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Abstract
The aim of this work is to analyze the de-
velopment of the price of cryptocurrencies
and to propose models for price predic-
tion, which will also be able to express
the estimation uncertainty. In analyzing
the problem, we showed the similarities
between the random walk process and the
development of the price of Bitcoin. This
suggests that this is a challenging problem,
as a random walk is unpredictable in prin-
ciple. Overall, the most successful model
tested proved to be a recurrent neural
network with LSTM cells. We then exam-
ined this model more closely and found
that the training dataset was able to de-
tect large changes in price to some extent.
However, we did not observe the ability to
recognize large price fluctuations on the
validation or test dataset. We also intro-
duced the Kelly criterion, which is used
to determine the ideal size of the trade,
and tested how some of our models would
perform when applying this criterion.

Keywords: portfolio optimization,
cryptocurrencies, predictive models,
LSTM, time series, Kelly criterion

Supervisor: Ing. Matej Uhrín

Abstrakt
Cílem této práce je analyzovat vývoj hod-
noty kryptoměn a navrhnout modely k
predikci ceny, které zároveň budou umět
vyjádřit nejistotu odhadu. Při analýze pro-
blému jsme ukázali na podobnosti procesu
náhodné procházky a vývoje ceny Bitco-
inu. To naznačuje, že jde o náročný pro-
blém, neboť náhodná procházka je z prin-
cipu nepředvídatelná. Celkově nejúspěš-
nějším vyzkoušeným modelem se ukázala
být rekurentní neuronová síť s LSTM buň-
kami. Tento model jsme pak blíže zkou-
mali a zjistili jsme, že se na trénovacím
datasetu dokázal do určité míry naučit
rozpoznat velké změny v ceně. Schopnost
rozpoznávat velké výkyvy ceny na vali-
dačním či testovacím datasetu jsme však
nepozorovali. Dále jsme uvedli Kellyho
kritérium, které slouží k určení ideální ve-
likosti obchodu a otestovali jsme, jak by
si vedly některé naše modely při aplikaci
tohoto kritéria.

Klíčová slova: optimalizace portfolia,
kryptoměny, prediktivní modely, LSTM,
časové řady, Kellyho kritérium

Překlad názvu: Optimalizace
kryptoměnového portfolia
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Chapter 1
Cryptocurrency markets

This chapter will introduce cryptocurrencies, cryptocurrency markets, their
behaviour, main characteristics, and interconnectedness with traditional asset
classes.

1.1 Cryptocurrencies

Cryptocurrency is a digital asset stored on a public distributed ledger. It is
typically not subject to a central authority and has rules that ensure overall
functionality and enable consensus in the network.

The first cryptocurrency was created in 2009 by a group of people or a person
with the pseudonym Satoshi Nakamoto to challenge the traditional financial
sector and remove the need to trust banks and other institutions involved.
Since the creation of Bitcoin, many other cryptocurrencies were introduced,
and to this day, more than 5000 cryptocurrencies exist (coinmarketcap.com),
according to coingecko.com, it is more than 7000.

1.2 Evolution of cryptocurrency markets

When Bitcoin was created, the possibilities of how to trade this cryptocur-
rency were sparse. The earliest exchanges happened on forums, but a great
amount of trust from both sides was needed to close the deal successfully.
The first cryptocurrency exchange launched in 2010, soon followed by other
exchanges.

Total cryptocurrency market capitalization experienced two substantial in-
creases and falls, the first in 2013, followed by a decrease after the biggest
exchange of that time crashed, and second in 2017, peaking above 800B USD.
The third upsurge is currently (December 2021) taking place, with market
capitalization peaking above 2.9T USD.
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1. Cryptocurrency markets ................................
1.3 Market dynamics

Most of the literature concerning market behaviour studies only Bitcoin or
is concerned with a selection of the few most successful cryptocurrencies.
However, we think that current literature may serve the purpose of illustrating
the behaviour of cryptocurrencies and differentiating them from other asset
classes.

1.3.1 Price drivers

[1] studies the main drivers of Bitcoin prices and concludes that the most
significant driver in both the long-term and short-term is the interest, as ana-
lyzed from google and wiki trends. He also notes that standard fundamental
factors such as usage, money supply and price level play a role in Bitcoin
(BTC) price in the long run.

1.3.2 Cryptocurrencies connectedness

Co-movements between cryptocurrencies has been examined by [2] and [3].
The first paper analyses the interrelationship between Bitcoin and five major
cryptocurrencies. His results are not the same for all cryptocurrency pairs.
Covariance between one pair occurs more, for three pairs occur to a lesser
extent, and between the last pair practically does not occur.

The second author suggests that interdependence between BTC and altcoin
markets is more apparent in the short-term than in the long-term and observes
a limited impact of BTC on altcoin prices in the long run. Somewhat on the
contrary to the first author, [3] argues that Bitcoin and altcoin markets are
still highly interdependent.

[4] and [5] investigated the contagion effect, another interconnectedness
characteristics of cryptocurrencies. Contagion effect occurs when there is
a big change in the price of one asset, and it is propagated to other assets.
Such effect occurred during 2007-2008 financial crisis when the whole stock
market “collapsed”.

Both authors compared periods before the 2017 crash and after the crash.
Integration in both tested periods was confirmed, with higher integration
after the crash. As a result of tighter integration, the former author suggests
possible negative influence on diversification possibilities.

Although the authors disagree precisely when the transition to a more inte-
grated market happened, both say that cryptocurrencies were less integrated
before the crash. [5] points out that periods of high uncertainty in the market
correspond to the strong interconnectedness of cryptocurrencies and vice
versa. BTC is noted to be the main shock transmitter in the pre-crash period,
whereas Ethereum (ETH) becomes the main transmitter in the post-crash
period, indicating an increase in the importance of ETH.

2



................................... 1.3. Market dynamics

1.3.3 Risk

Cryptocurrencies returns (defined in Section 2.8) generally suffer from heavy
tails, as [6], [7], [8] observed. When compared with traditional currencies,
cryptocurrencies are much riskier and volatile, but they also offer higher
potential profits. We can also observe clustering of extreme events in Bitcoin,
which holds for both negative and positive returns.

