Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

RRT-Based Solver for Classical Planning
Problems

Marie Geislerova

Supervisor: Ing. Daniel FiSer, Ph.D.
January 2022

ii

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
4 N\
Student's name: Geislerova Marie Personal ID number: 478042

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Branch of study: Computer and Information Science

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

RRT-Based Solver for Classical Planning Problems

Bachelor’s thesis title in Czech:

Planovac pro klasické planovani postaveny na RRT

Guidelines:

The goal of the thesis is to propose and implement a solver of classical planning problems by adapting some of the
techniques used in the sampling-based methods for solving motion planning problems, primarly Rapidly-Exploring Random
Trees.

The student should:

1) Study the literature related to classical planning and motion planning, in particular heuristic search methods and inference
of state invariants for classical planning, and sampling-based methods for motion planning.

2) Propose how to use the RRT algorithm (or other similar sampling-based algorithm) to solve classical planning problems.
3) Implement the solution in C, experimentlly evalute it on the standard benchmark set, and compare the results to the
state-of-the-art solvers.

Bibliography / sources:

[1] Steven M. Lavalle , James J. Kuffner , Jr. 2000. Rapidly-Exploring Random Trees: Progress and Prospects. In
Proceedings of Algorithmic and Computational Robotics: New Directions, pp. 293-308, 2000

[2] Vidal Alcazar, Manuela M. Veloso, Daniel Borrajo. 2011. Adapting a Rapidly-Exploring Random Tree for Automated
Planning. In Proc. SOCS’11

[3] Vidal Alcazar, Susana Fernandez, Daniel Borrajo, Manuela M. Veloso. 2015. Using random sampling trees for automated
planning. Al Commun. 28(4): 665-681, 2015

[4] Patrik Haslum. 2009. h*m(P) = h*1(P"m): Alternative Characterisations of the Generalisation From h*max To h*m. In
Proc. AAAI'09

Name and workplace of bachelor’s thesis supervisor:

Ing. Daniel FiSer, Department of Computer Science, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 10.01.2020 Deadline for bachelor thesis submission: 04.01.2022

Assignment valid until: 13.02.2022

Ing. Daniel FiSer prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor Ing.

Daniel Fiser, Ph.D. for all his invaluable
help throughout the writing of this thesis.
I would also like to thank my family and
friends for their patience and support.

Computational resources were supplied
by the project "e-Infrastruktura CZ" (e-
INFRA LM2018140) provided within the
program Projects of Large Research, De-
velopment and Innovations Infrastruc-
tures.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 4 January 2022

Abstract

Problems of classical planning are usually
solved by using the algorithms of forward
search with heuristic. Although the search
is usually able to achieve the desired re-
sults, in some cases the problem can have
large plateaus where all states have the
same heuristic value and it is difficult to
choose the best direction. In case a sim-
ilar problem occurs in motion planning,
such problems can be resolved by algo-
rithms using randomization. It could be
benefitial to see their potential in classical
planning.

This thesis deals with adapting, im-
plementing and testing the Rapidly-
exploring Random Trees (RRT) algo-
rithm, which was designed for motion
planning in continuous space, to classi-
cal planning.

Keywords: classical planning, RRT,
Rapidly-exploring Random Tree

Supervisor: Ing. Daniel Fiser, Ph.D.

vi

Abstrakt

Problémy klasického planovani se obvykle
resi pomoci algoritmi dopredného pro-
hledavéani (forward search) s heuristikou.
Prestoze obvykle dosahuji pozadovanych
vysledk, v nékterych pripadech muze pro-
blém obsahovat velké oblasti, kde vsechny
stavy maji stejnou hodnotu heuristiky a
je slozité zvolit nejlepsi smér. Kdyz na-
stane podobna situace u planovani po-
hybu robotti, mohou byt takové problémy
feSeny algoritmy, které pouzivaji rando-
mizaci. Mohlo by byt vhodné vidét jejich
potencial v klasickém planovani.

Tato prace se zabyva adaptovanim,
implementaci a testovanim algoritmu
Rapidly-exploring Random Trees (RRT),
ktery byl navrzen pro planovani ve spoji-
tém prostoru, pro klasické prohledavani v
diskrétnim prostoru.

Kli¢ova slova: klasické planovani, RRT,
Rychle rostouci ndhodny strom

Preklad nazvu: Planovac pro klasické
planovani postaveny na RRT

3.2 RRT-Plan: a Randomized
nien
Contents Algorithm for STRIPS Planning . .
1 Introduction o 3.3 Adapting a Rapidly-Exploring
Random Tree for Automated
Planning
2 Background 3
2.1 Classical planning 4 Description of the Algorithm
2.1.1 STRIPS g [ALSamplng
2.1.2 Finite domain representation . 4.1.1 Random sampling..........
2.2 Relaxed heuristics 6l 4.1.2 Mutex sampling ...
2.3 Forward search rd 4.2 Search for a nearest state ...
9.3.1 Greedy Best-First Search 43 Join...... .o ool
2.4 MUtex.oovvriiaian. .. g 5 Experiments
2.5 Motion p]anning ''''''''''''''' |§| 51 Results
2.6 Rapidly Exploring Random Trees 5.1.1 Number of succesfully found
plans...... L
3 Related Work 13

3.1 Sampling-Based Planning for

Discrete Spaces
6 Conclusions
3.1.1 Discrete RRTs 13l

A Content of the Attached Disc
3.1.2 RRTs with Local Planners ..

B Bibliography

vii

C Tables 35

C.1 Average number of successfully
completed plans

C.2 Average length, time, sampling
attempts and tree size

viii

Figures

2.1 Rapidly-Exploring Random Tree

(picture from [LTO8])............

2.2 The extend phase of RRT
algorithm (picture from [LKD™01])

5.1 A section of the table C.8 showing
average length and standard
deviation................

5.2 A section of the table C.9 showing
average time(s) and standard
deviation..............

5.3 A section of the table C.10 showing
average number of states discarded
during samplin and standard
deviation................

5.4 A section of the table C.11 showing
average tree size and standard
deviation.......................

ix

Tables

C.1 Number of plans achieved by the

greedy algorithm.

C.2 Average number of plans achieved
by using the RRT algorithm with a
random sampling method.

C.3 Average number of plans achieved
by the RRT algorithm with a
sampling method using lifted
Mutexes.,

C.4 Average number of plans achieved
by the RRT algorithm with a
sampling method using ho mutexes.

C.5 Average number of plans achieved
by the RRT algorithm with a
sampling method using h2 forward
backward mutexes...............

C.6 Average number of plans achieved
by the RRT algorithm with a
sampling method using hs mutexes.

C.7 Average number of plans achieved
by the RRT algorithm with a
sampling method using

fact-alternating mutexes.
C.8 Average length of plans for the

gripper98 domain.
C.9 Average time(s) for the

zenotravel02 domain. 41l

C.10 Average number of discarded
sampling attempts for the parkingll
domain.

C.11 Average tree sizes for the tetris14
domain.

Chapter 1

Introduction

The usual way of solving problems of classical planning is using forward search
accompanied by a heuristic function. Algorithms using heuristic functions
can help the planner reach the goal more quickly. Moreover, when using
admissible heuristic, algorithms such as A* are guaranteed to find the optimal
path.

Nevertheless, in some cases greedy searches have issues and get stuck when
dealing with problems containing large plateaus, which consist of states with
the same heuristic value. A planner can also get easily sidetracked if it
encounters a local minimum.

In motion planning, solving a problem means finding a path which leads to-
wards goal without colliding with obstacles. Sampling-based motion planning
algorithms are very popular and are considered state-of-the-art techniques
used to solve motion planning problems.

One of the most successful and effective sampling-based algorithms is
Rapidly-exploring Random Trees (RRT) ﬂm It has many positive qualities,
such as being relatively simple to implement, the expansion of an RRT is biased
towards yet unexplored space, the tree data structure is always connected,
etc.

Because of these useful properties, the possible use of the algorithm in
classical planning is being explored. Unfortunately, adapting an algorithm
from motion planning to classical planning is not trivial.

1

1. Introduction

The main issue is the different state space. While motion planning deals
with continuous spaces, the classical planning uses discrete space.

During the search, it is desirable to produce uniform random samples,
which is very simple to do in configuration space formed from Cartesian
products. Uniform sampling over all possible states is not as straightforward
in classical planning, since random sampling could return states that might
be unreachable either from the initial state or towards a goal. This issue
could be overcome by, for example, sampling only over the subset of goal
states, but that would devalue the idea of uniform sampling.

It is required to measure the distance between a sampled state and a node
present in the tree. In motion planning, the distance can be directly computed
by using a chosen metric (e.g., the Euclidean metric, the Manhattan metric).
Planners in classical planning need to find alternative methods, such as using
heuristic functions to estimate the distance.

The goal of the thesis is to propose a way to solve these issues and implement
a solver of classical planning problems based on the techniques used in the
sampling-based methods for solving motion planning problems. We will be
focusing mainly on the RRT algorithm. In this thesis, we used the algorithm
outline proposed in [AVB11] and suggested ways to adapt and implement
the individual subprocedures to classical planning, and then examined the
performance of the implementation.

Chapter 2

Background

B 2.1 Classical planning

Classical planning is a special case of restricted automated planning. A
classical planning problem can be described as a state model defined in

[BGOT] as a tuple > = (S, so, Sg, A, 7, cost), where:

S is a finite and non-empty set of states s.

sp € S is the initial state.

Sa C S is a non-empty set of goal states.

A is a finite set of actions. A(s) C A denotes the actions applicable in
each state s € S

® v(a,s) is a state transition function for all s € S and a € A(s).

® cost(a,s) is a cost of performing action a in state s.

A solution or a plan of a state model is a sequence of actions ™ = ag, a1, ..., an
generating a sequence Sg, $1 = Y(80), .-+, Sn+1 = Y(an, Sn), where each action
a; is applicable in s; and s,41 is a goal state. A state s,, for which exist a
sequence sg, $1 = Y(80), -, Sr+1 = Y(ar, sy) is called reachable. The plan is
called optimal when the total cost Y_i- cost(a;, s;).

3

2. Background

Most of the problems of classical planning problems are specified in stan-
dardized planning language called Planning Domain Definition Language
(PDDL) |[AHK™98|. However, planners usually work with different represen-
tation, mainly STRIPS [ENTI] and finite domain representation [Hel09], and
therefore the problems need to be translated.

B 2.1.1 STRIPS

With the help of definition of a state model Y = (5, s0, Sg, 4,7, cost), A
STRIPS representation is defined in [BGO1] as a tuple P = (4,0, 1,G,c),
where:

B A is a set of atoms. States s € S are collection of atoms a from .A.

m O is a set of operators op € O corresponding to a € A(s). Each operator
has a:

precondition list Prec(op) - set of atoms which need to be true in
the state s before the operator executes his action. An operator op
is called applicable in s if Prec(op) C s.

add list Add(op) - set of atoms added to the state after the action
was executed.

delete list Del(op) - set of atoms deleted from the state after the
action was executed.

To apply an operator op in a state s, op must be applicable in state s.
The new state s' = (s\ Del(op)) U Add(op)

m | C A represents the initial state sq.

B (G C A describes the goal situations. For a state s to be considered goal,
it must stand that G C s.

B cis a cost function mapping each operator to a non-negative real number.

A sequence of operators m = (op1,...,0py) is applicable in a state sq if
there are states s1, ..., s, where every operator op; is applicable in s;_1 and
s; = res(op;, si—1) for i € [1,n]. The result of this action is res(m, sg) = sp.

A sequence of operators 7 is called a plan if s = res(w,I) and G C s. The
cost of a plan is ¢(m) = >, e c(op).

2.1. Classical planning

B 2.1.2 Finite domain representation

A finite domain representation (FDR) can be described as a tuple II =
<V, 07 Sinit, Sgoals C>, where:

V is a finite set of state variables. Each variable v € V has a finite
domain D,,.

A fact is a pair (v,d), where v € V and d € D,. A partial variable
assignment is a set of facts, where each fact has a different variable.
A partial state s is a partial variable assignment over V. A state is a
variable assignment over all variables v € V.

® O is a set of operators. Operator o € O is a pair o = (pre(o), ef f(0)),
where precondition pre(o) and effect ef f(o) are both partial states.

® s;,; is the initial state of the task.
B 540 is a partial state which describes the goal.

® cis a cost function mapping each operator to a non-negative real number.

A partial state s is consistent with a partial state s’ if each variable defined
in s’ was assigned the same value as the corresponding variable in s.

An operator o is applicable in a state s if all the values in pre(o) are
equal to values assigned to variables in s. The resulting state of applying an
applicable operator o in the state s is the state ' = res(o, s). If a variable is
defined in ef f(0), then the corresponding variable in s’ is assigned the same
values as the variable in ef f(0). Otherwise, the variable is assigned a value
from s.

A sequence of operators m = (01,...,0,) is applicable in a state sg if
there are states sq, ..., s, where every operator o; is applicable in s;_1, and
s; = res(0;,si—1) for i € [1,n]. The result of this action is res(m, sg) = sp.

A sequence of operators 7 is called a plan if s = res(m, sinit) is consistent
with sgoq. The cost of a plan is c(7) = 3 c.c(0).

5

2. Background

. 2.2 Relaxed heuristics

A heuristic function [GNT16] is a function h which returns the estimate h(s)
of the minimum cost h*(s) of reaching a goal state from a state s. Heuristic
function is admissible if 0 < h(s) < h*(s) for every s. If h(s) =0, s is a goal.

Heuristic functions are produced by relaxation. Generally, that would mean
weakening some constraints present in the task. For a STRIPS planning
task P = (A,0,1,G,c), that would be P = (4,07,I,G,c). In STRIPS
representation relaxation would mean ignoring the delete list. Therefore once
a fact is true, it will always be true. Even though the STRIPS is not our
main focus in this thesis, we can modify FDR and to every fact (v,d) assign
either true or false.

