how much the user prefers to stay in set Ai relative to being
in Si. Furthermore, the user could not give feedback during the DM. It may have been that the user has
specified its goals and obtained something else. That is why we added dialogue with the user during the
DM. So the user will have control over his preferences and over the result of the DM.

The DM with PE described in Chapter 2., referred to as the basic DM, deals with two types of inputs:

X those directly describing the basic DM, which include:

I the state S and action A sets;

I the wishes-expressing ideal sets Si ⊂ S and Ai ⊆ A;

X more technical, strategy-influencing, inputs that include:

I the weight w ≥ 0 balancing the relative importance of ideal sets, see (2.15);

I the scalar ν > 1 balancing exploitation with exploitation (duality, [8, 20]).

Fine modifications of ideal sets Si, Ai or the design horizon |T | are other potential inputs of Alg. 1.
For example, the user will not prefer one state/action but the whole neighbourhood of the state/action,
in discrete space it would be the nearest surrounding states/actions. The user can change his preferences
and extend the sets because in some cases the user will not “feel” the difference. These changes are
unconsidered here. At least, if we let change more parameters, the problem will get much difficult
because of the dimensionality and it will be more time-consuming. In this thesis, we present what
the dialogue with the user may look like and the part with more parameters changes we let for further
researches.

Thus, the rest of this work focuses just on the pair w, ν. Its optimal choice depends on: I subjective
user’s preferences; I the user’s attitude to the basic DM; I emotions, etc., all together on user’s mental
state. The dependence is complex and the mental state can hardly be directly measured and quantified.

1In this chapter the agent will be called user as it is usual for PE.
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Two users can have the same preferences expressed by the sets Si,Ai, but they can respond differently.
One of them may reduce demands and the solution will be absolutely different for each of them. Thus, it
is necessary to relate the optional inputs to the explicitly-expressed user’s satisfaction. The user is asked
to judge the DM quality reached for various choices of inputs. This is the domain of classical PE [6] that
often elicits preferences about a static DM and interactively queries the user. Even advanced versions,
represented by [3], become cumbersome in the targeted basic dynamic DM. This makes us adopt the next
user-driven way that consists of formulating and solving an appropriate FPD meta-task.

The user assigns (satisfaction) marks, serving as the (meta-)state S T ∈ S̄, to the behaviour caused by
the policy, designed via Alg. 1 for trial values of the optional inputs (here, (w, ν)). Their changes AT are
as the (meta-)action. The actions are generated by (meta-)policy gained by Alg. 1. It runs more slowly
than the basic DM, T ∈ {T̄ , 2T̄ , . . . , } ⊂ T given by a step T̄ > 1. The applied zero-order holder keeps the
latest user’s marking as the current state. This makes the user quite free and allows the user to stop the
interactions according to their will.

This simple idea has to cope with the possible infinite regress, i.e. Alg. 1 at meta-level needs meta-
inputs opted via a meta-PE, etc. Also, the curse of dimensionality [2] endangers applicability as the
opted inputs are multiple and continuous-valued. The following way counteracts both obstacles.

We decided to ask queries after every time epoch T̄ > 1, but also the queries could be asked irregu-
larly after some multiples of the T̄ .

The use of zero-order holder copes with the expected irregularity of user’s responses. It makes
realistic the time-invariance of the model M(S T |AT , S T−T̄ ,Θ) := ΘS T |AT ,S T−T̄

needed for learning this
meta-model, cf. the beginning of Sec. 2.4.

The choice of the ordinal scale of marks S̄ := {1, . . . , |S̄| := 5} suffices for expressing “satisfaction
degree”. A rich, cross-domain, experience, e.g. in marketing [4] or in European Credit and Accumulation
System, confirms this. The mark S = 1 is taken as the best one, which unambiguously defines the ideal
set S̄i := {1}.

By construction, the outcomes of the basic DM depend smoothly on the discussed inputs. Thus,
changes A := (∆w,∆ν) of inputs (w, ν) can be selected in a finite set Ā := {(∆w,∆ν)} of discrete values.
The natural flexible options are

∆w ∈ {−w̄, 0, w̄}, ∆ν ∈ {−ν̄, 0, ν̄}, w̄, ν̄ > 0. (3.1)

Alg. 1 is to guarantee that opted inputs stay within their admissible ranges (w ≥ 0, ν > 0). The used
simple clipping at boundaries of (3.1) seems to suffice. No other demands exist with respect to action.
Thus, Ā = Āi and W = 0 (meta-twin to w in (2.15)). The last input to the meta-use of Alg. 1 is the
counterpart of ν. This input cares about exploration that has to be stimulated at both levels. It makes no
sense to choose a different value at the meta-level. Thus, ν is common at both levels: a slightly delayed
value νT−1 is at disposal when designing the new one.