1.3.4 Heavy tails

In heavy-tailed distribution, events far from mean are much more likely
to happen than in non-heavy tails distribution. Whether a distribution is
heavy-tailed is typically shown by comparison with a normal distribution.
For example, [9] describes heavy tails simply as “the probability of extreme
profits or losses is much larger than predicted by the normal distribution. Tail
thickness varies from asset to asset”. [10] defines upper tail as F (x) = P (X >
x) = 1 − F (x) and adds that we are mainly interested in the behaviour
of upper tail for large x. F is cumulative distribution function of given
distribution. Describing behaviour with the upper tail is the convention in
literature, but behaviour could be similarly described with lower tail.

For demonstration, we compare tail probabilities of Kernel Density Estimate
(KDE) for 1h BTC returns with normal distribution with sample mean and
variance in Figure 1.1. Probabilities for different selected events are shown in
Table 1.1.

KDE – Kernel Density Estimate

KDE is a nonparametric way of estimating probability density of random
variable from set of measurements/samples, in our case BTC 1h returns.
Value of probability density function at each point is given as

p̂(xj) = 1
N

(
N∑
i=1

KG
h (xj , xi))

where KG
h is Gaussian kernel defined as

KG
h (xj , xi) = 1

h
√

2π
e
−

1
2

(
xj − xi
h

)2

xj is point being evaluated, xi is one of the observed points and h is kernel’s
bandwidth parameter. For selection of bandwidth we used scipy’s default
method which implements Scott’s rule of thumb, [11].

h = n
−
( 1
d+ 4

)

n – number of data points
d – number of dimensions.

3



1. Cryptocurrency markets ................................
Probabilities KDE Normal distribution
P (Rt < −0.1) 0.000131 3.614907e-26
P (Rt < −0.05) 0.002254 7.041860e-08
P (Rt < −0.03) 0.009181 0.000781
P (Rt > 0.03) 0.008128 0.000845
P (Rt > 0.5) 0.001891 7.980570e-08
P (Rt > 0.1) 0.000238 0∗

Table 1.1: Comparison of tail probabilities for KDE of BTC 1h returns and
Normal distribution with sample mean and variace. P (Rt < −0.1) denotes the
probability that the value of BTC drops more than 10%.
∗ real value is small number bigger than zero, the computed value is zero because
of imprecision in calculation of floating point numbers

Figure 1.1: Histogram of 1h BTC returns, estimate of actual probability density
function (KDE) and comparison with Normal distribution

1.3.5 Market efficiency

According to Efficient Market Hypothesis, efficient markets are such markets
where all available information is already reflected in the price and an investor
cannot gain an advantage over others, and this has been the subject of
research by [12] and [13]. The efficiency of markets was varying in time, with
volatility negatively affecting market efficiency. [13] notes that liquid market
tends to be more efficient. Both authors point out that periods of market
inefficiency in cryptocurrency markets are connected to major events, such as
US elections and rapid price changes, like during the Mt.Gox crash and the
end of 2017 crash.

4



Chapter 2
Problem description

We can approach the price prediction of cryptocurrencies in several ways.
Here we show our view of the problem and indicate how we want to solve it.
Specifically, we look at the data structure and show two main approaches,
one of which we choose. We found inspiration in describing time series from
the lectures of Kamil Dedecius [14].

2.1 Time series

Time series data is a sequence of observations/measurements, usually taken
in regular intervals. They record the development of the observed process in
time. Thus we are talking about discrete data.

As their name suggests, measurements are time-dependent. For their mean-
ingful interpretation, we must maintain the time sequence of measurements.
We can encounter a time series just about everywhere, such as next week’s
weather forecast, measured temperature records, river level monitoring, the
current increase in new cases of Covid-19 disease, processor load monitoring,
or in our case, the price evolution of one of the cryptocurrencies.

Time series
{xt | t = 1, 2, . . . , n }

is a set of measurements in times t. We can also define time series more
formally. Let (Ω, F, P ) be probability space and let T be a set of indices
interpreted as time. Time series is a set {Xt | t ∈ T }, where Xt are random
variables from probability space (Ω, F, P ).

2.2 Stochastic process

Stochastic process in the context of time series is the underlying process from
which the measurements/values were generated. Stochastic or also random
process can be defined as a sequence of random variables Xt, t is from a
suitable set of indices.

Stochastic processes can be divided into two groups, discrete processes
and continuous processes. This division determines the index set, typically a
subset of natural numbers or non-negative real numbers. When we will use

5



2. Problem description..................................
indices in formulas, we will stick to the notation t ∈ N, representing a set of
consecutive values.

2.3 Means of describing time series

We can describe the time series using a joint distribution of Xt1 , . . . , Xtn , but
that is not very practical and sometimes not even possible. That is why we
describe the time series mainly through its moments - usually mean, variance,
autocovariance, higher moments can be also considered

µt = E[Xt]

σ2
t = var(Xt)

cov(Xt1 , Xt2) = E[(Xt1 − µt1)(Xt2 − µt2)] = γ(t1, t2)

2.4 Stationarity

2.4.1 Strict sense stationarity

We call a process Strict sense stationary if joint distribution FX(Xt1 , . . . , Xtn)
is same as FX(Xt1+h, . . . , Xtn+h) for all h. In other words, shift by any time
h does not have an impact on joint distribution, and the joint distribution
only depends on times t1, . . . , tn for any n.

2.4.2 Weak sense stationarity

Strict Sense stationarity is in practice too strict to be used for any model.
Instead, we define weak sense stationarity. A process is weak sense station-
ary if time series is invariant to time shifts within moments of probability
distribution up to second order. i.e.,

E[Xt] = µ ∀t
cov(Xt, Xt+τ ) = γ(τ)

E[X2
t ] <∞ ∀t

γ(τ) indicates that covariance is not a function of time but a function of time
shift.

Intuitively, if a process is stationary, it is easier for us to analyse it because
its certain statistical properties do not change over time, [15]. If we mention
stationarity, we mean weak stationarity unless stated otherwise.

