Czech Technical University in Prague

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF TELECOMMUNICATIONS

Diploma Thesis

Integrace 10-Link OPC UA do zafizeni Siemens SIMATIC
IO-Link OPC UA Integration for Siemens SIMATIC

Author: Rustambek Bekmukhamedov
Supervisor: Ing. Zbyn€k Kocur, Ph.D.

Prague 2021

cv MASTER'S THESIS ASSIGNMENT

EXRCH TREHMIERL
URIVERSITY
1N PRECUE

l. Personal and study details
ra T
Student's name: Bekmukhamedov Rustambek Personal ID number: 427554

Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Microelectronics

Study program: Electronics and Communications

Specialisation: Electronics

Il. Master's thesis details
rd Ny
Master's thesis title in English:

10-Link OPC UA Integration for Siemens SIMATIC

Master’s thesis title in Czech:
Integrace 10-Link OPC UA do zafizeni Siemens SIMATIC

Guidelines:
1. The goal of the diploma work is the integration of 10-Link OPC UA to the SIEMENS SIMATIC system. The support of
OPC UA for 10-Link is an advancement towards Industry 4.0.
2. The work begins with familiarization and original research on the OPC UA protocol and its applications for 10-Link.
Search and analyze available solutions of OPC UA and 10-Link.
3. It continues with the proposition of the feature integration and its realization to the firmware.
4. Finally, verify the implementation by a demo application on the real hardware platform.

Bibliography / sources:

[1] 10-Link Community and OPC Foundation: OPC Unified Architecture for 10-Link, Companion Specification, Release
V1.0

hitps:/io-link_com/share/Downloads/OPC_UAMQOPC-UA_for_10-Link_10212_V10_Dec18.pd

f

[on-ling] [2] 6GT2002-0JE50: hitpsimall industry. siemens.com/mall'en/W/Catalog/Product/6G T2002-0JES0 [on-ling)
hittps:/lautomationinside. com/article/new-device-series-paves-the-way-for-high-fr

equency-rid-cloud-connection

[on-ling] [3) GESTE4T-0AADD-1YA2: https:Vsupport industry. siemens. comics/pd/81541 2 7pdti=pi&dl=en&lc=en-WW [on-ling]

Mame and workplace of master’s thesis supervisor:
Ing. Zbynék Kocur, Ph.D., Department of Telecommunications Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master's thesis assignment: 05.02.2020 Deadline for master's thesis submission: 13.08.2021

Assignment valid until: 30.09.2021

Ing. Zbynék Kocur, Ph.O. prof. Ing. Pavel Hazdra, CSc. prof. Mgr. Petr Pata, Ph.D.
Supernvisor's signature Head of depariment's signalure Dean's sgnature
\ &

lll. Assignment receipt

The student acknowledges that the master's thesis is an individual work. The shedent must produce his thesis without the assistance of others A
with the exception of provided consultations. VWithin the master's thesis, the author must state the names of consultants and include a list of references.
_ Date of assignment receipt Student’s signature)

CVUT-CZ-ZDP-2015.1 @ EVUT v Praze, Design: CVUT v Praze_ VIC

Table of Contents

DIBCIANATION. ...t bbb bbb bbb bR et 5
ACKNOWIEAGIMENTS ...t bbb b b nnen e 5
AADSTIACT. ... E e h e h bbb 6
Lo INEFOAUCTION ... b bbbt bbb bbb r et r e 8
1.1 TRESIS ODJECTIVES ...ttt ab e 9
1.2 SEruCtUre OF the TNESIS......coiiiiiiiiiiie e 10

2. THEOTFELICAI OVEIVIBW........ciiiiiiciiit ettt bbbt 10
2.1 L I OSSR 10
211 SYSTEM OVEIVIBW ...ttt bbbttt b et 11
212 INEEITACE ...ttt bbbt b e 12
2.13 1O DEVICE DESCIIPLION ..ttt ettt n e 14
2.14 Configuration tool fOr IO-LiNKccccoviiiiiieiicese e s 15
2.15 Configuring 10-Link in automation SYSIEMccccieiieiiii et e 16

2.2 OP C U A ettt ettt bt s bt e s he e s bbb e bt et e eb e e r e nre e b 16
e T o Tox | =LA o] o SRS 18
24 FOUNOALION .tttk bt bbbttt b bt e nen s 19
24.1 TTANSPONT ...ttt ettt ettt es e et e nb e e nre e sRe e s e n e n e reenre e 20
2.4.2 [1 Y, oo < TSR 22

B R O 1 1< 0 G T=T V= TSP TOSPO PP PR PP 23
251 (O 7T | PSSR 24
2.5.2 STV .ttt E et r e nr e 25

2.6 AUAIESS SPACE .. .ueeueeteeiesteete ettt ettt ettt e s te st et et e s e st e st e beese e b e st et et et e st e Rt e re Rt beneenteneeeeeenean 26
2.6.1 NOGE MOTEI ...ttt 27
2.6.2 INOUE ClIASSES ...ttt ettt r e 28
2.6.3 NN oo =1 o TSR 31

3. Task motivation and SOIULIONccoiiiiiiiiiii s 33
3.1 IVIOTIVALION ...t e ettt r e nr e en e nes 33
3.2 PROFINET and OPC UA COMPAIISON........cccuiuiirerrireiaeaseasesiesiessessessessesseseesessessessessessessesseseens 33

4,

3.3 PROFINET Lottt sr e r et e n e n e nneer e nenre s 34

34 Comparison t0 PROFINETooiiiiicei e 40
3.5 SOIULION PIOPOSALeveiiiiiitcieite bbb 40
3.5.1 LI TS 0L SRR 43
OPC UA SDK ..ttt bbb bbbt bt e bt E e nb e sb e ke et nbeeneenbeene e e etes 43
4.1 [O-Link INfOrmation MOEI ..o 43
411 MOAET OVEIVIEW ...ttt b 44
4.1.2 SIOME ..ottt sttt ettt Re et et e ne e nteeteeneenreereetenre s 45
4.1.3 Creating IOLINkDeVviCeType iN SIOMEccoiiiiiiiiiiie e 49
414 Generating code files using UaMOUEIENccovoiciiiieie e 51
4.15 Generating dynamic address Space DINAMIES.cccvvieereiieiere e 53
4.2 Building application in SDK enVIFONMENL..........cccccveiiiieii i 53
4.2.1 AdAING VAlUE SEOTE......ocuiiiiiiie et s st e s te e s be s teebesreeneesee e 54
4.2.2 Getting device information from SyStem FileS...........ccooiviiiiiiii i 55
4.2.3 Reading Temperature SENSOT VAIUEccoviiriirieieieieeee et 55
424 AAING METNOT ... 56
425 Connecting to server using UaExpert and verifying functionality.............ccccoovinininnnnn. 62
CONCIUSTON ..ottt b bt e bt bbb e st b bbb b b 68
RETEIEICES ...t bbbt b bbbt n e 69

Declaration

I hereby declare that this thesis is the result of my own work and that I have clearly stated all information
sources used in the thesis according to “Methodological Instructions of Ethical Principle in the

Preparation of University Thesis”.

In Prague, 20.01.2022 Signaturecocooieennn.

Acknowledgments

I would like to express my gratitude and appreciation for my supervisor Ing. Zbynék Kocur, Ph.D for
his support throughout my Diploma thesis, advice and help from my colleagues Ing. Milo$ Fenyk and Ing.
Martin Huncovsky at Siemens. | would also like to thank my family for their continuous support during

my studies.

Abstract

This diploma thesis is dedicated to the implementation of OPC UA support for 10-Link in the SIEMENS
SIMATIC System. In this thesis | will present theoretical background on the specifications of the OPC
UA and 10-Link communication protocols and explore the features of OPC UA SDK for bridging the
functionality between OPC UA and IO-Link. The project continues with the definition and proposition of
the design of integration with the firmware. A use case of this integration will be implemented for
Raspberry Pi board running on Linux, which acts as an 10-Link Master. The workings of the

implementation are verified by a demonstration application on the Raspberry Pi board.
Keywords

OPC UA, 10-Link, Raspberry Pi Zero

List of Abbreviations

OPC UA: Open Platform Communications Unified Architecture
PLC: Programmable Logic Controller

HMI: Human-Machine Interface

IODD: Electronic device description of devices (10 Device Description)
GSD: Generic Station Description

DI: Digital Input

DQ: Digital Output

ERP: Enterprise Resource Planning

HTTP: Hypertext Transfer Protocol

IP: Internet Protocol

ISDU: Indexed Service Data Unit

MES: Manufacturing Execution System

PMS: Production Management System

SCADA: Supervisory Control and Data Acquisition

TCP: Transmission Control Protocol

XML: Extensible Markup Language

10T: Internet of Things

SoC: System on Chip

1. Introduction

The advancements of semiconductor technology and digital electronics has resulted in the third revolution
— the digital revolution, the products of which has become part of our everyday life. We are now
witnessing the rise of the fourth industrial revolution, as self-learning algorithms, cloud computing and
10T systems are more integrated into our society.

The ongoing initiative which plans to transform the manufacturing industry is called Industry 4.0. It has
been defined as the current trend of automation and data exchange in manufacturing technologies,
including cyber-physical systems, the Internet of Things, cloud computing and artificial intelligence in

creating the “smart factory”.

Siemens is the largest industrial manufacturing company in Europe focusing on automatization and
digitization of factories, while pushing towards the development of Industry 4.0 and building the
necessary products and infrastructure. The small subset task, which will advance the future capabilities of
SIEMENS SIMATIC products, is the combination of OPC UA with 10-Link. Both OPC UA and 10-Link
are industry standard communication protocols. While 10-Link is a point-to-point, fast and simple
protocol [1], OPC UA is a routed, packet based and secure protocol with internetwork and over the
internet communication capabilities [2]. The mapping of 10-Link data to OPC UA data model would have
many beneficial use cases such as parametrization of 10-Link devices, collection of diagnostic data by
OPC UA Client over OPC UA and many more [2]. Different deploy options of OPC UA with 10-Link
can be seen on Figure 1. The OPC UA Server can directly be deployed on an 10-Link Master or a PLC
connected to the 10-Link Master or another platform like a PC [2]. The OPC UA Client can directly be
connected to the OPC UA Server running on the 10-Link Master, it can be connected to the PLC running
the OPC UA Server, or the PLC can forward the traffic from an OPC UA Client on top of the PLC to the
OPC UA Server running on the 10-Link Master beneath the PLC [2].

SOPC UA D SnPC UA
Client Server
|

J Ethernat

|
000D @ 2o-ur PG UA
Master Client
SOPC UA
KO0 “oreua ==
L Fieldbus [Ethemet-based] |
[| wnpc ua
Tik-Link:
i | 111} @ Master il
Sarear

B8 ff8 79 14

Figure 1: System Architecture of 10-Link and OPC UA [2].

Due to COVID pandemic affecting the working conditions, access to SIEMENS SIMATIC hardware was
limited. For this reason, it was decided to use a Raspberry Pi platform to perform the role of 10-Link
Master. The work involves the analysis of theoretical material on the OPC UA, 10-Link and OPC UA for
I0-Link Companion specifications. The core of the work consists of creating OPC UA information model
for 10-Link according to companion specification [2] and creating a server application using OPC UA
tools. Furthermore, the application code is modified to implement functionality to read data from GPIO
pins of the Raspberry Pi board and functionality to modify their state. As an 10-Link device | used a
temperature sensor, connected to the Raspberry Pi through GPIO pin, to read its data and a simple LED is
also connected to GPIO pin to observe the status of the pin.

1.1 Thesis objectives

The objectives of the thesis are to study the 10-Link and OPC UA technologies and the mapping of their
functionalities according to the companion specification [2], propose a solution on how they can be
integrated, implement functionalities for a common use case inside a server application and verify the
operation of the application. The essential part of the thesis would also be the exploration OPC UA SDK
and the tools necessary to develop applications using OPC UA and 10-Link communications. Although
Raspberry Pi was used to test the implemented functionalities instead of SIEMENS SIMATIC device, the

OPC UA SDK mechanisms used for data reading and writing and sending commands are universal.

1.2 Structure of the thesis
In Chapter 2 essential parts of theoretical background is given on the OPC UA and IO-Link specifications
as part of analysis to better understand the integral parts of 10-Link devices and OPC UA communication

and how they are intended to be used in an industrial system.