The appearance of T̄ , w̄, ν̄ demonstrates the danger of infinite regress. At present, it is cut by force
and they are chosen heuristically. They, however, cover, the first step in a conceptual solution that: I lets
appear only meta-inputs that have a weak influence on results; I tunes them via a universal adaptive
minimization of miss-modelling error [12].
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Chapter 4

Experiments

There are several experiments in this chapter. Experiments primarily illustrate the presented theory.
Additional sample examples are in [26]. We present a realistic example with a heating system.

4.1 Common Simulation and Evaluation Options

Simulated environment is chosen to be 15 × 7 × 15 given by |S| = 15 and |A| = 7. It is created
by learning the transition pd p(st|at, st−1). The system is simulated with 105 real values yt stimulated by
independently generated discrete actions in A := {1, . . . , 7}. The states st ∈ S := {1, . . . , 15} are gained
via an affine mapping of discretized values of the real-valued yt generated by equation (y0 = 0)

yt = 0.99yt−1 + 0.05at − 0.125 + 0.05εt.

There, εt is the white, zero-mean, normal noise. It has a unit variance.

Experiments: DM results without and with the user’s control are compared. DM without the user’s
control is the basic DM with no meta-level and preferences expressed by the ideal sets Si, Ai (2.14)
and by fixed options w, ν (2.11),(2.15). DM with the user’s control solves the basic DM supported by
the second-layer implementing the solution of the meta-DM task as described in Chapter 3. The DM
with user’s control gives the user the chance to express their satisfaction every ten steps, T̄ = 10. The
satisfaction is quite subjective. It is demonstrated by presenting selected results for different users.

Experimental conditions (see below) are set to make results comparable. The users are informed
about the key common conditions, i.e. the preferred state and preferred action, the price paid for the
respective action values, see Table 4.1 and for state values in Table 4.2 and Table 4.3. The prices express
the deviation from the preferred action/state. We objectively want to minimize the sum of prices. So
the experiment with the lowest price is considered to be objectively the best. We decided to have two
different prices for states because we want to express that the final evaluation of results can depend
on how the price is defined. The first price neglects small deviations and is prone to large deviations.
The second price values multiple deviations for the same price. It guarantees that it will depend more
on whether there is the deviation and not so much on how big it is. Then, the experiments with more
occurrences in the preferred state will be evaluated as the best experiments and not experiments with the
smallest deviations.
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Table 4.1: The price paid for individual action values
action 1 2 3 4 5 6 7
price 3 2 1 0 1 2 3

Table 4.2: The price 1 paid for individual state values
state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
price 1 3 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Table 4.3: The price 2 paid for individual state values
state 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
price 2 3 3 2 2 1 1 0 1 1 2 2 3 3 4 4

4.2 Decision making without user’s control

Experiment 1. The user’s preference is Si = {7} and no extra preference is expressed on actions, Ai = A.

(a) States for Si = {7}, Ai = A, w = 0 (b) Actions for Si = {7},Ai = A, w = 0

Figure 4.1: Exp. 1: states and actions in DM without user’s control and no preference on actions.

Discussed results: The results are in Fig. 4.1. The wished state occurs the most often as we want.
Because this experiment has no extra preference on actions, the actions are chosen just to fulfil the
preference on states. All action values were realized with no extreme dominance of one value. It can
however be seen that it will probably not be difficult to get good results when requesting action Ai = {4}.
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Experiment 2. The user’s preference is Si = {7} while requiring the actions to be in “zero energy” set
Ai = {4}. The weight value w = 0.3 (2.15) is fixed to express the latter preference.

(a) States for Si = {7},Ai = A, w = 0.3 (b) Actions for Si = {7},Ai = {A}, w = 0.3

Figure 4.2: Exp. 2: states and actions in DM without user’s control and with the preference on actions.

Discussed results: The results are in Fig. 4.2. As it can be seen, the wished state does not occur as often
as in Exp. 1 due to the additional preference on actions. For w = 0.3, the wished action occurs the most
often and the number of the wished action is much higher than in Exp. 1. The comparison of Exp. 5
and Exp. 6 shows that these two experiments contradict each other. We need to find the balance between
these preferences. When these two preferences can not be fulfilled together, the user needs to choose,
which preference is more important for them.