One of the most known heuristic functions is A"%*. It is an admissible
heuristic function, but it’s values don’t offer as much information as other
alternatives. The function A% (s) returns the estimate of the distance from
s to a goal as

R (s) = max A(s,a), a € A, (2.1)
aE

where

A(s,op) = max A(s,a), Yop € O, (2.2)

a€Prec(op)
and
0, if a € s,

A(s,a) = ¢ oo, if Vope O: f ¢ Add(op),

min{c(op) + A(s,op) | op € O, € Add(op)}, otherwise.
(2.3)

hFF takes different approach. First, it finds a goal in the relaxed plan and
then it uses supporters (actions which caused an atom to be true) to compute
its value from the goal back to the initial state.

As stated in [Has09], it is possible to generalize the h™** into h™, allowing
as to utilize other heuristics, mostly h? and h®. Heuristic A™ is very useful
for inferring mutexes and translating problems into FDR.

6

2.3. Forward search

. 2.3 Forward search

Forward search [GNT16] is an algorithm that represents a large number of
algorithms which start their search from the initial state and head towards
the goal.

The search process is described in Algorithm 1. A node is a pair v =
(7, s), where 7 is a sequence of actions and s = y(sg, 7). The initial node is
((), s0), Frontier is set of nodes waiting to be visited and Expanded is a set
of already visited nodes.

At first, the initial node ((), so) is inserted into Frontier and Exzpanded is
set to be an empty set. In each while loop the algorithm selects a node v =
(m,s), removes it from Frontier and inserts it into Exzpanded, generates its
Children, prunes unpromising nodes and inserts C'hildren into the Frontier.

Algorithm 1: Forward search from [GNT16]
Data: >, s, Sg
Frontier < {({), s0)};
FExpanded < ©;

while Frontier # @ do
select a node v = (m,s) € Frontier;

remove v from Frontier and add to Ezpanded,

if s satisfies Sg then
| return ;

end

Children < {(7,a,v(s,a)) | s satisfies pre(a)};

prune 0 or more nodes from Children, Frontier and Expanded,
Frontier < Frontier U Children;

end

return failure;

B 2.3.1 Greedy Best-First Search

Greedy best-first search [GNT16] is the most frequently chosen algorithm for
classical planning problems which do not require optimal solution.

It is a forward search, where a node selection is specified as the selection of

7

2. Background

a node from the Frontier with the minimal heuristic value. Pruning works
as follows: For each node v = (7, s) € Children, if there is more than one
possible sequence of actions which can reach s, keep the one with minimal
cost and remove the others.

. 2.4 Mutex

Mutex, mutex groups and fact-alternating mutex groups [FK18] can be defined
in STRIPS representation P = (A,0,1,G,c) as:

Mutex M C A is a set of atoms, such that for every reachable state s € R
it holds that M ¢_ s, where R is a set of all reachable states.

A mutex group M C A is a set of atoms, such that for every reachable
state s € R it holds that | M N's |< 1, where R is a set of all reachable states.

A fact-alternating mutex group (fam-group) M C A is a set of atoms, such
that | M NI |<1and | MnNAdd(op) | <|Mn Prec(op) N Del(op) | for every
operator op € O.

As mentioned in [AT15], one of the methods to obtain mutexes is using
the hA™ heuristic [BGO1], where h™ performs a reachability analysis in P™
[Has09]. P™ is a semi-relaxed version of the original problem, in which its
atoms are sets of m atoms from the problem P. If the value of A% of an
atom in P™ is infinite, then the atom is a mutex of size m.

The most frequently used method to help us find invariants is h2. Since
the cost of computation rapidly increases, it is not very common to encounter
h™ with m more than 3. We can also consider the possibility of reversing
the process and starting the search from a goal and move towards the initial
state.

Algorithm 2 shows us a way to infer fam-groups using integer linear program
[FK1§].

2.5. Motion planning

Algorithm 2: Inference of fact-alternating mutex groups using ILP
(from [FK18])

Input: STRIPS planning task P = (4,0, 1, G, ¢)
Output: A set of fam-groups M
Initialize ILP with constraints according to Equation (2.4) and
Equation (2.5);
Set objective function of ILP to maximize }_,. 4 Z:;
Solve ILP and save the resulting fam-group into M;
while | M |> 1 do
Add M to the output set M;
Add constraint according to Equation (2.6) using M,;
M « 0;
Solve ILP and if a solution was found, save the resulting fam-group
into M;
end

> oa <1 (2.4)

a; €1

Yop € O: Z x; < Z x;. (2.5)

a;€Add(op) a; €Del(op)NPrec(op)

S x>l (2.6)

o &1

B 25 Motion planning

Motion planning [LaV06] is a type of planning, that deals with motions of a

robot in a configuration space with obstacles.

Motion planning problem can be defined by:

® W is either a 2D world, W = R? or 3D world, W = R?

®m O is a obstacle region, © C W. Obstacles remain fixed in the world W.

9

2. Background

® A is either a robot A C R? or R3, or set of attached bodies A;, As, ..., Ap,.
A robot is required to move in the world W.

® (C is defined as a configuration space, which is a special case of state
space X. It is determined by every transformation applicable to the
robot A. From C we derive Cpps and Cyree. q € C is called a configuration
and x € X is called a state.

B Ginit € Cree is the initial configuration.
B Ggoal € Cfree is the goal configuration.

® 7 :[0,1] = Cfree is a continuous path, such that 7(0) = gini and
7(1) = ggoar- Otherwise it reports, that path does not exist.

B 26 Rapidly Exploring Random Trees

The rapidly exploring random tree (RRT) algorithm [LF98| is an algorithm
successfully used for exploring the continuous space. It is popular for its
preference to expand towards unsearched parts of the search space and yet
still being simple to implement.

The data structure Rapidly-Exploring Random Tree (RRT) is constructed
from vertices (nodes), where all vertices are states x € Xfree, and edges,
where each each edge is a path, which lies in Xf;ce.

Figure 2.1: Rapidly-Exploring Random Tree (picture from [LF98))

10

2.6. Rapidly Exploring Random Trees

Algorithm 3: Generate RRT (from [L798])
Data: x;pi, K, At
T.init(zingt);
for k=1 to K do
Trand < RANDOM__STATE();
Tnear - NEAREST NEIGHBOUR(2yang, T);
u ¢~ SELECT INPUT(2yand; Tnear);
ZTnew < NEW_STATE(xpeqr, u, At);
T.add_ vertex(Zpew);
T.add__edge(Tnear, Tnew, U);
end
return T

Following the Algorithm 3, we begin generating the data structure Rapidly-
Exploring Random Tree (RRT) T with the initial state Zinit € Xpree, K
vertices and time interval At.

The algorithm enters a for loop. In the loop, a random state x,4,q is selected
from state space X. Next, NEAREST NEIGHBOUR finds the vertex xycqs
from T that is closest to ;qng. SELECT _INPUT returns a vector u called
input, which minimizes the distance from xjeqr towards x,q,q while ensuring,
that the state remains in Xf,c.. NEW__STATE applies © on Zy,eq, and returns
a new state Tpew. Tnew and the edge from Tpeqr 10 Tpeyw alongside with the
input u are added to T'.

The loop is terminated when the number of vertices in T' reaches K.

As mentioned in [LaV06], the algorithm can be simply modified to be used
for solving planning problems. The tree would be initialized with the initial
state x;n;¢ of the problem. With a probability p, RANDOM__STATE would
still sample a random state x,.q,q. With a probability 1—p, RANDOM__STATE
would be replaced with Z,4nq4 < Tgoai-

i-fc'-f *new

V'

B
X

X

near
X. .
init

Figure 2.2: The extend phase of RRT algorithm (picture from [LKDT01])

11

12

Chapter 3

Related Work

This section introduces us to several papers on a similar topic and shows
us, how the authors dealt with issues of adapting algorithms used in motion
planning to classical planning.

B 31 Sampling-Based Planning for Discrete Spaces

In this paper we are introduced to discrete space search algorithms
based on motion-planning techniques such as Rapidly-exploring Random
Trees and Probabilistic Roadmaps [KSLO96] to discrete space. We will be
focusing on the RRT algorithms.

I 3.1.1 Discrete RRTs

The way, the discrete algorithm determines the nearest state, is by replacing
the distance metric with heuristic estimate of the cost-to-go, that is used in
general informed search methods.

The algorithm described in Algorithm 4 starts with an initial state sg. A
tree T is initialized with sg. A for loop set to run N times is entered. At
each step, a random state $,4,4, which is not present in the tree is selected.

13

3. Related Work

Then we use extendRRT function. We find a nearest state s,eqr based on a
heuristic estimate of the cost-to-go from each state to s,qnq. Every operator
is applied on speqr- The resulting state, which is closest to s,4nq and is not
present in the tree, becomes s;e,,. The state spey is added to the tree and is
connected t0 Speqr With an edge.

The paper also mentions a variation of the algorithm using Rapidly-
Exploring Random Leafy Tree, which keeps an open list of all states reachable
in one step from the tree. Therefore, instead of considering successors of
only one state, we are able to use the successors of the whole tree. The
modification can be seen in a function extendRRLT in Algorithm 4.

Algorithm 4: GrowRRT (from [MBO04])
Data: sg
T.init(sg);
forn=1 to N do
Srand = randomUnexploredState();
extendRRT ($yqnd, T);
end

Function extendRRT (S,qnq, 1):

Snear = T.nearestTreeNode(S,qnd) ;

if Speqr-hasUnseenSucessors() then
Spew = nearestSucessor(S,and, Snear);
T.addChildNode(Snew, Snear);

end

Function extendRRLT (5,44, 1) :
Snew = T'.nearestTreeLeaf(s,qnd) ;
T.changeLeafToNode(Spew);
T.addNewLeaves(Spew);

B 3.1.2 RRTs with Local Planners

RRTs with local planners use the Algorithm 4 from the previous section as
a global planner, but use a different planner for local planning. Instead of
simply picking successors closest to s;qnq, @ local planner limited by depth,
size or time is used from Sycqr t0 Spang. When the local search is finished, the
node closest to S,qnqg and the whole sequence of nodes from S,eqr t0 Spang are
added to the tree.

14

3.2. RRT-Plan: a Randomized Algorithm for STRIPS Planning

B 3.2 RRT-Plan: a Randomized Algorithm for
STRIPS Planning

The authors of this paper [BPDO06] proposed a randomized STRIPS planning
algorithm based on Rapidly exploring Random Trees concepts.

To select a random state, the RRT-Plan algorithm generates possible s;.44
states by taking random subsets from the goal G, as if the problem can be
solved, it provides us with reachable states. It also helps to direct the search
towards a goal.

After obtaining a s,.4,4 state, a nearest neighbor must be found. To estimate
distances RRT-Plan uses the HSP [BG0I] technique h,.

Then a planner is invoked to connect Speqr tO Spand. The authors have
chosen the Enforced Hill Climbing phase of FF [Hof01] as a local planner,
and decided to set a node expansion limit e. After reaching the limit, the
search is terminated.

When the planner achieves S,qng from Spear, Srandg becomes spe,, and is
added to the tree as a child of sycqr.

In the next step, the algorithm attempts to connect s,e, to the goal G
using the same planner that was used during the attempt to connect Syeqr
and S,qnq. This time, in case of failure to reach the state, the search would
not be abandoned completely, but the state with the best value will be added
to the tree as a new node.

RRT-Plan also uses other techniques such as goal subset locking and
adapting search paramterers to improve its performance.

B 33 Adapting a Rapidly-Exploring Random Tree for
Automated Planning

In this paper a new use of RRTs in automated planning is proposed.
Since we are using the same outline of the algorithm in our implementation,

15

3. Related Work

we will focus on the description more in the next chapter.

The authors chose the SAS+ [BN95] representation of the problem and
use its properties in sampling.

To estimate the distance, the planner uses heuristic function, which com-
putes the cost of cached best supporters, where best supporters can be defined
in STRIPS as operators, which first achieve an atom.

The planner implemented in this paper uses Fast Downward as its local
planner configured to greedy best-first search with lazy evaluation. The
chosen heuristic the relaxed plan heuristic used by FF. Sampling uses mutexes
computed by the invariant analysis in Fasts Downward.

Algorithm 5: RRT for discrete space in FDR (from [AVBII1])

Data: Search space S, limit ¢, initial state s;nt, goal sgai
Result: Plan solution
T < Sinit;
while —goal Reached() do
if p < random() then
Srand < sampleSpace(S);
Snear < findNearest(T, Srand, S);
Snew jOin(Sneara Srand; €, 5)7
addNode(T, Snear; Snew);
Sneargoqr € Snews
else
‘ Sneargoa; < findNearest(T, sgoa, S);
end
Snewgoar < jOin(Sneargoal » Sgoals €, S)7
addN ode(T, Snear goal» SneWgoq);
end

solution < traceBack(T, s4oa1);
return solution;

16

Chapter 4

Description of the Algorithm

This chapter describes the Algorithm 5, which was proposed in [AVB11],
further examined in [AFBV15] and chosen to be studied in this thesis.

The goal is to plan a solution to a problem in FDR. The algorithm starts
with search space S, limit for local planner €, initial state s, partial goal
state sg0q and cost function c. The tree T is initialized with the initial state.
A while loop is entered and based on the random value, one of the following
happens:

8 With probability 1 — p, the algorithm samples the space and returns
sampled random state S,qpg. FOr S;qnq, we find a nearest state speqr in
the tree T'. After that, we attempt to join S;qpq and Speqr using a local
planner with the limit of expansion €. If s,4p4 is reached within the limit
€, it is returned from the join function as sye,. Otherwise, a state with
the best heuristic value encountered during the local search is returned
as Spew. The state s,ew 1s added into the tree as a child of speqr. A new
state Speargoq is set to Spew-

® With probability p, for a partial state sgu., we find a nearest state
Sneargoq I the tree T

In the next step, we attempt to join the state Sneargoal with sgoq. The state
Snewgo, Teturned by the function is then added to the tree T' as a child of

Sneargoal .