The motivation behind the task and the solution proposal for it described in Chapter 3. It describes the
current implemented integration between Profinet to 10-Link and compares with OPC UA to 10-Link
integration and its advantages and disadvantages. Furthermore, the chapter lists the steps for the task
implementation and the tools used for the tasks.

The implementation is done in a Linux OS environment using the OPC UA SDK. The SDK allows to
cross-compile OPC UA server application with implemented functionalities to the Raspberry Pi board and
it is described in Chapter 5. The creation of information model required to represent 10-Link devices in
OPC UA is also described in this chapter. Implementation of functionalities and their verification are

described in further subchapters.

The work is summarized and concluded in Chapter 6.

2. Theoretical overview

2.1 10-Link

SDCI (commonly known as 1O-Link) is an internationally standardized (IEC 61131-9) industrial
communications networking protocol. It is described as short distance, bi-directional, point to point, serial
communications protocol, used for connecting digital sensors and actuators to either a type of industrial
fieldbus or a type of industrial Ethernet (Figure 2) [1]. It is based on the long established 3-wire sensor
and actuator connection without additional requirements regarding the cable material. So, 10-Link is no
fieldbus but the further development of the existing, tried-and-tested connection technology for sensors
and actuators. It is considered as a powerful standard in the automatization industry as it is fieldbus
independent and can be integrated into all fieldbus systems worldwide [1]. 10-Link relies on standards
such as M12, M8 or M5 connectors and three-wire cables, which contributes to uniform interface for
sensors and actuators irrespective of their complexity (switching, measuring, multi-channel binary, mixed

signal, etc.). It allows three types of data to be exchanged — Process data, service data, and events [1].

10

| Industrial Ethernat

| Fieldbus

T
“““ @ I0-Link @ 10-Link
Master Master]
E

Figure 2: Example of system architecture with 10-Link [1].

2.1.1 System Overview

As it can be seen from the general example of a system architecture with 10-Link (Fig.1), we differentiate
the following basic components: 10-Link Master, 10-Link device (e.g., sensors, RFID readers, valves, 1/0
modules), unshielded 3- or 5-conductor standard cables and devices for configuring and assigning
parameters of 10-Link. The 10-Link master establishes the connection between the 10-Link devices and
the automation system [1]. As a component of an I/O system, the 10-Link master is installed either in the
control cabinet or as remote 1/O, with enclosure rating of 1P65/67, directly in the field [1]. The 10-Link
master communicates over various fieldbuses or product-specific backplane buses [1]. An IO-Link master
can have several 10-Link ports (channels). An 10-Link device can be connected to each port (point-to-
point communication). Hence, 10-Link is a point-to-point communication and not a fieldbus (Fig.2). The
engineering of the 10-Link system is performed in parallel with the engineering of the overall automation

system and can be embedded in and meshed with this engineering [1].

11

Fieldbus
—

@ I0-Link
Master

L
L]

Figure 3: 10-Link point to point connection diagram [1].

2.1.2 Interface

As mentioned before, 10-Link is a serial, bi-directional point-to-point connection for signal transmission
and energy supply under any networks, fieldbuses, or backplane buses. For the connection technology in
IP65/67, one possibility that has been defined is an M12 plug connector, in which sensors usually have a
4-pin plug and actuators a 5-pin plug. 10-Link masters generally have a 5-pin M12 socket. The pin
assignment is specified according to IEC 60974-5-2 as follows [1]:

e Pinl:24V
e Pin3:0V

e Pin 4: Switching and communication line (C/Q)

These three pins not only provide 10-Link communication, but also supply the device with at least 200
mA (Fig.3).

Figure 4: Pin assignment of 10-Link device [1].

12

There are two types of ports in IP65/67 for the 10-Link Master: Port Class A (Type A) and Port Class B
(Type B). They differ by how they utilize the ports 2 and 5 in Fig.3 [1]. In Type A, the functions of pins 2
and 5 are not specified. The manufacturer defines these functions. Pin 2 is usually assigned with an
additional digital channel used as Digital Input or Output. Type B provides additional supply voltage and
is suitable for the connection of devices that have an increased power demand. In this case, pins 2 and 5
are used to provide additional (galvanically isolated) supply voltage. A 5-conductor standard cable is

required in order to use this additional supply voltage [1].

The device is connected to the master via unshielded 3 or 5-lead standard cables with a length extending
up to 20 m with cross-section >= 0.34 mm?. Shielding is not necessary. Likewise, no specific guidelines

have to be followed when laying the cables.

The 10-Link ports are capable of operating at different modes: “IO-Link”, “DI”, “DQ” and “Deactivated”
modes. “IO-Link” is used for IO-Link communication [1]. In “DI” mode the port behaves like a digital

input and in “DQ” — digital output. “Deactivated” ports as the name suggests are inactive [1][3].
The version 1.1 of 10-Link specification presents 3 transmission rates [1]:

e COM1 =4.8kbaud
e COM 2 = 38.4 kbaud
e COM 3 =230.4 kbaud

10 devices support inly one of the defined data transmission rates, whereas 10 master supports all data

transmission rates and adapts itself automatically to the data transmission rate supported by the device

[1][3]

The response time of the 10-Link system provides information about the frequency and speed of the data
transmission between the device and master. The response time depends on various factors. The device
description file I0DD of the device contains a value for the minimum cycle time of the device. This value
indicates the time intervals at which the master may address the device. The value has a large influence
on the response time. In addition, the master has an internal processing time that is included in the
calculation of the response time [1][3]. Devices with different minimum cycle times can be configured on
one master. The response time differs accordingly for these devices. That is, the response time of the
different devices on a master can differ significantly. When configuring the master, you can specify a
fixed cycle time in addition to the device-specific minimum cycle time stored in the 10DD [1][3]. The

master then addresses the device based on this specification. The typical response time for a device

13

therefore results from the effective cycle time of the device and the typical internal processing time of the
master [1][3].

I0-Link is a very robust communication system. This communication system operates with a 24 V level.
If transmissions fail, the frame is repeated two more times. After second failed attempt to send or receive,

the 10-Link master recognizes a communication failure and signal this to the higher-level controller.

There are several types of data that are exchanged through 10-Link, some are exchanged in cyclic, while
others in acyclic manner [1]. Cyclic data is exchanged regularly and periodically, such as process data and
value status. Acyclic data is exchanged when needed and occur only when certain events trigger them,
such as device data and events [1].

The process data of the devices are transmitted cyclically in a data frame in which the size of the process
data is specified by the device. Depending on the device, 0 to 32 bytes of process data are possible (for
each input and output) [1]. The consistency width of the trans-mission is not fixed and is thus dependent
on the master. Each port has a value status (e.g, PortQualifier). The value status indicates whether the

process data are valid or invalid. The value status is transmitted cyclically with the process data [1].

Device data can be parameters, identification data, and diagnostic information. They are exchanged
acyclically and at the request of the 10-Link master. Device data can be written to the device (Write) and
also read from the device (Read).

When an event occurs, the device signals the presence of the event to the master. The master then reads
out the event. Events can be error messages (e.g., short-circuit) and warnings/maintenance data (e.qg.,

soiling, overheating) [1][3].

2.1.3 10 Device Description

Each 10-Link Device has an 10DD (IO Device Description). This is a device description file which
contains information about the manufacturer, article number, functionality etc. This information can be
easily read and processed by the user. Each device can be unambiguously identified via the IODD as well
as via an internal device ID [2]. The structure of the IODD is the same for all devices of all
manufacturers. The structure of the IODD is always represented in the same way by the 10-Link
configuration tools of the master manufacturers. This ensures the same handling of all 10-Link devices

irrespective of the manufacturer [2].

14

2.1.4 Configuration tool for 10-Link
In order to configure the entire 10-Link system, configuration tools are required. The 10-Link
configuration tools of the master manufacturers are able to read in IODDs (Figure 5). The main tasks that

the configuration tool must carry on include [1]:

e Assignment of the devices to the ports of the master
e Address assignment (I/O addresses of the process data) to the ports within the address area of the
master

e Parameter assignment of the 10-Link devices

Figure 5: Configuration tool with IODD of a device and the device information it contains [1].

15

2.1.5 Configuring 10-Link in automation system

The configuration of 10-Link can be simplified in two steps. In the first step, the 10-Link master is
connected to the automation system and configured. In the second step, the 10-Link device parameters are
set. In the configuration of the automation system or fieldbus, the 10-Link system is represented by the
IO-Link master and integrated using the appropriate device description (e.g., GSD file for PROFINET)
[1][3]. The 10-Link master itself can be a fieldbus node or a module of a modular 10 system that is
connected to the fieldbus. In both cases, the number of ports, the address range, and the module properties
are described in the device description of the 10-Link master [1][3].

Figure 6 shows a PROFINET configuration into which PROFINET devices with 10-Link masters are

integrated.

PLC 1 10 Device 1 Hin 10 Device 2 H
CPU1516-3,. M 1556 PN... Bl ET 200eco P, ¢
o i

Figure 6: Configuring SIEMENS PLC PROFINET connection with 10-Link masters connected through an Interface Module [1].

In the device view of the hardware configuration, the input and output address ranges for the exchange of
cyclic data (process values) of 10-Link are specified [1]. Furthermore, it is possible to specify in the
module properties of the 10-Link master how the port configuration should be set. In the process, it is

possible to choose whether to work with or without an additional 10-Link configuration tool [1].

2.2 OPCUA

OPC UA is an open and royalty free set of standards designed as a universal communication protocol.
While there are numerous communication solutions available, OPC UA differentiates itself with the

following advantages [2]:

e A state of art security model

e A fault tolerant communication protocol

16

e An information modelling framework that allows application developers to represent their data in

a way that makes sense to them.

OPC UA can be mapped onto a variety of communication protocols and data can be encoded in various
ways to trade off portability and efficiency. As an open standard, OPC UA communicates on standard
internet technologies, like TCP/IP, HTTP, Web Sockets [2]. OPC UA is designed to provide robustness of
published data. A major feature of all OPC servers is the ability to publish data and Event Notifications.
OPC UA provides mechanisms for Clients to quickly detect and recover from communication failures
associated with these transfers without having to wait for long timeouts provided by the underlying
protocols.[7]

OPC UA has a broad scope which delivers for economies of scale for application developers. This means
that a larger number of high-quality applications at a reasonable cost are available. When combined with
semantic models such as OPC UA for 10-Link or any other communication standard, OPC UA makes it

easier for end users to access data via generic commercial applications.

The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process
information locally and then provides that data in a consistent format to any application requesting data -
ERP, MES, PMS, Maintenance Systems, HMI, Smartphone or a standard browser [2].

As an extensible standard, OPC UA provides a set of Services and a basic information model framework
[2]. This framework provides an easy manner for creating and exposing vendor defined information in a
standard way. More importantly all OPC UA Clients are expected to be able to discover and use vendor-
defined information [2]. This means OPC UA users can benefit from the economies of scale that come

with generic visualization and historian applications.

OPC UA Clients can be any consumer of data from another device on the network to browser based thin

clients and ERP systems. The full scope of OPC UA applications is shown in Figure 7.

17

Browser
Thin Client

aPC
LIS
Intagration Cenits
Sooune w - it ’
Commanication "ﬂ-?--.___;"""'\-_,-’ﬂL ERF and MES
Apmss th)
Ini et
Contral 1o Davio
Metwnirk
Ity ation
ORC
A&
- SEreers
.9
Ciznts

Figure 7: Scope of OPC UA within Enterprise [2].

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling
lost messages, failover, heartbeat, etc [2]. With its binary encoded data, it offers a high -performing data
exchange solution [2]. Security is built into OPC UA as security requirements become more and more
important especially since environments are connected to the office network or the internet and attackers

are starting to focus on automation systems.

2.3 Specification

The whole OPC UA specification is organized into multiple parts as shown in Figure 8.

18

OPC UA Multi-Part Specification

Core Specification Parts Access Type Specification Parts
‘ Part 1 — Overview & Concepts ‘ ‘ Part 8 — Data Access ‘
‘ Part 2 — Security Model ‘ ‘ Part 9 — Alarms & Conditions ‘
‘ Part 3 — Address Space Model ‘ ‘ Part 10 — Programs ‘
‘ Part 4 - Services ‘ ‘ Part 11 - Historical Access ‘

‘ Part 5 — Information Model ‘

Utility Specification Parts
‘ Part 6 — Service Mappings ‘

‘ Part 12 — Discovery ‘
‘ Part 7 — Profiles ‘

‘ Part 13 — Aggregates ‘

‘ Part 14 — PubSub ‘

Figure 8: OPC UA specification in parts [7].