6



.................................... 2.5. Random walk

2.5 Random walk

As an example of stochastic process we will take a look at the random walk.
It is defined as

xt = xt−1 + ε

with ε typically being generated from set with values {−1, 1} and P (−1) =
P (1) = 0.5 or from Normal distribution with zero mean and unit variance
(then it is called Gaussian random walk). Increments in random walk are
therefore independent and identically distributed (iid). Figure 2.1 shows an
example of random walk with epsilon generated from normal distribution with
µ = 0 and σ = 1. When we compare random walk with selected development
of cryptocurrency prices, we can see some similarities between time series.
In fact cryptocurrency prices behave very similarly to random walk process.
Therefore trying to predict the price is a challenging task. We will describe
similarities between those processes later in the context of autocorrelation
function (ACF) and partial autocorrelation function (PACF) in the Section
4.3.6.

Figure 2.1: Scaled BTC price evolution compared to Gaussian random walks
with µ = 0 and σ = 1

2.6 Problem description

Given a sequence of data points, in our case, cryptocurrency prices, we can
look at the problem from two perspectives. In the end, we would like to
determine the ideal action based on prediction - BUY, SELL, possibly third
action DO NOTHING). One approach would be to look at the problem as a
classification task. Given measurements for the last n time steps up to time
t, we can classify the change in price from time t to time t + h, h being a
forecast horizon bigger than zero. Two categories could be possible: price
increase, price decrease, or potentially three categories, to distinguish when
the change is (too) small, e.g., decrease more than 1%, growth more than
1%, decrease or growth less than 1%. The disadvantage of this approach may
be greater uncertainty about the exact change in price, as we only have an
interval.

7



2. Problem description..................................
The second approach is to look at the problem as a regression problem. In
the regression task, we predict the time series value in time t + h. Ideally,
this gives us extra information about the price change direction and its exact
size. We have applied the second approach, i.e., regression, concerning the
form of data as a time series. A fixed forecast horizon of 1 was selected.

2.7 Uncertainty

Performing erroneous action in critical tasks, such as disease identification,
autonomous driving or finance management, can have serious practical conse-
quences for its users. It is therefore essential to be able to express uncertainty
about prediction estimates. Models should be able to quantify the uncertainty
of prediction estimates.

2.8 Simple returns

Simple returns or also used just as returns represent percentual gain or loss
of given asset from time t− h to t, h is time horizon. We can also look at the
price prediction task equivalently as the return prediction task, and we use
both perspectives, depending on the approach to the problem. Pt is price in
time t. To explain returns on the example, if return Rt is 0.05, it means that
the value of the underlying asset rose 5%.

Rt = Pt
Pt−h

− 1 = Pt − Pt−h
Pt−h

2.9 Metrics

To evaluate the model’s performance, we use three metrics to quantify the
quality of predictions.

2.9.1 Root mean squared error (RMSE)

RMSE =

√∑N
i=1(xt − x̂t)2

N

xt is actual value at time t, x̂t is forecast value at time t. N is number of
values.

RMSE “punishes” large errors more than small errors and is scale-dependent,
meaning that RMSE of one time series can not be compared to RMSE of
some other (or the same) model, but applied on different time series.

8



....................................... 2.9. Metrics

2.9.2 Mean average percentage error (MAPE)

MAPE =

∑N
t=1

∣∣∣∣xt − x̂txt

∣∣∣∣
N

MAPE is scale-independent, so the same model can be compared on different
time series with different scales. MAPE is not defined when zero is in the
ground truth values. Since the prices of cryptocurrencies are always positive,
we can safely use this metric.

2.9.3 Mean directional accuracy (MDA)

MDA = 1
N

N∑
t=1

1(sign(xt − xt−1) = sign(x̂t − xt−1))

1 is indicator function that yields 1 if signs of both expression are equal, 0
otherwise.

Indexing applies if we assume we have one actual value at index 0. MDA
is the regression equivalent of accuracy in classification task in terms of the
direction of predictions. Values range from 0 (all predicted directional changes
are wrong) to 1 (all predicted directional changes are correct). Ultimately,
we will be selecting a model with highest MDA. Other metrics will give us
additional information on “how far” the estimates are from their real values.

9
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Chapter 3
Dataset

Historical data for cryptocurrencies are publicly available in the form of time
bars on multiple exchanges.

Time bars aggregate price movements during a given timeframe (e.g., 15min,
1h, 1d). Price movements are then identified by four pieces of information -
open, high, low, close. Additional information, such as volume and volume-
weighted average price (VWAP), is sometimes provided..Open - first transaction price. High - maximum transaction price. Low - minimum transaction price. Close - last transaction price

This form of data is generally well accessible, but it has some disadvantages.
Markets process information as it arrives, most certainly not in regular time
intervals. For example, when markets react to new information, periods of
higher activity occur. Conversely, periods of lower activity can occur when
little or no new information has emerged. Therefore, time bars undersample
in high activity periods and oversample in low activity periods.

Tick bars remove this disadvantage by not sampling in regular time intervals
but by sampling a predefined number of trades. For example, 1000 trades
constitute one tick bar. Tick bars have better statistical properties than time
bars, such as correlation, heteroskedasticity and distribution of returns is
closer to normal distribution, [16]. However, tick data are difficult to obtain
and/or are behind a paywall, so we will use time bars instead and keep the
disadvantages in mind.

3.1 Data

All presented models are trained and tested on the same time series, in order
to make a quality comparison of different models agains each other. We have
chosen BTC data on 1h timeframe from Binance exchange, as the most liquid
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3. Dataset .......................................
exchange with the biggest traded volume, [17]. We split the data into three
parts: train, validation and test (holdout) datasets. Train dataset is used to
train a model, search for the best hyperparameters is conducted on validation
dataset, and the model performance is then evaluated on test dataset. Figure
3.1 shows this split. Not all models need separate training and validation
datasets. For example ARIMA uses walk-forward optimization. In that case,
only the validation dataset is used to search for the best hyperparameters.

