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Abstrakt

Špatně zařazené produktu nejen ovlivňují zákaznickou zkušenost na stránkách webových
obchodů, ale také vytváří problémy při vytváření systémů pro doporučování a hledání. V této
práci otestuji několik různých modelů založených na metodách strojového učení na získané
informaci z textu a obrázků produktů. Modely jsem zvolil jak z řad standardních algoritmů
strojového učení, tak i metody založené na hlubokém strojovém učení. Reprezentace textu a
obrázků je získána za pomocí velkých modelů předtrénovaných, které jsou volně dostupné.
Přístupy založené na kombinaci modalit byli také otestovány pro účely kategorizace.
Experimenty provádím na reálných datech jednoho z největších webových obchodů v Česku.

Klíčová slova: Strojové učení, Deep learning, Konvoluční neuronové sítě, Seq2Seq modely,
Multimodální modely



Abstract

Wrong categorization of products not only affects the customer experience on e-commerce
websites but also creates problems for effective use of search and recommendation systems.
In this thesis, I am going to test machine learning models based on extracted text or image
representations. Models are based on ordinary machine learning algorithms, but also on deep
learning architectures. Text and image representations were extracted using large pretrained
models. Multimodal models were also tested for the categorization task. Experiments were
done on real data of one of the Czech largest e-commerce website.

Keywords: Machine learning, Deep learning, Convolutional Neural Networks, Seq2Seq
models, Multimodal models
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1 Introduction

E-commerce grows fast and so is the number of products listed on an e-commerce website.
To create the best experience for customers, e-commerce companies provide a structured
category tree for easy navigation through the web. But with thousands of categories, it
is hard for listers (people that add new products to the category tree) to choose the best
fitting category. Each of the listers also evaluates each product differently, and therefore the
assigned categories can differ for similar materials assigned by different listers. In recent
decades, large e-commerce companies started providing so-called marketplace. This service
provides other shops to sell their products on big e-commerce websites. From this comes
another possible errors, because marketplace partners have almost no idea what should the
correct category be. The wrong categorized products do not only affect customers that search
products in categories, but it also affects other processes. For example, most search and
recommendation system assumes that the products are in the correct category. Therefore,
the correct working process of product categorization should be the foundation. In recent
decades there have been several studies focusing on solving this task using machine learning.
In my work I am going to try to solve this issue for one of the largest e-commerce companies
in the Czech Republic, mall.cz. I am going to test selected models on example data and see
how well can it perform. Data for each product consist of text and images. The reference
category is specified by category id and its path.
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2 Theory

2.1 Natural Language Processing

In this part, I cover how text can be represented for use in machine learning algorithms and
what are the methods of extracting features from the text (also called embeddings).

2.1.1 Vector semantics and embeddings

Vector semantics is about representing words as points in a multidimensional semantic space.
Words that occur in the same context have most likely also similar meanings, this hypothesis
was formulated in the 1950s, and it is called the distributional hypothesis [45]. Vector
semantics represent linguistic hypotheses by learning representations of the meaning of a
word, called embeddings. There are two main kinds of embeddings, static and dynamic
(contextualized). Static embedding does not change in a different contexts, these embeddings
are created with models like Word2vec. On the opposite dynamic embeddings change in
a different context, an example of this would be embeddings using a Transformer, using
Bidirectional Encoder Representations from Transformers (BERT) model for example. Both
static and dynamic embeddings are dense vectors, in comparison to traditional sparse vectors.
These approaches for dense embeddings are based on representation learning, which is a
self-supervised type of learning, that does not need labeled data, more on it in a section about
transformers. Before talking about dense embeddings, I will review the basic approaches for
representing text with matrices.

Fig. 1: Example of term-document matrix [45]

Two of the most basic text representations are the term-document matrix (also known as
a bag-of-words) and the term-term matrix [45]. These representations are types of sparse
static embeddings. The term-document matrix counts the number of term occurrences in a
document, this is used in basic information retrieval when searching for the best matching
document from a number of documents given a query. This can be seen in figure 1. We
can use these to compare documents in space, I will get to it in section 2.1.5, where I show
visualized version of the term-document matrix in the figure 6. We can also look at this task
from the other way, and find for a given word similar words by the context they appeared
in. The term-term matrix creates a square matrix containing all the words in vocabulary on
both axes. We count the number of times other words occur in the context of the target word
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(figure 2). The context is usually a couple of words to the right and the left from the target
word. The problem with these vector representations is that they are sparse and quite big
because the dimensions are defined by the size of vocabulary size or document size.

Fig. 2: Example of term-term matrix [45]

Different kinds of re-weighting can be applied to a term-document matrix representation
for a more sophisticated representation. All of the re-weighting approaches correct the the
problem of raw frequencies of the basic term-document matrix. Commonly in language,
there is a lot of words that do not have any meaning, we call them stop words. It can also
happen that there will be some very frequent words that do not give any information because
they appear in each of the documents. These words will not help separate documents between
each other. To fix it, we use Term frequency and Inverse document frequency (TF-IDF)
re-weighting approach [45]. This approach lowers the weights for words that occur very
frequently. TF is calculated as count of the given term in document divided by number of
terms in document. IDF represents the number of documents in the collection N , divided by
the number of documents in which the word occurs dft. To squash both TF and IDF down,
we transform them with a logarithmic function. Similar to the former methods, this method
has also its use in information retrieval. In the figure 3 how TF-IDF, gets completly rid of
word "good", since it appears in each of the documents.

tft,d = log10(count(t, d) + 1) (1)

idft = log10

✓
N

dft

◆
(2)

wt,d = tft,d ⇥ idft (3)

Fig. 3: Example of TF-IDF matrix [45]

Rather than counting the number of times a word has occurred in a context, we can use
a machine-learning algorithm to predict the probability, that a given word will occur in
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surroundings of other words (its context), this can be formalized as binary classification,
it is formally called word2vec.

2.1.2 Word2vec

Word2vec is the most popular algorithm for learning short static representations of words.
The length of the representation is usually 300 dimension (can be 50 or 1000). These dense
representations work better as features for text classifier. Mostly, because the classifier
does not require so many weights as in the case of previous algorithms, and with dense
representations, it is easier to converge. It also does a better job at capturing the meaning of
a word, for searching synonyms, for example. Since the embeddings are static, the words are
going to have same meaning in a different context (for example, bank robbery opposite to
river bank). This algorithm was discovered by Czech researcher Mikolov in 2013 [67, 66].
He and his team created two types of methods for extracting word embeddings (figure 4).
The first of them is called Skip-Gram (SG), where we try to predict the target word given
its context, where the context are words around it. The other method is Continous Bag of
Words (CBoW), which works exactly the opposite. Given the target word, we try to predict
the context. In the case of SG, it is a step-by-step process where for each target world we
train the model for each word in the context, which can be words in some window around
the target word. While with CBoW we concatenated, sum, or average the embeddings of
context words while predicting the target word.

Fig. 4: Possible implementations of Word2vec [66]

This can be implemented with a shallow neural network or logistic regression, trained using
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backpropagation [45]. The great advantage of this type of learning is that we don’t need
labeled data. The only thing we require is a structured sequence of text or other data.
This approach can also be used for non-NLP (Natural Language Processing) tasks like
recommendation systems, where the sequence can be represented by songs that users listened
to, in the case of Spotify for example. The basic algorithms got later improved by negative
sampling that maximizes the training efficiency. It randomly samples tokens from the whole
lexicon based on the unigram frequency. This tries to minimize the similarity of pairs that do
not occur together and still maximizes the similarity of the context words. Since then, there
have also been different variants, which I will talk about in next section

Further in [57] Doc2vec was introduced as an extension of Word2vec for documents
(sentences, paragraphs). In that case unique input tokens, representing document, paragraph,
or sentence, are added to context vocabulary and the algorithms update the embeddings of
documents based on the words that are present in the document.

2.1.3 Word2vec alternatives

The most used word2vec alternative is Global Vectors for Word Representation (GloVe)1.
This approach tries to build embeddings by capturing global corpus statistics. It combines the
intuition of global matrix factorization a model like Positive Point-wise Mutual Information
(PPMI) from [72] and also uses the structure of the local context window of a model like
Word2vec.

Researchers came with another model that is robust to spelling errors and can also deal
with unknown words that can occur in the inference time by taking advantage of subword
information [34]. A library that implements this model is called fasttext2. It works by
training embeddings on words represented as a bag of character n-gram, including the word
itself. The n-grams are usually between 3 and 6 characters long. After the model had been
trained, all the embeddings of a given word are summed to get the unique word embedding.
[12, 65] The library provides pretrained models on 157 languages and also provides a text
classifier, that can be trained. [44] Another way of obtaining embeddings is Bidirectional
Recurrent Neural Networks or Transformer models. These models give us contextualized
representation, therefore we call them dynamic embeddings since the embeddings change
depending on the context. I will talk more about these models in a separate section.

2.1.4 Combining word vectors

The two most basic ways to combine words to get document embedding are taking a
maximum in every dimension of the vectors or averaging all the embedding from given
words. Fasttext implements a special method (get_sentence_vector) for creating

1
https://nlp.stanford.edu/projects/glove/

2
https://fasttext.cc
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Fig. 5: Convolutional Neural Network applied for text classification from [48]

sentence embeddings. It first divides the vectors by its L2 norm and then takes average,
it is called the average of unit vectors. There are other methods proposed in papers that can
improve the performance of combined embeddings representation. One of them is based
on taking the weighted average of words , which was introduced in [5]. The weights are
estimated by the frequency of words in the corpus, the paper also goes into depth about how
does it work in the case of CBOW, when the context words are being averaged. Some other
approaches recommend weighing the word vectors based on the TF-IDF vector.

To build stronger sentence representations, we can also build another model on top of the
embeddings. Many of such models were created, namely InferSent [24], Universal Sentence
Vectors [15], Skip-through vectors [50] and other [63, 88].

Convolutional Neural Network (CNN) which will be presented later for image processing
can also be used for text classification (figure 5), as shown in [48]. These types of models
build different sizes of kernels along static embeddings, as seen in the figure 5. It can be
found implemented from the original paper on github3.

2.1.5 Similarity metric

The metric that is the golden standard for finding similar vector representations is cosine
similarity [45]. This metric gives us the cosine of the angle between two vectors. Cosine
similarity is mathematically represented as a normalized dot product of two vectors. It must
be normalized because otherwise the vectors with large counts would be favored.

similarity(A,B) = cos(✓) =
A · B

kAk ⇥ kBk =

Pn
i=1 Ai ⇥ BipPn

i=1 A
2
i ⇥

pPn
i=1 B

2
i

(4)

In the figure 6, I show on term-document matrix from earlier, how the documents are related.
In this case documents are represented with words occurring in them. If we would apply the

3
https://github.com/cezannec/CNN_Text_Classification
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cosine similarity, we would find out that the cosine between Henry V and Julius Caesar is
very high and similar for the two other documents. But if we would compare Henry V and
Twelfth Night, the similarity would be very low, as the angle is big.