The base of OPC UA is defined by the core specification parts. These core capabilities define the
structure of the OPC Address Space and the Services that operate on it. Access Type parts describe how
core capabilities are applied to specific types of access. We don’t require to research of each of these
documents in detail. The essential parts that concern us are Part 3 and 4 which are important for the

design and development of OPC UA applications.

The Address Space Model in UA Part 3 specifies the building blocks to expose instance and type
information and thus the OPC UA meta model used to describe and expose information models and to
build an OPC UA server address space. The abstract UA Services defined in UA Part 4 represent the
possible interactions between UA client and UA server applications. The client uses the Services to find
and access information in the Address Space. The Services are abstract because they are defining the
information to be exchanged between UA applications but not the concrete representation on the wire and

also not the concrete representation in an API used by the applications [7].

2.4 Foundation
The OPC UA builds on different layers shown in Figure 8.

19

o
A
i

Transport

=
==

OPC UA Meta Model

|
=

Figure 9: OPC UA component Layers [4].

The fundamental components of OPC Unified Architecture are transport mechanisms and data modeling.

2.4.1 Transport

The transport provides different mechanisms optimized for different use cases. The first version of OPC
UA utilizes an optimized binary TCP protocol for high performance intranet communication as well as a
mapping to accepted internet standards like Web Services, XML, and HTTP for firewall-friendly internet
communication [7] as shown in Figure 10, although future version are deprecating XML and HTTP and
opting for HTTPS instead. There are also mixed variant “protocol bindings” or hybrid variants, which
combine two. All three variants can be used in parallel. An application programmer will only observe this
due to the different URL he or she has to pass: opc.tcp://server for the binary protocol and http://server for
WebService. Apart from that OPC UA works completely transparent with respect to the API [7]. Thus,
application developers can switch between protocol bindings without having to adapt or reimplement.

20

Binary Hybrid Webservice
N A

UA Binary I UA XML IJEncoding
W
. Message
WS Secure Conversation Security
————
I SOAP 1.2 J
Transport

UA Secure Conversation

Native UA Binary
HTTPS with UA Binary

Transport
SSL/TLS Security

I —

——
v v

4840 443 80

Figure 10: OPC UA Communication protocols [8].

The supported protocols and their individual properties can be summarized as follows:

1.

Binary protocol (UA binary):

Mandatory

best performance, smallest overhead [7]

takes minimum resources (no XML Parser, SOAP and HTTP required which is important for
embedded devices) [7]

best possible interoperability (binary is explicitly specified and allows less choices during
implementation than XML does) [7]
only one single TCP port (4840) is used for communication and can easily be used for tunneling

or enabled through a firewall [7]

Webservice (XML-SOAP)

optional, additional
extensively supported by available tools, can e.g. easily be used out of Java or .NET
environments [7]

firewall-friendly; port 443 (https) will usually work without additional configuration [7]

21

3. Hybrid (UA-Binary via HTTPS)
e optional
o less overhead than XML-SOAP [7]
o combines the advantages of both protocols: binary encoded payload in a HTTPS frame [7]
o firewall-friendly; port 443 (https) will usually work without additional configuration [7]

The mapping of the UA Services to messages, the security mechanisms applied to the messages, and the
concrete wire transport of the messages are defined in UA Part 6. [7] Figure 11 shows the layered
communication architecture of OPC UA, and how the service Part 4 and communication mapping Part 6
related in that regard.

API

Implementation of Bindings

Part &
Web Service or UA TCP Binding

Part 4
Abstract UA Service Specification

Figure 11 Layered OPC UA communication architecture [4].

As OPC UA architecture is a Service Orientated Architecture (SOA) and is based on different logical
levels. All of the Base Services defined by OPC shown in Figure 12 are abstract method descriptions
which are protocol independent and provide the basis for the whole OPC UA functionality.[4]

2.4.2 Data Model

The data modeling defines the rules and base building blocks necessary to expose an information model
with OPC UA. It defines also the entry points into the address space and base types used to build a type
hierarchy. This base can be extended by information models building on top of the abstract modeling
concepts. In addition, it defines some enhanced concepts like describing state machines used in different
information models.[7]

22

The UA Services serve as interface between servers and client, where servers act as supplier of an
information model and clients - as consumers of that information model. The Services are defined in an
abstract manner. They are using the transport mechanisms to exchange the data between client and
server.[7] Figure 12 shows this layered relationship between the service and information models.

The benefit of OPC UA is that it simplifies the access to smaller elements of data without the need of
understanding the complex system by whole. Figurel2 shows the different layers of information models

defined by OPC, by other organizations, or by vendors.[4]

Specifications of Information Models | - IEC, ISA,
of other Organisations . '.l EDDL, ...
OPC Information

DA AC ' -'..l Model

Figure 12 OPC UA Layers of information models.[4].

Information models for the domain of process information are defined by OPC UA on top of the base
services and specifications (Figure 12). Data Access (DA) defines automation-data-specific extensions
such as the modeling of analog or discrete data and how to expose quality of service [4]. All other DA
features are already covered by the base. Alarm & Conditions (AC) specifies an advanced model for
process alarm management and condition monitoring. Historical Access (HA) defines the mechanisms to
access historical data and historical events. Programs (Prog) specifies a mechanism to start, manipulate,

and monitor the execution of programs.[4]

2.5 Client-Server

Usually, OPC UA is used in the Client-Server communication model. In the Client Server model, as
mentioned before, OPC UA defines sets of Services that Servers may provide, and individual Servers

23

specify to Clients what Service sets they support. Information is conveyed using OPC UA- defined and
vendor-defined data types, and Servers define object models that Clients can dynamically discover. [7]
Servers can provide access to both current and historical data, as well as Alarms and Events to notify
Clients of important changes. In addition to the Client Server model, OPC UA defines a mechanism for
Publishers to transfer the information to Subscribers using the PubSub model.[7]

2.5.1 Client

Figure 13 illustrates an example of general Client model, its interaction, some major elements and how
they relate together. The Client application is represented as code running as the topmost layer of the
Client on Figure 13. It contains specific functionality for the application and the mapping of this
functionality to OPC UA by using an OPC UA Stack and an OPC UA SDK.

OPC UA Client
Client-Application
Requests to Delivery of Requests to Delivery of
gond service received service sand publishing recaived
requests rasponses requests notifications

||‘lll |||lll

OPC UA Client API

GPG uh 11111 —rrr—ry rrrrTrTrT] CrrTTTT
Communication Reg Mag Rap Msg Pubd Mag Motif Mag
Sﬂl:k L1 11 I 1§ 8 31 11 L1 L1y 5 3§
v | v |
To OPC Fram Ta From
U, OPC UA OPC UA QOPC UA
sarver sarver sarver servar

Figure 13 OPC UA Client architecture [7].

Application consuming lnfu-l
_ cuR,
-

Figure 14 Software Layers of OPC UA Client [4].

C/C++
MET
JavA

24

2.5.2 Server

The following Figure 15 illustrates the OPC UA Server architecture model. As in the case of the Client
application, the Server application is the code that implements the function of the Server. It has a similar
software layer structure as seen on Figure 14, except the Application layer can be seen as providing

information.

G
SN

OPC UA Server Application

OPC UA AddressSpace

|
Subscription I|

AAA NA\N

(7 NV [

OPC UA Server API

GFC UAI T T T T T T T 7T T T T 7T T T T 7T
Communication Rag Msg Rsp Msg Publ Msg Motif Msg
Stack L L L L L L L L

v

From To From To
OPC UA OPC UA OPC UA OPC LA
client client cliant clignt

Figure 15 OPC UA Server architecture [7].

Real objects presented in Figure 15, are physical or software objects that are accessible by the Server
application or that it maintains internally. Examples include a connected sensor device and diagnostics

counters or current date and time.[7]

The Address Space represents the information accessible by clients and is modelled as a set of Nodes.
Using OPC UA Services (interfaces and methods) client can read/write variable or call functions. Nodes
in the Address Space are used to represent real objects, their definitions and their references to each
other.[7]

25

The OPC UA Address Space supports information models. Information model, as mentioned, are a
structural representation of real-world entities using object model similar to OOP. The Address Space
represents these entities, its components and relation of components or relation of entities using Nodes
and its constructs.[9]

There are two, so called “Subscription entities”, MonitoredItems and Subscriptions in the Server.[7]
Monitoredltems are entities in the Server created by the Client that monitor Address Space Nodes and
their real-world counterparts. When they detect a data change or an event/alarm occurrence, they generate
a Notification that is transferred to the Client by a Subscription.[7] A Subscription is an endpoint in the
Server that publishes Notifications to Clients. Clients control the rate at which publishing occurs by
sending Publish Messages.[7]

2.6 Address Space

An Address Space provides the entry point for Clients for browsing and accessing data, subscribing for
event notifications or calling methods and is standard way for Servers to represent Objects. As it was
mentioned, the Address Space is defined by Part 3 of the OPC UA specification.[9] Similar to OOP, The
OPC UA Object Model has been designed to meet this objective. It defines Objects in terms of Variables
and Methods.[7] It allows expressing the relationship between different Objects and Figure 16 illustrates
the model.

/' Object \
Data change

Motifications

™y
e Variables
ReadWWrite
L
|, / Refarences to
other Objects
. -
|n...c|k,g Mﬂlhnds
=)
0
Event _I {]

Motifications A

Figure 16 OPC UA Object Model [9].

The UA services are used to access the objects and their components like reading or writing a variable
value, calling a method or receiving events from the object. The browse service can be used to explore

relationships between objects and their components.

26

This is where we introduce the Node model and tie it with the Object model as elements of this model are
represented in the Address Space as Nodes. There are various Node Classes that each represent different
element of the Object Model and each Node belong to a particular class.[9]

2.6.1 Node Model

Mode
Altributes Alttributes describe a node
-r._._._,.:-"'-'-'-
References define relationships
o ather nodes
References ,/
. Node

Figure 17 Address Space Node model [9].

As we can see in Figure 17, Nodes are described by attributes and interconnected by references.

2.6.1.1 Attributes

Attributes are elementary components of NodeClasses and are data elements that describe Nodes [7].
Clients can use the Read, Write, Query, and Subscription/Monitoredltem Services [10] to access Attribute
values. Each attribute definition consists of an attribute id, a name, a description, a data type and a
mandatory/optional indicator. The set of attributes defined for each node class cannot be extended by
clients or servers. When a node is instantiated in the address space, the values of the mandatory node class
Attributes must be provided.[9]

2.6.1.2 References

References, as the name suggests, are used to relate nodes to each other. They play an important role in
structuring the data in the information model and enable browsing and querying services.[4] Similar to
attributes, they are defined as fundamental components of nodes but unlike attributes, references are
defined as instances of Reference Type nodes [4]. Reference Type nodes are visible in the address space
and are defined using the Reference Type node class.[9] The node that contains the reference is referred
to as the source node (Figure 18) and the node that is referenced is referred to as the target node. The
combination of the source node, the Reference Type and the target node are used in OPC UA services to
uniquely identify references [9]. Thus, each node can reference another node with the same Reference

Type only once [9]. The target node of a reference may be in the same address space or in the address

27

space of another OPC UA server [4]. Target nodes located in other servers are identified in OPC UA
services using a combination of the remote server name and the identifier assigned to the Node by the

remote server. [4]

SourceNode

*ReferenceName - TargetNode

* Mame of the Referance’s RefereanceType

Figure 18 Reference Model [9].

2.6.2 Node Classes
Figure 19 illustrates eight node classes defined in OPC UA. Each node in the address space is an instance

of one of these node classes. Clients and servers are not allowed to define additional node classes or

extend the list of attributes of these node classes [4].

UA Node Classes

Figure 19 OPC UA Node Classes [4].

The Node Classes defined to represent Objects fall into three categories: those used to define instances,

those used to define types for those instances and those used to define data types [9].