Figure 3.1: Dataset split

3.2 Filling the missing data

Occasionally, some data from a downloaded dataset are missing, either because
of an exchange outage or because no trade has taken place within a given
timeframe. The first thought that comes to mind is to interpolate the missing
data. Nevertheless, that would be a mistake, as it leaks information from the
future and gives the model a hint as to which direction the price will move.
The best solution for this situation is to apply forward filling, i.e., missing
values at times t, . . . , t+ n will be filled with the last known value from time
t− 1.
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Chapter 4
Models

In this chapter we will introduce and describe used prediction models.

4.1 Naive model

Naive forecast, or else known as persistence forecast is one the simplest models
for regression task. Naive forecast makes assumptions that conditions persist
(hence the name persistence forecast) and predicts that the next value will be
the same as the last value. It should be not hard to outperform this model
regarding the MDA metric. However, it may be hard to outperform the naive
model in terms of RMSE metric regarding the similarity of data with random
walk, [18].

4.2 Naive directional model

Given that our goal is to predict the price change and most of the changes
are bigger than zero in absolute value, we propose another naive model that
considers this. We will call it naive directional model. We have noticed that
on the training dataset, most of the returns for the next step is the opposite
of the previous time step. Therefore, the model’s predicted change in price
between times t and t + 1 is the opposite as it was from the time t − 1 to
time t. The predicted price x̂t+1 will be calculated with the use of previous
price xt as

x̂t+1 = xt(1−Rt)

Both naive models will serve as baseline models for performance evaluation.

4.3 ARIMA

AutoRegressive Integrated Moving Average model is still a relatively simple
model, yet it can be very effective. ARIMA describes autocorrelation in the
data to predict the behaviour. Parts in this section were inspired by excellent
lectures of Kamil Dedecius [15] on time series.
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4. Models .......................................
4.3.1 ACF

Autocorrelation function (ACF) is a correlation between time series and its
own shifted copy.

Autocorrelation coefficient of a stochastic process:

ρXX(t1, t2) = E[(Xt1 − µt1)(Xt2 − µt2)]
σ2
t1σ

2
t2

= cov(Xt1 , Xt1)
σ2
t1σ

2
t2

For weakly stationary process, where µ and σ are invariant to time shifts:

ρXX(t1, t2) = ρXX(t1− t2) = ρXX(τ) = E[(Xt − µ)(Xt+τ − µ)]
σ2 = γ(τ)

σ2

τ = t1− t2 is lag
Values of autocorrelation function range between 0 and 1, just as correlation

between random variables.

4.3.2 PACF

Partial autocorrelation function of lag k is autocorrelation between Xt and
Xt+k without the influence of values Xt+1, Xt+2, . . . , Xt+k−1 in between. In
other words PACF shows direct influence of Xt on Xt+k. ACF on the other
hand shows both direct and indirect influence of previous values.

Partial autocorrelation coefficient

LetX and Y be random variables and between them is some linear dependency.
However, both X and Y are also influenced by another n-dimensional random
variable, i.e., random vector, Z. If we want to measure the direct influence
between X and Y , we have to get rid of Z. We do that by finding the
regression lines

X̂ = a+ bᵀ ∗ Z
Ŷ = c+ dᵀ ∗ Z

Variables X̂ and Ŷ are the best linear approximation of X and Y , and at
the same time, variables eX = X − X̂ and eY = Y − Ŷ are cleaned from the
influence of Z because eX and eY are residuals not explained by Z. Partial
autocorrelation coefficient is Pearson’s correlation coefficient of eX and eY .

rXY ·Z = E[eXeY ]− E[eX ]E[eY ]
σeXσeY

rXY ·Z – partial correlation coefficient of X, Y cleaned from the influence of
Z

Partial autocorrelation function

PACF of positive lag τ is partial autocorrelation coefficient between Xt and
Xt+τ with notation α(τ) = rXtXt+τ ·{Xt+1,...,Xt+τ−1}
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....................................... 4.3. ARIMA

4.3.3 AR process

Values of autoregressive (AR) process depend on previous values, and AR
process of order p, with the notation AR(p), has the following form:

Xt = c+ φ1Xt−1 + . . .+ φpXt−p + εt

φi are AR coefficients
εt is white noise, e.g., Gaussian white noise: ε ∼ iid N (0, σ2)
c is constant term

Roots of characteristic equation 1−φ1z− . . .−φpzp = 0 must lie outside the
unit circle in order for AR process to be weakly stationary. ADF statistical
test is used to test the presence of unit root in time series. Identification of
AR order is possible with the help of a graph of PACF.

Autoregressive model enables us to describe the AR process with the same
formula that generated those values.

4.3.4 MA process

Values from the Moving average (MA) process are propagated random values
through time up to q steps into history. MA process of order q, with the
notation MA(q), is described as:

Xt = c+ εt + θ1εt−1 + . . .+ θqεt−q

εt is white noise
c is constant term

MA models use the propagation of ε terms to simulate random shocks and
their propagation, for example, on financial markets. Charting ACF can help
us determine the MA order.

4.3.5 ARIMA(p, d, q) model

ARMA (without I) combines the AR and MA models, but ARMA requires
time series to be stationary, which is not always the case. Stationarity can
be achieved by differencing time series.

ARIMA(p, d, q) thus combines properties of MA(p) model to model shocks,
properties of AR(q) model to predict values with the use of historical realisa-
tions and also enables making data stationary (I term – differencing of order
d). ARIMA therefore works directly with the prices of cryptocurrencies and
also predicts them.
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4. Models .......................................
We define ARIMA(p, d, q) model:

Φ(1−B)dXt = Θεt

Where
BXt = Xt−1

Φ = 1−
p∑
i=1

φiB
i

Θ = 1 +
q∑
i=1

θiB
i

B is called backshift operator.