Fig. 6: Visualizing similarity of two documents based on word counts [45]

2.2 Deep Learning

This part provides the theory behind basic Feed Forward Neural Network (FFNN) and
the way how they are trained. Much of this work is based on deep learning techniques
that emerged in the 21st century, mainly due to computation power shortage, but actually,
this branch of machine learning already started in the 1940s [2]. Origins come from
McCulloch-Pitts neuron, which was a simplified model of the human neuron, which was
described in propositional logic. Nowadays, we don’t use neural networks that have anything
to do with the biological structure of the human brain. The great advantage of neural
networks is that they are, good at learning features from data themselves, and we don’t need
to spend much of the time on feature engineering. Another advantage of neural networks is
that they are easily scalable to a given problem. The scalability lies in the breadth and width
of the neural network architecture. Their simple construction of basic matrix operations
makes them also easily parallelizable with modern Graphics Processing Unit (GPU).

(a) Simplified biological neuron (b) Artificial neuron

Fig. 7: Comparison between biological and artificial neuron
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2.2.1 Neural unit

The basic element of a Neural Network (NN) is a neural unit, also historically called a
perceptron. It is a combination of a very simple linear model and non-linear activation
function, similarly to General Linear Models (GLM) with a link function (logistic regression
applied with sigmoid function). As in the case of Linear Regression, the model has weights
for each of the inputs and also a bias term. You can see the resemblance of biological neurons
with our artificial figure 7.

The non-linear activation function is very important because it allows approximating any
non-linear function when combining multiple neurons. This would not be possible with a
linear output of each neuron. Nowadays the most used activation functions are the sigmoid,
the tanh, and the Rectified Linear unit (ReLu), which are represented in the figure 8. The
first activation function used by McCulloch-Pitts was the sign function.

Fig. 8: Summary of most used activation functions 4

As seen in the picture 8 on the left, the sigmoid function maps the output to the range of
[0,1]. We usually only use the sigmoid function as the last layer for binary classification
or if we need a layer that needs output between 0 and 1, an example of that would be the
forget and update gate in the Long-Short Term Memory (LSTM) cell in Recurrent Neural
Networks (RNN) [45]. Tanh is preferable used over sigmoid if the output of a neuron needs
to be squashed into a certain range. It helps, because of the range, as the output can be either
positive or negative. And also tanh has 4 times bigger maximal derivation, which helps faster
backpropagation. Nowadays, almost every network is based on ReLu activations, if it is not
a special case that I talked about. The advantages of ReLu are that they are easily computed
and also differentiable. But it can also fail in some cases producing a dying ReLu problem.
That is when most of the neurons output 0 and the network cannot be optimized further.
There has been many modifications of the standard ReLu, but none of them ever performed
way better than ReLu.

4Picture taken from https://stanford.edu/~shervine/teaching/cs-230/

cheatsheet-recurrent-neural-networks
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2.2.2 One hidden layer neural network

In 1969, it was demonstrated that a neural unit is unable to solve the XOR problem [45].
Back then it was not accepted that the model of the neuron can solve only linearly separable
problems. To solve the XOR problem, we have to combine multiple single units as a hidden
layer was used (figure 9a). Each of the neural unit takes in inputs, aggregates them, and
applies activation function after. Then both of the values are combined into output. For the
combination of neuron outputs, we also use weights that can be trained and the final layer
uses the sigmoid function. What each of the neurons does is that it produces a representation
of the inputs. Using two neurons we are able to create a two-dimensional space where the
function is linearly separable, as seen in the picture 9b, which shows difference between
input and hidden representations in neurons. This way we can combine more neurons into
layers to be able to learn very complex non-linear functions, which leads us to FFNN.

(a) Architecture of simplest neural
network that is able to solve XOR
problem (b) Comparison between inputs and hidden representation

Fig. 9: Architecture and visualization of representation of neuron [45]

2.2.3 Feed forward neural networks

FFNN is the most basic architecture of NNs used nowadays, historically it was known as
Multilayer perceptrons (MLP) [45]. It is called feedforward because the input is passed
through the NN layer by layer until the output is produced. Each of the hidden layers is
formed of hidden units, same as I presented earlier in one hidden layer NN. All the layers are
fully-connected as shown in the figure 10. We can represent weights of one layer with one
single matrix W (and biases b) and thus compute the outputs h of the hidden layers with
simple matrix operations and transformation by activation �.

h = �(Wx+ b) (5)

The type of machine learning problem, dictates a final layer that we usually have to use
[45]. For a regression task, the final node will be typically an identity function, but can
also be a probability distribution function. For binary classification the output can be
transformed using sigmoid function, similarly to logistic regression, which outputs a number

9



Fig. 10: Feed forward neural network with one hidden layer[45]

between [0,1]. For multi-label classification task, we use softmax function, which maps out
probabilities for every label. It does so by normalizing the real numbers using:

softmax (zi) =
exp (zi)Pd
j=1 exp (zj)

1  i  d (6)

where z is vector of outputs of possible classes.

2.2.4 Training Neural Networks

The way a neural network learns is by minimizing the error, specified by a chosen loss
function. The loss function computes the distance between the predicted value and the
gold output. For regression problems, we usually use Mean Squared Error (MSE) or Mean
Absolute Error (MAE).

MSE =
1

n

nX

i=1

(yi � ŷi)
2 (7)

MAE =
1

n

nX

i=1

|yi � ŷi| (8)

In the case of binary classification, we use cross-entropy loss (also Log loss), as we do in
logistic regression. For a multi-label classification, we use categorical-cross entropy.

LCE(ŷ, y) = � log p(y | x) = �[y log ŷ + (1� y) log(1� ŷ)] (9)
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LCE(ŷ, y) = �
CX

i=1

yi log ŷi (10)

After computing the loss, we can compute the partial derivative of the loss function with
respect to each parameter, this is called backpropagation, which was first formalized by
Rumelhart in [77]. To be able to backpropagate errors through a whole network of possible
many hidden layers, we use chain rule from calculus. This allows us to split each of the
partial derivatives into subderivatives. When the gradient for each weight is backpropagated,
we update the weights using stochastic gradient descent, where ⌘ is learning, rate specifying
the size of change. The updated weight is calculated as:

w+
1 = w1 � ⌘

@Etotal

@w1
(11)

. This is a basic way to optimize weights, there is plenty more like RMSprop, Adam, or
Adagrad. These special optimizers use memory from the previous steps to compute the final
gradient. The gradient descent can be further optimized by taking mini-/batches and updating
the weights using the mean gradient of the batch, instead of iteratively be each example. We
can also tune the learning rate using various schedulers, to further improve convergence, with
methods like decay or warm-up. [45, 32]

2.2.5 Recurrent neural networks

This architecture allows for sequential data processing, which is great for time series data
(financial stock market or weather forecast for example) or natural language processing data
like voice and text data (translation, name-entity recognition or question-answering). These
models are also being used in biology for DNA sequencing. The principle of RNN is that
every input produces output, but also creates a hidden state, which acts as dynamic memory.
[45] The hidden state is then forwarded to the next input in the sequence. Thus, the output of
the next input is affected by previous hidden states. The initial hidden state for the first input
is usually initialized as a vector of zeros.

The idea of RNN was first introduced by Rummelhart in [77] and first used for discovering
semantic feature for words by Elman in [29]. RNN’s weights are updated using
backpropagation through time algorithm [101], which differs from regular backpropagations,
because we have to backpropagate over all of the steps, but the the principle stays the same.

The basic RNN architecture adds the vector of hidden state from the previous step ht�1

to inputs of the current step xt, then tanh is applied to transform the vector, which results
in output, as seen in figure 11. Before the combination, they are both multiplied trainable
weights Wh and Uh.
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Fig. 11: Basic architecture of RNN

ht = �h (it) = �h (Uhxt + Vhht�1 + bh) (12)

yt = �y (at) = �y (Wyht + bh) (13)

This so-called “Vanilla” RNN architecture has a problem with exploiting and vanishing
gradient [68]. Exploiting gradient happens, when too big a gradient accumulates over all
of the steps we are backpropagating and then a weight is an update by a large margin.
This can be prevented by gradient clipping, which doesn’t allow the gradients to grow so
big, the threshold is usually set at 1.0. The vanishing gradient happens when the gradient
backpropagated through the network is too small, which results in small relations between
each of the states, because the network can’t hold the memory for so long. For the purpose
of holding the dynamic memory over longer distances in the hidden state, new architectures
of RNN were created. Namely LSTM and Gated Recurrent Unit (GRU). Both of these
alternatives make use of gates, that decide which of the information is going to be kept in a
hidden state.

Fig. 12: Architecture of RNN for multi-class classification [45]

RNN can be used for different types of problems, depending on the number of inputs/outputs.
One-to-many architecture is applied in music generation, where the model is able to generate
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a music piece from one musical note at the input. Many-to-one architecture is common for
sentimental analysis, where the model takes text transformed to embeddings and outputs a
label of a positive and negative class. This can also be applied in the case of multi-class
classification when for example predicting the number of stars given from a reviewer by
his written review. For more efficient classification, FFNN is placed at the end of this
network either based on the last hidden state (figure 12), or as an average of all hidden
states of the RNN. This architecture can be also used for regression, like a stocks prediction.
Many-to-many can have two different modifications, the first one creates output in each of
the steps, so the number of inputs is equal to the number of outputs. This is used in problems
like Named-entity Recognition and can be also applied for autoregressive text generation.
The second many-to-many architecture first encodes the input sequence, which creates a
context (hidden state) for the other part that decodes the state and outputs the prediction.
This type of architecture is called Encoder-Decoder, it is heavily used in NLP, for tasks like
machine translation or question and answering.

Similar to FFNN, we can also stack multiple layers on each other to create bigger networks
that can learn more relationships from the data [45]. The size of each neural network should
be appropriate to the data, so we don’t run to the problems of under-/overfitting. To take
full advantage of the input sequence, a biRNN was proposed. These networks calculate the
hidden states from both directions of the input sequence and then sum up the hidden state
to create outputs. In real production, when used for NLP tasks, RNNs usually have multiple
layers and use bidirectionally to use the full potential, we then call them stacked biLSTMs.
[81] They also use attention mechanism, which I will talk about later.

The big downside of RNN is that it is not possible to compute them in parallel due to their
step-by-step processing, therefore they cannot take advantage of the most recent powerful
GPU or Tensors Processing Unit (TPU) computational units. That is why they are being
replaced by Transformers, which were created to be highly parallelizable, but for some
smaller use cases the RNN will still be worth the try. I am going to use them in the practical
part for translation like multi-label classification.