17

4. Description of the Algorithm

The loop repeats until a solution is found.

| S Sampling

Algorithm 6: Sample space

Data: V, O, sinit, Sgoal; 1 M, e

reachableInitToState < false;

reachableStateT oGoal < false;

while —reachableInitToState OR —reachableStateT oGoal do
s < samplingMethod(V,n, (M));
reachableInitToState < isReachable(V, O, ¢, Sinit, S);
reachableStateToGoal < isReachable(V, O, ¢, s, 340a1);

end

return s

According to Algorithm 6, we need set of variables V', set of operators O,
initial state s;,i, partial goal state sgo4, number of variables n and set of
mutexes M. We set variables reachableInitToState and reachableStateToGoal
to false and enter the while loop. We choose a sampling method, either
random sampling or mutex sampling. The sampling method returns state
s. As a last step of sampling, we verify that the state is reachable from the
initial state and towards the goal by using hpq;. In case the state is not
reachable, we discard it and sample a new state.

In our implementation, we observed how many times the algorithm sampled
an unreachable state and if the number rose above 10,000, we let the sampling
return an unreachable state.

B 4.1.1 Random sampling

If we decided to sample the space by choosing random number of atoms, and
then also random atoms from a search space of a problem represented in
STRIPS, we would most likely generate an enormous number of unreachable
states. The idea behind random sampling in this thesis is taking advantage of
using the FDR representation and having each state consist of a given number
of variables. That helps us prune large number of the possible unreachable
states, since we are picking from a domain corresponding to a variable and
not from the whole state space.

18

4.1. Sampling

Algorithm 7: Random sampling

Data: V,n

fori=1tondo
v; < returnVariable(V,i);
val; < choose RandomV alue(D,,);
s.addFact(vi, val;) ;

end

return s

For random sampling in FDR, we need a set of variables V', n is a number
of variables in V. Each variable v; € V is assign a random value from the
domain D,,. The fact (v;, D,,) is then assigned to s until every variable has
value. The state s is returned.

B 4.1.2 Mutex sampling

To make to the previous method more strict and hopefully more effective in
regards to sampling more reachable states, we add additional mutexes:

lifted. Mutex groups obtained during preprocessing and translation of
FDR.

ho. Additionally computed ho mutexes.

ho forward backward (hg fwbw) Additionally computed he mutexes
both forwards and backwards.

hs. Additionally computed h3 mutexes.

fam-groups. Additionally computed fact-alternating mutex groups.

19

4. Description of the Algorithm

Algorithm 8: Mutex sampling
Data: V,n, M
order <— makeOrder(n);
s.setEmptyV alues;
fori=1 tondo
r < getOrder(order,i);
vy < returnVariable(V,r);
while isMutex(s, M) OR s.variableN ot AssignedV alue(v,) do
val, < choose RandomV alue(D,,);
s.addFact(vy,val,) ;
if noPossibleSolution() then
order <+ makeOrder(n);
s.set EmptyV alues();

1+ —1;
continue;
end
end
end
return s

We have the set of variables V', number of variables n, and set of mutexes
M. Mutex sampling method (influenced by [AVBII]) starts by choosing
random order for n variables and making sure that no values are assigned to
variables in s. We enter a for loop.

A variable v, is selected in that given order. Since no value is assigned in
s for v, we enter the while loop. A value is randomly selected for variable v,
and added into s. If we added a value, which is mutex with the rest of (partial)
state s, we try again. If there is no possible solution and the algorithm is
stuck, we start the process again with a new order. If all variables received a
correctly assign value, the algorithm returns the state s.

. 4.2 Search for a nearest state

Search for a nearest state relies on the ability to determine distance. In our
implementation, we use a heuristic function hppr to estimate the distance
between two states. The state with the lowest heuristic value is the nearest
state.

20

4.3. Join

. 4.3 Join

The join stage tries to connect the sampled state s,q,q with the nearest state
Snear 10 a limited number of steps using a local planner. If s is reached within
the limit, the output is the state s. If not, it returns the state, which was
encountered during the search and has the lowest heuristic value. In case
several states have the same heuristic value, the most recent state, which is
not present in the tree size, is chosen. We have chosen greedy search with
lazy evaluation as the local planner, where hpp is the heuristic function.

Algorithm 9: Join
Data: V,0, sy, s2,c¢,¢6,T
minValue + o0o;
minState < s1;
planner < newLocal Planner(V, O, s1, s2, ¢);
currentState < local PlannerInitStep(planner);
for step =1 to e do
currentState < local PlannerStep(planner);
heuristicValue < heuristicEstimate(V, O, currentState, sg, ¢);

if isGoal(currentState, s3) then
minState < currentState;
break;

end

f heuristicValue < minValue then
minState < currentState;

minV alue < heuristicV alue;
end
if heuristicValue == minValue AND

notInTree(T, currentState) then
| minState < currentState;

end

o

end
return minState

The algorithm as described starts with set of variables V', set of operators
O, initial state s, (partial) state goal sg, cost function ¢, limit € and tree T

At first, we initialize variables minV alue to hold infinity, minState to be
s1 and then we initialize the local planner. In the next step, we enter the for
loop restricted by the limit €. Local planner performs a step and returns a
current state currentState, for which we estimate its value heuristicV alue
by using a heuristic function.

21

4. Description of the Algorithm

If currentState is s9, our search found the required solution and returns
currentState.
If heuristicValue is lower then the minimal value minValue, currentState
is set to be the new minimal state minState and its value heuristicValue
becomes minV alue.
If heuristicV alue is equal to the minimal value minValue and currentState
is not in the tree T', then currentState is the new minimal state minState
and its value heuristicV alue becomes minV alue.

If the search terminated and the goal was not reached, the algorithm returns
the state minState with minimal heuristic value.

22

Chapter 5

Experiments

In this chapter we examine the results of the implemented solver.

In order to test the planner we used a dataset of 45 domains chosen
from the satisficing track at the IPC (International planning competition).
Each domain contains 20 problems. The computations were executed using
MetaCentrum resources with the time limit being set to 1800 second and the
memory being restricted to 8GB

The planner was built on top of cpddl library https://gitlab.com/
ldanfis/cpddl-devl Greedy algorithm with lazy evaluation from the library
was chosen as the local planner with hf'F as its heuristic function.

The distance in search for a nearest state was estimated by A", Every
time a planner samples a new state, its reachability from the initial state and
towards the goal is verified using h"**. The probability p was set to 0.5.

To properly compare properties of the algorithm, we prepared several
configurations. Every configuration has two variables:

® A sampling method - either random sampling, or mutex sampling with
lifted, ho, ho fwbw, hg, fam mutexes.

® The maximal number of steps for the local planner e - 1,000, 10,000 and
100,000.

23

https://gitlab.com/danfis/cpddl-dev
https://gitlab.com/danfis/cpddl-dev

5. Experiments

In the end, we are left with 18 configurations of RRT algorithm. Since the
proposed algorithm relies on the element of randomization, every configuration
will run 30 times.

. 5.1 Results

To put performance of our newly implemented planner into context, we
compare the results of RRT planner with a commonly used greedy algorithm
with lazy evaluation implemented in the cpddl library https://gitlab.com/
danfis/cpddl-devl Apart from the number of found plans, we examine
other various properties of the search. We are able to observe the length
and runtime of plans generated by the greedy planner as well as the planner
based on RRT. Our planner was not intended to be optimal, yet it is still
interesting to see the lengths of plans found by different planners side by side.
In addition to that, the RRT solver allows us to study the size of the tree
used to discover the plan, and a number of sampling attempts, which were
discarded during the search.

B 5.1.1 Number of succesfully found plans

The table C.1 shows number of successfully found plans by the planner using
the greedy algorithm. It also informs us about how the situation would look
like, if we were to run only the local planner. For the RRT configurations,
the tables C.2 - C.7 display the mean and standard deviation of number of
found plans over the 30 iterations.

The configuration using fact-alternating mutex groups with the limit of
steps in local planner being 100,000 was the most successful planner with
612.80 as its average number of plans. It is very clear, that no matter which
sampling method was used, the planners with limit set to 100,000 steps in
local search produced better results. Apart from configuration of sampling
method hg, every configuration with limit set to 100,000 performed better in
regards to found number of plans.

None of the solvers (including the greedy solver) was able to complete
any problem from the domains elevatorsll, ged14 and visitalll4. The RRT
planners struggle on long searches with large state space and result in timeout.

24

https://gitlab.com/danfis/cpddl-dev
https://gitlab.com/danfis/cpddl-dev

5.1. Results

Furthermore, visitall is a domain known to perform better with different
heuristic function than h*F.

Planner configuration using h® mutex groups finishes unsuccessfully in
several problems (e.g., parkingl4) while trying to obtain additional mutexes
without even starting the search.

Some of the domains (e.g., mystery98) contain problems that were deemed
unsolvable during translation and pruning of FDR. Resulting lower number
of found plans may negatively affect the impression of the planners, even
though some configurations were able to discover a plan for every solvable
problem.

Bl 5.1.2 Length, time, attempts, tree size

Since it is more appropriate to analyze the length, time, discarded sampling
attempts and tree size separately for every problem, this section mentions
only selected domains.

The complete results containing the mean and standard deviation of length,
time, attempts and tree size for every domain as well as the number of suc-
cessfully discovered plans can be found in the attached directory "results.zip".

B Length

Length of a plan is a number of steps needed from the initial state to achieve a
goal. The average length and its standard deviation for the gripper98 domain
can be found in the table C.8. Every planner used in this thesis was able to
find a plan for every problem in every iteration.

All the results seem to be very similar for most of the planners, with the
exception of configurations with the limit in local search set to 1,000. For
larger problems of the domain, these configurations are slightly higher and
their standard deviation is relatively elevated as well. This is no surprise,
since they introduce random values more often than other.

25

5. Experiments

Gripper98 | greedy random lifted

Problems 1000 [10000 [100000 1000 | 10000 100000
prob01 13 12.93+0.81 1253+0.85 12.73£0.85 | 12.67+0.75 1267+1.04 12.93£0.96
prob02 21 20.53£1.23 2047£0.88 2027+1.09 | 20.27£0.96 19.80+0.98 20.33+0.94
prob03 29 28.20+£0.98 27.60+1.56 27.93+1.44 | 28.13+£0.99 27.67+0.94 28.07+1.00
prob04 37 36.00+1.24 35.13+1.86 35.73+1.59 | 35.80£0.98 35.60+£0.92 35.93+1.00
prob05 45 44.13£1.12 4347177 43.73+2.03 | 44.00£1.00 43.53+0.88 44.00£1.00
prob06 53 52204098 51.80+1.68 52.00£1.91 | 51.80£0.98 51.40+0.80 52.00+1.00
prob07 61 60.40£1.05 60.00+1.44 60.40+1.38 | 59.80+£0.98 59.40+0.80 60.00£1.00
prob08 69 68.47+1.02 68.40+1.05 6847+1.36 | 67.80£0.98 67.60£0.92 68.07+1.00
prob09 77 76.67+0.91 76.40+1.17 76.87+0.72 | 75.80£0.98 75.60£0.92 75.93+1.00
probl10 85 84.53+0.85 84.53+0.99 84.73+1.00 | 84.40£1.28 83.80+0.98 84.33+0.94
probl1 93 92.67+0.75 92.67+1.27 92.93£0.36 | 92.20£1.22 91.80£0.98 92.53+0.85
probl2 101 | 115.27430.03 100.87+0.72 101.00£0.00 | 113.67+27.25 100.60+1.40 100.60::0.80
probl3 109 | 116.93£19.61 108.93+0.36 108.93+0.36 | 111.13+12.30 108.67+0.75 108.67+0.75
probl4 117 | 116.60£0.95 117.07+0.36 117.00+£0.00 | 118.2748.06 116.80+0.60 116.60£0.80
probl5 125 | 130.67+18.64 124.87+0.50 125.00+0.00 | 126.53+9.78 124.93+0.63 125.13+0.50
prob16 133 | 136.33£10.50 132.80+0.79 132.67+1.27 | 133.53+4.79 132.93+0.96 132.93+0.36
probl7 141 | 145.07£16.47 140.80+0.79 141.00+0.00 | 141.204£8.98 141.07+0.36 141.070.81
probl8 149 | 158.60+23.61 148.93+0.36 148.87+0.72 | 150.27+25.02 149.00£0.00 149.27+1.12
prob19 157 | 161.47£11.49 156.73+1.00 156.87+0.50 | 163.93+16.66 157.00+0.00 157.20+1.08
prob20 165 | 172.13419.10 164.73+0.85 164.93+0.63 | 178.93428.73 165.13+0.72 165.00+0.00

Figure 5.1:

deviation.

B Time

A section of the table C.8 showing average length and standard

The table C.9 displays the average time needed to find a plan and its standard
deviation for the zenotravel02 domain. The average number of plans in this
domain for every planner is above 17 plans.

Figure 5.2: A section of the table C.9 showing average time(s) and

deviation.

Zenotravel02 | greedy random lifted

Problems 1000 [10000 [100000 1000 [10000 | 100000
pfile10 0.14 0.194+0.13 0.2440.12 0.23+0.15 0.19+0.16 0.2840.24 0.1940.12
pfilel1 0.05 0.1540.07 0.1040.03 0.14+0.04 0.18+0.14 0.134+0.06 0.1440.09
pfile12 0.04 0.11+0.05 0.10+0.04 0.134+0.05 0.1240.09 0.1340.11 0.13+0.07
pfilel3 0.03 0.1140.07 0.1040.04 0.17+0.25 0.10+0.06 0.134+0.12 0.1240.05
pfilel4 1.64 3.96+3.29 3.2841.70 7.36+11.24 6.50+5.04 2.83+1.62 2.90+1.52
pfilel5 24.74 3.99+2.68 9.95+8.31 34.59+46.49 3.51+2.20 7.93+6.24 51.22454.46
pfilel6 1.11 19.68+30.15 7.45+48.23 12.924+31.71 23.364+29.85 9.22+7.84 5.95+5.05
pfilel7 4.49 177.494+443.90 17.55+8.80 18.30+13.58 | 46.93+87.83 19.62+18.35 15.48+4.96
pfilel8 15.16 | 305.88+447.66 28.59+423.02 53.81+37.22 | 106.23+155.81 41.71+34.30 39.63+14.53
pfile19 5.99 157.584+172.34 47.51435.43 36.38+28.62 | 559.00£632.02 59.77+69.54 26.05+13.87

standard

The solver using the greedy algorithm the best. Its maximal time spent
on a problem is 24.74 seconds, while maximal values for RRT planners are
over 50s. Configurations using hs sampling method need over 1300 seconds
for their worst case. One interesting problem is the pfilel5 problem. In this
case, most of the configurations limited to 1,000 and even 10,000 steps finish
faster than the greedy planner. But in other cases, the greedy planner vastly
outperforms planners based on RRT.