Confidence interval for one step prediction is:

x̂t+1 ± q σr

x̂t+1 - point estimate
σr – standard deviation of residuals
q = F−1(α) - quantile function of N (0, 1)
α – significance level for confidence intervals

4.3.6 Model characteristics

In the Figure 4.1 are plots of ACF and PACF of 500 selected data points. We
can see significant values for PACF at lag 1. This points out to AR(1) char-
acteristic with big φ1 coefficient. Asymptotically declining ACF confirms AR
process. However, if we recall the random walk process (Section 2.5), we can
notice that random walk is a special case of AR(1) model: Xt = φ1Xt−1 + εt.
If φ1 is close to 1, we would most likely identify the process as a random walk.
Thus, in the long run, it is not suitable to predict data with ARIMA model.

Figure 4.1: ACF, PACF plot of 500 data points
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We will look at another example of PACF, ACF plot in the figure 4.2, now
with only 80 data points. With fewer data points, we can see significant value
for PACF at lag 1 and 3, resembling random walk to much lower degree. It
is more common for our data that MA and/or AR characteristics occur for
fewer data points than for many points. However, we must also note that AR
(or MA) characteristics could be present due to the small number of data
points.

Figure 4.2: ACF, PACF plot of 80 data points

To verify if the data can be predicted with ARIMA model, we have applied
walk-forward optimization with fixed rolling window size for training. Training
period should be quite small because longer periods resemble random walk,
as we have shown above. We used package pmdarima and its function for
automatic order selection for ARIMA model to automate the process. The
function uses statistical tests to determine the best order of differencing and
then searches for the most likely parameters.

4.4 LSTM

Long short-term memory (LSTM) is a member of recurrent neural network
(RNN) family. RNNs are good at processing sequential data. They are used
in speech recognition, text generation, language translation. They can even
be used to describe the content in the picture.

The ability to process data sequences is possible due to their property to
“remember” important information from earlier data.

This is achieved by linking the output to the input of RNN cell itself. The
diagram in the Figure 4.3 illustrates such a link and also shows that passing a
data sequence can be unrolled to a sequence of single passes with connections
between RNN cells to propagate information.
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Figure 4.3: RNN and its unrolled form, picture taken from [19]

While early simple RNN cells were in practice not very successful in han-
dling long-term dependencies and were suffering from the vanishing gradient
problem, LSTMs are more successful and are now widely used.

Multiple studies have been conducted on this topic, [20], [21], [22], [23] and
[24] to name some of them. These studies generally claim that LSTM is a
good model to predict cryptocurrency prices or prices of stocks. However, we
note that very few of them have an accuracy metric and other focus only on
RMSE or another distance measure. Also a comparison with a naive model
is missing in the studies, so it is difficult to make an opinion on how LSTM
stands against some benchmark. We fill this gap and refine the results of the
LSTM model with the comparison with naive baselines.

4.4.1 Internal structure

Now that we have introduced the LSTM, we will show its internal structure,
an illustration of which we can see in the Figure 4.4

LSTM has two internal states that it receives and sends on. The first is cell
state Ct. The second such state is hidden state ht, which we can view as
working memory, whereas cell state can be seen as long-term memory.

Figure 4.4: Internal sturcture of LSTM cell, picture taken from [19]
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Single forward pass of LSTM cell can be described as

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)
C̃t = tanh(Wcxt + Ucht−1 + bc)

Ct = ft � Ct−1 + it � C̃t
ot = σ(Woxt + Uoht−1 + bo)

ht = ot � tanh(Ct)
ft is forget function, it is input function, C̃t are candidate cell state values,
Ct is new cell state, ot is output function and ht is new hidden state. � is
symbol for piece-wise multiplication, W , U are corresponding matrices.

Various modifications of LSTM exist, such as with peepholes, but [25] ex-
perimentally showed that LSTM’s main strengths came from forget gate
and output activation function, and none of the variants he tested could
significantly improve LSTM’s capabilities.

4.4.2 Early stopping

When to stop training the model is an important question. One option is to
treat the number of epochs as a hyperparameter and optimize it. However,
the number of epochs needed to find the best model can vary with different
sets of hyperparameters and even with different training sessions of the same
model if training contains a non-deterministic part, such as dropout. Early
stopping is a regularization method that solves this issue and provides a way
to find the desired number of training epochs and prevent overfitting of the
model.

Model overfits when the observed metric, typically loss or accuracy on the
training dataset keeps improving, but deteriorates on the validation set.

Early stopping monitors given metric and when it starts to get worse, it stops
training. Sometimes, the validation loss worsens before it starts improving
again, resulting in an even better model. In this case, it may be beneficial to
wait and overcome the period of worsened performance. Early stopping with
patience implements this approach. [26]

4.4.3 L1 and L2 regularization

L1 and L2 regularization techniques are used to prevent overfitting and ensure
better generalization of the model. This techniques adds penalty term to
original loss function L such as mean squared error, marked as Error(y, ŷ).

L1 regularization

L = Error(x, x̂) + λ
k∑
i=1
|wi|
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L2 regularization

L = Error(x, x̂) + λ
k∑
i=1

w2
i

Effects of L1 are that individual weights wi are encouraged to be small, which
results in a sparse weight matrix and is itself a mean of feature selection,
whereas L2 penalizes large weights, forcing weights to be small in general. λ
is a hyperparameter determining the influence of L1/L2 on loss. [27]

4.4.4 Dropout

Dropout is a regularization technique that helps to avoid overfitting. It
randomly set weights to zero and by that it forces the network to train its
different parts.

Applying dropout between recurrent connections in RNNs adds noise to
the signal, and the information that would be propagated will be lost. [28]
proposes a better version of dropout for RNNs called Variational Dropout.
The main difference is that Variational Dropout maintains the same dropout
mask, whereas the “standard” dropout samples its mask for each forward
pass in NN.

4.4.5 Batch normalization

It is used as a regularization method, especially for deep networks and using
them can decrease training time and improve model performance. Batch
normalization normalizes data within mini-batches and for each mini-batch
modifies features values, so they have zero mean and standard deviation of
one. [29]

4.4.6 Data transformation

Inputs to the network were arranged in the following manner. Input for
each prediction has a form of (ft−m,ft−m+1, ..,ft−1), where ft is a vector
of features in time t and m length of sequence or how back into history the
model directly sees. Each feature is then scaled into range (-1, 1).