2.2.6 Long-short term memory

This model architecture was first introduced in 1997 by Hochreiter in [39]. It was explicitly
designed to be able to learn long-term dependencies in sequences and therefore solved the
vanishing gradient problem. The LSTM architecture has the ability to decide which one of
the elements in the hidden state is going to be forgotten or updated. For this purpose, the
LSTM has four separate layers combined with three gates.5 [89, 45]

In the first step (figure 13a), the model decides which of the previous cell states are going
5Images for LSTM, GRU and figure 11 were taking from blogpost https://colah.github.io/

posts/2015-08-Understanding-LSTMs/ as some of the explanations about LSTM and GRU
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(a) Calculation forget vector (b) Calculation of update vector

Fig. 13: First two steps of LSTM

to be kept, therefore this gate is called forget gate. It uses a sigmoid function applied to a
sum of the last output ht�1 (also hidden state) and current input xt to create a vector ft with
numbers between [0,1].

ft = � (Wf · [ht�1, xt] + bf ) (14)

C̃t = tanh (Wc · [ht�1, xt] + bc) (15)

This vector then multiplies the previous cell state Ct�1. The state multiplied with numbers
close to zero will be forgotten. In the next step (figure 13b), the model decides what is going
to be stored. The first update gate is applied, to decide which of the states is going to be
updated. Similarly to forget, the gate uses a sigmoid function to decide so, creating vector it.

it = � (Wi · [ht�1, xt] + bi) (16)

Then a tanh function is applied to create and vector of the current cell cell state C̃t. These
two are combined and finally added to the last cell state Ct, which was already changed by
the forget gate ft. In the last step, the model decides what are we going to output.

ot = � (Wo · [ht�1, xt] + bo) (17)

Ct = ft � Ct�1 + it � C̃t (18)

ht = ot � tanh (Ct) (19)

The output (figure 14b) is a combination of updated cell state transformed by tanh function,
multiplied by the sum of last output and current input transformed by a sigmoid function ot.
To get the output vector, we multiply these two to get vector ht.

2.2.7 Gated Recurrent Units

Gated Recurrent Unit (figure 15) is a simplification of LSTM. It was introduced by Cho in
2014 [19], applied to machine learning translation using Encoder-decoder model. It merges
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(a) Forgetting and updating of last cell state (b) Creation of output/hidden state

Fig. 14: Third and fourth step in calculating LSTM

input and forget gate into a single update gate and also removes the output gate. Since the
output gate is removed, it only holds on the hidden state (last output vector), rather than both
cell and hidden states as LSTM. This simplification makes this model smaller and therefore
easier to train. But it also has downsides, models based on this architecture are usually worse
in performance than LSTM. [22, 18]

Fig. 15: Gated Recurrent Unit cell

2.2.8 Translation using RNN Encoder-Decoder

The disadvantage of FFNNs is that they can only work with fixed inputs and outputs, this
made it hard to work with text, where every sentence has most of the time different length
[45]. The models worked with windows, but it gave them poor context about the whole
sequence. Sequence to Sequence (Seq2Seq) approach uses an Encoder-Decoder model to
model sequences of different lengths[90, 18, 19, 46]. For know, I will now introduce
the Encoder-Decoder models as RNN based, later I will also review the inner working of
Encoder-Decoder in Transformer models. The task of the first RNN model is to obtain a
large fixed-dimensional vector representation of the input sequence (hn in the figure 16),
usually called context. The second RNN (which is called a decoder) works as a language
model that generates an output sequence given the context of an input sequence. The decoder
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always starts with the initial token (typically the start of the sequence, “sos” for short).
When generating output, the model chooses the tokens with the highest probability based
on the last softmax layer. The process is autoregressive, so the next input for the Decoder
is the previously outputted token. To make it faster to train the model, we use a technique
called teacher forcing. What it does is that during training we don’t take the next input from
autoregressive generation, meaning taking the last predicted token, rather we take the correct
token, that should be predicted, so the next step is trained on the correct word. For this,
the input of the sequence during training is represented by the input sequence and correct
output sequence separated by separator token. When the network read the separator token, it
switches to decoding and creating outputs itself.

Fig. 16: Example of translating for English to Spanish [45]

The performance with this approach degrades rapidly as the length of the sentence increases
since the decoder takes in the context from the last hidden state of the encoder (also called
bottleneck) and updates it every decoding step, which overwrites the information from the
original encoder representation [45]. This way, the information from the bottleneck may not
be equally represented at the end of the sequence. To fix it we can make use of the context
vector for each of the decoder steps since the hidden state relations from the encoder slowly
degrades when the decoder makes each step. This can help model later in the sequence
to produce outputs based on the encoder context. This lead researcher to come up with a
so-called attention mechanism for RNN models, which does not only work with the last
hidden state of the encoder but weights the importance of all encoder states. This approach
was proposed in [6, 64].

2.2.9 Attention

As I wrote earlier, it solves the bottleneck problem. It is done by allowing the decoder to
dynamically get information from all the hidden states in the encoder. We cannot simply
use all the concatenated hidden states of the encoder together, since every input sequence is
of a different length. So the attention produced a single fixed-length vector at each of the
decoder steps, by taking a weighted sum of all the encoder hidden states he [45]. The weight
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represents how relevant a hidden state from the encoder is to the current step, meaning which
of the token should the decoder focus on (“attend to”). To decide which of the encoder states
is most relevant, we compute dot-product attention, for the previous decoder state hi�1 with
all the encoder states.

score
�
hd
i�1,h

e
j

�
= hd

i�1 · he
j (20)

↵ij = softmax
�
score

�
hd
i�1,h

e
j

�
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�
(21)

ci =
X

j

↵ijh
e
j (22)

Resulting in a vector of scalars, it represents the similarity between the states. To create
weights ↵ for all the states, we use the softmax activation layer, which normalizes the scores
into ratio between 0 and 1. This tells us the proportional relevance across each of the encoder
states. Given the vector, we can compute the context vector ci as a weighted average over
all the encoder states. Then the current hidden state of decoder hi is equal to combination of
input ŷt�1 (output of last step), last hidden state hi�1 and context ci:

hd
i = g

�
ŷi�1,h

d
i�1, ci

�
(23)

The process is also visualized in figure 17 To create a more sophisticated way of calculating
the similarity between decoder and encoder state, we can add a set of weights to the
dot-product attention, which is updated during the training. Non-squared size of the weights
matrix allows using different sizes of hidden states in the encoder and the decoder, this type
of encoder-decoder is called bilinear. It allows for capturing stronger representation with the
encoder and saving computation in the decoder. [45] Attention can be also visualized with a
heat map that shows attention from languages of Machine Translation (MT) model.

Fig. 17: Example of translating with attention [45]
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2.2.10 Beam search

Greedy search fails to produce the most accurate choices. To produce the most likely
translation of the input sequence, we use beam search [45]. Beam holds on to several
most likely possible hypotheses (possible output sequence) in each iteration. When new
hypotheses are created in each step, again pruned to the limit, taking the highest probable
hypotheses. At the end of a generation, when all of the sequences reached “EOS”, all of the
probabilities are compared and the sequence with the highest one is taken as output. Using
the chain rule, we can break down the product of each word given its prior context, which
we can sum as logs. The closer the log probability is to zero, the higher the probability.
This version of beam search still has problems with different lengths of sequences. As Naive
Bayes algorithm, it assigns lower probabilities to a longer sequence. To accommodate for
this problem we normalize all the probabilities by the number of tokens in sequence.

score(y) = � logP (y | x) = 1

T

tX

i=1

� logP (yi | y1, . . . , yi�1, x) (24)

2.2.11 Transformer

Transformers took over RNNs for most of the tasks in NLP, due to their ability to be
computed in parallel. Even though they are being used for seq2seq problems, they no longer,
demand step-by-step computation [45]. Usually, a transformer is made of transformer blocks
stacked on top of each other, similarly to stacked RNN. The transformer architecture can take
the form of Encoder, Decoder, or Encoder-decoder, all of which are used for specific tasks,
trained in a specific way. In this part, I am going to explain the original transformer from
Vaswani [98]. Also, I will later use this model in translation multi-label classification to
solve the product categorization.

2.2.12 Self-attention

Self-attention is a special layer, that allows for a direct extraction and use of information
from arbitrarily large contexts without the need to pass it through intermediate recurrent
connections as in RNNs [98]. Similarly, as attention in RNN decoder, where we calculated
the dot-products from hidden states of the encoder, we calculate the dot product of input
embeddings, to find their relevance in the current context.

To compare the scalars for each previous input token, we use the softmax function to
normalize them. This creates a weights vector, which is used to generate the output value as
the weighted average of inputs seen so far, weighted by their respective weight. In the case
of the encoder, we use a bidirectional self-attention layer.

The self-attention mechanism goes further by looking at the embeddings in three different
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(a) Decoder self-attention layer (b) Encoder self-attention layer

Fig. 18: Visual comparison between Encoder and Decoder attention layers

(a) Inside a self-attention layer (b) Visualization of Multi-head attention

Fig. 19: Visualization of self-attention and multi-head attention

ways (figure 19a), namely query, key, and value [45]. The query says where the focus of
attention should be. Key says something about the preceding input compared to the current
query. And finally, values that represent the plain input, which should be multiplied by
attention. All of these variables are created as a multiplication of input and their weights,
which can be updated during training.

qi = WQxi;ki = Wkxi;vi = Wvxi (25)

To calculate the score for relevance between query (the current focus of attention) and key
(preceding context) we use dot product as previously. And also we combined them as a sum
of weights vector created by softmax and our values. To make sure the results of the dot
product will not run into numerical issues, because of too big of a gradient, we scale the dot
product by the square root of dimensionality of query and key dk.

score (xi,xj) =
qi · kjp

dk
(26)

Since the computations are for each of the word are independent, we can parallelize the
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computation by putting embeddings into one matrix, where each row represents one word.
We can then create matrix representation of query, key, and values as:

Q = XWQ;K = XWK;V = XWV (27)

Then the self attention for whole sequence is computed as:

SelfAttention(Q,K,V) = softmax

✓
QKT

p
dk

◆
V (28)

For language modelling, we have to set the upper-triangular portions of the matrix to �1,
which results in zero after applying softmax. It is because otherwise, the model would work
in training settings with something it should not know yet. We called it Masked Attention
Layer. A problem with Transformers is that Attention is quadratic in the length, so the
computation of extremely long documents is limited. We usually set a specified length of a
maximum number of input tokens.

2.2.13 Transformer block

The transformer block consists of the previously explained self-attention layer, normalization
layer, and feedforward layer, it also takes advantage of the residual connection to improve
learning and allow higher levels layers to have direct access to lower layers [45]. The
residual connection is implemented over the attention and feedforward layer. These residual
connection helps to train bigger NNs, because the gradient can flow through the identity
mappings all the way to the beginning of the network. This also prevents overfitting. Layer
normalization is another technique that is used to improve learning. It works by keeping the
values of hidden layers in a certain range, which helps backpropagation. The normalization
is based on z-score method. If Encoder-Decoder Transformer is used, each Decoder block
consists of one more layer that is called the cross-attention layer. This layer takes in keys
and values from the Encoder’s last layer and combines it with Decoder’s queries from the
last self-attention layer. After each of the cross-attention layers follows the normalization
layer as it is after the self-attention layer. If Decoder is used as a language model there are
no cross-attention layers.