Experiment 3. The user’s preference is again Si = {7}, Ai = {4} as in Exp. 2. The extreme weight
w = 10 is tried.

(a) States for Si = {7},Ai = {4}, w = 10 (b) Actions for Si = {7},Ai = {4}, w = 10

Figure 4.3: Exp. 3: states and actions in DM without user’s control and with a hard preference on actions

Discussed results: The results are in Fig. 4.3. As we expect the target state Si = {7} is reached less often
than in the previous case. The “harmonized” state {8} is visited more often than before. The stress on the
desired actions is surely too high. We can see that no non-preferred action is chosen. There is no balance
between the preferences. It is generally dangerous as the found policy lacks the explorative capability.
The same dangerous behaviour was observed for all w ≥ 1.
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4.3 Decision making with user’s control

We want to find a balance between contradiction preferences. The parts with additional preference
are kind of hard because the user can not before the decision making explain or show how much they
prefer to stay in the preferred state relative to selecting the preferred action. And every user is different
and has a different view on it. So for one user would be better to have the situation without additional
preference and for someone else would be better if they get the preference on actions and do not care
about the preferred state. And for someone, it might be better if the weight w was completely different.
That is why we worked on the decision making with the user’s control. The user gives feedback and
based on that the weight w is selected and also the free parameter of exploration ν adapts. Then, we can
say even during the decision making, if the user is satisfied and what are their preferences.

Experiment 4. The user’s preference is Si = {7}, Ai = {4}. Neither the weight w nor ν are fixed and the
1st user marks the seen closed-loop behaviour.

(a) States for Si = {7},Ai = {4} for the 1st user (b) Actions for Si = {7},Ai = {4} for the 1st user

Figure 4.4: Exp. 4: states and actions in DM with the 1st user control

(a) Parameter w in time for the 1st user (b) Parameter ν in time for the1st user

(c) The evolution of marks in time for the 1st user

Figure 4.5: Exp. 4: The evolution of parameters of the 1st user in time.
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Discussed results: The results are in Fig. 4.4. As it can be seen the preferred state occurs the most often.
Compared to Exp. 1. without the user’s control, this experiment gives better results. The preferred state
occurs more often and so does the preferred action. In Fig. 4.5 there is the evolution of parameters w, ν
and the user’s marks. The parameter ν converges to 1. The parameter w moves around 0 to 0.2. The mark
1 appears quite often, so the1st user is satisfied.

Experiment 5. The user’s preference is Si = {7}, Ai = {4}. Neither the weight w nor ν are fixed and the
2nd user marks the seen closed-loop behaviour.

(a) States for Si = {7},Ai = {4} for the 2nd user (b) Actions for Si = {7},Ai = {4} for the 2nd user

Figure 4.6: Exp. 5: states and actions in DM with the 2nd user control

(a) Parameter w in time for the 2nd user (b) Parameter ν in time for the 2nd user

(c) The evolution of marks in time for the 2nd user

Figure 4.7: Exp. 5: The evolution of parameters of the 2nd user in time.

Discussed results: The results are in Fig. 4.6. This user selects the preferred action even more often
than the first one. The preferred state does not occur significantly differently from the first one. So for
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our objective comparison, these results are better, because this user pays a lesser price than the first one,
see Table 4.4.

This user is not as satisfied as the first one if you see the marks in Fig. 4.7. However, it might also
mean that the second user is very strict or that the first one is tolerant and settles for less. In any case, we
can say that the more strict user gets better objective results. The parameter ν converges to the value 1
faster on the other hand the weight w is still tuned.

Experiment 6. In this experiment we compare evolution of states and actions in time for the 1st user
and the 2nd user.

(a) States evolution for 1st user (b) Actions evolution for 1st user

(c) States evolution for 2nd user (d) Actions evolution for 2nd user

Figure 4.8: Evolution of states and actions for the 1st and 2nd user.

Discussed results: The results are in the Fig. 4.8. We display every second measurement for clarity. The
evolution of states is more consistent for the second user. The states increase and decrease just once and
after that, they stabilize in contrast with the first user, whose states increase and decrease twice before
they stabilize. The evolution of actions is also more consistent for the 2nd user. Other actions (differing
from the preferred action) are chosen less often. For example, action 1 is chosen much less often for the
2nd user than for the 1st user.

Experiment 7. In this experiment we show results of some other users. The user’s preference is still
Si = {7}, Ai = {4}. Neither the weight w nor ν are fixed and the 3-5th users mark the seen closed-loop
behaviour.