26

5.1. Results

B Attempts

The average of discarded attempts during sampling for the domain parkingl1
and its standard deviation can be found in the table C.10. In this domain,
configurations with hs manage to start the search only in the first two
problems. On average most of the planners with the limit set to 100,000 solve
at least 19 problems, while planners limited to 1,000 steps perform worse.

Parkingl1 random lifted

Problems 1000 I 10000 100000 1000 ‘ 10000 | 100000
pfile08-031 | 52959.47+27414.83 7000.704£8226.80 3713.50+£4692.64 | 237.60£278.67 7.80£8.17 5.63£7.39
pfile08-032 | 26969.39+27263.81 6000.60£6633.91 4519.00+4851.89 70.73+84.67 6.504+10.70 3.47+5.12
pfile09-033 60006.00-£0.00 14334.774£11161.56 5411.63+£4923.38 | 390.17+£340.90 10.57£11.19 4.50+7.24
pfile09-034 no results 18870.274+14225.91 5125.17+4920.26 | 388.21+£316.30 13.90+£18.38 3.10£5.69
pfile09-035 | 38411.20£30078.62 14385.434£10353.70 5410.93+£4923.82 | 285.73+£278.04 12.63+14.54 4.70£7.59
pfile09-036 | 47782.56+22001.08 11044.73+7838.43 4344.00+4947.20 | 231.90+209.74 8.63+12.39 2.77+4.63
pfile10-037 | 17231.104£17224.16 11035.59+12134.05 5081.334+4938.23 | 386.58+377.37 9.13+£12.05 3.57+5.63
pfile10-038 | 25002.50+5000.50 16061.734+10344.68 4333.77+£4955.85 | 395.84+£265.00 20.73+23.04 6.97+11.60

Figure 5.3: A section of the table C.10 showing average number of states
discarded during samplin and standard deviation.

In this domain it is more common to sample a unreachable state and the
results between the configurations with 1,000, 10,000 and 100,000 are very
noticeable. Those, that are required to sample more often discard more states.
Configurations with random sampling method don’t restrict their generated
states with mutexes and often return unreachable state resulting in very large
number of discarded states.

B Tree size

The table C.11 shows the average tree size and its standard deviation for the
tetrisl4 domain. Planners with the limit of 1,000 steps find around 10 plans,
other configurations around 17 plans.

Tetris14 h2fwbw

Problems 1000] 10000 I 100000
p020 32.83+29.04 17.03+13.17 10.40+6.95
p021 102.80+68.78 43.10+45.11 26.25+19.19
po22 9227470.23 30.53+32.44 11.30+8.86
p023 T2.57£70.66 49.69+39.54 16.63+14.15
p024 107.12+£48.98 52.50+£53.94 7.47+4.22
p025 71.29+62.79 42.10+42.34 9.10+11.15
p026 160.544102.75 51.38+50.41 17.00+12.00
p027 133.79+80.66 45.59+42.02 11.93+10.28
p028 112.59+68.25 14.87+15.83 6.37+6.95
p029 57.75+25.59 47.80+47.17 24.21+17.16

Figure 5.4: A section of the table C.11
deviation.

showing average tree size and standard

Tree size values mainly show, that configurations with lower limit of steps
have bigger trees. Since a node is not added into the tree during the local
search, planners with longer local search don’t add new nodes as often.

27

28

Chapter 0

Conclusions

The goal of the thesis was to propose a way to adapt the RRT algorithm,
which is commonly used in motion planning, for a solver of classical planning
problems. Then implement a planner and evaluate its performance on a
dataset.

We implemented the RRT-based planner in C and observed the influence
of used:

® sampling method:
Random sampling. Apart from variables in FDR no additional
mutex groups added.
Mutex sampling.

= Lifted. Mutex groups obtained during preprocessing and trans-
lation.

= ho. Additionally computed ho mutexes.

= ho fwbw. Additionally computed hs mutexes forward and back-
ward.

= h3. Additionally computed hs mutexes.

= Fam. Additionally computed fact-alternating groups.
® limited number of steps in the local search:
1,000
10,000

29

6. Conclusions

100,000

For each configuration of the planner with chosen sampling method and
limit of steps the local planner was allowed to take, we studied the results.
We examined number of found plans and other properties such as length of
the plan or runtime. We then compared our planner with a planner using
greedy algorithm.

Based on the chosen configuration, our solver can yield better results than
the greedy algorithm. For a future evaluation another possible variation could
show us a different outcome - modifying the value of probability.

30

Appendix A

Content of the Attached Disc

® cpddl-dev.zip - directory containing the planner built on top of c¢pddl
library

® dataset.zip - dataset used in this thesis
8 README.zip - file describing how to run the planner

B results.zip - directory containing tables with results in .ods and .xlsx
format

31

32

Appendix B

Bibliography

[AFBV15]

[AHK 98]

[AT15]

[AVB11]

[BGO1]

[BN95)

[BPDOG]

Vidal Alcazar, Susana Fernandez, Daniel Borrajo, and Manuela
Veloso, Using random sampling trees for automated planning, Ai
Communications 28 (2015), no. 4, 665-681.

Constructions Aeronautiques, Adele Howe, Craig Knoblock,
ISI Drew McDermott, Ashwin Ram, Manuela Veloso, Daniel
Weld, David Wilkins SRI, Anthony Barrett, Dave Christianson,
et al., Pddl/ the planning domain definition language, Tech. report,
Technical report, 1998.

Vidal Alcdzar and Alvaro Torralba, A reminder about the im-
portance of computing and exploiting invariants in planning,
Twenty-Fifth International Conference on Automated Planning
and Scheduling, 2015.

Vidal Alcazar, Manuela Veloso, and Daniel Borrajo, Adapting
a rapidly-exploring random tree for automated planning, Fourth
Annual Symposium on Combinatorial Search, 2011.

Blai Bonet and Héctor Geffner, Planning as heuristic search,
Artificial Intelligence 129 (2001), no. 1-2, 5-33.

Christer Béckstrom and Bernhard Nebel, Complexity results for
sas+ planning, Computational Intelligence 11 (1995), no. 4, 625—
655.

Daniel Burfoot, Joelle Pineau, and Gregory Dudek, RRT-Plan:
A Randomized Algorithm for STRIPS Planning., ICAPS, 2006,
pp- 362-365.

33

B. Bibliography

[FK18]

[FNT71]

[GNT16]

[Has09]

[Hel09]

[Hof01]

[KSLOYG]

[L+98]

[LaVo6]

[LKD+01]

[MBO4]

Daniel Fiser and Antonin Komenda, Fact-alternating mutex groups
for classical planning, Journal of Artificial Intelligence Research
61 (2018), 475-521.

Richard E Fikes and Nils J Nilsson, Strips: A new approach to
the application of theorem proving to problem solving, Artificial
intelligence 2 (1971), no. 3-4, 189-208.

Malik Ghallab, Dana Nau, and Paolo Traverso, Automated plan-
ning and acting, Cambridge University Press, 2016.

Patrik Haslum, hm (p)= h 1 (p m): Alternative characterisations
of the generalisation from h max to hm, Nineteenth International
Conference on Automated Planning and Scheduling, 2009.

Malte Helmert, Concise finite-domain representations for PDDL
planning tasks, Artificial Intelligence 173 (2009), no. 5-6, 503-535.

Jorg Hoffmann, Ff: The fast-forward planning system, Al maga-
zine 22 (2001), no. 3, 57-57.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Over-
mars, Probabilistic roadmaps for path planning in high-dimensional
configuration spaces, IEEE transactions on Robotics and Automa-
tion 12 (1996), no. 4, 566-580.

Steven M LaValle et al., Rapidly-exploring random trees: A new
tool for path planning, The annual research report (1998).

Steven M LaValle, Planning algorithms, Cambridge university
press, 2006.

Steven M LaValle, James J Kuffner, BR Donald, et al., Rapidly-
exploring random trees: Progress and prospects, Algorithmic and
computational robotics: new directions 5 (2001), 293-308.

Stuart Morgan and Michael S Branicky, Sampling-based plan-
ning for discrete spaces, 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 2, IEEE, 2004, pp. 1938-1945.

34

Appendix C

Tables

Note: The pipesworld-notankage04 domain will be reffered to as pipesworld*
in all of the tables.

35

C. Tables

B ca Average number of successfully completed
plans

Domain greedy
agricolal8 (20) 9
barmanll (20) 3
barman14 (20) 4
blocks00 (20) 20
calderal8 (20) 15
cavediving14 (20) 7
childsnack14 (20) 0
data-networkl8 (20) 3
depot02 (20) 16
driverlog02 (20) 18
elevatorsll (20) 0
floortilel1 (20) 7
floortile14 (20) 2
freecell00 (20) 19
ged14 (20) 0
gripper98 (20) 20
hiking14 (20) 20
logistics00 (20) 20
logistics98 (20) 16
maintenanceld (20) 6
mprime98 (20) 17
mystery98 (20) 11
nomysteryl1l (20) 8
openstacks06 (20) 20
parkingl1 (20) 20
parking14 (20) 17
pegsolll (20) 20
pipesworld* (20) 19
rovers06 (20) 18
satellite02 (20) 19
scanalyzerl1l (20) 18
snakel8 (20) 6
sokobanll (20) 18
spiderl8 (20) 11
storage06 (20) 18
termes18 (20) 16
tetrisld (20) 11
thoughtfull4 (20) 12
tidybot11 (20) 17
tpp06 (20) 19
trucks06 (20) 15
visitallll (20) 4
visitalll4 (20) 0
woodworkingll (20) 17
zenotravel(2 (20) 20
SUM (900) | 576

Table C.1: Number of plans achieved by the greedy algorithm.

36

C.1. Average number of successfully completed plans

Domains 1000 10000 100000
agricolal8 (20) | 6.33+0.65 6.77+0.62 7.074+1.00
barmanll (20) | 0.00+0.00 0.002:0.00 0.13+0.34
barmanl4 (20) 0.002£0.00 0.00+0.00 0.00+0.00
blocks00 (20) | 20.0040.00 20.0040.00 20.0040.00
calderal8 (20) | 12.80+0.60 14.00+£0.00 14.60+0.80
cavedivingl4 (20) 0.00+0.00 7.00+0.00 7.00£0.00
childsnack14 (20) | 0.00£0.00 0.004:0.00 0.03+0.18
data-network18 (20) 1.6340.48 2.97£0.75 4.47%+1.02
depot02 (20) | 12.974+0.71 15.274+0.85 16.07+0.77
driverlog02 (20) | 15.53+0.50 18.2740.73 18.8340.52
elevators1ll (20) 0.00+£0.00 0.00+£0.00 0.00+£0.00
floortilel1 (20) | 5.83+0.37 6.10+0.30 7.0740.44
floortile14 (20) | 2.00+0.00 2.134+0.34 2.3040.53
freecell00 (20) | 19.30+0.64 20.00£0.00 20.00+0.00
ged14 (20) | 0.00+0.00 0.0040.00 0.00+0.00
gripper98 (20) | 20.00£0.00 20.00+0.00 20.0040.00
hiking14 (20) | 20.00+0.00 20.00£0.00 20.00+0.00
logistics00 (20) | 20.0040.00 20.0040.00 20.0040.00
logistics98 (20) | 10.10+0.91 14.63+£0.71 18.37+0.66
maintenancel4 (20) | 11.03+£1.20 14.934+0.36 13.63+0.55
mprime98 (20) | 19.30+0.69 18.60+0.71 17.97+0.71
mystery98 (20) | 12.97+0.18 13.00£0.00 12.97+0.18
nomysteryll (20) | 10.07+0.85 10.30£0.74 10.40+0.76
openstacks06 (20) | 20.0040.00 20.0040.00 20.0040.00
parkingl1 (20) 2.17+1.07 15.97+1.54 19.70+0.64
parking14 (20) 0.07£0.25 3.67£1.40 15.23+1.15
pegsolll (20) | 18.234+0.92 18.4040.76 18.8340.64
pipesworld* (20) | 20.00+0.00 20.00£0.00 20.00+0.00
rovers06 (20) | 18.274£0.51 20.0040.00 20.0040.00
satellite02 (20) | 17.13+£0.99 19.63+0.48 19.23+0.72
scanalyzerll (20) | 16.77+0.92 17.63+£1.25 19.27+0.73
snakel8 (20) | 3.90+0.65 6.20+0.75 6.43+0.84
sokoban11 (20) | 6.33+0.83 10.20+1.19 15.07+1.03
spider18 (20) 5.77£1.20 9.87+0.43 10.9340.25
storage06 (20) | 20.0040.00 20.0040.00 20.0040.00
termesl8 (20) | 6.13£1.28 14.77+0.62 16.67+0.70
tetris14 (20) 10.30+1.44 17.07£1.26 18.434+0.99
thoughtfull4 (20) | 17.53+£0.81 18.13+0.62 17.034+0.84
tidybot11 (20) | 17.60+0.66 18.17+£0.64 18.60+0.84
tpp06 (20) | 13.03+£0.48 15.60+£0.61 17.57+0.67
trucks06 (20) | 16.874£0.92 18.534+0.72 18.5740.50
visitallll (20) 1.2040.48 4.03£0.71 6.27£0.68
visitall14 (20) | 0.00+0.00 0.0040.00 0.00+0.00
woodworkingll ~ (20) | 13.97£1.11 19.50+0.72 18.53+0.85
zenotravel02 (20) | 19.13+0.76 20.00£0.00 20.00+0.00
SUM (900) | 484.274+4.43 571.33+4.23 607.27+3.82

Table C.2: Average number of plans achieved by
using the RRT algorithm with a random sampling

method.