2.2.14 Multi-Head Attention

Multi-Head Attention (figure 19b) allows for finding more than one relation in the input
sequence [45]. It is a set of self-attention layers, applied at once. Each of them is called
a head. After each of the self-attention layer is computed it concatenates outputs of all the
layers and applies linear projection layer.

5
https://jalammar.github.io/illustrated-transformer/
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(a) Encoder block (b) Decoder block

Fig. 20: Encoder and Decoder block side by side

MultiHeadAttention (Q,K,V) = Concat ( head 1, . . . , head h)W
O

where head i = SelfAttention
⇣
QWQ

i ,KWK

i ,VWV

i

⌘ (29)

2.2.15 Positional Encoding

Positional Encoding allows the model to distinguish between the meaning of a token in a
different position. It adds the same embeddings for each of the positions in every iteration
for both input and output. In the original paper [98], it was done by adding sin/cos to the
word embeddings.

PE(pos ,2i) = sin
�
pos /100002i/dmodel

�
(30)

PE(pos ,2i+1) = cos
�
pos /100002i/dmodel

�
(31)

2.2.16 Translation using Transformer Encoder-Decoder

[98] was the first implementation of this model for MT. The encoder was constructed from
6 transformer blocks, introduced earlier. It can create a dynamic context embedding for
each of the tokens since it has access to the whole sequence at the start. The final layer
of the encoder then passes context (key and values) to the decoder, similarly in the case of
the RNN model. The exchange of a context between the encoder and decoder happens
in so-called cross-attention layers. This is a special layer between the feedforward and
multi-head attention layer in the decoder block. In this layer, the encoder provides keys
and values from the final layer to join decoder queries from the self-attention layer. This
happens in every decoder block. [45]

Nowadays, Transformers in NLP are usually pretrained on a large corpus to gain a language
understanding and then transfer-learned for a specific corpus or fine-tuned for a specific
downstream task, which is what the field calls those supervised-learning tasks that utilize
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Fig. 21: Transformer from [98]

pretrained models. The models don’t have to be only of encoder-decoder architecture but
can also take the form of separate encoder and decoder for specific tasks. In recent years,
researchers and other big companies started open-sourcing their models online. One of the
most popular websites for sharing models is called hugging face. There are also two libraries
that implement the most recent state-of-the-art models like Transformer tenseror2tensor6

(implemented in TensorFlow7) and fairseq8 (PyTorch9).

2.2.17 Encoder Transformers

One of the most used encoder transformer is called BERT, which stands for Bidirectional
Encoder Representations from Transformers [96]. Similar to Embeddings from Language
Model (ELMo) from [73], which builds biLSTM to extract dynamic contextualized
embeddings from sequences, the BERT approach uses a transformer for this task but trains
the model in a different way. The advantage of BERT is also that it doesn’t read the
text left-to-right or right-to-left, but it all at once. It is trained on a task called Masked
Language Modelling (MLM) (earlier Cloze task) and also Next Sentence Prediction (NSP).

6
https://github.com/tensorflow/tensor2tensor

7
https://github.com/tensorflow/tensorflow

8
https://fairseq.readthedocs.io/en/latest/

9
https://pytorch.org
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The embeddings are built using WordPiece tokenizer, with two additional tokens [CLS],
[SEP] and [MASK]. The final hidden state of [CLS] is used as a representation for a
classification task. [SEP] as a separator between the first sequence and the other one for
the NSP task. [MASK] is replaced instead of masked words in MLM. In training, MLM is
applied to 15% of the input is given to the generator to be masked. It then chooses 80% that
are going to be masked, 10% that are going to be replaced by a random word, and 10% that
are going to stay the same. The final layer of the Encoder then outputs the correct masked
word or is randomly replaced. For the NSP, the second sentence is randomly sampled in
50% of the times and evaluated by a special token as right or wrong. This way, the model is
better prepared for tasks like question answering and natural language inference. After the
model is pretrained to understand language, it can be fine-tuned to a different task, usually
classification.10

2.2.18 Feature-based Approach with BERT

The original paper also describes the use of contextual embeddings as features for a
standalone model [96]. It used those to evaluate on Named Entity Recognition task. Two
approaches that performed best were the weighted sum of the last four hidden layers and
concatenation of the last four hidden layers. Figure ?? shows possible extractions of tokens
and their score on name entity task. The biggest advantage is the reduction of computation
cost, while the classifier is not trained on top of the Transformer. But we also lose some
performance that could be gain from fine-tuning the Transformer representation for a specific
task. The sequence representation can be greatly improved by approaches like () or
SBERT-WK [100].

Fig. 22: Results of different features extraction approaches for a name entity recognition task [96]11

10BERT is well describe here https://jalammar.github.io/illustrated-bert/ and
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

11Picture taken from https://jalammar.github.io/illustrated-transformer/
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2.2.19 Modifications of BERT

A Robustly optimized BERT (RoBERTa) from [62] is trained longer with bigger batches
on longer sequences. Also removes NSP and trains with dynamically applied masking
patterns. This resulted in better accuracy, it also showed that BERT was under-fitted .
Electra iteclark2020 is a special kind of encoder transformer that differs by its training
approach. It uses a small generator for replacing masked sequence, but after the output
uses another model, discriminator, that tries to predict if the words are right (figure 23).
This way, researchers were able to train the model faster with better accuracy than BERT.
There have been also papers that not only try to optimize the performance but also try to
lower computation power needed at training or inference times, that would be for example
ALBERT (A Lite BERT) [56] and DistillBERT (distilled vesrion of BERT) [80].

Fig. 23: Example of training ELECTRA Transformer [23]

Both of these two modifications has also open-sourced version trained on Czech corpus. I
will use them to extract contextualized embeddings in the practical part (RobeCZECH [87],
Small-e-Czech [51]. I have also found other Czech BERT like transformers Czert [84],
Czech ALBERT [106], or multilingual variations Slavic BERT (pl, ru, cs, bg) [4]. There are
also Multilingual SBERT for 50+ languages12.

2.2.20 Decoder Transformers

Standalone transformer decoder (autoregressive model) works as a language model for text
generation, in tasks like Question Answering, Commonsense Reasoning and Summarization,
or also for some kind of classification tasks, like entailment, similarity, multiple choice. It
learns as a standard language model by masking the sequence further right from the current
step. During the inference, it consecutively generates the word and uses it as the next input.
The model is usually pretrained on the similar text we will use the downstream task for, so
the model learns the probability distribution of words in the given task. Most used decoder
transformers are from Generative Pre-trained Transformer (GPT) family from OpenAI [74].
The last of them, GPT3 [14], has 175 billion parameters and shows a very high understanding
of language, it is trained using in-context learning. Recently two new models, which beats

12
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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the GPT3 , were announced Gopher from DeepMind [75] with 280 billion parameters and
Generalist Language Model (GLaM) from GoogleAI [27] with 1.2 trillion parameters, even
though it has so many parameters it can be more efficient during inference.

2.3 Image processing

2.3.1 Convolutional neural networks

These NNs use kernels of different sizes for processing data. Convolution is a mathematical
operation that allows for a combination of data points over a given kernel (It can be also
thought of as a weighted averaging window) [32]. This operation can be done in many
dimensions, usually, we use a 1-D kernel grid for text or time-series data and a 2-D kernel
grid for image processing. Convolutional neural networks were first introduced in LeCun
1989 [58] for the handwritten digit-recognition task, until that time images were processed
as flatten vectors, which required way more parameters while processing with FFNN. This
didn’t progress so much until the early 21st century, because of computational power and
lack of image data. Later in 2012, it was the first time that CNN won the ImageNet13 Large
Scale Visual Recognition Challenge, then almost all of the image applications involved some
kind of CNN. The winner architecture is known as AlexNet [54] (figure 25).

s(t) = (x ⇤ w)(t) =
1X

a=�1
x(a)w(t� a) (32)

Fig. 24: Convolutional Neural Network with one convolutional layer [69]

CNN finds sparse interactions, since kernels are smaller than the input it can detect
meaningful features that occur just in some cases, not in all the pixels [107]. Therefore, we
use multiple kernels to be able to learn more features. One kernel has the same parameters

13
https://www.image-net.org
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for the whole image (meaning the kernel weights are shared). So the kernel is looking
for the same patterns in different fields (local receptive fields). We use pooling to make
the representation smaller, therefore, more saturated. When using pooling we use kernel
(usual 2x2, 3x3) with a different length of stride, meaning the step when translating the
pooling kernel. Instead of combining the inputs with different trainable weights, we take
the maximum of the inputs (it is also possible to use the average of the inputs). Similar
to FFNN, there is usually more than one hidden convolutional layer. We also use activation
function, nowadays mostly ReLU, in between the layers. Before the final layer of the softmax
activation function, we flatten all of the last kernel representation into a dense layer and create
output with the softmax layer. Historically, multiple dense layers were used before the last
output layer, but this led to a large number of parameters. CNNs are translation invariant and
equivariant. The former means they can learn patterns in different positions of the image and
the latter that they can also learn the same object rotated and at a different scale. To use it to
its full potential we usually augment the training dataset by rotating, scaling, and offsetting
the images, thus creating more data examples to train on. CNNs can have problems in the real
world, because they are looking for patterns, but not checking if they make positional sense.
There has been research around models that can distinguish between patterns in different
positions, these models are called Capsule Networks [78].

Fig. 25: Architecture of AlexNet taken from the original paper [54]

Nowadays, we also use different types of CNN blocks and special connections. First of the
block were introduced by Visual Geometry Group (VGG) in their famous networks VGG16
and VGG19 [85]. The VGG block is composed of the convolutional layer with padding
(adding zeros along with the original input) to maintain the resolution, activation function
applying nonlinearity such as ReLU and maximum pooling layer. The VGG network had
5 blocks, where the first two of them applied one convolutional layer and the other three
applied two convolutional layers.

Then Google came with GoogLeNet [92], which implemented an Inception block. The
inception block is composed of four different types of processing, which are concatenated
at the end of the block. The combination can be seen in the figure 26a. Researchers at
Google later came with batch normalization. Batch normalization rescales and offsets all of
the output from the previous layer. It is used usually after each convolutional layer with an
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activation function. This helps to make the optimization surfaces smoother, thus easier to
optimize.

(a) Inception block from [92] (b) Residual block from [37]

Fig. 26: Inception and residual block

Another architecture introduced was ResNet [37]. This model introduced residual
connections (figure 26b), which can learn identity function easily and also improve
backpropagation. The residual connections are added at the end of each residual block.
If there is a need to reduce the number of channels we apply a convolutional layer of 1x1
to the residual connection. These architectures have been continuously improving the recent
improvement was name as Big Transfer (BiT) [52] which was also followed up with its
distilled version [10]. Another architecture that applied a similar method was DenseNet
[42]. Instead of adding the connection at the end of the block, it concatenates them, thus
propagating the representation deeper. Other new features were introduced in MobileNet
[40], which goal is the scalability of the models so they can be easily embedded. In this
implementation, they split standard convolution into depthwise and pointwise convolution,
which reduces the computation costs. They ale proposed linear bottlenecks and inverted
residual connections to make better use of low-level features. In my practical part, I will
make use of pretrained EfficientNetB0 [93, 94], which takes ideas from the mobile designs.
[32, 107] In recent years researchers came with Visual Transformer (ViT) [26]. It performs
similarly to CNN and may replace them in the future.