2.6.2.1 Base Node Class
All Node Classes are derived from a Base Node Class.[9] The base node class cannot be used directly. It

specifies the attributes inherited by all node classes. In all Node Classes, certain Attributes will have a
Mandatory or Optional use, meaning some attributes must be present at all instances of a Node Class or
can be absent, depending on the application requirement. The most significant attributes are Nodeld,

28

NodeClass, BrowseName, DisplayName and Description. Their main role of these attributes is to assign
identity to the nodes and describe what is their purpose. Nodeld is used to unambiguously identify a Node
in an OPC UA server and is used to address the Node in the OPC UA Services [9]. NodeClass tells the
node class a Node belongs to such as Object, Variable or Method.[9] BrowseName identifies the Node
when browsing the OPC UA server [9] It is not localized [9]. DisplayName Contains the Name of the
Node that should be used to display the name in a user interface [9]. Therefore, it is localized.

Description, as the name suggests, contains a localized textual description of the Node.[9]

2.6.2.2 Object Node Class
As mentioned before, The Object node class is used to represent systems, system components, real-world
objects and software objects.

Table 1 Object node class specific attrutes [4].

Attributes Use Data Type Description

Indicate if the Node can be used
EventNotifier | Mandatory | EventNotifierType | to subscribe to Events or the read / write historic
Events

2.6.2.3 Variable Node Class
The Variable node class is used to represent the content of an Object. Variables provide real data and thus
can contain a high number of attributes [9]. The useful attributes of a Variable node class, which we need

to understand are shown in Table 2.

Table 2 Variable node class specific attributes [4].

Attributes Use Data Type Description
Value Mandatory | BaseDataType The actual value of the Variable
DataType Mandatory | Nodeld The data type of the value
ValueRank Mandatory | Int32 Specifies the dimensions of the array, in

case the value is an array

Specifies the size of the array in each

ArrayDimensions Optional Uint32[] dimension

A bit mask indicating if value is readable
AccessLevel Mandatory | AccessLevelType | and writable and whether the history of the
value is readable and changeable

UserAccessLevel Mandatory | AccessLevelType | Defines additional user access rights

29

MinimumSamplinginterval | Optional Duration Defines how fast the OPC UA server can
piing P detect changes of the Value Attribute
Historizing Mandatory | Boolean Indicates if value history is recorded

ValueRank may have the following values:

n > 1: the Value is an array with the specified number of dimensions.

OneDimension (1): The value is an array with one dimension.

OneOrMoreDimensions (0): The value is an array with one or more dimensions.

Scalar (—1): The value is not an array.

Any (—2): The value can be a scalar or an array with any number of dimensions.

ScalarOrOneDimension (—

3): The value can be a scalar or a one-dimensional array.

This information would be useful for us later when designing the information model.

2.6.2.4 Method Node Class
The Method node class is used to represent a Method in the server address space. The following attributes

in Table 3 are specific for the Method node class.

Table 3 Method node class specific attributes [4].

Attributes Use Data Type Description
Executable Mandatory | Boolean Indicates if the Method can be called
UserExecutable | Mandatory | Boolean Indicates if User can call the Method

2.6.25 ObjectType Node class

The ObjectType node class is used to represent a type of node for objects in the server address space [9].

ObijectTypes are similar to a classes in OOP.

Table 4 ObjectType node class specific attributes [4].

Attributes Use Data Description
Type
IsAbstract | Mandatory | Boolean Indicates whether the ObjectType is concrete or abstract and

therefore cannot directly be used as type definition

30

2.6.2.6 VariableType Node Class
Type node for Variables in the server address space are represented by the VariableType node class.
VariableType are typically used to define which properties are available on the Variable instance.[9]

Table 5 lists the attributes inherited by the instances of the particular Variable Type.[9]

Table 5 Variable node class specific attributes [4].

Attributes Use Data Type Description

Value Mandatory | BaseDataType | The default Value for instances of this type.

DataType Mandatory | Nodeld gl/ggeld of the data type definition for instances of this

ValueRank Mandatory | Int32 _Speufles the dimensions of the array, in case the value
is an array

ArrayDimensions | Optional Uint32[] Specifies the size of the array in each dimension
Indicates whether the ObjectType is concrete or

IsAbstract Mandatory | Boolean abstract and therefore cannot directly be used as type
definition

2.6.2.7 DataType Node Class
All DataTypes are represented as Nodes of the NodeClass DataType in the Address Space. [9]

2.6.3 Nodeld

In OPC UA, every entity in the address space is a node. Nodeld is a built-in DataType used to uniquely
identify a Node within a Server [9]. The namespace is used to ensure unique Nodelds even if different
naming authorities use the same identifiers. This happens if naming authorities work independent of each
other like different information model working groups. The Nodeld is composed of three elements shown
in Table 6.

31

Table 6 Nodeld structure [4].

Name Type Description
Namespacelndex Uint16 The index for a namespace URI
IdentifierType Enum The format and data type of the identifier
Identifier Depends on identifier type | The identifier for a node

Figure 20 illustrates the Nodeld contents for different Nodeld types.

Identifier 5001 Identifier M/RbKBsRVkePCePcx2doRA==

Identifier MyTemperature Identifier 09087e75-8e5e-499b-054f-f2a9603db28a

Figure 20 Examples of different Nodeld types [4].

2.6.3.1 Namespacelndex

The namespace is a URI that identifies the naming authority responsible for assigning the identifier
element of the Nodeld [9]. Naming authorities include the local Server, standard working group like the
OPC UA working group, standards bodies and consortia [9]. Using a namespace URI allows multiple
OPC UA Servers attached to the same underlying system to use the same identifier to identify the same
Obiject. This enables Clients that connect to those Servers to recognize Objects that they have in common.
The numeric values used to identify namespaces correspond to the index. They are stored in the so-called
namespace array also referred to as namespace table [9].

An example of Namespace URI is OPC UA namespace: “http://opcfoundation.org/UA/”. Its namespace

index is 0.

32

2.6.3.2 ldentifierType

IdentifierType defines the format and data type of the identifier. It can be a numeric value, a string, a
globally unique identifier (GUID), or an opaque value (a namespace specific format in a ByteString) [9].
Which type is preferred depends on the use case. If it is important to save memory or bandwidth, it makes
sense to use numeric Nodelds which are smaller and faster to resolve. The OPC UA namespace, as
defined by the OPC Foundation, uses numeric Nodelds [4]. System-wide and globally unique identifiers
allow clients to track Nodes, e.g. work orders, moving between OPC UA servers as they progress through

the system.

2.6.3.3 ldentifier
The identifier is used within the context of the first three elements to identify the Node. We will be using
the value of the identifier to link static or dynamic values and method call to specific Nodes.

3. Task motivation and solution

3.1 Motivation

I0-Link devices are used widely in the industrial automation sector and access to these devices is mostly
limited to the shop floor. There is a great demand for a standardized and manufacturer independent
interface for accessing 10-Link data remotely through cloud services or exchanging over different
networks. OPC UA, over several years, has proved to be the ideal candidate for providing remote access

to 10-Link devices. Common use cases OPC UA support for 10-Link would include:

e Parametrization of 10-Link Devices connected to 10-Link Master
e Subscribing to master or device variables and events

¢ Reading product identification

¢ Reading diagnostics data

e Supervision of plant and machine status

Because the communication of OPC UA is based on TCP/IP it is compatible with many Ethernet-based
fieldbuses such as PROFINET. The small memory footprint allows OPC UA Server applications to be

installed on PLCs or directly on 10-Link Master devices.

3.2 PROFINET and OPC UA Comparison

This chapter shows how existing Siemens PROFINET devices handle 10-Link data, how OPC UA would
handle 10-Link data and the differences between the systems. Within the automation hierarchy the SDCI

33

handles the communication between Master and Device. The domain of the SDCI technology within the
automation hierarchy is illustrated in Figure 21 below.

PLC / Host
_____ & = Parameter
Fieldbus contreller [] Sernver
Fieldous -
integration H =
Fieldbus interface Engineering:
. . configuration,
T - .— P’ parameterization,
___________ Ga Y application p l diagnosis,
Data identification &
LIE storage maintenance
Port1/ | Port2 Portm
sDCl \ '
Device Device Device
Application Application Application
~ | Device
deseription

Figure 21 Domain of the SDCI technology within the automation hierarchy [3].

The Gateway application or also called Mapping application play the role of the bridge between the
fieldbus technology and the 10-Link communication domain.

3.3 PROFINET

PROFINET is a widely implemented industrial protocol which has 10-Link integrated into it in various
Siemens products following the PROFINET IO-Link Companion Specification [17]. An example of
PROFINET 10-Link system topology is shown in Figure 22.

34

Engineeving System 10 controffer 10 supervisor
) !|=.]
— =
-? PROFINET ‘ L
——

=
&sD [||) 10 device Linking [0 dewvice Linking 10 device
10 lesvica) Linkimg Madlule (B} Moruls ()
e Epg]. e s "_,'m
10-Link o] 1|17 P IE FS-Master | Ll 2 W Master
PDCT |L|.l'ﬁJ| I TN | _u_l
" f;#"-':?u T -
e Por 1 Port 1 it
“ Pangz | Pord Parz | Ford pa—
- - @ Pet 3 [:_| ‘@ Part 3 U
1 || [Davice, l:] @. [j = EJ
F5-Devica, D U
W-Davice) N F&-Devices W-Davices

mnnl_l - fic ;) —
Offesite o x

commissioning

Figure 22 General PROFINET IO-Link system topology [17].

Similar to the topology shown in Figure 21, PROFINET with 10-Link system topology is divided into
PROFINET and I0-Link domains. The PROFINET network consists of Controllers and 10 Devices. A
Linking Module is part of a PROFINET 1O device and handles the 10-Link specific information through
proxies. One IOLD proxy represents one 10-Link Device. Each Linking Module holds one 10-Link
Master instance and thus builds the "gateway" to the 10-Link domain. Figure 23 shows the structure of
Linking Modules with a proxy for the Master and for each Device. The standardized mapping structure is
implemented in a layer called "Mapping Application”. The mapping architecture depends on one hand on
PROFINET IO (IEC 61158) fieldbus application layer service definitions (FAL) and on the other hand on
the 10-Link "Standardized Master Interface” (SMI) services specified in [3].

35

PROFIMET Linking Moduwle [4)

. Imm. IoLD oD || 1oLD
5 Pf'm'l proxy pm:lr proxy || proxy

MWWM

Fimldbus Apglication Layer [EC §1158-6-10

SMl
~o Standardized Masier Intarface

10-Link Master
+ t
Port 1 Part 2 Parfn Port ns1
h J AY ¥ b
IQ-Link | | IO-Link I0-Link | | 1O-Link
Device Device Device Device

Figure 23 Structure of Linking Module [17].

The Mapping Application as shown in Figure 23 handles the 10-Link functionality using two

standardized interfaces:

e FAL services (fieldbus application layer) to control the PROFINET 10 communication.
o SMI (Standardized Master Interface) to control the 10-Link Master and its Ports.

Table 7 lists the available FAL services.

36

Table 7 PROFINET FAL services [17].

FAL service req | ind | rsp cnf Definition
Alarm X - i - Alarm handling Interface (e.g. Precess alarm)
Application Ready X - b - 10 device signals if it is ready to operate
Connect - X u - Shows a connect request
Prm End - x b - Shows the End of module/submodule parameterization
Prm Begin - X u - Shows the Start of module/submodule parameterization
Read - X b - Signals a record read functionality
Write - X u - Signals a record write functionality
Local Add Diagnosis X - - X Add diagnosis information (e.g. ExtChannel diagnosis)
Entry
Local Remove Diagnosis X - - x Remove diagnosis information (e.g. ExtChannel diagno-
Entry 5is)
Add Submodule X - - x Add new submodule
Remove Submodule X - - x Remave submodule
Local Set Input X - - x Set Input data of the Submeodule
Local Get Output X - - X Get Qutput data and 1OPS of the submodule
Local New QOutput - x - - Signals if new Qutput data are available

Table 8 lists the available SMI services.

Table 8 SMI services of 10-Link [17].