37

Domains 1000 10000 100000
agricolal8 (20) | 6.3340.54 6.57+0.62 7.23£0.99
barmanll (20) 0.00+£0.00 0.2340.42 1.97£1.17
barman14 (20) | 0.00+0.00 0.00£0.00 0.27£0.44
blocks00 (20) | 20.0040.00 20.0040.00 20.0040.00
calderal8 (20) | 12.10+1.11 13.80+0.48 14.63+0.84
cavedivingl4 (20) | 0.00+0.00 6.9740.18 7.00£0.00
childsnack14 (20) | 0.0040.00 0.00£0.00 0.07£0.25
data-network18 (20) 1.6040.49 2.5040.62 4.00£0.89
depot02 (20) | 12.874+0.96 14.80+0.87 16.03+0.84
driverlog02 (20) | 15.474+0.56 18.03+0.84 18.70%0.59
elevatorsll (20) 0.00+0.00 0.00+£0.00 0.00+0.00
floortile11l (20) 6.03+0.18 6.2740.44 7.23+0.42
floortilel4 (20) 2.03+0.18 2.10£0.30 2.73£0.73
freecell00 (20) | 19.37+£0.60 20.00£0.00 20.00+0.00
ged14 (20) | 0.00+£0.00 0.00£0.00 0.00£0.00
gripper98 (20) | 20.00+0.00 20.00£0.00 20.00+0.00
hiking14 (20) | 20.00+0.00 20.00£0.00 20.00+0.00
logistics00 (20) | 20.0040.00 20.0040.00 20.004-0.00
logistics98 (20) | 10.13+£0.92 14.67+0.83 18.60+0.84
maintenancel4 (20) | 10.87+£1.20 15.03+0.18 13.73+£0.93
mprime98 (20) | 19.2740.81 18.60+0.76 17.53%0.96
mystery98 (20) | 12.93+£0.25 13.00£0.00 12.77+0.42
nomysteryll (20) 9.90+0.91 10.10+0.47 10.3740.66
openstacks06 (20) | 20.00+0.00 20.00£0.00 20.00+0.00
parkingl1 (20) | 12.67+£1.96 19.63+0.66 19.87+0.34
parking14 (20) 1.83£1.10 11.00+2.25 15.67+£2.17
pegsolll (20) | 17.70£1.35 18.23+1.20 19.13+0.67
pipesworld* (20) | 20.00+0.00 20.00£0.00 20.00+0.00
rovers06 (20) | 18.134+0.34 20.0040.00 20.004-0.00
satellite02 (20) | 17.13+£0.88 19.60+0.55 18.9040.75
scanalyzerll (20) | 17.77+£0.72 18.234£0.72 19.17+0.82
snakel8 (20) | 3.8340.86 6.13£0.50 6.67£1.01
sokoban11 (20) 6.63+0.87 10.23+0.96 15.1040.98
spider18 (20) 5.80+1.28 9.63+0.60 10.9340.25
storage06 (20) | 19.9740.18 20.0040.00 20.004-0.00
termes18 (20) 6.57+1.26 14.77£0.56 16.73+0.63
tetris14 (20) | 9.87£1.91 17.90+1.19 18.77+0.96
thoughtfull4 (20) | 18.03+0.71 18.4740.62 17.17+0.97
tidybot11 (20) | 17.70+£0.53 18.30+0.69 18.43+0.80
tpp06 (20) | 13.13+0.56 15.53+0.50 17.57+0.88
trucks06 (20) | 16.77£0.80 18.53+0.62 18.6040.71
visitallll (20) 1.1740.45 4.234+0.76 5.97£0.80
visitalll4 (20) | 0.00+£0.00 0.00£0.00 0.00£0.00
woodworkingll ~ (20) | 13.80+£1.19 19.40+0.66 18.63+0.75
zenotravel02 (20) | 18.93+0.77 20.00£0.00 20.00+0.00
SUM (900) | 496.33+5.50 582.50+4.46 610.17+4.36

Table C.3: Average number of plans achieved by the RRT
algorithm with a sampling method using lifted mutexes.

C. Tables
Domains 1000 10000 100000 Domains 1000 10000 100000
agricolal8 (20) | 6.40+0.61 6.80+0.60 7.47£0.76 agricolal8 (20) | 6.37£0.66 6.67+0.54 7.60£1.05
barmanl1 (20) | 0.00+0.00 0.134+0.34 1.83+0.78 barmanl1 (20) | 0.00-+0.00 0.27+0.44 1.93+1.03
barman14 (20) | 0.0040.00 0.00£0.00 0.4740.56 barmanl4 (20) | 0.00£0.00 0.00£0.00 0.67£0.65
blocks00 (20) | 20.00+0.00 20.00£0.00 20.00+0.00 blocks00 (20) | 20.0040.00 20.0040.00 20.00%0.00
calderal8 (20) | 11.074£0.93 13.93+0.36 13.43+1.33 calderal8 (20) | 11.204+0.98 13.73+0.77 14.73+0.68
cavedivingl4 (20) | 0.00+0.00 7.00+£0.00 7.00£0.00 cavediving14 (20) 7.00+£0.00 7.00£0.00 7.00£0.00
childsnack14 (20) | 0.0040.00 0.0040.00 0.10+£0.30 childsnack14 (20) | 0.0040.00 0.00£0.00 0.10£0.30
data-networkl8 (20) 1.70+0.46 2.73£0.68 3.80+1.01 data-network18 (20) 1.6040.49 2.77£0.72 4.00£1.10
depot02 (20) | 12.904+0.98 14.774+0.88 16.3340.75 depot02 (20) | 12.90+£1.04 14.404+0.80 16.03+0.66
driverlog02 (20) | 15.63+0.48 18.03+0.98 18.70+0.64 driverlog02 (20) | 15.57£0.56 17.97+1.02 18.67+0.60
elevators11l (20) | 0.00+0.00 0.00£0.00 0.00£0.00 elevators11 (20) | 0.00£0.00 0.00£0.00 0.00£0.00
floortile11l (20) | 6.07+0.44 6.274+0.51 6.97+0.71 floortilel1l (20) | 6.0040.26 6.20+0.48 7.274+0.51
floortile14 (20) | 2.00+0.00 2.274+0.51 2.5040.67 floortile14 (20) | 2.13+0.34 2.2040.48 2.8340.90
freecell00 (20) | 19.474+0.50 20.004+0.00 20.0040.00 freecell00 (20) | 19.404+0.71 20.00+0.00 20.00+0.00
gedl14 (20) | 0.00+0.00 0.00£0.00 0.00£0.00 ged14 (20) | 0.00£0.00 0.00£0.00 0.00£0.00
gripper98 (20) | 20.004£0.00 20.0040.00 20.0040.00 gripper98 (20) | 20.00£0.00 20.00+0.00 20.0040.00
hiking14 (20) | 20.004£0.00 20.004+0.00 20.0040.00 hiking14 (20) | 20.004+0.00 20.00+0.00 20.00+0.00
logistics00 (20) | 20.0040.00 20.0040.00 20.0040.00 logistics00 (20) | 20.0040.00 20.0040.00 20.0040.00
logistics98 (20) | 10.204£1.19 14.57+0.96 18.70+0.69 logistics98 (20) | 10.07£0.96 14.63+1.02 18.83+0.93
maintenancel4 (20) | 10.83+£1.13 15.00+0.26 14.00+0.82 maintenancel4 (20) | 10.83+£1.04 15.03+£0.41 13.93+0.77
mprime98 (20) | 19.03+£0.66 18.73+£0.93 17.90+1.04 mprime98 (20) | 19.03+0.66 18.83+0.73 17.90+0.83
mystery98 (20) | 12.804£0.40 13.00+0.00 12.9040.30 mystery98 (20) | 12.904+0.30 13.00+0.00 12.87+0.34
nomysteryl1l (20) | 10.00+0.93 10.37+£0.87 10.43+0.80 nomystery11l (20) | 10.03+0.80 10.43+0.67 10.23+0.76
openstacks06 (20) | 20.00+0.00 20.00£0.00 20.00+0.00 openstacks06 (20) | 20.0040.00 20.0040.00 20.004-0.00
parkingl1 (20) | 12.73+1.61 19.70+0.53 19.9340.25 parking11 (20) | 13.00+1.46 19.77+0.50 19.93+0.25
parking14 (20) 1.93+1.15 13.07£2.46 15.80£1.40 parking14 (20) 1.97+1.14 11.50+1.91 15.33£1.30
pegsoll1l (20) | 17.934+0.93 18.57+0.67 18.97+0.80 pegsolll (20) | 17.60£1.05 18.33+1.01 18.53+1.06
pipesworld* (20) | 20.004£0.00 20.004+0.00 20.0040.00 pipesworld* (20) | 20.004£0.00 20.00+0.00 20.00+0.00
rovers06 (20) | 18.434+0.50 20.0040.00 20.0040.00 rovers06 (20) | 18.374+0.66 20.00+0.00 20.00+0.00
satellite02 (20) | 17.23+0.56 19.73+0.51 18.83+0.86 satellite02 (20) | 17.00£0.97 19.63+0.55 18.9040.91
scanalyzerll (20) | 17.804+0.79 18.374+0.71 19.5040.72 scanalyzerll (20) | 17.874+0.81 18.10+0.91 18.83+0.78
snakel8 (20) | 4.2740.85 6.20£0.48 6.40+0.66 snakel8 (20) | 3.83%£0.73 5.90£0.75 6.43£0.84
sokobanl11 (20) | 6.07£0.96 10.50+1.23 13.70+1.19 sokoban11 (20) | 6.13+£1.18 10.60+1.02 13.87+0.99
spiderl8 (20) | 6.17£1.00 9.63£0.66 10.87£0.34 spider18 (20) | 6.43£0.96 9.83+0.37 10.87£0.34
storage06 (20) | 20.0040.00 20.0040.00 20.0040.00 storage06 (20) | 20.0040.00 20.0040.00 20.0040.00
termes18 (20) | 6.00£1.21 14.60+0.61 17.0340.66 termes18 (20) | 6.53+£1.02 14.77+0.67 16.93+0.57
tetris14 (20) | 9.97+£2.04 17.00£1.95 18.37+0.98 tetris14 (20) | 9.47+£1.73 16.83+1.24 18.70+0.94
thoughtfull4 (20) | 18.00+0.68 18.33+£0.47 17.03+0.66 thoughtfull4 (20) | 18.03+0.75 18.204+0.65 17.13+0.76
tidybot11 (20) | 17.57£0.56 18.00+0.52 18.23+0.76 tidybot11 (20) | 17.77+£0.42 18.17+0.64 18.43+0.99
tpp06 (20) | 13.00£0.68 15.574+0.62 17.474+0.88 tpp06 (20) | 12.974+0.48 15.77+0.72 17.57+0.76
trucks06 (20) | 16.70+0.69 18.83+£0.90 18.73+0.57 trucks06 (20) | 16.67£0.75 18.57+0.72 18.53+0.72
visitall1l (20) 1.17+0.58 3.90£0.75 6.20+0.83 visitallll (20) 1.1740.45 4.2340.80 6.17£0.93
visitalll4 (20) | 0.00+0.00 0.00£0.00 0.00£0.00 visitall14 (20) | 0.00£0.00 0.00£0.00 0.00£0.00
woodworkingll ~ (20) | 14.20£0.83 19.57+0.62 18.7740.76 woodworkingll ~ (20) | 13.43+1.12 19.33+0.83 18.40£0.95
zenotravel02 (20) | 19.004£0.68 20.00+0.00 20.0040.00 zenotravel02 (20) | 19.37+0.75 20.00+0.00 20.00+0.00
SUM (900) | 496.27+£4.51 585.17+4.36 608.37+3.59 SUM (900) | 502.63+4.68 582.67+4.53 609.174+5.39

Table C.4: Average number of plans achieved
by the RRT algorithm with a sampling method
using hs mutexes.

Table C.5: Average number of plans achieved by the RRT
algorithm with a sampling method using h2 forward backward
mutexes.