2.4 Multimodal machine learning

In recent years, there has been a popular approach using multi-modal classification models,
these models use both text and image (or other modalities) combined together [7]. For text
language transformer model is usually used to extract context. This was already elaborated
on in the theory part, where I showed the theory behind transformer language models
capturing semantics relationships on text. In the case of image embedding CNN is used.

The theory of multimodal machine learning is based on 5 main challenges: Representation,
Translation, Alignment, Fusion, and Co-learning.
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The representation talks about how the representations from different modalities can be
represented together in vector space. There are two main categories: joint and coordinated
representation. The joint representation tries two combine multiple modalities in one
dimensional space. This can be done by different deep learning models, like RNN, Deep
Boltzman networks, or Deep Belief networks. On the other hand, coordinated representation
leaves modalities in their own space, but tries to create similarity constraints, which creates
coordinated space. This mapping of two representations can also be done with deep learning
models, but most of the models are based on canonical correlation analysis.

In the other challenge translation, we try to map data from one modality to another. This
can be used when we want to generate one modality from the other. There are two different
approaches of example and generative-based translation. The example-based approach uses
a prebuilt dictionary. The example-based approach can be further separated into retrieval
and combination-based. The retrieval-based approach works kind of like k-NN and tries to
find the closest samples from the training set. This can be done either in unimodal or created
semantic space. The combination-based approach retrieves multiple samples and combines
them using complex handcrafted or heuristic-based rules. The generative approach creates
a model to translate from one modality to another. Currently, there are three main types:
Grammar-based, Encoder-Decoder, and Continuous generation models. Grammar-based
uses pre-defined grammar combined with the high-level concepts presented in the input
modality. Encoder-Decoder is a trained neural network for a generation. Continuous
generation models are focused on translating sequences like the text to speech for example.

Aligning is about finding direct relationship between the modalities. For example that a word
in input corresponds to a part of an image. Explicit alignment is a similarity-based approach
where we try to find similar sub-components in the modalities, this can be either supervised
or unsupervised. Implicit models try to create latent space for another task.

Fusion talks about the theory behind building models from multiple modalities. Early, late
and hybrid fusion talks about combining the features to produce predictions. These types
of fusion are also called model-agnostic approaches. Early fusion builds a model from a
concatenation of feature vectors. Late fusion combines the decisions of models trained in
a unimodal task. Hybrid combines both early and late approaches. There is also another
model-based approach that combines features using different types of architecture, like Multi
kernel learning methods, Graphical models, and types of neural networks, for example,
Multi-View RNN is used for a recommendation based on text and images [25].

Co-learning is about how transferring knowledge between multiple modalities can improve
the training of models. It is needed for example in situations where one of the modalities is
not always rich in information.

In the practical part, I will only build an early fusion classifier based on multimodal
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representation using simple concatenation and a late fusion classifier based on a summation
of unimodal classifier decisions.

2.5 Keboola

Keboola is a service that allows companies to store and work with their data. It has many
features, but in my work, I have only used their snowflake and python transformations
and workspaces, where I implemented all of my functionality. These transformations and
workspaces run on powerful backends, so the computation is faster than what would be
possible on my laptop. For most of the following tasks I used SMALL computational jobs,
which run on a system of 16 GB RAM, 2 CPU cores, 1 TB SSD shared. For some of the more
expensive computational procedures, I used MEDIUM job, which runs on 32 GB RAM, 4
CPU cores, 1 TB SSD shared.14

2.6 Ensemble models

There are multiple types of ensemble models[79]15. One of them is bagging, it aggregates
models based on bootstrapped data, an example of this would be Random Forrest. Which
is an algorithm that builds Decision Trees on sampled data and combines their prediction.
Boosting builds weak learners (very simple models) in sequence. The most used boosting
model nowadays is Gradient Boosted Trees (GBT). Stacking approach builds a model on
predictions of multiple models. Blending or voting combines predictions from multiple
models to make a final prediction. The combination can be also weighted.

14
https://help.keboola.com/management/project/limits/

15
https://scikit-learn/stable/modules/ensemble.html
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3 Related work

Most of the work on product categorization was done in the last decade. [82] used Naive
Bayes classifier combined with selected words from a bag of words (which is another name
for the term-document matrix) by their mutual information. [83] proposed a two-stage
classifier. Using a coarse level classification algorithm, they estimated confusion probability
between different classes, which allowed them to group similar categories in the latent
groups. In the second stage, they built one classifier for each group. [53] created FFNN
with an embedding layer to extract meaning from words of text. The embeddings of a
sentence were averaged to create a vector representing the title. [35] create three types of
classifications based on transformed distributional semantics from descriptions of products.
The classifiers were divided based on their possible labels. A path-wise classifier was made
to classify from each of the possible paths available. Node-wise type uses all the nodes
as possible labels and finally depth-wise approach, which builds a classifier at each of the
hierarchical category layers. For the distributional semantics, they used Skip-Gram with
Negative Sampling combined using a graded weighted bag of words to produce document
representation. [76] concatenated doc2vec with image embeddings brought the best results
for three-level classification problems. [36] creates Deep Categorizing Network frame, that
builds an RNNs on a sequence of product attributes (title, brand, . . . ) to extract embeddings
about a product. All the RNNs outputs are concatenated together and passed to FFNN
with a softmax layer at the top. [105] compared the prediction performance of text and
image as an input source for the classifier. They discovered that in unimodal classification,
text outperforms image-based classifier. They suggested creating image embeddings ahead
since the CNN takes a lot of propagation time and is not therefore best to use as a model
in multimodal architecture. Needless to say, the combination of both brings the best results.
The decision-level (late) fusion outperformed the feature-level (early) fusion. [103] proposed
Attention-based CNN for text processing, which performed similarly to GBT, while training
seven times faster. [71] used text features extracted using TF-IDF and chi-squared test to
build a flat classifier. [1] creates lexicon based on n-grams from titles for similarity-based
categorization. Each of the tokens from n.gram is weighted based on its importance and
relevance with respect to the category assigned in training. [59] builds MT like classification
translator. In this case, the model is trying to generate a sequence of category tree given
the title of the product. Other studies build models based on stacking of multimodal
models, transfer learning of pretrained CNN networks, deep metric or similarity learning
using siamese networks, building domain-specific MLM, and finetuning it to the task of
categorization or building cross-modal attention fusion to combine both visual and text
transformers. [97, 47, 102, 16, 108, 13, 17]

There were also a couple of e-commerce machine learning challenges, proposed by the
organization SIGIR eCOM. In 2018, they held a contest for product categorization using
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just a title of the product. Teams created models based on biLSTM, k Nearest Neighbours
(k-NN), text CNN. [61, 33, 38, 41, 43, 55, 60, 86, 91, 104, 30]

In 2020, they SIGIR eCOM also held a contest regarding product categorization, but the
objective of this challenge was to solve it as multimodal challenge. Teams submitted models
based on Efficient Manifold Density Estimator combined with multimodal fusion, classifier
using features from BERT and BiT combined with Highway network-based fusion, late
decision level classifier based on BERT and ResNet152 model, ResNet and BERT/biLSTM
features combined using co-attention and finally SE-ResNeXT and BERT features combined
using addition, concatenation and attention maps to build boosted late fusion classifier. [3,
8, 21, 11, 20, 99] In these challenges, a different kind of F1 loss function was used to
compare results of the teams, I will F1 weighted metric along with all my experiments.
Earlier approaches were only focusing on categorizing materials given reference data.
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4 Practical part

In this part, I first try to understand the nature of given data through analysis. Then use some
preprocessing to make the data cleaner, meaning easier to understand for machine learning
models. Then I train many different models. I split this task into two different scenarios. I
first try all the selected algorithms on L1!LX problem, which is classifying products that
have already been categorized at least to level 1. After choosing the best algorithms for this
task, I test the best models on categorizing from the root, which is also needed for product
categorization.

4.1 Data preparation

I first had to merge some tables in Keboola database using snowflake transformation, namely
item table, which holds the primary keys about all the products displayed on mall.cz.
item_photo a table containing URLs to photos of products, item_content table containing
text for the title, brief and description for every product, item_category table that holds
information about where a given the material should be displayed and list_category table
containing a valid category for the current date. While merging the data, I decided that I will
first work with level one category Hobby and zahrada (Hobby a garden in English), for the
categorizing from the root I will sample the categories later. So now I am left with tables
containing the information just about this category and its nodes. In total, it is more than
240 thousand materials in 647 categories, but only 509 unique category_path ids. I also tried
merging information about parameters belonging to a material, but this data was very sparse
and the input of parameters while listing a new product comes after choosing a category, so
it would be useless in real use.

4.2 Data analysis

4.2.1 Categories

So I start looking at the level 1 (L1) category Hobby and garden, which is one of the main
categories on mall.cz (root would be L0). The nodes in this category reach a maximum of
level 6. Most of the materials (96%) are placed in the categories L3 and L4, as you can see
in the figure 27. No materials are placed directly in Hobby and garden and only some of
the materials are placed in the L2, which is usually in some category that doesn’t have many
subcategories. In the figure 28 you can see the ten largest category nodes in this tree, which
all come from L3 or L4.

The largest category Ruční nářadí > Ostaní ruční nářadí (translated as Hand tools > Other
hand tools) have almost 10% materials of the whole tree. Just from this graph, we can
see that the categories are very unbalanced. To show how unbalanced the labels are, I
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Fig. 27: Frequency of materials in each of the category level

Fig. 28: Ten largest categories from Hobby and garden

created a histogram (figure 29) with a number of materials in a category. It shows that
most of the categories have less than 150 materials. The most problematic categories for
the classification will be the ones with very few samples, I will also address this problem in
preprocessing part by oversampling the small categories.

I noticed that one material can be placed in more than one category. You can see in the figure
30 there are not that many materials that would be assigned to 3 or 4 categories at the same
time, but the number of materials that are assigned to 2 categories is not negligible.

Further, inspecting this behavior, I also found out that a category is uniquely specified by its
category_id, but can have different path and names in the tree structure, meaning you can get
to a specific category more than one way.

Therefore, the category tree can be visualized using Directed Acyclic Graph (DAG). For
example, in the table 1 there are 4 different names for category_name Houpací sítě. Even
non-Czech speakers can notice that some of the category names are affected by misspells.
This problem will not affect flat classifiers (predicting all nodes as one level) since we are
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Fig. 29: Count of categories by number of materials

Fig. 30: Graph showing how many materials are assigned to more than one category

going to use the unique category_id as labels but could be making the task harder for seq2seq
models or would be hard if we would apply hierarchical classification. I will try to solve this
issue in preprocessing part, by reducing the number of paths per category_id.