Service name

Purpose

SMI_Masterldentification

Universal service to identify any Master

SMI_PortConfiguration

Setting up Port configuration (extendable)

SMI_ReadbackPeortConfiguration

Retrieve current Port cenfiguration (extendable)

SMI_PortStatus

Retrieve Port status (extendable)

SMI_DSToParServ

Transfer Data Storage to parameter server

SMI_ParServToDS

Transfer Parameter server to Data Storage

SMI_DeviceWrite

ISDU transpart to Device

SMI_DeviceRead

ISDU transpart from Device

SMI_ParamWriteBatch

Batch ISDU transpert of parameters (write)

SMI_ParamReadBatch

Batech 1SDU transpert of parameters (read)

SMI_PortPowerQffOn

Switch Pert power off on

SMI_DeviceEvent

Universal "Push” service for Device Events

SMI_PortEvent

Universal "Push” service for Port Events

SMI_PDIn Retrieve PD from InBuffer (extendable)
SMI_PDOwut Set PD in OutBuffer (extendable)
SMI_PDInQOUT Retrieve In- and QutBuffer (extendable)
SMI_PDInlQ Process data in at I'Q (Pin 2 on M12)
SMI_PDOwutlQ Process data out at 1/Q (Pin 2 on M12)

SMI_PDReadbackQutlQ

Retrieve process data out at I'Q (Pin 2 en M12)

37

The data inside 10 Devices are addressed using slots, subslots and indexes (Figure 24):

e The slot designates the place where an 1/0 module is inserted in a modular 1/O field device. The
configured modules containing one or more subslots for data exchange are addressed on the basis
of the different slots [18].

o Within a slot, the subslots form the actual interface to the process (inputs/outputs). The
granularity of a subslot (bitwise, bytewise, or wordwise division of 1/0 data) is determined by the
manufacturer [18].

e The index specifies the data within a slot/subslot that can be read or written acyclically via
read/write services [18].

Skot 1 Slot2... Slot 22

Slot 0 and Slot 1 and Shot 2 and Shot 0x7FFF and
Subslot 0=DAP | subsiot 0 = Siot | Subsiot0=>Slot [EIT-EE 300

Subslot 1...0xFFFF .

Chanmel 1...x Subskot 1 .
E Subslat 2
Subslot O0x7FFF Subslot.. 0x7FFF Subslot_0xFFFF
DAP 1#0 Module 10 Module /0 Miodule

Figure 24 Addressing of 1/0 data in PROFINET on the basis of slots and subslots [18].

The "Linking Module" concept encapsulates the entire 10-Link data objects and functions of an 10-Link
Master system into one PROFINET slot. Consequently, this means for the top-level concept:

e The entire 10-Link Master system shall be mapped into one slot k with k = 1 to 32767 [17].
e The I0-Link Master itself shall be mapped into an appropriate IOLM proxy submodule in subslot

x of slot k [17].
e The 10-Link Devices shall be mapped each into one I0LD proxy submodule in subsequent
subslots x+1, x+2 to x+n [17].
Figure 25 demonstrates the mapping of 10-Link system data objects and functions into PROFINET slots

and subslots.

38

e

Slot k Linking Module (A)

Subslof x: [OLM proxy Swhsicd x <1 IOLD proxy Subsiat x4+ IOLD proxy
| identification | | = NE | aee [| |
m’t—lﬂ] [Manufsciurer spacific] [PeriConfigeration OxB900] — [PorConfiguration SxS80]
Input Manutscturer specific [;ﬂ:ﬁﬂ:fﬂlﬂ' *] . m&: _:nm- &
Output [Manutacturer specific] [mn:;- -loLo- -] - r;;-;::h.lﬂ-ﬂ‘i-]
Channel | (e | (e | e (e
Alarms [-l_l:i-‘rqu-:lﬂ:] [:_M:LHMIM, th] o :‘r‘:‘lﬂ.—.‘lﬁ_ b]
PoefConfipuration ::::
m;o&w Do Ga || SN, TE ‘ . ‘
MOL_CALL D400
T&EM data l ED 1oL J [IEMD + AME LD] - | IAME # |ENS OLD~
|
10L Dewicn 10L Dewica
Port +Port

10L Mastar
* Ports

Figure 25 Mapping of 10-Link data objects and functions into slots and subslots [17].

The whole structure of Mapping Application is illustrated in Figure 26.

FAL_Connect
FAL_Prm Esgin
FAL_Prm End
FAL_Rmad
FAL_Wrile

FiL_Apglication Ready

FAL Add Buenad ik

FAL Romove Submodisk:

FAL Local Add Dlagrosis aniry FAL Read FAL EI‘:;'F:EH
FAL Local Remove Diagnoss anl [FAL Write #md
" EC 61158-6-10)
FAL Local Sal nput
FAL Read FAL Gal Dutput FAL Riad FAL Read FAL Read
FAL Write FAL LocalMow Duipat FaL Write: FaL Write EAL Wiite:

SMI services
(@ccording to[1])

SMI_PDinOut

SM_Param ReadBaich
SMI_PartPowerCfion

Figure 26 Structure of Mapping Application [17].

39

It consists of manager, handler, and mapper units. Each unit shows its associated FAL and SMI services.

3.4 Comparison to PROFINET
Compared to PROFINET, OPC UA consists of Clients and Servers meaning it is a routed protocol and

can be used between networks or even over the internet. PROFINET exchanges time-critical data in a
tightly controlled format, designed to facilitate fast processing, minimize processor overhead and allow
control loops with relatively small-time constants (~1ms) to run across the network [18]. OPC UA,
however, can exchange nearly any type of information by using object-oriented data format. It was
designed from the ground up to enable flexible communication, at the expense of slower processing,
higher latency and more processor overhead [7]. Often the operation of PROFINET devices require an
experienced knowledge of using Engineering Tools such as TIA Portal to configure, monitor, and to read
or write data to the 10-Link devices. OPC UA Information Model standardizes the presentation and
therefore machine readability of data types. This makes the OPC UA Client user-friendly and to easily

perform actions on 10-Link devices even for inexperienced operators.

3.5 Solution proposal

In order for OPC UA to interface and access the functionality in 10-Link devices, we would use the 10-
Link SMI provided by the IO-Link Master Stack. The API contain functions which encapsulate
UART/SPI communication of the 10-Link modules. The of 10-Link shown in Figure 27, provide

functions necessary for handling exchange of data and port configuration.

40

Gateway application (Fieldbus, OPC UA, etc)

figuration

jguration

SMI_PortEvent

‘SMI Master|dentification
SMI_PortConfi
SMI_ReadbackPeortCon
SMI_PortStatus

L

SM_DSTeParSery

SMI_ParSenToDS

SMI_PDReadbackOutiQ

SM_DeviceEvent
SM_PDIn
SMI_PDInCut
SMI_PDOutiQ

SMI_DeviceWrite
SMI_DeviceRead
SMI_ParamWriteBatch
SMI_ParamReadBatch
SMI_PortPowerCifOn

SMI_PDOut
SMI_PDInlQ

Standardized Master Interface (SMI)

Configuration Manager~H> Data Storage ‘ | On-request Data Exchange H Diagnosis Unit | | Process Data Exchange

o I.E_" . _ F T
5| 8 5 5| | & & so
ol o B = al 2 s| ®T -
® 5 B ﬁ B 2 % £ § gl 5| g| g| oiipo
g o = r| = = O i & 2 E o
E | | | I] | | | | NG
a] L‘H IE) — — - - - - e -
EI EI EI EI =y =4 = = <L =y = < = ol roo
in h| @ o . -
Specific
1 AL Read On-request Data AL Process Data pec
_..‘ Port x Handler I = | - objects objects J'

Figure 27: Structure and services of the application layer in 10-Link Master [3].

The goal would be to map the service of OPC UA such as Read, Write, Call with their corresponding 10-
Link SMI counterparts, by creating custom service handlers. SMI services listed in Table 8, shall be used
to map to the Nodes used in the modelling of the 10-Link Master, 10-Link Device and 10-Link Port in
accordance with the Companion Specification [2]. Mapping of 10-Link Device Object in OPC UA to SMI

Services is described in Table 9.

Table 9 Mapping of 10-Link Device Object Type in OPC UA to SMI services.

I0LinkDeviceType

SerialNumber

ISDU Index 0x0015.

ISDU Index 0x0010. If the device does not support this ISDU Index,

Manufacturer the VendorID (0x07

and 0x08 of Direct Parameter Page 1) shall be used.

ISDU Index 0x0012. If the device does not support this ISDU Index,
Model the DevicelD (0x09, 0x0A

and 0x0B of Direct Parameter Page 1) shall be used.

HardwareRevision

ISDU Index 0x0016.

SoftwareRevision

ISDU Index 0x0017.

DeviceHealth

ISDU Index 0x0024. If the device does not support this ISDU Index,
the Variable shall not be provided.

MinCycleTime Address 0x02 of Direct Parameter Page 1.

RevisionID Address 0x04 of Direct Parameter Page 1.

VendorID Address 0x07 and 0x08 of Direct Parameter Page 1.
DevicelD Address 0x09, 0x0A and 0x0B of Direct Parameter Page 1.

41

DeviceAccessLocks ISDU Index 0x000C.

ProfileCharacteristic ISDU Index 0x000D.

VendorText ISDU Index 0x0011.

ProductID ISDU Index 0x0013.

ProductText ISDU Index 0x0014.

ApplicationSpecificTag ISDU Index 0x0018.

FunctionTag ISDU Index 0x0019.

LocationTag ISDU Index 0x001A.

ErrorCount ISDU Index 0x0020.

DetailedDeviceStatus ISDU Index 0x0025.

ProcessDatalnput The value shall be mapped to a Byte[].

ProcessDatal_ength (Input) Address 0x05 of Direct Parameter Page 1.

PDDescriptor (Input) ISDU Index 0x000E.

ProcessDataOutput The value shall be mapped to a Byte[].

ProcessDatal_ength (Output) Address 0x06 of Direct Parameter Page 1.

PDDescriptor (Output) ISDU Index 0x000F.

OffsetTime ISDU Index 0x0030.

ReadlSDU SMI_DeviceRead()

WritelSDU SMI_DeviceWrite()

SystemCommand ISDU write request on Index 0x0002 or write on Index 0xOF on Direct
Parameter Page 1.

ParamUploadFromDeviceStart | SystemCommand 0x01.

ParamUploadFromDeviceStop | SystemCommand 0x02.

ParamDownloadToDeviceStart | SystemCommand 0x03.

ParamDownloadToDeviceStop | SystemCommand 0x04.

ParamDownloadToDeviceStore | SystemCommand 0x05.

ParamBreak SystemCommand 0x06.

DeviceReset SystemCommand 0x80.

ApplicationReset SystemCommand 0x81.

RestoreFactorySettings SystemCommand 0x82.

At the time of working on this project, the restrictions imposed due to the pandemic situation worldwide
limited the access to the 10-Link Master hardware platform using the 10-Link API, as a result we had to
resort to using the Raspberry Pi platform, as an 10-Link Master instead. We will use the OPC UA
information modelling framework to create an Address Space which will represent the 10-Link devices as
Objects and implement the use cases for reading cyclic process data from a variable and invoking an 10-
Link service. The process data will be presented as value store and 10-Link service will be handled as a

method call by OPC UA, asynchronously.
For the task of implementing the solution and testing it we will use several software components:

1. OPC UA High Performance SDK version 1.4.1.263 licensed - for the development of server

application running on the hardware.

42

2. UaModeler version 1.6.3.454 unlicensed — for designing information model for 10-Link devices
and generating relevant server application source code files.

3. SIOME version 2.0.4 — Siemens OPC UA Modeling Editor for designing information model for
IO-Link devices and export as xml file.

4. UaExpert version 1.5.1.331 — OPC UA client application for accessing the server application.

3.5.1 Task steps

The task could be generalized in several steps:

o Creating and generating the information model for 10-Link

e Generating the server application

¢ Implementing the value-store for reading dynamic data from temperature sensor
¢ Implementing a method for calling from client

e Cross - compiling the application for Raspberry Pi

e Connecting to server running on RPi and verifying functionality

4. OPC UA SDK
An integral part of the of the project is the use of OPC UA SDK which provides the base for our

application in terms of secure communications and functionality, as well as adaptation for different
platforms. An OPC UA SDK reduces the development effort and facilitates faster interoperability for an
OPC UA application. The SDK used in the project is High Performance SDK version 1.4.1.263 for Linux.
It is a commercially licensed product distributed by Unified Automation. The documentation provided by
UA, which is available online [4], provides detailed information on the individual components of the
SDK, their purpose and how they work. It is essential to understand these components, as well as examine

the example applications codes, in order to build applications and integrate 10-Link into OPC server.