38

C.1. Average number of successfully completed plans

Domains 1000 10000 100000 Domains 1000 10000 100000
agricolal8 (20) | 6.4040.66 6.50£0.50 7.40£0.76 agricolal8 (20) | 6.5040.50 6.6310.66 7.0740.81
barmanll (20) | 0.00+0.00 0.40£0.49 2.23+0.96 barmanll (20) | 0.00£0.00 0.17£0.37 2.07£1.09
barmanl4 (20) 0.00£0.00 0.00+0.00 0.33+0.70 barman14 (20) 0.0040.00 0.0040.00 0.63£0.71
blocks00 (20) | 20.00+0.00 20.00£0.00 20.00+0.00 blocks00 (20) | 20.00£0.00 20.004£0.00 20.00+0.00
calderal8 (20) 7.80+£0.60 9.27+£0.68 9.70+0.46 calderal8 (20) 11.87£1.02 14.00+£0.89 13.43+0.80
cavediving14 (20) 0.03+£0.18 7.00+0.00 7.00+£0.00 cavediving14 (20) 1.73+1.24 7.00+£0.00 7.00+0.00
childsnack14 (20) | 0.00-0.00 0.00+£0.00 0.03+0.18 childsnack14 (20) | 0.0040.00 0.00£0.00 0.10£0.30
data-networkl8 (20) 1.73+0.44 2.871+0.85 3.80+1.01 data-network18 (20) 1.57£0.50 2.9010.75 3.93£0.93
depot02 (20) | 12.90+£0.91 14.774£0.96 15.73+0.85 depot02 (20) | 13.17+£0.82 14.904+0.94 16.43+1.05
driverlog02 (20) | 15.43+0.56 17.50+0.92 17.80+0.75 driverlog02 (20) 15.47+0.62 18.23£0.72 18.67+0.54
elevatorsl1 (20) 0.00+£0.00 0.00+£0.00 0.00£0.00 elevators11 (20) 0.00+£0.00 0.00£0.00 0.00+£0.00
floortilell (20) | 6.004£0.45 6.03£0.18 7.07£0.36 floortile11 (20) | 6.0040.00 6.20£0.40 7.0340.55
floortile14 (20) 2.23+0.42 2.074+0.25 2.57+0.56 floortile14 (20) 2.03£0.18 2.13+0.34 2.53£0.76
freecell00 (20) | 19.23+0.67 20.00£0.00 20.00+0.00 freecell00 (20) 17.87+0.81 19.83+0.37 20.00£0.00
ged14 (20) | 0.0040.00 0.00£0.00 0.0040.00 ged14 (20) | 0.00£0.00 0.0040.00 0.0020.00
gripper98 (20) | 20.004£0.00 20.0040.00 20.00+0.00 gripper98 (20) | 20.004+0.00 20.00+0.00 20.00+0.00
hiking14 (20) | 20.00+0.00 20.00£0.00 20.00+0.00 hiking14 (20) | 20.00£0.00 20.0040.00 20.00+0.00
logistics00 (20) | 20.00+0.00 20.00£0.00 20.00+0.00 logistics00 (20) | 20.00+0.00 20.004£0.00 20.00+0.00
logistics98 (20) | 10.00+£1.06 13.174+0.52 14.93+0.25 logistics98 (20) 9.73£1.21 14.67+0.70 18.53£0.96
maintenancel4 (20) | 11.03+0.91 15.07+0.36 13.7340.93 maintenanceld (20) 10.73+1.21 15.00+0.26 13.97£0.91
mprime98 (20) | 14.67£1.19 14.03+1.11 13.97+0.80 mprime98 (20) | 19.27+0.77 18.934+0.51 17.93+0.85
mystery98 (20) 9.93+0.36 9.87+0.43 9.77£0.56 mystery98 (20) 12.97+0.18 13.00£0.00 12.93£0.25
nomysteryll (20) | 10.30+0.86 10.03+0.60 10.27+0.77 nomysteryll (20) 9.77£0.96 10.73+0.89 9.93+0.89
openstacks06 (20) | 20.004£0.00 20.0040.00 20.00+0.00 openstacks06 (20) | 20.00£0.00 20.004£0.00 20.00+0.00
parkingll (20) 1.9040.30 1.90+0.40 1.87+0.50 parkingl1 (20) 12.80£1.49 19.70£0.69 20.00£0.00
parking14 (20) 0.00+£0.00 0.00+£0.00 0.00+0.00 parking14 (20) 2.10£1.22 11.67+1.85 15.93£1.59
pegsolll (20) | 17.87£0.99 18.23+1.02 18.23+1.12 pegsolll (20) 18.23+0.99 18.67+1.11 19.13£0.72
pipesworld* (20) | 20.00+0.00 20.00£0.00 20.00+0.00 pipesworld* (20) | 20.00£0.00 20.0040.00 20.00+0.00
rovers06 (20) | 18.37+£0.48 20.00£0.00 20.00+0.00 rovers06 (20) | 18.30+0.46 20.004£0.00 20.00+0.00
satellite02 (20) | 17.13+0.88 19.50+0.56 19.03+0.98 satellite02 (20) | 17.37+0.80 19.60+0.61 19.07+0.77
scanalyzerll (20) | 17.63+£0.60 18.30+0.90 19.40+0.66 scanalyzerll (20) 19.97+0.18 19.874+0.34 19.97+0.18
snakel8 (20) | 3.7340.68 5.73+£0.57 6.03£0.55 snakel8 (20) | 3.0340.55 4.83+0.82 5.60+0.55
sokoban11 (20) 6.20+1.11 10.33£1.07 13.90£1.19 sokobanl1 (20) 6.60£0.92 10.70£1.04 14.83+£0.97
spider18 (20) 0.00+£0.00 0.00+£0.00 0.00£0.00 spider18 (20) 5.50+1.15 10.00£1.00 12.53+£0.62
storage06 (20) | 20.00+0.00 20.00£0.00 20.00+0.00 storage06 (20) | 20.00+0.00 20.004£0.00 20.00+0.00
termes18 (20) 6.20+1.05 14.67+0.94 16.90+0.70 termes18 (20) 6.40£1.17 14.80+0.75 16.97£0.75
tetris14 (20) 9.40+1.98 15.97+1.91 18.07+0.73 tetris14 (20) 7.13+1.69 14.63+1.30 17.53+£0.85
thoughtfull4 (20) | 11.03+3.62 15.97+1.85 11.80+2.90 thoughtfull4 (20) 18.30+0.59 18.97+£0.41 18.57+0.72
tidybot11 (20) | 17.43+0.76 17.70+0.53 17.53+0.67 tidybot11 (20) 17.73+£0.51 18.17£0.69 18.80%0.87
tpp06 (20) | 13.104£0.40 15.504+0.67 17.234+0.72 tpp06 (20) 13.00£0.52 15.50+0.67 17.73£0.93
trucks06 (20) | 16.70+£0.64 18.504+0.76 18.70+0.64 trucks06 (20) 17.10+0.91 18.53£0.72 18.80+0.60
visitallll (20) 1.1340.43 4.2740.68 5.631+0.66 visitallll (20) 1.10+0.47 4.0710.68 6.23£0.80
visitalll4 (20) | 0.0040.00 0.00£0.00 0.00£0.00 visitall14 (20) | 0.00£0.00 0.0040.00 0.00+0.00
woodworkingll (20) | 14.27+1.09 19.33+£0.60 18.53+1.02 woodworkingll (20) 13.87£0.99 19.57£0.50 18.90+0.94
zenotravel02 (20) | 17.93+£0.77 18.93+0.36 18.90+0.40 zenotravel02 (20) 19.03+0.75 20.004+0.00 20.00£0.00
SUM (900) | 457.73+£5.30 523.40+4.92 538.10+4.77 SUM (900) | 496.23+5.92 583.60+4.41 612.80+4.25

Table C.6: Average number of plans achieved Table C.7: Average number of plans achieved by the RRT
by the RRT algorithm with a sampling method algorithm with a sampling method using fact-alternating mu-
using hs mutexes. texes.

39

C. Tables

. C.2 Average length, time, sampling attempts and

tree size

GUTFETCIT C6°0F0FPIT 8GTEFO8BLL | 9¢' TF00°G9T GLTFE6GTIT €IPEFLYLLT | 8O'TFO8FIT 68 0F00°G9T €L'8CF08'9LT ogqoxd
80 TFO0CLGT LYTFEECLGT LC9CFE66I9T | GG TF00°LST 9T TF00°LGT €T°6CFLOCST | 09°0F08°9GT CO'TFLRIGT €V ICFELRIT 61q01d
¢9'0F00°6VT 0G°0FLRSYT T1€E€CF00EIT | T6' TFLY 6VT TCTFOV6VT 98 TEFEGELT | 09°0FO08 YT 09'0F088FT G9€EFLI0LT g1qoxd
IR0FLOTFT 09°0F08°0FT 86'GTFLOIVL | PRTIFLYIVL 69 TFLV IV 6 6CFLR0ST | 68°0F00° IFT 09°0F080VT V¢ STFLOTYI L1q01d
09°0F08°CET 9T TF00°E€ET €T°6CTFESTAT | TLTFETCET CETFLVEET CLSIFLVIVI | €9°0FL0OCET €9°0FE6°CET 08 ETFECEVT 91qoxd
€9°0FE6TCT GLOFLITCT 60 LTFLCTIET | 6L TF00°GCT 60 TFE6FCT G9GTFO0TET | 09°0FOFCT 0G°0FLTVCT ST RIFEGTET grqoxd
STTFETLIT 68°0F00°LTT 0S'GFLYSIT | OV IF099IT 96°0FE6°9TT T9CIFLZOCT | 8O'TFO089TIT 6T TF0CLIT €0°0CFLSTCT y1qo1d
08°0F09°80T SL TFET'60T ELLTFOOFIT | TP IFLO60T S0 TFO880T 80CEFORLIT | 9T TFLI' 80T TOTFLYSOT 8V'¢FLIS0T ¢1qo1d
09°0F08°00T 08°0F09°00T CI'8TFEE 90T | 66°0FET00T 8O TFO800T 9 FIFOVE0T | 86°0F02°00T TETFLOTOT LV LTIF09 G0T g1qo1d
GL°0FL9C6 08'0F09°T6 ¢0'TFL¥'c6 00'TFL0°C6 G8'0F€SC6 T€'TF09°¢6 CS'TFEST6 V6'0FEET6 VYZ 1FL0°C6 11qoxd
¢6'0FOV' P8 ¢6'0F0V' T8 IT'TF02C¥8 86°'0F0CT8 ¥6'0FEETR CC'TF0C T8 00'TF0078 ¥6'0FEETR 86°0F08€8 01qoxd
66°0FET'9L 88'0FLV9L 00 TF00'9L 00 TF009L 86°0F0¢ 9L 00 TF00'92 66°0FL8GL 86°0F0¢ 9L CI'TFE6'GL 60qoxd
00°TF€6'L9 T6°0FEEC89 00 TF20'89 00 TF€6'L9 96°0FLC'89 66°0FL8L9 96°0F€L L9 96'0FLC'S9 76°0FL9°L9 goqoxd
66°0F.L8'64 ¢6°0F07°09 00 TF20°09 00°'TF00°09 ¥6°0F€E09 66°0F.L864 96°0F€L 65 96'0FLc 09 76°0FL9'69 L0qoxd
00 T+F00°CS ¢6'0F0¥7'CS 00 T+F00°CS 66'0FLR TS 96°0FLcCS 00 TFE6° 1S 96°0F€L TS 96'0FLC TS 76°0FLI9' 19 90qoxd
00°TF007F 760FECTV 00 TFE6°ET 00 TF007y 26 0F0VT¥ 66°0FLRET 66°'0FLREY 96'0FLC TV 86°0F08€¢Y goqoxd
86°0F0C9¢ 96°0FLT9¢ 00 TF209¢ 86°0F08°G¢ ¢6°0F07'9¢ 00 TF009¢ 66°0FL8GE 960FLC9¢ 00 TF00'9¢ v0qoxd
66" 0FET'8C ¢6'0F0¥'8¢ 76°0FE€E 8T 66'0FET'8C T6'0FEE 8T ¢6'0F0¥'8¢ 00°TF00'8C 88°0FLV'8C 00'TFL0°8¢ €0qoxd
LT TF07°0C 88°0FL¥0T ¢6°0F07° 02 00'TFL0°02 89°0F€L0T ¥6'0F€€0C 00 TFL00C G6°0F09°0¢ LO'TFEE0C goqoxd
18°0F€6°CT 9¢'0FE6'CT 0G°0FET'ET 6.°0F08°CT 09°0F08'CT 89'0FELTT g8 0F€eL T 09'0FL8CT I18°0F€E6°CT 10q01d
000001 0000T 000T 000001 0000T 0001 000001 0000T 000T SwR[qOId
urey €1 2qM37Y 86toddrry
9¢°0FE6TIT 09°0FO08FIT OT'GCFET'SLT | 00°'0F00°G9T CLOFET'GIT €L'8CFE6'SLT | €9°0FE6TIT G80FELTIT OT6TFETCLT 991 0gqoxd
9¢°0F€6'99T 68°0F00°LST L0°6CFELTLT | 8O'TF0C'LST 00°0FO00°LST 99'9TF€6°€9T | 05°0FL8IGT 00 TFEL9GT 6V TTFLV 19T LGT 61qo1d
9¢°0FE€6'8FYT €S 0F00°6VT SV'ECF09 19T | T’ TFLZ6VT 00°0F00°6¥T TO'SCFLC6ST | CLOFLYSYT 9€°0FE6'8FVT T9°€CF098GT 67T 81qo01d
09°0FL80VT ¢S 0F00° TVL ¥P¢cFO0cIVL | I80FLOIVL 9€°0FLOTFT 86'8FO0CI¥FL | 00°'0F00'IVT 6L°0F08°0VT LV 9TFLOGVI Il L1901d
00°0F00°€ET 9€°0FE6°CET 90°6TF0COVT | 9¢°0FE6°CET 96°0FE6°CET 6L TFEGEET | LT TFLITET 6L°0F08CET 0G°0TFEEIET €er 91q01d
00°0F00°9¢T 9€°0FE6' VT 8E€'GCFORLET | 0S°0FET'GCT €9°0FE6VCT 8L'6FEGI9CT | 00°0F00°GCT 09°0FL8VCT ¥I'8TIFLI0ET gcl grqoxd
IR0FLOLIT €9°0FE6°9TT LTLTFE6TCT | 08°0F09°9TT 09°0F08°9TT 90°8FLC'SIT | 00°0F00°LTIT 9€0FL0LIT G6°0F099TT L1T y1q01d
I8°0F€6'80T 09°0F08'80T 80'0GTFLOLIT | GL°0FL9'80T GL0FLI'80T O0CCIFETTIL | 9€°0FE6'80T 9€°0FE6'80T T9'6TIFE6'9TT 60T erqoxd
08°0F09°00T L9 TFE6°00T 90 TZFO0¥'SOT | 08°0F09°00T 07 TF09'00T ST LCFLIEIT | 00°'0F00'TOT €L 0FLS 00T €00EFLEGTIT 10T g1q01d
¢6'0F0r'c6 LLTFELTO ¥6'0F€E'C6 G8'0F€S'C6 86'0F08'T6 ¢¢ 10226 9¢'0F€6'C6 LT TFLICO GL°0FL9°C6 €6 11qo1d
¢6'0F0T' ¥R 96'0FLCT8 66°0FETTR ¥6'0FECET8 86°0F08°€ES ST TFOV'T8 00 TFELTR 660FEST8 G8°0FESTR a8 01q01d
96'0FL29L 66'0FET9L 00 TFE6°GL 00 TF€6'GL 26°0F09°GL 86°0F08°GL CL0FL89L LT TFOVI9L T6°0FL9°9L LL 60qoxd
¥6'0F€E89 00 TF€6°L9 00 TF€6°L9 00 TFL089 26°0F09°L9 86°0F08°L9 9E' TFLY'89 SO'TFO0V'89 CO'TFLY'89 69 goqoxd
96°0FL209 00 TF0009 00 TFE6°69 00°'TF00°09 08°0F07 6% 86°0F08°69 RC TFOV'09 ¥¥' IF0009 SO TF07°09 19 L0qoxd
96'0FL2’cs 00 TFE6'TS 00 TF00°CS 00°'TF00¢E 08°0FO0V'IG 86'0F08°T¢ 16°'TF00¢S 89 TF08'19 86°0F0¢'¢cS €9 90qoxd
86°0F0C TV 96'0FELEY 00 TFLOTY 00 TF00FYF 88°0FESEY 00 TF00 7% COCFELEY LLTFLVEY CUTFETTY 17 gpqoxd
86'0F02°9¢ 66°0FL8GE 66'0F€1°9¢ 00'TF€6'6¢ ¢6°0F09°G€ 86'0F08°G¢ 66 TFELGE IR'TFETGE ¢ 1+00°9¢ L€ voqoxd
76'0FEERC 00'TFE6 LT 66'0FET'8C 00 TFL08C T76°0FLILT 66'0FET'8C Y IFE6’Le 99 TF09°LT 86°0F0C 8¢ 62 €0qoxd
GL'0FL90C CI'TFET0C 88'0FL¥'0¢C ¥6'0F€€0C 86°0F08°6T 96'0FL2'0C 60°'TFL20C 88'0FLV 0T €C'TFE4°0C 1¢ goqoxd
9¢'0FE6'CT GL'0FLI9TT €L°0F00°€T 96'0FE€6'CT FO'TFLICT GL'0FL9CT G8°0F€ELCT G8'0FEGCT I8 0FE6'CT €1 10q01d
000001 0000T 0001 00000T 7 0000T 7 0001 00000T 00001 0001 SWI[qOoL
4] pouT wopueRl Apooid | geroddriny

in.