4.2.2 Inspecting text data

In the figure 31 you can see our data sources from a product detail view of a random
lawnmower from the website. The first subfigure contains category path, title, brief, and
images, which I will get to in another section. The other picture shows a description. This
example shows that the title usually contains a lot of specifications and serial numbers.
Although it could give quite a lot of information to humans, it will not be that beneficial
in most cases for algorithms since a lot of the tokens are quite rare and will result in default
embedding.

I have also noticed that some titles don’t pose any meaning, because they only contain only
companies and/or vendor names and some only serial numbers. This would be a problem if
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Tab. 1: Example of categories with multiple possible paths

Zahradní nábytek >Houpací sítě , křesla >Příslušenství
Zahradní nábytek >Houpací sítě >Příslušenství
Zahradní nábytek >Houpací sítě, křesla >Příslušenství
Zahradní nábytek >Zahradní houpačky, houpací sítě >Houpací sítě >Příslušenství
Zahradní nábytek >Stany, altany
Stavby na zahradě >Domky, altány >Altány
Zahradní nábytek >Slunečníky, zastínění >Stany, altany
Dům, byt >Koupelna, sanitarni technika >Umyvadla
Dům, byt >Koupelna a sanitární technika >Umyvadla
Dům, byt >Koupelna, sanitarni technika >Vany, sprchy >Umyvadla
Hobby a zahrada >Dům, byt >Koupelna, sanitarni technika >Vodovodní baterie
Hobby a zahrada >Dům, byt >Koupelna a sanitární technika >Vodovodní baterie
Hobby a zahrada >Dům, byt >Dveřní, okenní kování
Hobby a zahrada >Dům, byt >Dveře >Dveřní, okenní kování

(a) Product detail view of random lawnmower
(b) Description from product detail view of random
lawnmower

Fig. 31: Data sources from product detail view

we would be using only title text, but since we are going to use multiple texts concatenated
this should not be a problem. Before training, I will remove these materials. Further
analyzing the sources, I found that brief can be the same as description or can be a part
of the description. Thus, providing both brief and description, might not be beneficial and
can lead to bias classification. I will address this in preprocessing.

In the following graphs, I have looked at the distributions of a number of words and
characters per the source of text. In the title distribution isn’t much to inspect, but we can
see that the distribution is quite close to normal, with some long tail for longer titles. In the
brief distribution, we can see that most of the briefs have a length of 300. It is because the
brief usually copies the description and for marketplace partners, there is only an allowance
of 300 characters. There are also some products that are listed by mall.cz, and they reach
a character length of up to 700. The is also plenty of descriptions that have exactly 150
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(a) Distribution of characters in title (b) Distribution of words in title

Fig. 32: Distributions of characters and words in title

characters.

(a) Distribution of characters in brief text (b) Distribution of characters in the description text

Fig. 33: Distribution of character in brief and description

4.2.3 Extracting features from text

To extract information from text data, I am going to use pretrained models on the Czech
corpus, that give a representation of words in dimensional vector space, namely fasttext16

models and pretrained transformer from hugging face17. Before transforming the text into
any embedding, I am going to preprocess it. The preprocessing of the text includes: lower
casing, special characters and number removal, lemmatizing18 and stemming19 and stop
words removal.

For description source text I also used library BeautifulSoup20, for removing hypertext
tags, which can be seen in table 2. After preprocessing, I have created multiple columns
representing the text sources, namely title, brief, description, title+brief (further TB_text),

16https://fasttext.cc
17https://huggingface.co
18
https://nlp.fi.muni.cz/ma/

19
https://research.variancia.com/czech_stemmer/

20
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
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Tab. 2: Example of preprocessing description

before
<h3>Elektrický vyžínač 400W0– 270mm
</h3><h3 class="pnl pnl–default con-left h3">
TECHNICKÁ SPECIFIKACE:</h3><ul>�<li>Pracovní zábě...

after lowercasing
hypertags removal
and words filtering

elektrický vyžínač technická specifikace pracovní záběr otáčky
naprázdno min jmenovitý příkon napětí struna délka kabelu
hmotnost vlastnosti ochranný háček proti pnutí...

after removal of stop words,
lemmatizing and stemming

elektrick vyžínač technick specifikac pracovn záběr otáčk
naprázdn min jmenovit příkon napět strun délk kabel hmotnost
vlastnost ochrann háček pnut kabel měkčen rukojet’...

title+description (TD_text), title+brief+description (TBD_text). As I already touched upon
large portions of the text, in brief, are the same as the beginning of description, therefore in
TBD_text I removed the brief if it was the same as the beginning of the description. I will
evaluate the performance of each option with one of the classifiers.

I have already presented fasttext library earlier in the theory, in this part I want to take
advantage of their pretrained subword word2vec for classification task. I am going to create
sentence embeddings using their get_sentence_vector method, which produces an average
of unit vectors over each word embedding in the whole sentence.

In figure 34, you can see a visualization of text embeddings based on title+brief
using reduction t-SNE21 of category Hobby a Zahrada > Zahradní technika > Sekačky
(Lawnmowers category). It should be noted that this 2-dimensional representation might
be far from the 300-dimensional representation that the vectors have. But it is a simple way
to check if the same products get somehow clustered together. This text representation isn’t
very friendly to read, but later in the section about extracting features from images I will
visualize the embeddings by products images and talk a little bit about what can be seen in
the images.

4.2.4 Inspecting images

Each of the products can have multiple images. In my task, I am going to only use images
that are flagged in column IS_MAIN_MEDIA. This works in most cases, but there are some
products, which don’t use a relevant image as the main media. All the main images should
also be on white background, which isn’t also always true. Some products can have images
that are not very relevant. Like images with a lot of noise in the background or even incorrect
images showing other products. The images were available to me as a link in the table,
therefore before using them I have to download them first.

21https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Fig. 34: Visualization of t-SNE reduction on fasttext embeddings applied to name and brief of
lawnmowers category

4.2.5 Extracting features from images

While working on this thesis, I created a process that downloads the main image for any
current or new product listed on mall.cz. While downloading the picture, I extract the
features from the image right away and save it to the database. Therefore, using them
for other downstream tasks is more compute effective, as some studies noted. For feature
extraction from images, I used EfficientNetB022 that I have introduced earlier in the theory
part. Removing the top of this CNN, we can obtain a 1280-dimensional representation of
each image. I could have also used another CNN, but I chose this one because of its size and
effectiveness. If I had access to GPU (TPU) hardware, this would make the computations

22
https://www.tensorflow.org/api_docs/python/tf/keras/applications/

efficientnet/EfficientNetB0
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much easier and CNN with a larger number of parameters could be used. This would also
improve the performance of downstream classification tasks.

For visualizing the dimensional space I used similarly to text embedding dimension reduction
technique t-SNE, but also UMAP23 and PCA24. Here I only present UMAP embeddings on
image data, the rest of the visualization I put to the appendix.25 This UMAP visualisation
nicely shows how similar images are clustered together in representation taken from CNN.

Fig. 35: Visualization of image embeddings using UMAP

4.3 Train/Test split

For each of the models created, I will use the same train/test set to be able to
objectively compare predictions of all the various algorithms. To split them, I used
sklearn.model_selection.train_test_split26 with the same random_state seed every time. This
way the split will be the same every time and I don’t have to keep track of two datasets in
the database. Before splitting, I always remove the smallest categories with which I will not
be training. These will be the categories that have less than 20 products listed in them. After

23
https://umap-learn.readthedocs.io/en/latest/#

24
https://scikit-learn.org/stable/modules/generated/sklearn.

decomposition.PCA.html

25These pages helped me with settings rigth hyperparameters for t-SNE https://distill.pub/

2016/misread-tsne/ and UMAP https://pair-code.github.io/understanding-umap/
26
http://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.train_test_split.html
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removal of these categories, the number of target categories was brought to half number
(around 300). During splitting, I also use the stratified option to create evenly distributed
splits by category_id column. The size of the test dataset will be 30%. To further support
the unbalanced classification problem, I over-sampled categories that contained between 21
and 99 products. After doing so, the minimal number of materials in the training dataset per
category is 100.

In the following sections, I will choose between a couple of different features, which in this
case will be embeddings from different sources and modalities. Most of the time the target
variable used for classification will be category_id (or category_path for MT like multi-label
classification).

4.4 Evaluation of results

For evaluation, I will use weighted F1 metric27 since accurately classified materials are what
we are looking for, this the choice was also used in most of the papers regarding product
categorization.

4.5 Unimodal models

In this section, I tried to build a couple of different classifiers based on each modality
separately (only text or images). While creating models, I started with well-known machine
learning algorithms, that didn’t turn out well for the high dimensional representation that I
extracted. Most of the successful algorithms are based on Deep learning architecture of some
sort. Algorithm that worked surprisingly well was k-NN classifier both on text and images.

4.6 Using text

4.6.1 Flat classification model

By flat classification I mean, that I am going to put all the categories in the same level,
and try to predict which of the category has the highest probability of being the right
one. For this, I will experiment with a couple of models. Ordinary machine learning
models like Logistic Regression, Naive Bayes, Random Forrest (RF), and XGBoost and
also deep learning model FFNN. I also tried to fit data on models like Naive Bayes
(sklearn.linear_model.MultinomialNB) and Logistic Regression. NB had very low accuracy,
around 30% on this data and LR, wasn’t even able to converge. When fitting Random

27
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_

score.html
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Forrest28 and Gradient Boosted Trees (XGBoost29), I had a problem with computation power,
since the train was quite large (170k of materials) and these models are not iterative. So I
decided to create multiple models of the same kind (three for each) on sampled train datasets
and then ensemble them into one (blending approach). Every iteration, I sampled 10% of
the training dataset. The RF models were quite accurate itself, they all scored above 80%,
one of them even 81%. When combining them into ensemble models, they achieve an
accuracy of 85.15% if ensembles with mean of probability and 85.25% if ensemble with
a max of probabilities. Even though this is a great way to make accurate predictions, it is
not a production-efficient solution. In the XGBoost case, I wasn’t able to build due to a
computational difficulty. To solve it, I also try reducing the embedding dimension to 100
dimensions via PCA. This helped in faster computation, but resulted only in an accuracy of
43%.