4.1 10-Link Information model

In order to read and write process data, send commands and configure 10-Link devices using OPC UA,
we need to create a set of Nodes that will represent the 10-Link entities and their components in the
Address Space of OPC UA. We will follow the “OPC UA for 10-Link Companion Specification” defined
by 10-Link Community Consortium [2], to create the 10-Link Information model. We will use the
Siemens OPC UA Modeling Editor tool, provided internally in Siemens, to create the Nodes and
additionally use the UaModeler to generate source files for our server application. In this project we used

an unlicensed version of UaModeler available by UA through registration in their website. The unlicensed

43

version does not allow us to export the new information model containing more than 10 nodes, in XML
format and for that reason we are used SIOME. As the source files generated by UaModeler are not going
to be used in a real commercial product and is simply for research and demonstration purposes, there
should not be any legal issues.

4.1.1 Model Overview

Figure 22 gives an overview of the 10-Link Information Model. The IOLinkDeviceType represents 10-
Link Devices. This this type shall directly be used to represent an 10-Link Device if no IODD file is
available, otherwise 10LinklODDDeviceType is used [2]. The IOLinkDeviceType inherits from
TopologyElementType defined in OPC UA Part 100 [12] and thus provides basic grouping mechanisms,
such as ParameterSet for parameters and MethodSet for Methods. It also provides basic Properties of a
device like SerialNumber, Vendorld, ApplicationSpecificTag and Methods like ReadlSDU, defined in
OPC UA Part 100. The 10-Link Master is represented by an Object of IOLinkMasterType. This
ObjectType also inherits from the TopologyElementType. For each port the 10-Link Master contains an
Object of type I0LinkPortType. The 10LinkPortType inherits from the TopologyElementType and
thereby uses the same grouping mechanisms for Parameters and Variables. If the port has an 10-Link

Device connected, the Object of type IOLinkDeviceType is connected to the port.

4 QPG UA Part %\
BaseOlyact Type

\. T J

4 1 OPC UA Part r.Z.‘\

TopologyElament Tipe

ﬂ PararmeterSat
MethodSet

MO inkPorf T
OLinkDewes Type ! ¥pe

[
e

VendorlDd

-+ ParamsterSel |+ ApplicationSpeciicTag)

MethodSet
ReadlS0U
MOLnkODD Dewea Type . IOLinkiewvce Type
E Device

1000 specific 1000 specific
Type A Type B

fALinkiMasterType

Figure 22: 10-Link Information Model overview [22].

44

Figure 22 uses a notation that was developed for the OPC UA specification and in order to understand it

we can refer to Figure 23 that describes it.

Object [Variable] Qﬂet_th | View \
 —

nstances

M

T ObjectType [VarableType] < DataType > (Reference Type <
ypes
C1 1 1 1 (- C1 |
Standard T | - |
Rsferencas -:T-fpilm::- -:T-milrne:- oL WIIIWE:- il i l
Symimeetric Asyrmmetric Hierarchical HasEventSource HasProperty HasSubrtype
Reference Reference Reference HasComparent HasTypeDefinition

Figure 23: OPC UA Information Model Notation [2].

4.1.2 SIOME

"Siemens OPC UA Modelling Editor" (SiIOME) tool, is an editor that allows us to define your own OPC
UA information models or mapping existing companion specifications on SIMATIC PLC / SINUMERIK
[11]. The Figure 22 illustrates the interface of the SIOME.

SiOME offers the following functions which facilitate the generation of information models:

e Import predesigned OPC UA companion specifications.
¢ Saving the work status (project) in XML format and re-import.
e Modeling of own types, objects and methods.

o Comprehensive access monitoring by setting the access rights.

45

e Siemens OPC UA Modeling Editor 2.0.4 - [m] X

= SIEMENS

FB3HE = Namespaces: Editing (current) = B Layout
Information model < Attributes / References ~ Namespaces Validation
I Mapping OPC UA Attributes Additional OPC UA Attributes
v ke Root > Nodei s=0i-2253 [eemotfer |1 |
" ouecs
" | » rousenams Serer
¥ lopt Types * DisplayMame Server
¥ lop¢ DataTypes » Description null
» @ OPCBinary WriteMask 0
» @ XML Schema UserWriteMask 0
» @ BaseDataType RolePermissions
v lope EventTypes
» @ BaseEventType 2

v lope InterfaceTypes

@ BaselnterfaceType References

lopt ObjectTypes
» @ BaseObjectType 2| Type Defined References 3

«

A

v opt ReferenceTypes ReferenceType NodeClass Name TypeDefinition ModellingRule DataType
> References HasProperty Variable Auditing PropertyType Mandatory Boolean
v [opt VariableTypes HasProperty Variable EstimatedReturnTime PropertyType Optional DateTime
N > 4@ BaseVariableType HasComponent Method GetMonitoreditems Opticnal
o Views HasProperty Variable LocalTime PropertyType Opticnal TimeZoneDataType
HasProperty Variable MNamespaceArray PropertyType Mandatory String
HasComponent Object MNamespaces NamespacesType Opticnal
HasComponent Method ReguestServerStateChange Opticnal
HasComponent Method ResendData Opticnal
1 HasProperty Variable ServerAray PropertyType Mandatory String
T e man e el HasComponent Object ServerCapabilities ServerCapabilitiesType Mandatory .
Log [eons X [N

Figure 22: SIOME interface.

After starting up SIOME, we are met with different working elements of the editor. The important areas
that are useful for us Information Model, Attribute and References areas outlined in red in Figure 22,
numbered 1,2 and 3, respectively. Information Model area shows us the complete model that consists of
of all NodeSets that are imported from their corresponding namespace. By default, SIOME comes with
Base NodeSet and DI NodeSet preloaded, so we are will build our model using those NodeSets.

The aggregated information model is represented as tree view for navigation. Different Node types are
located in Types subfolder and are organized within their own subfolders. The Object folder contains the
instances of those Node Types. When creating a new project, an instance of ServerType Node is already

included in the Object folder, as it will contain the Server configuration parameters.

4.1.2.1 New Project
We begin creating our 10-Link model by clicking on the “New” icon. By default, SIOME loads the OPC
UA Base Model only, but since we also need DI model, we need to import the DI XML NodeSet file.

46

This is done simply by clicking “Import XML” button, navigating through file explorer to the required
file directory and adding it.

4.1.2.2 Creating a new Subtype

In this section | will demonstrate the procedure to create a new Subtype from existing Type. As an
example, | will create a new Subtype from TopologyElementType which is the parent ObjectType of our
10-Link entities. Right clicking on TopologyElementType give us drop-down menu, we then click “Add
New ObjectType”, we then get the option to select which namespace this new ObjectType will belong to.
In our case we click on “Create new Namespace” and define the URI as “http://siemens.de/UA/IOLink”.

It is not important what URI we define, ass it is only for demonstration purposes.

» @ SubscribedDatasetType
> @ TemporaryFileTransferType

» @ TransferSel

@ TransitionTy

@ Vendorserv

@ WriterGrou| Add New ObjectType
» @ WriterGrou| Add Child

» o ceTy|
i Reference Types Change Access Level

» [op¢ VariableTypes
lope Views

Information model onlir Bo°kmarks ,

Figure 23: Creating new subtype in SIOME.

4.1.2.3 Adding Optional components

If the parent Object contains components with Optional ModellingRule, we can include those components
in our newly created ObjectType from Section 3.8.2.2, by clicking the check boxes in the References
area. As an example, in Figure we check MethodSet and ParameterSet, that will group Method and
Prameter Nodes.

ReferenceType NodeClass Name TypeDefinition ModellingRule DataType
[JHasComponent Object <Groupldentifier> 1:FunctionalGroupType CptionalPlaceholder =
[[JHesComponent Object Identification 1:FunctionalGroupType Optional =
D HasComponent Object Lock 1:LockingServicesType Optional =F
[HasComponent Object MethodSet BaseObjectType [[] Mandatery =55
[dHasComponent Object ParameterSet BaseObjectType [[] Mandatory =F

Figure 24: Optional components in SIOME..

47

4.1.2.4 Adding Child elements

In order to add any child elements to a parent node we right click on the parent node and click “Add
Child”. This will open a menu, where we can name our child element, define its NodeClass, select the
namespace it will belong to, define the ReferenceType and TypeDefinition. As an example, if we need to
add a variable to a DeviceType Object, which describes a certain property of that Device Object, such as a
Serial Number of device or Manufacturer, in string form, then we make the following selections in

corresponding fields:

e NodeClass — Variable

e ReferenceType — HasComponent
o TypeDefinition — PropertyType

o DataType — String

Add Child

Mame ExampleVariable|

ModeClass Variable -
MNamespace http:/fopcfoundation.org/UA/IOLIN... *
ReferenceType HasComponent -
TypeDefinition Property Type -
DataType String -

Cancel ok

Figure 25: Adding child node in SIOME.

4.1.2.5 Modifying Attributes
Furthermore, in case we need adjust any attributes of an element we can do so in the Attributes area. As
an example, we can specify the AccessLevel of our Variable example created in Section 3.8.2.4, change

its DisplayName or add a Description.

48

OPC UA Attributes Additional OPC UA Attributes

NodeClass Variable DataType String
* BrowseName 2:ExampleVariable WalueRank 1 Dimension -
> DisplayName ExamnplaVariable ® ArrayDimensions 1]
» Description null AccessLevel

WriteMask 0 UserAccessLevel

UserWritaMask 0 MinimumSamplinglnterval 0

RolePermissions Historizing false b

Figure 26: Attributes view SIOME.

4.1.3 Creating IOLinkDeviceType in SIOME

The companion specification [2] provides us the definition for IOLinkDeviceType that represents the
generic information of an 10-Link Device and is formally defined in Table 8. We use the operations
described in the SIOME section, to construct the elements listed in Table 8. Some elements contain more
sub-elements, which are all defined in [2].

49

Table 8: 10LinkDeviceType definition [2].

Attribute Value
BrowseMame |OLinkDeviceType
IsAbstract False
References Node Class | BrowseName DataType TypeDefinition Modelling
Rule

Subtype of TopologyElementType defined in OPC UA Part 100.
HasComponent Object 2 Parameter3et BaseObjectType Mandatory
HasComponent Object 2:MethodSet BaseObjectType Mandatory
HasComponent Object 2-ldentification FunctionalGroupType Mandatory
HasComponent Object General FunctionalGroupType Mandatory
HasProperty Variable 2:SerialNumber String PropertyType Optional
HasProperty Variable 2:Manufacturer LocalizedText PropertyType Mandatory
HasProperty Variable 2-:Model LocalizedText PropertyType Mandatory
HasProperty Variable 2:HardwareRevision String PropertyType Optional
HasProperty ariable 2 SoftwareRevision String PropertyType Optional
HasComponent Variable 2-DeviceHealth DeviceHealthEnu BaseDataVariableType Optional

m
HasProperty Variable MinCycleTime Duration PropertyType Mandatory
HasProperty \ariable RevisionlD String PropertyType Mandatory
HasProperty Variable VendorlD Ulnt16 PropertyType Mandatory
HasProperty \ariable DevicelD Ulnt32 PropertyType Mandatory
HasProperty Variable DeviceAccessLocks Ulnt16 PropertyType Optional
HasProperty \ariable ProfileCharacteristic Ulnt16[] PropertyType Optional
HasProperty Variable VendorText String PropertyType Optional
HasProperty Variable ProductiD Siring PropertyType Optional
HasProperty Variable ProduciText String PropertyType Optional
HasComponent Object Alarms FolderType Optional
GeneratesEvent | ObjectType IOLinkDeviceEveniType Defined in 9.3.
GeneratesEvent | ObjectType I0LinkDeviceAlarmType Defined in 9.8

The specification also gives information on how 10-Link Device values are mapped to individual OPC
UA elements of IOLinkDeviceType. For example, according to the specification the Variable
SerialNumber of DataType String should be mapped to ISDU Index 0x0015 (Serial Number) and if the
device does not support this ISDU Index, the Variable shall not be provided [2]. In the scope of this

project we are not concerned about mapping, however it will be applied in future development.

Furthermore, we use the definitions for I0OLinkMasterType and IOLinkPortType that represent the
generic information of an 10-Link Master and 10-Link Port, respectively, to create them in SIOME. In
physical domain, an 10-Link Master has a port to which an 10-Link Devices may or may not be
connected. Therefore, IOLinkMasterType will contain a Mandatory Object Node of 10LinkPortType and
IOLinkPortType will contain an Optional Object of 10LinkDeviceType. Depending on whether an 10-
Link Device is connected to the port the instance 10LinkDevice will be present or absent in an instance of
IOLinkPort [2].