4.4.7 Feature selection

The selection of relevant features is important for the model’s predictive
powers. Besides historical logarithmic returns ln(Rt+1), the model is also fed
with a set of technical indicators: Simple Moving Average, Exponential Moving
Average, Bollinger Bands (specifically bandwidth and distance between price
and bands of Bollinger Bands indicator), Momentum, Relative Strength Index
and Rolling Relative Volume. LSTM’s target values are logarithmic returns
for the next time step, that can be converted to simple return as ln(Rt + 1).

20



....................................... 4.4. LSTM

Although LSTM predicts return, we can convert it to a price prediction task
as P̂t+1 = Pt(1 + R̂t+1). Where P̂t+1 is predicted price calculated with the
knowledge of last observed price Pt and predicted return R̂t+1.

4.4.8 Uncertainty estimate

For LSTM models, we implement two approaches to estimate prediction
uncertainty.

Standard deviation of residuals

The same approach to quantifying uncertainty used in ARIMA model can
be used for LSTM. We can measure the standard deviation of residuals σr
from the training dataset and use this parameter to approximate a confidence
interval of predictions on unseen data.

If we recall the evolution of BTC price in the Figure 3.1, we can see that price
moves in a wide range, from around 3000 USD up to more than 60000 USD.
This disproportion in prices makes it difficult to estimate standard deviation
that would suitably cover the whole interval. Instead, we calculate standard
deviation on time series of returns residuals, as they are much more stable.

Given that the training dataset is sufficiently large, we could alternatively
estimate confidence intervals directly from KDE of returns residuals. Because
as we have shown, normal distribution is not very similar to KDE of returns
(the same applies for returns residuals), at least not when we are concerned
with tail risk.

Monte-Carlo Dropout Uncertainty Estimation

Dropout, as a regularisation technique, is only active during training. When
dropout is active both during training and prediction, we can view NN as
an ensemble of many models given how the dropout’s individual weights are
switched off or remain active. Such a network may then generate predictive
distribution by repeatedly sampling values from the same input.

This approach is used by the Monte-Carlo Dropout Uncertainty Estimation
(MCDUE) used in [30], which estimates predictive mean µ̂pred and predictive
variance σ̂2

pred from such a distribution. For the successful use of MCDUE,
the model’s predictions must meet the property that a larger variation in the
estimate is associated with a larger error.

The pseudo-code for predictive distribution sampling is shown below in Algo-
rithm 1. We have also implemented the MCDUE model, but unfortunately,
the variation of predictions has a low correlation with the magnitude of the
error (Pearson correlation coefficient = 0.3 on training dataset), so we cannot
rely on such estimations of uncertainty. Nevertheless, we present a model
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with this approach in the results table to compare the effect of active dropout
during predictions on metrics.

Algorithm 1: Sampling of predictive distribution
Input :Trained model, input data X and number of samples N .
Output :Mean mupred and standard deviation of data distribution

sigmapred.
/* Model must have active dropout during prediction

phase. */
list = [ ]
for i← 0 to N − 1 do

prediction = model.predict(X)
list.append(prediction)

end
sigmapred = std(list)
mupred = mean(list)
return mu, sigma

4.4.9 NN architecture

Using the techniques and methods mentioned above, we have tried four
different model architectures with a different number of LSTM layers. Three
models predict only point predictions and they have one, two and three LSTM
layers. The fourth model has one layer and leverages MC dropout to estimate
the predictive distribution and uncertainty. The loss function is the mean
squared error, and the used optimizer is ADAM. Model architectures can be
found in Appendix A.

4.5 Results

Results of tested models are summarized in Table 4.1. All metrics are calcu-
lated on predicted prices.

LSTM models performed consistently well on all subsets of our dataset.
RMSE of the naive model was outperformed only on the training dataset.
This confirms that beating the naive model in terms of RMSE is challenging,
as outlined earlier. LSTM models mainly dominate MDA, and MAPE metric
was only in the domain of LSTM models.

We have also observed a decrease in directional accuracy on the test dataset
for all LSTM models. This suggests that the ability to generalize outside of
training data or outside of validation data, on which the hyperparameters of
models were optimized, is limited.

ARIMA models turned out to be unsuitable for this problem, as both MAPE
and RMSE were significantly worse than for other models. However, we must
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note that the models were selected based on the MDA criteria. The enormous
error for ARIMA models can be explained by a low amount of training data
points. Sometimes, the model was badly trained and overshot significantly,
which resulted in skewed metrics. Most other ARIMA models had better
RMSE metrics, such as 480 for the authentication dataset, but with a lower
MDA. We note that results of all ARIMA models were worse than results of
other models.
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Models described in the Table 4.1:

LSTM-1L Model with one LSTM layer

LSTM-2L Model with two LSTM layers

LSTM-3L Model with three LSTM layers

LSTM-1L MC Model with one LSTM layer that applies MCDUE during
inference

ARIMA ARIMA model that was trained on 11 last data points and was
retrained after every 10 predictions.

ARIMA without persistence We forced this model not to use ARIMA(0,
0, 0). This setting corresponds to the persistence forecast and does not
contribute to MDA metric improvement. The model was trained on the
last 15 data points and was retrained after every 5 predictions.

Naive – persistence forecast model

Naive directional predicted return will be the opposite of the last return

Further, we visualise price predictions for some models in the Figure 4.5 and
analyse predictions of returns of the LSTM models in the Figure 4.6.

We can see that LSTM-1L’s predicted returns are very smooth and look like
a moving average. Even though there are signs of fitting to significant values,
we can not see much of a pattern in predictions. Interestingly, LSTM-1L
MC, the model with the same architecture but a different way of prediction,
seems to predict some patterns quite well. We have also shown standard
deviation as a way of estimating uncertainty. We can speculate that with
bigger volatility of actual returns, predicted standard deviation is also getting
bigger, but only to some probably not significant degree. This supports the
conclusion not to use MCDUE uncertainty estimate.