Fig. 36: Example of model being overfitted on training data

Fig. 37: Correctly fitted model

The next models I built were FFNN using Keras library30. I build a sequential model using
flatten and dense layers provided in the library. As an optimizer, I chose Adam [49] with

28
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

29
https://xgboost.readthedocs.io/en/stable/

30
https://keras.io
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Tab. 3: Results from training FFNN with different settings and text sources

hidden layers hidden units title brief description
1 32 0.816 0.795 0.807
1 64 0.8436 0.846 0.848
1 128 0.868 0.867 0.865
1 256 0.882 0.879 0.881
1 512 0.89 0.899 0.902
2 128 0.872 0.862 0.848
2 258 0.878 0.882 0.878
2 512 0.886 0.895 0.888

hidden layers hidden unist TB_text TD_text TBD_text concat_NBD
1 32 0.818 0.831 0.827 -
1 64 0.853 0.864 0.87 -
1 128 0.877 0.887 0.889 -
1 256 0.890 0.902 0.91 -
1 512 0.909 0.912 0.912 0.931
2 128 0.889 0.88 0.889 -
2 258 0.894 0.895 0.907 -
2 512 0.908 0.894 0.915 -

the default setting. The models were trained using SparseCategoricalCrossenthropy31 with a
batch size of 300. While training MLP, I experimented with a couple of settings, choosing
different breadth and widths of the network. Starting with MLP of one layer with 64 hidden
units, the model already performed as well as RF ensemble models. I also benchmarked all
the text sources on these models since it was easy to train. Results from all the runs are
written in the table 3. During training, I kept an eye on the training and validation loss,
checking if the model does not overfit the training data. To control it, I set up an early
stopping mechanism that would stop if the validation loss would stop improving. In the
figure 36 I show how fast can the FFNN start overfitting the training data (picture is a case
of overfitting FFNN trained on the image embeddings). In the figure 37, I show training and
testing validation of FNNN with one hidden layer with 256 units.

From the results, we can see that the best performing architecture for most of the text sources
is the architecture with one hidden layer of 512 units. This architecture was outperformed
only in the case of TBD_text source, which was the best performing source of text. The best
performing model, in this case, was a network with two hidden layers of 512 units, which was
better just by a small margin. Later I also got an idea to train FFNN on concatenated vectors
for all three text sources (900 dimensions). This approach was superior to the previous ones
and achieved highest accuracy of 93.1%.

31
https://www.tensorflow.org/api_docs/python/tf/keras/losses/

SparseCategoricalCrossentropy
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4.6.2 Fasttext similarity model

Using the knowledge from previous classifiers I only used TBD_text embeddings for each
sentence to create a k-NN model based on cosine similarity. I implemented this using
Facebook AI Similarity Search (FAISS) library32. This library is CPU and can be also GPU
optimized for searching k-NN in dimensional space based on metric of choice. To create the
model I first normalized the embeddings using L2 normfaiss.normalized_L2 then create an
index (which is the model itself) using faiss.IndexFlatIP33.

1 # add faiss initialization

2 def get_n_similar_materials(features, k=50):

3

4 index = faiss.IndexFlatIP(features.shape[1])

5 faiss.normalize_L2(features)

6 index.add(features)

7

8 distances, neighbors = index.search(features, k)

9

10 return distances, neighbors

11

12 # building model

13 index = faiss.IndexFlatIP(train_vector.shape[1])

14 faiss.normalize_L2(train_vector)

15 index.add(train_vector)

16

17 # predicting

18 faiss.normalize_L2(test_vector)

19 nearest_neighbours = index.search(test_vector, k-NN)

20 predictions = [train.iloc[neighbour].CATEGORY_ID.value_counts().index[0]

21 for neighbour in nearest_neighbours[1]]

This index can be then used to find k-NN for the test set. When predicting I use the majority
of categories from the nearest neighbor from the train set as the prediction. During testing I
tried a couple of different settings for the number of nearest neighbors, the best of them was
1-NN shown in the table 4. The best performing option was using the model with 1-NN.
This approach outperformed the flat classifiers by little more than 2%. Using concatenated
vectors resulted in very similar results as in case of the TBD_text.

4.6.3 Classification as machine translation problem

In this case, I am going to train to seq2seq models similarly to [59] (figure 38). For
this purpose, I used fairseq library34, which holds the implementation of state-of-the-art

32
https://github.com/facebookresearch/faiss

33
https://faiss.ai/cpp_api/struct/structfaiss_1_1IndexFlatIP.html

34
https://github.com/pytorch/fairseq
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Tab. 4: Performance of cosine similarity using faiss library on the test set

k-NN TBD_text concat_NBD
1 0.938 0.939
3 0.923 -
5 0.914 -

neural network models from recent papers in PyTorch35. One of the models is going to
be bidirectional RNN using LSTM units with attention block36 and the other one is going
to be Transformer37. For this purpose, I had to use a medium-sized Keboola machine, since
the the small one couldn’t handle the memory requirements for these architectures. Even the
medium-sized machine wasn’t much powerful for this algorithm to train somewhat fast, and
GPU implemented version should be considered in the future.

Fig. 38: Visualization of MT like multi-label categorization algorithm

I had to downgrade the size of my models since my task isn’t as large as translating language
and also because of the computational power. When training the first RNN model, I chose
a bidirectional architecture of 512 Input/Output embeddings and 1 hidden layer with a size
of 1024. One epoch of these models on 170k data took 30 minutes, and the results weren’t
great. Thus, I downgraded the model, even more, using only 256 neural units in the hidden
layer. Training of this RNN using a medium-size machine took approximately 7 minutes.
After 6 epochs, the validation loss stagnated, and I decided to stop the training. Following
similar approach I also created Encoder-Decoder Transformer. Parameters of both models
and results can be seen in table 5.

4.6.4 Classifier with transformer embeddings

I will be using a pretrained Encoder transformer on the Czech corpus for representation
of text data. The models I tried were Czech ELECTRA38, RoBERTa39 and multilingual

35https://pytorch.org
36
https://fairseq.readthedocs.io/en/latest/models.html#module-fairseq.

models.lstm

37
https://fairseq.readthedocs.io/en/latest/models.html#module-fairseq.

models.transformer

38
https://huggingface.co/Seznam/small-e-czech

39
https://huggingface.co/ufal/robeczech-base
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Tab. 5: Performance of multi-label classification using translation models

biLSTM RNN
with attention

Encoder-Decoder
Transformer

Input/Output Embedding Dimension 512 512 512
RNN Hidden Layer Size 256 - -
FFN Hidden Layer Size - 512 512
Stacked Layers 1 2 1
Attention Heads No. of Parameters - 8 8
Dropout 0.2 0.2 0.2
Results 0.790 0.780 0.813

SBERT40. All of these were pretrained on a large corpus of text. Models were downloaded
using hugging face library transformers.

The first idea was to use a pretrained Transformer and fine-tune it for my task. I tried
fine-tuning the smallest transformer, ELECTRA, and one epoch on all the training examples
(170k) would take 8 hours running on a medium-sized job. Therefore, I decided to use
extracted the embeddings just from the pretrained network without fine-tuning. ELECTRA
produces 256 long embeddings for each input token, and the others produce 768 long
embeddings. Because of the limitation, in computational power, I decided to only use the
TB_text source and clip the max length of the input sequence to Transformer. For ELECTRA,
I chose a length of 30 tokens in the input sequence and for the other, I chose 10, since their
computation is three times more expensive because of the embedding size. The embeddings
can be extracted in many ways, depending on which layer we pick the embeddings from, and
how do we combine each token embedding into the sequence embedding. For the Sentence
BERT, I will be using the last hidden state as it is meant to be used. In case of ELECTRA,
and RoBERTa I will also last hidden state, but also sum of last 4 state and their concatenation.
For RoBERTa, I won’t do the concatenation because the vector would be too long. On these
representations I trained FFNN as I did in previous section. I wasn’t able to make the model
converge while using the concatenation of 4 embeddings from ELECTRA. All results can be
seen in the table 6.

4.7 Using Images

In this part, I am going to use extracted features from EfficientNetB0 for classification.

4.7.1 Flat classification model

Since extracted features are the size of the 1280-dimensional vector, it is hard to fit it with
standard machine learning models, like I tried in example with text feature with embeddings
of size 300. Therefore, for images, I am going to use neural network models right away.

40
https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
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Tab. 6: Performance of multi-class classification using representation extracted from pretrained
Transformers

FFNN architecture
Transformer hidden states Results hidden layers hidden units
Multilingual

SBERT last layer 0.83

1

768

ELECTRA
last layer 0.658 512sum of last 4 layers 0.849

concatenation
of last 4 layers 0.14 1024

RoBERTa last layer 0.882 768sum of last 4 layers 0.869

Similarly, I trained models of different sizes like in the text. The results can be seen in the
table 7. The best architecture was a neural network with 1 hidden layers with 512 hidden
units. The results are on average 10% below the text classification.

Tab. 7: Results from training FFNN with image data using different settings

Hidden layers Hidden units Results
1 64 0.807
1 128 0.825
1 256 0.831
1 512 0.847
2 128 0.809
2 256 0.829
2 512 0.845

4.7.2 Similarity model based on images features

Again, like in the text part, I used the FAISS library to build an index (model) for finding
k-NN in this case of image features. This approach outperformed the flat classification model
based on image by 3%. Results can be seen in table 8.

Tab. 8: Performance of cosine similarity using image data on the test set

k-NN Results
1 0.879
3 0.864
5 0.850

4.7.3 Unimodal error analysis

Since in training there are almost 300 possible categories, it is impossible to print a confusion
matrix showing the wrong classified number of materials with decent quality to provide some
visual feedback. Therefore, I am going to choose manual categories that had low accuracy. I
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am going to filter out categories that had more than 100 materials, to get a more representative
sample.

Inspecting text-based classified materials from the model which had 94% accuracy
(similarity 1-NN fasttext). The lowest accuracy occurred in categories Substrates and
Fertilizers. Both of these categories have a lot of words As expected, there were also some
wrongly assigned materials in each sentence. There are also case where the model could
have been chosen wrong because of a mislabel. This problem appeared in more categories.

Image-based classifier had an overall lower accuracy for more classes. I found a lot of
misclassifications, either because of the nature of data or noise labels. By the nature of
data, I mean how data gets processed with CNN. There are plenty of materials that might
look the same but may belong to a different category. For example Sink taps category, have
many types (bathroom sink, kitchen sink, show/bathtub sink) listed in different categories,
but visual they look almost the same. A similar problem was with materials from Hand tool
accessories category, where a lot of the materials are displayed on the picture in the box,
with triggers different features than for the specific materials. This issue is very hard to deal
with using images and the best thing we can do is use the images with other data like text,
as we have done previously. Another issue are noisy labels. For example, in the category
Hobby and Garden > Alarms there are a lot of wrongly listed materials. In this category we
can find electric scooter, fridge, freezer or audio player. These types of mislabeled data can
be seen almost over the whole dataset. Cleaning this noise is not an easy task, I will look at
one option how to deal with it in the next section.

In the translation task, I evaluated models based on generated category_path. As I touched
upon earlier, the category_path is not unique, which might be misleading in some cases.
When inspecting predictions, it can be seen that the models created simplification of some
paths, or they put it into a category with the same ID but a different path. For example, the
material got categorized into the category Dryers, but the right category was Clotheslines
and Dryers. I did some postprocessing of the translation Transformer predictions, where I
compared the last categories in the path. I turn out the prediction of this model is higher than
in testing. It achieved 90% accuracy. Inspecting the rest of the 10% predicted, I found other
materials, that were semantically in the right category. Therefore the translation model could
achieve even better results with clean data.