The resulting Information Model will now contain our new 10-Link Type Nodes as shown in Figure 27.

50

¥ @ TopologyElementType
¥ =Groupldentifier=

¥ |dentification

W Lock

¥ Methodset

W ParameterSet

@ EBlockType

¥ ComponentType

v

¥y ¥ - ¥y ¥ r¥

ConnectionPointType

10LinkDeviceType
» ¥ |0LinkMasterType
> & |OLinkPortType

P @ TransferServicesType
> @ TransitionType
@ VendorserverinfoType
> ¥ WriterGroupMessageType
» @ WriterGroupTransportType

[

Figure 27: 10-Link type nodes created in SIOME.

Before, we export our Information Model as XML file, we can create an instance of I0LinkMasterType
with I0LinkPort Object within it enabled, as well as 10LinkDevice within IOLinkPort also enabled. The
instaces of these Nodes will be static within the Information Model, meaning already present after

initializing the model in the server application.

4.1.4 Generating code files using UaModeler

The UaModeler is a specialized tool which complements the SDK, that is also distributed by UA. Not
only it simplifies the modeling of information itself, but additionally it generates the source code required
to implement the desighed model and provides graphical design of the address space. The generated code
exactly fits into the related SDK. The UaModeler can generate code for C++, ANSI C, .NET and High-
Performance SDKSs. For generating code, the UaModeler uses a template-based code generator. Several

templates are combined to template sets which are responsible for the generated code [13].

The GUI of UaModeler is shown in Figure 28.

51

Lﬁl Example Project - Unified Automation UaModeler E]@
Eile Edit Project ‘Window Settings Help
S - 2 1 AT o (| —
DlePER S ZIF ew
Projeck F X “ Attribukes g X
[Raoot] [Types] [ObjectTypes] [aseObjectTyp.] [ﬂvobjectwpt
Item Attribute Walue
=t ol Example Project +- Modeld 1:1001
= e M ; w_ d ModeClass Object Type
- H ain indaow +-BrowseMame 1:MyObjectType
P I"O] ect Win d ow o + DisplayMame MyObjectType
T8 iEXamplemoael, ua +- Description
B. .MET Client Templates ‘WriteMask, o
User'WriteMask 0
Information Model F X isAbstract False
Displayname Q Attributes
Folder Type -
+ % HistaricalDataZonfig. .. w in d ow
+ HistoryServerCapabil.
Information Model 5
- | =
Window g -
; HamespaceMetadata. g < Ed
) MamespacesType = Wi 8 x
£ OperationLimits Type o]
+ ServerCapabilitiesTypy | —
+ ServerDiagnostics Type = =
+ ServerRedundancyT.. Vlew w' ndow
+ ServerType L= |
+ SessionDiagnostics.. [y | [e e
<] (2] |[<] (] |[&] (2]
Cutpuk B X
Model examplemodel,ua loaded, af
Project Loaded. - B |
Output Window v
v

Figure 28: UaModeler GUI [13].

The GUI has a similar environment compared to SIOME. In order to generate the source files we need,
we begin by creating a new project. It is important to select the correct template sdk and version, to avoid
compatibility issues. Current version of UaModeler provides a template for HP SDK version 1.3 or higher
[13]. After selecting the template, we proceed to choosing the base models we will use, in our case we
select the DI model (UA Base model is selected by default). We can finalize the set up without any
additional input. After the project is created, we will remove the new model from Models folder in the
Project Window and replace it with our model generated by SIOME. We right click on the Models folder,
click “Add Existing Model” and import the XML file. We will modify the model settings of the DI model
and our 10OLink model. We will set the Library and Prefix of DI model as “di” and our IOLink model as
“lolink”. That way our generated files will be labeled properly. Before, generating files we will enable

code generation for the DI model, by right clicking on the model and “Generate Namespace”.
The Template Set for the High-Performance SDK creates the following files:

o Identifiers for static nodes

e Structures for structured DataTypes, including encode and decode functions:

52

o Normal structured DataTypes (without optional fields)
o Structured DataTypes with optional fields
o Unions
e Enumerations for enumerated DataTypes
e Binary files for the addressspace
e Functions for method handling:
o Checking input arguments
o Method stubs for simple method implementation
o A default provider
o A default server application

e A CMakeFile for the application

4.1.5 Generating dynamic address space binaries

Even though UaModeler is able to automatically generate the address space binaries, we need to do it
manually. The SDK contains Linux and Windows versions of xml2bin and xml2c tools. The Linux
version of the tools do not function properly whereas the Windows version does. The UaModeler for
Windows invokes the linux version of the tools and could possibly be due to a present software bug, that

is yet to be patched.

The commands that are executed to generate the address space binaries are as follows:

> xml2bin -i0 -0 ns0.bin Opc.Ua.NodeSet2.xml

> xml2bin -i2 -o Opc.Ua.Di.NodeSet2.bin Opc.Ua.NodeSet2.xml Opc.Ua.Di.NodeSet2.xml

> xml2bin -i3 -0 iolink_model.bin Opc.Ua.NodeSet2.xml Opc.Ua.Di.NodeSet2.xml iolink_model.xml

The commands are executed in Windows command line. It does not matter which version of the tools we

use as the information models are in binary format and can be loaded in any OS environment.

4.2 Building application in SDK environment

The building of the OPC UA stack and our application needs to be performed in a Linux environment,

therefore we run Debian 10 Linux OS in a virtualized form. For virtualization we use Virtual Box.

There are two approaches to building our application. It is possible to build our application outside the
SDK directory or inside the directory. | found it was easier and less error prone to build with our

application files located inside the SDK, thus avoiding the need to manually configure the link to the

53

libraries and set up necessary environment variables. The application folder was copied over to the
“examples” directory in the SDK and was added to the build list in the CMake file in the “examples”.
This would allow our application and the example applications provided by the SDK to be compiled
altogether.

4.2.1 Adding Value Store

In order to demonstrate the reading, writing and updating of values of arbitrary Variable Nodes, we will
implement a Value Store into our application. These are integrated in the SDK and offer easy access to
values. The implementation of a value store to access a device is much simpler than implementing service
handlers for read, write, and subscription, but the value store is limited to devices with synchronous
access to the data [4]. Our I0OLink provider will use the Value Store to store and access values of
corresponding Nodes in the 10Link Address Space.

The Value Stores have an associated store index, which is used to identify instances of Value Store and a
value index, used to identify a value inside a store. Both indices are saved in variable nodes, and the SDK

uses them find the associated store for the node and retrieve or write a value.

To implement our Value Store, we must declare an interface for our store and register it at the global
Value Store management [4]. The registration and variable node linkage to our Value Store is done during
provider initialization in provider_iolink.c, while the value array and accessor functions passed to the

registration are defined in provider_iolink_store.c.

First, we define an index for our custom store as a global variable. After loading and registering the

IOLink namespace, we create our Value Store the following way:

struct ua_valuestore_interface store_if;

/* register custom store */

ua_valuestore_interface init(&store if);

store_if.get_fct iolink_ store_get value;

store_if.attach _fct = iolink store attach value;

ret = ua_valuestore register_store(&store_if, &g _custom_store_idx);
if (ret != @) return ret;

We declare a store interface as a ua_valuestore_interface type structure and assign our getter and setter
functions and register the interface using ua_valuestore_register_store, which accepts the requested store

index as a second parameter. In our case, it is zero, meaning the SDK will assign a free index [4].

54

We add the line ua_valuestore_register_store to the cleanup process to ensure the memory for our custom
store is cleared properly to avoid memory leaks.

4.2.2 Getting device information from system files

In order to display the device information on the I0Link objects through the OPC UA Client, we can
either hardcoding the information directly or by extracting it from a file. This can either be an 10DD file
or a system file in the linux kernel. As a demonstration, we will read the device name from a system file
“/proc/sys/kernel/hostname” and assign it to a variable node “Model”. The following code demonstrates
the necessary steps:

modelNode = ua_node_find_numeric(g_prvider_iolink_nsidx, MODEL_NODE_ID);
static char buff[12];

FILE* fd = fopen("/proc/sys/kernel/hostname", "r");

fscanf(fd, "%s", buff);

fclose(fd);

ret = ua_variable set store_index(modelNode, g custom_store_idx);

ret = ua_variable_set value_index(modelNode, 1);

4.2.3 Reading Temperature sensor value

In order to read values from a device, connected to the RaspberryPi and, be able to cyclically read and
display the value through OPC UA Client, we will create an instance of a variable node, which will be a
child node to the IOLink Device object instance that is already loaded from the binary address space. As
the device, to read values from, we use DHT11 temperature sensor connected to the GPIO pins of the
RaspberryPi (Figure 31). We use a publicly available GPIO Interface library called “WiringPi” to read the
GPIO values and interpret them according to the timing sequence diagram described in the DHT11
specification. The functions which read the sensor value, stores it inside the value store that is assigned to
the temperature sensor variable node instance. This function is called each time we call the getter function

for the temperature sensor node.

55

Figure 328 DHT11 Temperature sensor connected to RaspberryPi Zero.

4.2.4 Adding Method

Certain functionality of connected 10-Link devices can be represented as method nodes. By invoking a
call service on a method node, it is possible to execute a function registered for that particular node. As a
demonstration we will implement a function which will manipulate GP1O pins on the Raspberry Pi Zero.
To control the GPIO pins we will use a C library available as a Debian package libgpiod-dev. It is

installed in our Debian environment through a terminal by using the following command:

> sudo apt-get install libgpiod-dev

This will install static libraries and API headers that we will include in our project. According to the
description of the library [14], the library uses file 1/O operations which are blocking functions and are
prohibited to be used synchronously by the IPC as it may block the main loop of the application. For this
reason the synchronous blocking implementation should be implemented asynchronously by spawning a
thread [4]. We will initialize the method and register custom service handler for calling methods for our
I0-Link provider in provider_iolink.c, the provider_iolink_methods.c will contain their definitions and

provider_iolink_system_command.c will contain the method handler and the method implementation.

During the initialization of the 10-Link provider, the method initialization is performed. The 10-Link
provider initialization is finalized by registering custom service handler for calling 10-Link methods:

/* register method call handler */
ctx->call = provider_iolink_opc_method_call;

56

The method handlers are represented in provider_iolink_methods.c as function pointers and are stored:

/* method handler type definition */

typedef ua_statuscode (*provider_iolink_opc_method_t)
(struct uaprovider_call ctx *ctx,
const struct ua_callmethodrequest *req,
struct ua_callmethodresult *res);

/* method table for iolink namespace */

#tdefine PROVIDER_IOLINK_OPC_MAX_METHODS 5

static provider_iolink_opc_method_t
provider_iolink_opc_methods[PROVIDER_IOLINK_OPC_MAX_METHODS];

Each method handler will accept parameters containing context information, as well as request data
passed over to the method, including input values, and response data that will contain the output data
attached after method execution. All the method handlers will be stored in an array, that will have a

predetermined size.