Average length of plans for the gripper98 doma

Table C.8

40

C.2. Average length, time, sampling attempts and tree size

Zenotravel02 h2fwbw h3 fam |
Problems 1000 7 10000 100000 1000 10000 100000 1000 7 10000 100000
pfile10 0.19+0.12 0.23+0.11 0.27+0.16 0.54+0.21 0.60£0.28 0.56+0.21 0.19+0.09 0.25+0.11 0.20£0.11
pfilell 0.16=£0.06 0.14+0.06 0.19+0.16 0.81+0.31 0.74+0.24 0.71£0.18 0.15+0.06 0.12+0.04 0.14+0.07
pfile12 0.11£0.03 0.11+£0.03 0.12+0.04 0.99+0.45 0.93+0.35 0.87£0.23 0.09+£0.03 0.10£0.03 0.10£0.03
pfile13 0.11+£0.05 0.11+£0.05 0.13+0.05 1.1340.47 1.0440.35 1.004+0.27 0.09+0.04 0.12+0.05 0.10£0.04
pfile14 5.35+5.63 3.08£1.94 4.68+3.43 19.7949.15 18.0745.72 18.7945.62 3.59+3.53 3.56+2.66 3.88+4.36
pfilel5 4.12+£2.22 14.87+9.61 63.78+105.55 59.90+23.83 60.49+18.57 89.73+56.33 2.44+1.28 7.69+4.97 55.73+54.39
pfile16 27.37£39.69 7.89+8.09 14.12422.09 147.52485.90 110.68+34.96 113.764+28.78 45.41£73.04 9.42+13.00 5.33£5.50
pfilel7 140.26+314.16 21.144+18.62 26.86+23.93 | 431.60+£272.31 309.53+£101.17 309.934+98.71 | 114.364+310.56 21.74414.29 19.52425.47
pfile18 179.664+295.74 44.14427.39 77.24+118.69 | 610.10+£239.563 557.53+180.72 578.69+189.81 | 110.16£166.50 27.89+14.55 38.36+£17.62
pfile19 185.66+374.13 49.124+31.74 48.56+36.21 | 1303.66+224.62 1415.29+244.64 1403.99£241.90 | 58.75+£70.85 64.87£72.58 29.53+21.96
pfilel 0.01+£0.00 0.01+£0.00 0.01+£0.00 0.01£0.01 0.01+£0.00 0.01£0.01 0.01+£0.00 0.01+£0.00 0.01£0.00
pfile20 330.73+£436.26 97.70+£94.33 88.49+70.17 no results 1676.454-0.00 1510.434+0.00 | 218.03+272.46 86.37+45.89 88.46+79.17
pfile2 0.01+£0.00 0.01+£0.00 0.01+0.00 0.01+£0.01 0.01+£0.01 0.01£0.00 0.01+£0.00 0.02+0.00 0.01£0.00
pfile3 0.02+0.01 0.02+0.01 0.02+0.01 0.03+0.01 0.03+0.01 0.03+0.01 0.02+0.01 0.02+0.00 0.02+0.01
pfiled 0.02+0.01 0.02+0.01 0.02+0.01 0.04+0.01 0.03+0.01 0.03+0.01 0.02+0.01 0.02+0.01 0.02+0.01
pfileb 0.02+0.01 0.02+0.01 0.03£0.01 0.06£0.02 0.05+0.01 0.05+0.02 0.02+0.01 0.03+0.01 0.03£0.01
pfile6 0.03+0.01 0.02+0.01 0.03+0.01 0.08+0.03 0.07+0.02 0.07£0.02 0.03+0.01 0.03+0.01 0.03+0.01
pfile7 0.03+0.01 0.03+0.01 0.04+0.02 0.08+0.03 0.08+0.02 0.07£0.02 0.03+0.01 0.03+0.01 0.03+0.01
pfile8 0.07+£0.02 0.06=£0.02 0.09+0.06 0.40+£0.15 0.38+0.13 0.37+0.09 0.06=£0.02 0.07+£0.03 0.07£0.02
pfile9 0.0840.03 0.0840.02 0.0940.03 0.4840.20 0.4540.14 0.4440.12 0.08+0.03 0.07+0.01 0.09+0.04
Zenotravel02 | greedy random lifted h2

Problems 1000 10000 100000 1000 10000 100000 1000 10000 100000
pfile10 0.14 0.19+0.13 0.24+0.12 0.23+0.15 0.19+0.16 0.28+0.24 0.19+0.12 0.15+0.07 0.25+0.12 0.22+0.12
pfilell 0.05 0.1540.07 0.1040.03 0.1440.04 0.1840.14 0.1340.06 0.1440.09 0.1240.04 0.1340.04 0.1340.05
pfile12 0.04 0.11£0.05 0.10+£0.04 0.13£0.05 0.12+0.09 0.13£0.11 0.13£0.07 0.10£0.05 0.11£0.09 0.11£0.07
pfilel3 0.03 0.11£0.07 0.10+0.04 0.17+0.25 0.10+0.06 0.13+0.12 0.12+0.05 0.12+0.08 0.09+0.04 0.11+0.07
pfile14 1.64 3.96+3.29 3.28+1.70 7.36+£11.24 6.50+5.04 2.83+1.62 2.90+1.52 10.114+16.69 5.24+5.06 6.19+6.32
pfilel5 24.74 3.99£2.68 9.95+£8.31 34.59+46.49 3.51£2.20 7.93+6.24 51.22+54.46 3.30£1.86 10.344+10.24 40.13+44.05
pfile16 1.11 19.68+30.15 7.45+8.23 12.924+31.71 | 23.36429.85 9.22+7.84 5.95+5.05 29.96+£34.17 8.12£8.34 8.39%£10.68
pfilel7 4.49 | 177.49+443.90 17.554+8.80 18.30£13.58 | 46.93+£87.83 19.62+£18.35 15.48+4.96 | 44.22+£96.63 21.98+12.19 17.74£10.96
pfilel8 15.16 | 305.88+447.66 28.59+23.02 53.81+37.22 | 106.23+£155.81 41.71+£34.30 39.63£14.53 | 115.06+£173.11 34.42+19.81 35.27+18.50
pfile19 5.99 | 157.58+172.34 47.51+35.43 36.38+28.62 | 559.00£632.02 59.77+69.54 26.05+13.87 | 97.49+222.92 80.62+79.44 35.33+26.63
pfilel 0.00 0.01+£0.00 0.01+£0.00 0.01£0.00 0.01£0.00 0.01£0.00 0.01£0.00 0.01£0.01 0.01£0.00 0.01+£0.00
pfile20 14.84 | 257.86+362.81 87.70£72.80 70.80+31.60 | 310.36+£384.58 87.75+76.24 96.10£89.92 | 317.07+£404.27 64.51+47.24 68.55+41.90
pfile2 0.00 0.01+£0.00 0.01+£0.00 0.01+0.00 0.01+£0.00 0.01+£0.00 0.01£0.00 0.01£0.01 0.01£0.00 0.01+0.00
pfile3 0.00 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.00 0.02+0.00
pfile4 0.01 0.02+0.00 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01
pfiled 0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.02+0.01 0.03+0.01 0.02£0.01 0.02+0.01 0.02+0.01 0.02+0.01
pfile6 0.00 0.02+0.01 0.02+0.01 0.02+0.01 0.03+0.01 0.03+0.01 0.02+0.01 0.03+0.01 0.02+0.01 0.02+0.01
pfile7? 0.01 0.03+0.01 0.03+0.01 0.03+0.01 0.03+0.01 0.04+0.02 0.03+0.01 0.03+0.01 0.03+0.01 0.03+0.01
pfile8 0.02 0.06£0.02 0.07£0.04 0.06+0.02 0.06=+0.02 0.09-0.06 0.06+0.02 0.06+0.02 0.06+0.03 0.06+0.02
pfile9 0.03 0.07£0.02 0.07£0.02 0.08+0.02 0.08+0.02 0.08£0.03 0.07£0.02 0.08£0.03 0.07£0.02 0.08+0.03

1.