4.8 Label cleaning

As we have seen in the last section, data are quite noisy, meaning the materials are not always
placed in the correct category. This makes it hard for classifiers to correctly separate data
in multidimensional space. There is typically quite a lot of materials listed in higher-level
categories than they should be. These are mostly accessories listed in the main category of

47



products. I was looking for a way to deal with this, and I found a library called cleanlab41.
This library provides a tool to find incorrectly classified samples. It uses the assigned
probability of any learned classifier on the data. With the probabilities, there is an algorithm
that chooses the most concerning samples for each label. While using this on the whole
dataset of 240 thousand materials, it filtered out 2200 materials with wrong labels. It was
based on text data, so a noisy label does not only have to mean it was the wrong category,
but also for some samples the text semantics quality was very poor, and therefore the model
had no information to correctly classify the product. Later, I train FFNN based on TBD_text
with the mislabeled data. This model achieved 3.3% better performance in training and
0.8% improvement in testing. Even though this isn’t a big leap, iteratively removing and
repositioning wrongly listed materials can lead to even better performance.

4.9 Multimodal

In this part, I am going to train both early and late fusion models based on both image and
text.

4.9.1 Early fusion classifier

When constructing an early fusion classifier, the modalities are joint and enter the classifier
together. In this case, I am going to concatenate the text source and image. As a text source,
I choose the best performing one from text modality which was TBD_text extracted via
fasttext. For the image, I am going to use the only embeddings I have and which are the
embeddings from EfficientNetB0. Before training, I create one matrix from the two sources.
After concatenation embedding represents one product that has 1580 dimensions. Similar to
studies I read the early fusion classifier is not particularly better than the best score of the
unimodal model. In this case, it got better performance than the image model alone, but way
worse performance than the text model. The results can be seen in the table 9.

Tab. 9: Results from training FFNN while combining text and image sources into early fusion classifier

Hidden layers Hidden units Results
1 64 0.856
1 128 0.858
1 256 0.840
1 512 0.865
1 1024 0.858
2 128 0.859
2 256 0.852
2 512 0.849

41
https://github.com/cleanlab/cleanlab
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4.9.2 Late fusion classifier

A late fusion classifier is a kind of similar to an ensemble model, but in this case the each
of the models is trained using a different modality. To build this classifier I am going to use
the classifier that I have already built for the image and text itself. Again I am going to use
the best performing model that I had since now. That is the TDB_text model and the image
model. To use both of these models I use the sum of their probabilities to predict the category.
The late fusion classifier helps the performance opposite to the early one. Achieving 92%
accuracy, it performed one percent better than the best text classifier but didn’t improve over
the text-similarity 1-NN model.

4.10 Categorization classification from root category

In all the previous examples, I was showing how accurate can the predictions get when
working with products from a given tree of L1 category. In this section, I would like to find
out how hard is the task of assigning these L1 categories. I have used a mix of L1 categories,
containing the largest L2 categories in each, over which I built the best text classifier. In
total, it was 371k products from L1 categories Sport > Bags, Car > Car accessories, Home
> Decorations, Hobby and Garden > Hand tools and PC and Office > Apple Store. All the
text data went through the same preprocessing as described previously. I have again used the
best performing FFNN like in previous sections, which is the architecture of 1 hidden layer
and 512 units in the layer and also 1-NN based on cosine similarity. As text data, I used
both combinations of TBD_text and concatenation of TBD. The results are displayed in the
table 10. As you can see, it is almost perfect for each of the models or text sources. I did
not use the concatenation of TBD for the similarity model, because it turned to outperform
as well as TBD_text. It might be expected that the performance drops a little if we will build
a model based on all the L1 categories, but it will be minimal. The use of this model will be
described in the next section.

Tab. 10: Results of categorization from root

Models using fasttext TBD_text concat_NBD
Cosine similarity 1-NN 0.985 -

FFNN 1 hidden laye, 512-units 0.996 0.997

4.11 Use in production

In all the tests, I was testing for top 1 accuracy, to see if the model could be used automated
without supervision. We saw that the highest accuracy the models got was 93%. This would
not be certainly perfect in production and in the long run as it would hurt us more when
creating noisy data while wrongly listing new products. There is also another possible way
of using the models in production, and it is with a human in the loop. While listers add new
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products, we can provide them with additional information of possible categories to list into.
Therefore, I also checked what will be the top 5 and 10 accuracies. The classification from
the root will be almost perfect so that part will be automatic. But in case that the users thinks
the algorithm predicted wrong L1 category, they might be able to choose other category.
These decisions should be logged and later checked if a correct decision was made. This
could also help with finding the wrong labels. Then L1!LX model for a given part tree
can provide categorization to possible categories. Using the top 5 or 10 options in prediction
makes the problem easier and therefore greatly improves performance. You can see the
results of showing top@5 or top@10 in the table 11.

Tab. 11: Results of possible production models for use in a human-in-the-loop process

Approach Accuracy@5 Accuracy@10
best image model 0.948 0.967
best text model 0.984 0.991

late fusion modol 0.985 0.992
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5 Conclusion

I have successfully finished all the tasks. First, I have analyzed the data for L1!LX
categorization. I chose the L1 category Hobby and Garden. Containing almost 250 thousand
products in 647 categories spread over 6 levels. With most categories in levels 3 and 4. It was
shown that the dataset is very unbalanced. Although some of the classes contain thousands
or ten thousand of materials, most of the categories contain less than 500 materials.

I have shown that this type of classification is a hard problem and its the foundation is clean
data.

I have gained knowledge of state-of-the-art algorithms, which I successfully used on real
data, solving the product categorization. Ordinary machine learning algorithms were hard to
use with the high dimensional data of text and image representation represented. Therefore,
most of the models built were deep learning-based. These models were easy to train and
manage. I have also done an ablation study to test the accuracy of different combinations
of text sources. As expected, the best performing text source was achieved when combining
all of the text sources. Even better results were achieved when combining representation for
each of the text sources separately, which is also quite self-explainable.

For the representation of text, I used pretrained models on the Czech corpus. The most
successful model was fasttext. This library implements word2vec with subword information.
Even though the corpus it was trained on was general, it worked very well for separating
the categories. I was kind of unhappy that the Transformer models, came nowhere close
in terms of accuracy. I have read in studies that domain-specific models should work way
better, that should be also true for subword word2vec. Training my own Transformer wasn’t
possible, because it would not be possible with the CPU jobs. I was very surprised with the
performance of k-NN based on cosine similarity models. The best thing about this model is
that it is dynamic and training doesn’t take any time.

The image representation was in terms of performance behind the text models. It might be
also partially because the model is general and doesn’t have specific features. It is also one
of the weakest models available nowadays. Again, I have not been training my own CNN,
because of the computational. A bigger CNN would achieve better performance.

Translation models used as multi-label classification were behind the classical FFNN in
terms of performance. But after postprocessing of the path predictions, I found out that most
of them were right, but only chose a different path to the final category. In the end, they came
almost to the performance of the best text models based on fasttext. This approach is only
hard because of the category tree, as I showed in the data analysis part. When preprocessing
these paths, it is hard to decide which path should be the right one. The pruning nature of
translation model predictions should be more closely analyzed. They might as well make the
category tree cleaner to navigate through.
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As was talked about in studies, the early fusion multimodal model does not improve
performance. But it was shown that the late fusion model does by a small margin.

Throughout my work on this thesis, I was mostly focused on a model-centric view of the
problem. But throughout the work, I saw that way more should have been on the data.

When analyzing the prediction, I found that way too many materials are miscategorized and
a certain process should be built to start iteratively repositioning them to the right categories.
I have also tested a library called cleanlab. Used for finding predictions with a questionable
probability assigned by model. This approach actually removed problematic materials
and improve the accuracy of both the training set and test set. The possibilities of such
approaches should be further inspected, as cleaner data would help with the categorization.

I have also tested classifying from the root by choosing a couple of different categories.
This wasn’t a real challenge as the task was straightforward forward and the model achieved
almost perfect results. It might be possible to fit both classification tasks, root!L1 and
L1!LX together. If we build a model with a lot of parameters, it will be probably able to
generalize. The only problem is it would have to choose from 18 thousand categories. This
would be considered extreme classification.

In the end, I have also talked about how it could be used as a human-in-the-loop when
predicting the top 5 or 10 predictions. This would help with the generalization of product
categorization so that there is minimal space for human error. The models are ready to be
implemented in production.
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6 Further work

When solving the product categorization, I came across things that need to be implemented
in the future to improve the process, here are some examples.

All the models were trained using a CPU machine. Neural networks greatly benefit from
GPU (TPU) computation units, as it is the best we have currently for matrix computation.
Therefore, using cloud computing or standalone GPU would be beneficial in the future of
tackling any problem that will be using large deep learning models. We have also seen that
some new models like Transformers are very time ineffective when it comes to training on
CPU, in some case unusable when using with a lot of data.

In my test, I tried to spare computational power and only used EfficienNetB0, which is the
smallest of EfficientNets. Bigger CNN would certainly improve the categorization task. It
would be also beneficial to fine-tune the pretrained CNN as it would update the weights to
our case or train our domain-specific model [96]. The fine-tuning or building own model
also applies to Transformers.

I have tested only some representations of text and images. There are other methods
to get these representations. For example, the StarSpace42 the library can be used to
get embeddings based on some similarities between subjects. Other deep similarity or
metric learning like siamese networks or triplet/quadruplet loss networks can transform
representations into more sophisticated space. For images, unsupervised autoencoders can be
also used to gain representation [28, 31]. There are many other models for text classification
that I haven’t explored, for example, the CNN text classifier mentioned earlier or Hierarchical
Neural Networks [70].

There are plenty of other options to try when working with multiple modalities. I just
scratched the surface when using simple early and late fusion models, As I talked about
earlier in the section 3 different types of representation and fusion can be used. There
have been papers implementing co-attention for two modalities to improve the performance.
These models have a much higher understanding of both modalities. Another approach
can also be transforming multiple representations into one representation using multimodal
autoencoders.

It has been shown that combining multiple ensemble models can improve the performance
of models. I used ensembles of Random Forrest, which improved the performance by 4%.
This can be also done for FFNN.

Adding sparse or other features might be beneficial for categorization, The best models for
this job would be probably tree, but FFNN can also be tested. The utilization of parameters
should be also tested in the future, but there is a need to introduce more materials with

42
https://github.com/facebookresearch/StarSpace
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parameters since at this moment, the parameters are very sparse.

I have touched on the topic of label cleaning, for materials that are currently categorized in
the wrong category. A tool that finds wrongly categorized products needs to be created and
used iteratively. This would help with the categorization of the new products themselves, as
it removes the noise from training data. I used a library called cleanlab, but there are also
different approaches in research, for example in [95, 9, 70]43. Maybe simpler rules-based
methods could be also used.

43Code for [95] https://github.com/Cysu/noisy_label
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