Discussed results: The users 3-5 were asked to have preferences Si = {7},Ai = {4} and they were let to
decide what preference will be more important for them.
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(a) States for Si = {7},Ai = {4} for the 3rd user (b) Actions for Si = {7},Ai = {4} for the 3rd user

(c) States for Si = {7},Ai = {4} for the 4th user (d) Actions for Si = {7},Ai = {4} for the 4th user

(e) States for Si = {7},Ai = {4} for the 5th user (f) Actions for Si = {7},Ai = {4} for the 5th user

Figure 4.9: Exp. 7: states and actions in DM with the 3-5nd user control

The main differences are seen in the frequency of the state 8 and the frequency of the preferred action
4. We show that users are different. If five users get the same task: mark the sequence of states and actions
with the same preference, they get significantly different results. Some of the users are strict and they
are not satisfied even with better results than tolerant users accepting worse results. For example, the 4th

user, obviously, is more interested in having the preferred action than to have the preferred state.
The results are discussed in the next section. We assess, which user is satisfied the most. And the

evolution of tuned parameters can be seen in Appendix.

4.4 Comparison of costs and responses in all experiments

Table 4.4 shows the prices paid for actions and states in all experiments. It confirms expectations,
including the desirable influence of users.

Discussed results: All of these results are easily comparable within to the Table 4.4. The first three
results are for the experiments without the user’s control with fixed parameters and then five experiments
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Table 4.4: The price paid for actions in all experiments
Exp. no Opted Parame-

ters
The price
of actions

The price
1of states

The price
2of states

The number
of selections
of the pre-
ferred action

The number
of occur-
rences of
the preferred
state

1. w = 0, ν = 1 576 214 311 172 258
2. w = 0.3, ν = 1 134 267.5 419 428 126
3. w = 10, ν = 1 0 193.5 321 500 195
4. 1st user 546 208.5 282 270 277
5. 2nd user 392 195.5 269 329 283
6. 3rd user 224 236.5 319 381 252
7. 4th user 521 189.5 255 288 288
8. 5th user 591 199 269 251 282

with the user’s control. These experiments with user’s control are done with five different people of
different age, sex, education. In the results, there can be seen the diversity of the users’ marks and thus
the users’ view on the pair of preferences. As it is said above the more strict users get better results
according to our ”objective” comparison. On the other hand, the more tolerant users are more satisfied
and that is what we want. We want to get the results, which satisfy the user.

The strategy is chosen to compare the results by prices that will be paid for deviation from preferred
state and preferred action. It is described more in Tables 4.1, 4.2 and 4.3. Objectively, we want to
minimize the sum of prices. So the experiment with the both (action and state) lowest prices brings the
best “objective” result. We also add the number of occurrences of the preferred state and action.

At first, we compare the results for the price 1 of states. By the price 1, the best results give the
experiments 3, 5, 7, 8. If we take into account the price paid for deviation from the preferred action, ob-
viously, the best result is Experiment 3. Another good result is obtained for the 2nd user. It is interesting
that the best result is Experiment 3., which has almost the lowest number of occurrences in the preferred
state. This is because there is a big amount of occurrences of states 6 and 8, which have a low price 0.5.
The small deviations are allowed for the state price 1. However, it could be a good result, because we do
not pay any price for action and the occurrence of extreme values is pretty low.

That is why we decided to take into account the number of occurrences of the preferred state and add
the state price 2. The lowest prices paid for states are for experiments 5, 7, 8. And the lowest prices paid
for actions are for experiments 2, 3, 5, 6. So the best result for price 2 is Experiment 5 with the 2nd user’s
feedback. That is the most strict user. This user has also the second biggest number of occurrences of
preferred state and the fourth biggest number of selection of preferred action. This could be objectively
the best option.

We would like to emphasize that we present two ”objective” comparisons. And for both of them, the
best results are different. It is important to have in mind what kind of problem is solved and what price
would fit. Furthermore, the occurrence of the preferred state should be taken into account.

The question remains, if the user was so strict, because they wanted to have the best results or if they
were not satisfied enough and wanted better possible results. This part with the user’s control is kind of
hard because we can not know if the user has unachievable preferences or if this is their strategy to force
the closed-loop to tune the preferences more. The human factor adds more uncertainty to this problem.

38



Other experiments: We tried more experiments and we have tried to observe imperfections and possi-
bilities to improve our algorithm and the design of the meta-closed-loop. We have come to the conclusion
that it could be better to take as the state of meta-closed-loop the difference between the previous mark
and present mark than the absolute value of the present mark. Then, the meta-closed-loop will care about
differences, the state will be a difference of marks and the action will be a difference of free parameters.
It could give better results and the values of free parameters could be more consistent. The problem is
still the dimensionality.