(s) for the zenotravel02 doma

Average time

Table C.9

41

C. Tables

PESTOST 90LGTFEV'SE O0STOTFOG6TL | sHmsdrou symsorou symserou | 9G'GIFSPL 6P FFTFES 'GP €6'GLGTLITLE | 0G0-gTo[yd
9GPITFLS L ELEETISTE GO'GLGTO9 TSy | sHMsdIou symssrou synserou | pegIFLY6 EFGFTE6'GS GG 9SETO00°LaS | 6v0-€To[yd
VO'6TFLTG GG'SGTI6'L0 LETCECTOCLES | SHMsdIou symsorou symsarou | [66FLLO 6GSYTECTI ST OIPFO0GHS | Sv0-gromyd
PIPTFECT 00TET0CLE TO9STFCECIC | SINSOIOU S)MSoT0U syusorou | 97°0TF0L'9 00TGFeEe 1€996Fee 86 | Lr0-gromd
LSTITFLOS OLTFFEY6E TOFITFOSCLE | SINSOI OU SYMSOTOU $HUSIou | GLOTFET'Y LLOFF00TE 88'92CF00TLY | 970-gTomyd
GLU6TLYS TLLEFLYOE EF9GCTFCL09E | SHNSOIOU SYNSoTou SYUSOIOW | FLQFLOL 9EEFFOR0E 6L TCIFLIT0C | Gro-gromd
09°GTFLY'S LGCCTFLGLT 6GTIGTVLGEE | SIMSdIOU symserou symserow | 9T9FGH'E OLLTFOTET SETHPFI08LS | PPO-TTomd
TE'GITOT6 OIPCTFEIVE LE'SCETESLCS | SHUSOIOU SHNSOIOU SHMSOIOUW | GG'OFLE'E PGCEFO6FF GS'0EETO00 TS | £70-TTo[yd
09°0TFES9 GTOSTFET'GE OL'GOETSTOFY | SIMSOIOW SYMS_IOU SYNSAT O | 8GOFLL'G LS'GCFLY0E GE'SOSF6ETLY | 2ho-TTo[yd
6S°9FLGE 90STFEL'EC TV LIGTGLGEG | SIMSDIOU SYMS_ION syNsaIou | QG6FOFT T19'SEFLG'ST G90EEFIL'8GY | Tp0-TTomyd
VE6F0ZL GS'STTFO06T SGTSGTGFIV | sHMSdIOU symsorou symsarou | 8LLFLLY ELTGFOLST 0S9EEFO06°06Y | 0v0-0To[yd
ETTITF09L TL6ITFES6T 09 TPETPGOLy | sHMsdrou symssrou symserou | [6GF08E G8OTTOGIE 09'06ZFGLTGY | 6£0-0To[yd
C99FE0V 0GCITECTT P6CPETISGEY | sHmsdrou symssrou symsarou | F'6F0G) L6'STTOGGT ELEPEGTIT60E | 8£0-01o[yd
TUOTFLE L POGTFOV'S POTLETOL'GHE | SHUSOIOU SHMSOIOW SHUSDI O | 00'TIFL6'9 €6'9TFELTT 06 T6ETTEELE | L€0-0To[Hd
0G°LFEST STOTFELO 00'90CFLIF6T | SHNSOTIOU SYNSOTIOU SHMSOIOW | €8 LF08T €4FIFO0CT 00'€2€FeG LT | 980-60019d
TGTIFE6'S 9V 0CTFEOGT GP80STFIGETE | SHNSOIOW SHMSOIOW SHUSDI O | €6'9TF08'9 T0°9TFOLTT FT'0GCFIE 09z | G€0-6001yd
CTOFLOV GV6ITFLEET EVECETLYI6E | SHMSOIOU symseroun symseIouw | LGEFLLG LPOTFLGTT SGSGETGY08E | 1E0-60°myd
POGTESE LSOITLSO STOOPT69'60E | SHOSOLOU SYNSOIOU SYUSAIOU | PGGFEOE GVSITLICT 98'6SCTFIETIT | £60-6001d
09°6F08'9 68°6FLCT FIGOFLFSY | SCOFIFE 06'SFFe'S LP'60TFEe 00T | 8L6F0F'S 05STFLTT LO'STIFO6'LS | ge0-800myd
60°9F0L'G €5GTTFOSGT SLTOGTF09'9ST | 67°0TFIY €2°0TFLOS T6'0ZTFILOPT | STLTFLL'E SOTITEF'6 8G'SSTFLI 96T | 1£0-80°myd
000001 0000T 0001 000001 00001 000T 00000T 00001 0001 SWR[qOL
ure; €y mqMyzY T18upjeg
SPSTVCV GVLGTVEEE 99°9SETO00LTV | 08 FIFIC6 LS'OZFGTTE V6'GSTTF00'90¢ | L0'L66VT0L'GSTS SV 6LIVF6CaaL sy[nsal ou 050-Toryd
VE6TF06'C €GZEFVL IV 00°0FTT0008L | 2G€IF06'6 SSOVFOV'Sy GO'VEeTFOS SOV | 9908EFTGE 006G 9G 0EEVTFSE T0GT sy[nsax ou 670-¢Toryd
VLGTECE STGCTSV'SY G LVCTCLSVY | LZTIF0C9 GTGSTLIPO GO'CSETCT VY | €L LS6VTCE€VOV GLOTGLTES 6LOST sy[nsal ou 8F0-gToryd
SOETTEC'S S6OETVOLY SGSIZTITGIV | 99°ETTEYL 66'GETILED LV OCHTII 1S | PO'GPISTEG LIS 64°0286T0S 00T sy[nsel ou Lvo-gromyd
890TTEYL PGTCETLTIE STO0CTLITLY | 66'6FVTS 6CSETLETY C6LOTTO0TSE | 66 LTISTLSCEES 09°GLVSTCL TEI8 sy[nsel o 970-gToryd
CYETFO0C TLOVFEOTE O0STPITFO0EIS | L6'STFOVY ISCEFICOC 06'697FGL 6T | G8°CO6VTECLI9G 00 CLVOTFIY 6LVET $)[nsaI o §p0-gToryd
GROTFLTO PELITEGTT SSOLGFSTTLY | 9GTFLSCT E€VGCTFLOEE TOSIET0C'99G | SE'6S6VFLSEEES 6T FICCIFIOGIZCET 00°0F00°€000¢ | PPO-TTo[yd
0C0TFESS CS9TTO6PE DL CEETTOTHS | TC6TVEY L6SITEFTC T6FOSTITCED | 8€ 686V TLS'CEES 1L T8ICITEI 0STIT s3[uso1 Ou er0-T1o1gd
0GLF00T 66'65F09°08 9ELTFFOT'6FS | OF'SFLE'O GT'SETET9e 8L 00GTFSS €08 | 9 G6SFFISCHoE 12 6V0STFI6LISTE 00°0F00F000F | gho-TToyd
VOTETL6'CT 98°06T09°Ge GOGLGTE 667 | 96'GFLOC T6TCFLS'ST 67'SEgTPI'GSE | 8€'686FTET LI9F 6T ESFEIFSY T089T s3[msa1 ou 170-T1o1yd
VETIFES'O STVIFLLTVT 90°9GETVO'EOV | FS'LFEPT €E0ZFESST 1L 6EVTFSOT6V | T7'60GPFLGSE0L ST TPISIFGL'SSL6T 00°0F00°€0008 | 0F0-0Toyd
COTITFLED OSLTTOC0C GUSCETVLTOY | LL'STLED 9L0ZFO09TZ 9€'66STFSE TPV | LT'TGGPTOT'EC69 £8'SE66T0L €STST sy[nsal ou 6£0-0To[yd
TG9TETT POTIFLOOT 1L 6SETSVSTh | 09 TITLE'O TOECTEL0Z 00°GIGTVSC6E | G8'GE6VTLLEEEY SO TPEOTTEL TI09T 0S000ST0SC00SE | 8€0-0To[yd
S0LT00C 9L0CTES0T TSTEPTGTLEE | €9°GTLEE GOCITET'6 LS LLETSGOSE | €CSE6VTELTS0G SOPEICITOS GEOTT 9T PECLITOT TECLT | LE0-0To[yd
VLGTLEY GSSTTFLLVT 69T9CTOS 6T | €9VFLLT 6E€TIFEYS VL 60CTO6TEC | 0T LV6VTOOTVED EV'SESLTELTVOIT 80'T00ZETIGC8LLY | 9£0-60015d
L6'STLYG OPSITFELOT T89GCTICLLE | 6G°LF0LT PSPIFEICT TVO'SLETELGST | G ET6VTE60TPG OL'ESEOTFE GSEVT £9'8LO0STOZ TT8E | GE0-60019d
VO6FLES OTOTFEOTT GG THETIVSSE | 69°GFOT'E SE'STFO6'ET 0£OTEFIC'SSE | 9T 006V FLI GEIG T6°GTehTFLE 0LSST $)[NsaI ot 7E0-6001yd
I8'8F00C FPIIFEY6 LS60TTGGFIT | FTLFOST GUTIFLEOT 06 0VETFLI06E | SEECEVTEYTIVG 9GTOTTITLLFEEPT 00°0F00°90009 | ££0-60915d
LZOTF09'G LEGIF0G6 68T6F08GL | SUSFLFE OLOTFOS9 LOTFSTFELOL | 68 TGSFF00'6IGT T6'€E99F09°0009 T8'€95LETF6E'6969z | 6£0-800THd
CTLFLLG EPGITEOTI LLGEGTSEEIS | 6€LFEYS LT'STOS'L LG'SLETF09'LET | PIGOIFTOSEILE 08'9228TFOL 000L E€8°FTFLGTLY 65655 | 1£0-800myd
000001 0000T 0001 000001 00001 000T 000001 00001 0001 Swo[qOL]
o POy wopuel T18upreg

ingll

Average number of discarded sampling attempts for the park

Table C.10
domain.

42

C.2. Average length, time, sampling attempts and tree size

Tetris14 h2fwbw h3 fam
Problems 1000 10000 100000 1000 10000 100000 1000 10000 100000
p020 32.83+£29.04 17.03+13.17 10.40+6.95 33.20+£33.68 12.23+10.46 8.07+7.22 26.57+28.21 20.20+£17.30 16.37+10.40
p021 102.80+68.78 43.104+45.11 26.25+19.19 | 79.75+55.44 44.38443.89 20.71+14.96 | 243.36+174.11 157.784+145.27 52.00+28.09
p022 92.27+£70.23 30.53+32.44 11.30+8.86 92.83+54.19 25.10£18.64 7.13+4.01 | 197.93£147.64 38.03+£27.23 13.87+12.21
p023 72.57+£70.66 49.69+39.54 16.63+14.15 | 77.31+56.33 28.82+27.66 10.7247.99 | 338.444+224.51 110.56+98.07 26.93+24.84
p024 107.124+48.98 52.50+53.94 7.47+4.22 105.094+80.17 33.684+26.99 7.57+6.67 | 419.274+257.15 117.62+122.60 8.40+7.92
p025 71.29462.79 42.10442.34 9.10+11.15 64.35+59.79 31.624+20.96 10.504+12.18 | 122.31£104.82 77.79+64.75 9.67+11.91
p026 160.54+102.75 51.384+50.41 17.00+12.00 | 147.07+112.87 66.14+50.16 15.67+12.59 | 405.13+£293.49 57.10+61.82 13.37410.96
p027 133.79+80.66 45.59+42.02 11.93+10.28 | 180.331+93.69 64.88+52.44 13.13+£10.85 | 392.56+381.42 99.18499.48 11.134+5.65
p028 112.59+68.25 14.87+15.83 6.37+6.95 115.624+87.11 23.434+30.29 8.13£10.29 | 344.00£321.44 42.43+£71.40 10.17+13.28
p029 57.75+£25.59 47.804+47.17 24.21+£17.16 | 84.00+49.98 57.20+30.10 17.79+10.26 | 367.004£259.00 169.17+£152.32 39.95+29.79
p031 84.93+58.90 42.694+45.75 4.70+3.18 63.50+40.75 27.894+30.38 6.87+4.67 110.80+43.63 70.33+£73.15 8.40+7.78
p032 91.57+£54.20 40.45+33.28 18.79+£19.41 | 48.00+23.57 44.58+30.08 15.17+13.82 | 70.50+59.83 72.12+49.34 20.88+15.65
p033 72.19+38.55 49.524+36.69 18.83+12.51 | 80.00+43.54 30.18+23.89 14.64+12.01 | 209.0040.00 81.73+£65.61 28.88+21.45
p034 83.83+46.79 53.43+46.00 17.27+15.12 | 75.17+41.44 55.414+41.46 27.46+21.73 | 88.75+67.49 75.44457.98 21.86+18.89
p035 37.21+40.73 7.27+4.29 2.70+0.64 23.39+23.05 8.43+6.01 2.2740.44 74.33+58.12 8.974+4.80 2.4740.81
p036 65.20+£64.69 5.77+2.69 2.37+0.48 51.46+£65.13 8.77+6.86 2.40+0.49 79.00+£74.33 7.934+3.58 2.53+0.50
p037 56.00£32.69 60.20+36.83 16.55+9.16 no results no results no results 57.00+0.00 68.00+44.95 27.67+8.58
p038 61.83+£31.42 52.044+38.73 12.43+8.77 76.83+£49.18 53.854+40.86 15.67+15.99 | 120.00£91.00 53.00+£54.12 28.36+20.13
p039 82.89+46.70 38.69+35.16 6.28+4.59 60.67+£57.11 36.864+30.24 5.53+3.59 83.50+72.49 40.92456.31 8.17+13.03
p040 85.67+34.99 68.21+36.87 21.64+11.16 no results 23.50+9.84 8.69+5.16 52.00+0.00 73.75+89.24 29.29+16.28
Tetris14 random lifted h2
Problems 1000 10000 100000 1000 10000 100000 1000 10000 100000
p020 21.20£11.66 15.60£16.48 11.37+12.13 | 23.97+£20.41 15.57+14.15 8.67+5.45 32.77+£29.49 16.43+14.32 9.60+4.92
p021 70.04+59.80 51.21+41.64 19.23+19.00 | 93.224+70.85 37.53+£38.15 19.20+17.67 | 90.38+90.07 41.474+41.13 16.52+12.67
p022 97.70+£79.83 26.10£28.29 8.731+6.27 99.33+£77.73 31.03+41.80 12.17£10.99 | 115.79£76.75 30.63£41.97 8.031+4.62
p023 74.00£62.45 55.29+37.04 16.00+14.04 | 76.75+£51.18 49.47+42.56 13.73+13.10 | 92.36+78.35 38.444+36.54 18.83+13.85
p024 96.71+£78.93 46.17+£44.74 5.57+2.68 106.42+76.12 39.20+39.36 6.03+2.60 130.18+83.49 41.36+30.97 6.77+4.51
p025 78.00+48.34 43.66+45.54 6.73+8.68 91.16+£70.45 42.83+36.72 6.90+7.08 96.40+£60.83 46.86+53.14 5.47+4.94
p026 99.75+£54.70 79.17£70.10 13.03+£8.54 | 137.71£117.88 59.48+57.15 17.37+21.84 | 110.23+£120.90 73.62+65.92 12.67+9.45
p027 108.92+77.03 41.23+36.90 9.40+5.57 122.33+87.98 50.82+52.15 9.60+8.14 139.93+94.17 66.31+£59.90 12.07+9.71
p028 111.05+£89.28 26.63+36.72 5.231+6.49 86.76+£73.54 15.07+14.08 5.17+6.85 116.19+94.42 16.30+24.31 4.90+5.70
p029 no results 59.47+46.29 20.88+13.42 | 99.00+41.72 67.12+41.93 19.65+12.86 | 83.00+49.19 74.114+56.30 21.25+15.72
p031 99.64+49.00 43.34+35.57 7.331+6.66 73.714£54.22 38.414+34.94 7.83+9.72 105.714+54.26 24.90+21.55 7.13+9.62
p032 48.43+47.39 64.17+46.18 17.12+12.21 | 100.50£74.61 50.17£44.40 15.144+10.84 | 97.11+£63.48 56.504+47.58 19.63+17.14
p033 70.07+£35.54 45.15+£38.27 14.554+13.92 | 74.22453.07 31.10+24.48 21.67£16.65 | 75.24+41.60 29.304+24.17 14.88+10.54
p034 75.27+£55.91 65.04+46.90 16.66+12.67 | 43.67+28.45 54.004+46.53 19.76+15.44 | 63.20+27.06 44.48+39.49 22.93+21.76
p035 34.63+£26.16 8.97+5.97 2.331+0.47 48.344+46.35 6.27+3.74 2.534+0.56 29.10£19.87 8.00+4.37 2.73+0.77
p036 61.07£59.02 5.90+3.38 2.534+0.50 58.40+49.65 6.93+3.53 2.40+0.49 52.67+46.97 7.87+6.90 2.43+0.50
p037 73.00+£0.00 42.60+£18.00 27.70+12.37 | 75.00£61.00 47.40+£25.75 17.00+11.41 no results 39.00£30.11 26.83+13.33
p038 111.91+42.24 47.32+44.84 15.67+£14.97 | 71.00+38.20 41.89430.29 15.34+12.55 | 105.30+57.09 31.164+20.42 13.23+12.19
p039 64.60+£37.24 36.00+£32.84 7.90+7.16 75.65+55.14 24.43+32.10 6.00+4.40 63.16+£55.65 29.504+28.77 6.27+5.95
p040 73.25+55.19 55.36+£35.42 15.89+9.61 131.00+0.00 48.52+24.42 22.78+10.21 | 109.004+35.00 44.20£33.56 22.004+10.31

in.

Average tree sizes for the tetris14 doma

Table C.11

43

	Introduction
	Background
	Classical planning
	STRIPS
	Finite domain representation

	Relaxed heuristics
	Forward search
	Greedy Best-First Search

	Mutex
	Motion planning
	Rapidly Exploring Random Trees

	Related Work
	Sampling-Based Planning for Discrete Spaces
	Discrete RRTs
	RRTs with Local Planners

	RRT-Plan: a Randomized Algorithm for STRIPS Planning
	Adapting a Rapidly-Exploring Random Tree for Automated Planning

	Description of the Algorithm
	Sampling
	Random sampling
	Mutex sampling

	Search for a nearest state
	Join

	Experiments
	Results
	Number of succesfully found plans
	Length, time, attempts, tree size

	Conclusions
	Content of the Attached Disc
	Bibliography
	Tables
	Average number of successfully completed plans
	Average length, time, sampling attempts and tree size