Models with more LSTM layers seem to be more confident in predictions of
bigger returns. However, it can also be a sign of overfitting. If we look at the
predictions on the validation and test datasets in the Figures A.4 and A.5,
we can not see that the models generalize well, and it is another evidence for
overfitting.
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4.5.Results

Model Training Validation Test
MAPE RMSE MDA MAPE RMSE MDA MAPE RMSE MDA

LSTM-1L 0.00538 120.72 0.53 0.00688 456.33 0.5439 0.00478 347.63 0.5299
LSTM-2L 0.00541 119.62 0.5373 0.00691 457.71 0.5453 0.00485 350.82 0.5232
LSTM-3L 0.00528 119.83 0.5328 0.0069 454.47 0.5439 0.00483 350.43 0.51

LSTM-1L MC 0.00537 120.69 0.5115 0.00702 468.86 0.5173 0.00477 346.41 0.5003
ARIMA 0.0134 1524.17 0.5168 0.11725 11107.78 0.5161 0.11331 11090.26 0.5155

ARIMA without persistence 0.00762 532.52 0.517 0.03927 5524.2 0.5263 0.03994 5974.83 0.5063
naive 0.00543 120.58 0.0017 0.00693 456.19 0.0016 0.00478 345.82 0.0019

naive directional 0.00763 166.97 0.5456 0.01008 641.23 0.5129 0.00684 496.32 0.5165

Table 4.1: Results on training, validation and test datasets for tested models
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(a) : ARIMA without persistence

(b) : LSTM-2L, confidence interval of returns is R̂t ± 1.96σr, R̂t is predicted return

(c) : LSTM-1L MC, confidence interval of returns is set as R̂t ± 10σ̂pred

(d) : Naive directional

(e) : Naive

Figure 4.5: Visual comparison of models predictions on the part of the test
dataset
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(a) : LSTM-1L

(b) : LSTM-1L MC

(c) : LSTM-2L

(d) : LSTM-3L

Figure 4.6: Analysis of predictions for different LSTM models on the part of
the training dataset. Note that LSTM predicts small values, so the predictions
are multiplied by 10.
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Chapter 5
Portfolio optimization

In this chapter, we will introduce Kelly criterion, backtest our models using
this criterion to determine the size of an investment and review other portfolio
optimization methods.

A portfolio is a set of financial investments, in our case, a set of cryptocur-
rencies. The investor chooses in what assets he wants to invest.

5.1 Kelly criterion

As we have defined it, the prediction problem can be viewed as a series of
bets, either that the price of a cryptocurrency will grow or decline. Kelly
criterion is defined with the assumption that we know underlying probabilities
of games outcomes, assumption that we play the same game repeatedly and
that number of bets goes to infinity.

Given some initial amount of money M0, our wealth at time t is

Mt = M0(1 + f)S(1− f)F

f is a fraction of our bank that we bet every time, S is a number of successful
bets and F is a number of unsuccessful bets. Naturally, we would like to
maximize our wealth. Kelly criterion determines the optimal size for a bet
and maximizes wealth in the long run.

G(f) = ln(Xn

X0
)
1
n = S

n
ln(1 + f) + F

n
ln(1− f)

is a measure of exponential rate of increase per trial. Kelly criterion maximizes
wealth by maximizing growth rate g(f), where

g(f) = E[ln(Xn

X0
)
1
n ] = E[S

n
ln(1+f)+F

n
ln(1−f)] = p∗ln(1+f)+q∗ln(1−f)

g(f) is maximal for f∗ = p−q, p is the probability of win, q is a probability
of loss. This is the case when for every unit wager player either wins a unit
or loses a unit of his money. This formula can be extended to uneven payoff
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games. Suppose that for every unit wager player loses a units and wins b
units. Then g(f) is maximal when

f∗ = p

a
− q

b

In cryptocurrency markets, it is rarely the case that we are certain about
the probability that the bet will be successful. Kelly criterion is therefore
used as an estimate. Fractional Kelly criterion can be used to mitigate the
risk of overbetting, which potentially leads to ruin. Fractional Kelly bets
some fraction of Kelly criterion, e.g., 1/2 for Half Kelly.

Kelly criterion can be estimated with the help of Taylor polynomial as

f = E[Rt]−
1
2V ar[Rt]

We will use the approximated Kelly criterion since our estimate of uncertainty
corresponds better to this approximated criterion, i.e., predicted return will
be E[Rt] and estimated variance V ar[Rt]. [31], [32]

5.2 Review of other portfolio optimization
methods

In this section we briefly introduce two other portfolio optimization ap-
proaches.

5.2.1 Mean-variance portfolio

Harry Markowitz proposed this method of portfolio optimization in 1952,
[33]. He uses the variance of assets as a proxy of risk and then minimizes
risk for a given return. For n assets, we search for optimal weights vector
w = (w1, . . . , wn), wi is weight of i-th asset in portfolio, such that the variance
of the portfolio is minimal.

minimize
w

1
2w

ᵀΣw

subject to mᵀw ≥ µb
1ᵀw = 1

Σ is correlation matrix of assets returns, µb is a minimal return of a portfo-
lio that we want to achieve, and m is a vector of expected returns associated
with individual assets. We therefore minimize variance of portfolio 1

2w
ᵀΣw

for desired return µb, and we also want weights of individual investments to
sum to one.

Mean-variance portfolio optimization has some disadvantages, such as that
variance is not a good measure of risk. This framework can be modified to
work with other risk measures, e.g., [34], and to be able to solve additional
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constraints, for example, long positions only portfolio.

Also, mean-variance portfolios concentrate funds in only a few assets, ignor-
ing the risk of diversification, and this optimization method is sensitive to
parameter estimation errors for Σ and m. Risk parity portfolios tackle this
problem. [35]

5.2.2 Risk parity portfolio

Risk parity portfolio focuses on allocation of risk rather than allocation of
capital, as mean-variance portfolios do. It is also less sensitive to parameter
estimation errors. Risk parity portfolios performed well during the 2007-
2008 financial crisis, which suggested the success of this allocation strategy
compared to other portfolios. [35]

5.3 Portfolio optimization and backtesting
strategy based on Kelly criterion

We can assume that a rational investor wants to maximize the value of his
portfolio. This section shows an example of such portfolios. To determine the
size of a bet, we use approximated Kelly criterion outlined in the previous
section.