We also tried a more simple system, namely 3×3×3. The problem with this system was that the meta-
system was much more complex. It was hard to learn the meta-system and influence the simple system
in the right way. Another problem with small systems is their poor flexibility. There are few possible
states and differences of the parameters that can influence the system extremely and not gradually.

Extreme parameter values can also be the problem because the weight cannot be less than zero. This
is why it can stay at this value and it may not be the best result. Then, the parameter is no longer tuned
and it is not possible to learn the relation of tuned parameters and user’s marks well and find the best
result. In further research, we would like to work on these problems and to find the way out.
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Chapter 5

Conclusions

We studied the theory of optimal decision-making. We introduced the Markov decision process and
then we worked with a Fully probabilistic design. We showed how to use Bayes learning for estimating
the model of the system. We have found the optimal decision rule based on the given preferences using
FPD. We found the ideal probability density of the behaviour. We added the meta-closed-loop and
the ability for the user to control decision-making, to fine-tune the free parameters to satisfy the user’s
preferences the most. The meta-loop changes the free parameters based on the user’s feedback (marks).
The main advantage is that the user does not have to understand the decision-making algorithm and they
just mark the sequences of states and actions.

The algorithm needs as inputs: I the set of allowed actions; I specification of the wished state and
actions sets; I the on-line satisfaction marking by the user that judges behaviour improvements caused
by changes of the exploration option ν and of the scalar weights w balancing importance the ideal states
and actions; I on-line learned and adapting state-transition models at both levels.

We have coded a program using the theory and prepared the simulation environment. All of these
experiments are simulated with a 15×7×15 system. We used a heat equation and this task can correspond
to reality. We have chosen several experiments to illustrate the theory described above and we have
simulated them using Matlab. We have divided the experiments into two parts. The first part shows
the decision-making without the user’s control with fixed parameters chosen by the user. The possible
disadvantage of this part could be that the user has to have an understanding of the algorithm and the
theory because they need to select the parameters themselves. That is why the second part is with the
user’s control, where the parameters are free and are fine-tuned during the decision-making. So the user
does not have to understand the theory and the parameters are chosen by the algorithm.

The proposed solution addressed a very difficult problem of preference elicitation in dynamic DM.
We tried to find the parameters to satisfy the user’s preferences. We presented one example of preferences
for five different users and also three experiments with fixed parameters. Because the experiments were
done with different users, the results are different for the same marginal preferences. Again, the most
important is the satisfaction of the user. The parameters are selected based on the user’s feedback and if
the user’s marks converge to 1, the user is satisfied. The biggest advantage of the user’s control is that the
user does not have to understand the algorithm as is mentioned above. We evaluated experiments for two
different comparison prices. For the first price of states, the experiment without the user’s control is the
best and for the second price of states, the experiment with the user’s control is the best. This emphasizes
the importance of how the user values the deviations.

We would like to stress that not every decision-making problem with user’s preferences can be sat-
isfactorily solved. The user may have preferences, that cannot be reached on the system. They can have
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unattainable goals. The system can also have large dimensions and we will not be able to evaluate it in
real-time.

Future research In the future, we would like to focus on improving the dialogue with the user. Also, we
want to investigate if it would be better to work with differences in marks than with absolute values. Then,
we would like to find out how to solve the problems with extreme values of free parameters. We would
like to study the dialogues with more free parameters. For example, extension of the sets of preferred
states and actions. Because the user can give more importance to their preference on actions and does not
care about small deviation from the preferred state. Then, it will be good to extend the set of preferred
states to have even better results. Last but not least we want to break the curse of dimensionality.
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Appendix A

Additional graphs

In this chapter there are additional graphs of the experiments. They are moved here in order to
make basic text readable and allow the interested readers to see additional details. The graphs concern
evolution of free parameters for 3rd - 5th user.

(a) Parameter w in time for the 3rd user (b) Parameter w in time for the 4th user

(c) Parameter w in time for the 5th user

Figure A.1: The evolution of the parameters w (2.15) for the 3rd - 5th user.
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(a) Parameter ν in time for the 3rd user (b) Parameter ν in time for the 4th user

(c) Parameter ν in time for the 5thuser

Figure A.2: The evolution of the parameters ν (2.11) for the 3rd - 5th user.

(a) The evolution of marks in time for the 3rd user (b) The evolution of marks in time for the 4th user

(c) The evolution of marks in time for the 5th user

Figure A.3: The evolution of the 3rd - 5th user’s marks.
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