Our minimal portfolio consists of two cryptocurrencies, namely Bitcoin (BTC)
and Tether (USDT). Tether is a cryptocurrency whose value is backed by the
value of the real currency (also called fiat), in this case by US Dollar. For
every model’s prediction, we calculate the fraction of the portfolio that we
should bet on BTC and the rest (1-fraction) is kept in USDT.

The value of the portfolio in each moment is calculated as

Mt = M0(1 +Rp1)(1 +Rp2)...(1 +Rpt )

where M0 is the portfolio’s initial value, Rpt is the portfolio’s return from time
t− 1 to time t. Rpt can be calculated as ft−1Rt, where Rt is a return of BTC
and ft−1 is a fraction of the portfolio that is invested in BTC.

Multiple portfolios backtests are performed. We use LSTM-2L as our predic-
tion model, with standard deviation derived from residuals on the training
dataset, and LSTM-1L MC, which uses variance from its predictive distribu-
tion. Different strategies are tested. The buy and hold strategy does what its
name suggests, buy at the beginning and hold the position. It can be viewed
as a benchmark.

Some strategies do not use the Kelly criterion. Those have ‘fixed bet x%’
in their name, also suggesting the size of the position. Thus, the strategy
’LSTM-2L fixed bet 10%’ always bets 10% of the portfolio value. A transac-
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tion fee of 0.1% is applied on strategies that have ‘fees’ in their name to get
closer to real market conditions and better assess the model’s performance.

Results of backtest are visualised in the Figure 5.1

Figure 5.1: Results of backtested strategies
LSTM-2L: 2 layer LSTM model, LSTM-1L MC: 1 layer LSTM model with MC
sampling, fees are 0.1%

5.4 Results of Kelly criterion optimization

Backtesting without fees resulted in slight profits for all LSTM models, the
biggest profit had strategy that was betting 10% of its portfolio value each
time.

However, introducing transaction fee resulted in almost continuous loss of
all portfolio’s value. It is worth noting that the fastest loss of value has the
portfolio betting 10%, the same portfolio which had biggest gains. Buy and
hold strategy had biggest gains overall and we did not manege to beat it with
our models, especially when the fees were applied.

Several factors explain the inability of LSTM models to generate a profit.
We see the first reason in the model’s predictions and uncertainty. All the
predictions are relatively small, and the uncertainty is high, which is why
Kelly criterion chooses small fractions to bet. The second reason is the fees
and holding period for the position. With frequent trading, we’re exposed to
fees many times over, and even small ones add up over time. And the last
reason is undoubtedly the quality of the predictions, when we look at the
directional accuracy of the model, it is not very high for any model.
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..........................5.4. Results of Kelly criterion optimization

5.4.1 Limitations of backtesting

In our backtest, we performed actions (BUY, SELL), provided that the market
would not be affected by this. But this may not always be the case. If we
traded in large amounts, we would likely affect the price to our detriment.
What is a large amount depends on the circumstances. It will vary if we
trade BTC, which has one of the largest cryptocurrency volumes traded, or if
we trade some unknown, unpopular cryptocurrency.

If we plan to trade large volumes, it is possible to incorporate this disadvantage
into the backtest and simulate each trade with a certain loss, also called
slippage.
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Chapter 6
Conclusion

LSTM has proven to be a good model compared to other models. A detailed
examination of LSTM predictions has shown that the network is able to
learn some patterns in a time series. However, we saw this capability as very
limited for out-of-sample data.

Our prediction uncertainty estimates have shown us that the network is
very uncertain. This complicated our work in the part of optimizing the
cryptocurrency portfolio. Determining the size of a bet with approximated
Kelly criterion is based on an estimate of the prediction uncertainty and the
magnitude of the prediction itself. The combination of uncertainty and small
predicted returns made Kelly bet tiny parts of the portfolio.

However, by backtesting, we experimentally verified that the predictions of
the LSTM model were more correct than wrong. As a result, we have made
a profit if we do not include transaction fees. When we counted them, many
small fees added up, and none of the LSTM models was profitable.

6.1 Future work

We observed an interesting phenomenon when comparing the predictions of
the one layer LSTM model and the same architecture model, only using MC
sampling. The patterns of predictions from the model using MC sampling
were more similar to patterns of real returns. Exploring this property could
be a topic for further development.

Also, involving more features, such as market sentiment, could help the
model improve its prediction capabilities. Another way to explore the model’s
predictive capabilities could be to consider only a certain subset of predictions,
e.g., only large predicted returns.
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Chapter 7
Acronyms

BTC Bitcoin

ETH Ethereum

KDE Kernel Density Estimate

ACF Autocorrelation Function

PACF Partial Autocorrelation Function

MDA Mean Directional Accuracy

RMSE Root Mean Squared Error

MAPE Mean Absolute Percentage Error

AR Autoregressive

MA Moving-Average

ARMA Autoregressive Moving-Average

ARIMA Autoregressive Integrated Moving-Average

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

NN Neural Network

MC Monte-Carlo

MCDUE Monte-Carlo Dropout Uncertainty Estimation
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Appendix A
Figures

Figure A.1: Architecture of 1 layer LSTM model
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Figure A.2: Architecture of 2 layer LSTM model
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Figure A.3: Architecture of 3 layer LSTM model
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(a) : LSTM-1L

(b) : LSTM-1L MC

(c) : LSTM-2L

(d) : LSTM-3L

Figure A.4: Analysis of predictions for different LSTM models on the part of
the validation dataset. Note that LSTM predicts small values, so the predictions
are multiplied by 10.
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(a) : LSTM-1L

(b) : LSTM-1L MC

(c) : LSTM-2L

(d) : LSTM-3L

Figure A.5: Analysis of predictions for different LSTM models on the part of
the test dataset. Note that LSTM predicts small values, so the predictions are
multiplied by 10.
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