The provider_iolink_opc_method_init function will iterate over an array of type
provider_iolink_method_node which is a structure containing a method node index and its corresponding

method handler:

/* method node structure */
struct provider_iolink_method_node {
unsigned int method_idx;
enum ua_identifiertype type;
uint32_t numeric; /* numeric nodeid or index to value */
provider_iolink_opc_method_t handler;

}s

/* array of method node structures */
static const struct provider_iolink_method_node provider_iolink_method_nodes[] =

{
{0, UA_IDENTIFIER_NUMERIC, 1101, provider_iolink_ call system_command},

}s

In the code snippet above we used the numeric ID of value 1101, which identifies a method node, and
method handler provider_iolink_call_system_command that will be registered for that node. The methods
are registered to nodes using the SDK function ua_method_set_index, by passing the node handler and a

method index as parameters:

57

/* register method to node*/
ret = ua_method_set_index(node, method_index);
if (ret != @) return ret;

/* store the method handler */
provider_iolink_opc_methods[method_index] = methodhandler;

When a call service is invoked on a method node, the provider_iolink_opc_method call looks up the

method index assigned to the node by using ua_method _get_index:

ua_node_t method;
unsigned int method_index;

/* get node handler for requested method */
method = ua node find(&req->methods to call[i].method id);

/* get method index for corresponding method node */
ua_method get index(method, &method index);

After calling the relevant method handler, the provider_iolink_opc_method_call is finalized by calling
uaserver_call_complete. All method handlers consist of 3 sequential parts: checking input arguments,
calling the method implementation and attaching the output arguments to the response. In order to check
the input and output arguments we create an array of type descriptions of each input argument which
contains a pointer to the namespace index in case of a complex type the type ID, the variant type, and
flags to influence the behavior of the function. The arguments are checked using helper function
provider_iolink_check_arguments:
/* check argument types */
status_code = provider_iolink_check_arguments
(g_system_command_in_args,
countof(g_system_command_in_args),

ctx, req, res);

if (status_code != 9) return status_code;

After checking the input arguments, the method implementation is called:

58

status_code = provider_iolink_system_command(
ctx,
res,
&reqg->object_id,
&reqg->input_arguments[0].value.ui8,
&outl,
&out2);

The operation of the method handler is finalized by attaching the output from the method implementation

to the provider call result:

/* attach output to result */

status_code = provider_iolink_attach_arguments(
res,
g _system_command_out_args,
countof(g_system_command_out_args),
&outl,
&out2);

The implementation of the provider_iolink_system_command is as follows:

59

ua_statuscode provider_iolink_system_command/(
/* in */ struct uaprovider_call ctx *ctx,
/* in */ struct ua_callmethodresult *res,
/* in */ const struct ua_nodeid *object_id,
/* in */ uint8_t *cmd,
/* out */ uintl6_t *errortype,
/* out */ int32_t *status)

uint32_t ret;

/* parameters to be ignored by compiler */
UA_UNUSED(ctx);

UA_UNUSED(res);

UA_UNUSED(object_id);

*errortype = 0;
*status = -1;

ret = system_command_async(*cmd, cb);
*status = ret;

return ret;

Some of the input parameters are not used in this implementation, such as ctx, res and object_id, which
are context for the provider call, method result container and the node 1D of the parent node, respectively.
The input parameter cmd is a pointer that will contain the pin number, which will be passed to the
asynchronous implementation of the GPIO function, as well as a callback function, for debugging

purposes. The system_command_async is defined in the following code:

60

int system_command_async(uint8_t pin, void (*callback)(int error))
{

struct command_context *ctx;

pthread_attr_t attr;

int ret;

/* create thread context */

ctx = malloc(sizeof(*ctx));

if (ctx == NULL) goto memerror;

ctx->pin = pin;

ctx->callback = callback;

/* create detached thread */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHABLE);
ret = pthread_create(&ctx->thread, &attr, gpio_command, ctx);
pthread _attr_destroy(&attr);
if (ret != 0) goto threaderror;
return 0; /* success */
threaderror:
free(ctx);
memerror:
return -1;

We will create information context for gpio_command, which will contain information about the thread,
pin number and the callback function that will be executed at the end of the thread execution. The code
above uses platform specific functions to create the thread. In this case we are using Linux specific
functions, which are provided by the SDK. The thread created as detached, which means it will clear out
the memory automatically after it terminates. The gpio_command run the gpiod_ctxless_set value, which
is a high-level function that sets the GPIO pin to either high or low and executes a callback function that

after it terminates as defined in the given code:

61

/* The gpio command thread which uses a blocking function. */
static void *gpio_command(void *arg)

{
struct gpio context *ctx = arg;
int error;
error = gpiod ctxless set value("gpiochipe",
ctx->pin,
1,
false,
"consumer",
(void (*)(void *))usleep, (void *)5000000);
/* send callback */
ctx->callback(error);
/* cleanup memory */
free(ctx);
}

The GPIO library function accepts the GPIO chip label as its first argument, followed by, pin number,
GPIO value to be set, boolean value indicating if active state is when low, name of the consumer and an
optional callback [14]. In our case we use a sleep function as our call back, which sets the GPIO pin to
high for 5 seconds.

The overall result of this implementation is that the program returns to the caller immediately after the

method is invoked, thus not blocking the main loop of the application.

4.2.,5 Connecting to server using UaExpert and verifying functionality
The Raspberry Pi Zero does not provide a GUI and can only be accessed through a command line, using

ssh command. After connecting to the device, the project is executed the following way:

> .fiolink_model -d 32

The debug level option -d is set to 32, which displays the trace information. Running the application will

show the output in Figure 31.

62

pi: ./iolink_device -d32

.250512|391| uaapplication_load_certificates: matched cert based on config values (store 0)
.253791|391| uaapplication load certificates: check if configuration is correct!

.256845|391| uaapplication load certificates: change configuration to:

.257714|391| uaapplication_load_certificates: store://5AE4091F07B71919FB66F91B314126804239890C
.258704|391| uaapplication load certificates: loaded cert: store:// (store 0)

.260203|391| uaapplication load certificates: certificate structure validated

.343341|391| Registering dynamic address space: http://opcfoundation.org/UA/
.041819|391| Registering dynamic address space: urn:[CompanyName]:iolink device:raspberrypi
.100922|391| Registering dynamic address space: http://opcfoundation.org/UA/DI/
.149729|391| Registering dynamic address space: http://opcfoundation.org/UA/IOLink/

Server is up and running.

Listening on opc.tcp://raspberrypi:4840

Figure 32: Running the OPC UA Server application.

We can connect to the server using UaExpert, an OPC Client provided by UA. The server has to be added

by clicking on the “Add Server” button, which opens the menu window shown in Figure 32.

B Add Server ? X

Configuration Mame

Discovery Advanced

Endpoint Filter: |opc.tcp -

= Microsoft Windows Network ~
& Web Client Network
v Eﬂ Reverse Discovery
% < Double click to Add Reverse Discovery.. =
hd @ Custem Discovery
Qi < Double click to Add Server... »
), opctep://192.168.56.101:4840
v O opcitep://192.168.137.2:4840
v [iolink_device (opctep)
@i None - Mone (uatcp-uasc-uabinary)
|} Basic2565ha236 - Sign & Encrypt (uatcp-uasc
4 Basic2365ha256 - Sign (uatcp-uasc-uabinary)
* () Recently Used
W YasDK High Performance - Lesson01 - Basic236 - Sig

< >

Authentication Settings

@ Anorymous

Username Store

Password

Certificate

Private Key

Connect Automatically

OK Cancel

Figure 33: Adding server in UaExpert.

The connection can be established with three different security policies: None, Sign and Encrypt and
Sign. When the client is connecting to the server for the first time, it is required to manually accept the

Application Instance Certificate in order store the server’s certificate for future sessions. The connection

63

window also allows to use username and password to authenticate with the server if they are stored in the
server. In this case we connect without user authentication. After connecting to the server, it is possible to

traverse the address space in the Address Space window of the client (Figure 33).

Address Space [
7+ | Mo Highlight -
~ |3 |0LinkMasterSet L]
v o 10LInkMaster
I Capabilities
¥ DevicelD

I Identification
I Management
¥ MasterConfigurationDisabled
e MethodSet
i ParameterSet
v o Portl
I Capabilities
I Configuration
~ % Device
¥ DevicelD
I General
I Identification
¥ Manufacturer
e MethodSet

¥ Model

i ParameterSet

¥ ProductlD

¥ ProductText
Bevisignll

ﬁ Termperature Sensor I

@ VendorlD

¥ DeviceConfigurationDisabled
I Information ¥

Figure 34: Address Space window.

In Figure 16 we can see the entry point, which is the 10LinkMasterSet folder. It will contain all the
IOLinkMaster devices that are connected. Furthermore, Portl is I0LinkPortType node, which represents
the first port of the IOLinkMaster device. Device represents the I0LinkDevice connected to the port. The
Model variable node of the Device, highlighted in Figure 33, is the variable node we are using to
demonstrate the value store that we had implemented. Clicking on the Model will display its attributes in

the Attributes Window (Figure 34).

64

Attributes 5 X
Ol bk ® Q
Attribute Value &
* MNodeld ns=3:i=1082
Mamespacelndex 3
IdentifierType Mumeric
|dentifier 1082
ModeClass Yariable
BrowseMame 3, "Model"
DisplayMame ", "Madel”
Description
WriteMask BadAttnibuteldinwvalid (O
UserWritehask BadAttributeldinvalid (Ox
RolePermiszions BadAttributeldinvalid (O
UszerRolePermissions BadAttnibuteldinvalid (O
AccessRestrictions BadAttributeldlnvalid (D203 30000]
* Value
SourceTimestamp 5/5/2027 8:29:09.133 AM
SourcePicoseconds 0
ServerTimestamp 5/5/2021 8:29:00.133 AM
ServerPicoseconds 1]
StatusCode Good (DxD0D00000)
I Value raspberrypi
w DataType Localized Text
Mamespacelndex 0
IdentifierType Mumeric
Identifier 21 [Localized Text]
LEEY Y = Y | 1 (Cralael 7

Figure 35: Attribute window.

We can see the value is set to the device name which we extracted from the linux system file. We can
subscribe to the Temperature Sensor node, by drag and dropping it to the Data Access View. The

subscription service will poll the value with certain periodicity and display its updated value (Figure 35).

Data Access View

Server Display Name Value Datatype Source Timestamp Server Timestamp Statuscode

! Temperature Sensor 27 Ulnt32 8:53:10.945 AM 8:53:10.945 AM Good

1 iolink_device

Figure 36: Data Access View of subscribed nodes.

In order to verify the functionality of our method, we simply right-click on the “System Command”
method and click “Call...” (Figure 36).

65

Address Space g X
% No Highlight -
> [General A
> 2 Identification
¥ Manufacturer
v & MethodSet
% <Methodldentifier>
% ApplicationReset
- DeviceReset
@ Methodldentifier
% ParamBreak
% ParamDownloadToDeviceStart
% ParamDownloadToDeviceStop

>

>

?

>

i

>

>

> =% ParamDownloadToDeviceStore
> =% ParamUploadFromDeviceStart
> =% ParamUploadFromDeviceStop
> =% ReadISDU

> =% RestoreFactorySettings

>
>
@
@

& WritelSDU 4+ Rebrowse
MinCycleTime o Call..

Maodel
> & ParameterSet
@ ProductlD
¥ ProductText
RevisionlD
@ VendorlD v

Figure 37: Calling method.

This will open a call window (Figure 37), where we can enter the GPIO pin number as input argument.

B call SystemCommand on MethodSet ? X

Name Value DataType Description
cmd [z | Byte

Name Value DataType Description
ErrorType | | umt1s

Status | | mtz2

Figure 38: Calling OPC UA method.

This will call the method with the input value and return the output values as shown in Figure 38. In this
case the OPC UA will our service call instead of using generic Internal Provider services. The service call

66

will call the method handler registered for this particular node, which creates a thread that sets the GP10
pin to high for 5 seconds.

B call SystemCommand on MethodSet ? *
Name Value DataType Description
cnd |21 | Byte

Mame Value DataType Description
ErrorType |23 | UInti1s

Stats |0 | mts2

Figure 39: Call result after execution.

The setting of the GPIO pins can be visually verified by the small LEDs connected to the pins (Figure

38). The green LED is connected to pin number 21, while the yellow LED is connected to pin number 27.

Figure 40: Raspberry Pi Zero with LEDs connected to GP1O pins.

The termination of the thread is also observed by the call back function, which outputs the GPIO exit

status in Figure 40 that indicates successful termination of the thread.

67

Server is up and running.
Listening on opc.tcp://raspberrypi:48460

Object ID: 1080
GPIO exit status: 0O

Figure 41: Output from callback function after thread termination.

The demonstrations above serve only as a basis for handling the access of variables and the handling of
calling services that will be applied for connecting 10-Link values to nodes and calling 10-Link functions
using the 10-Link SMI in a similar manner.

5. Conclusion

As many technological industries are heading towards Industry 4.0, the use communication technologies
that allow interconnecting systems over the Internet or access through the cloud is becoming prevalent.
The integration of OPC UA with 10-Link represents on of the steps towards this advancement in the
industry. The aim of the thesis is to study these technologies, propose a solution for integration and
implement functionalities for a common use case on the Raspberry Pi board, acting as an 10-Link Master.

Within the scope of this thesis, the task to integrate 10-Link with OPC UA required the use of the
modelling framework of OPC UA to create the representation of the 10-Link devices as Objects, abiding
the companion specification provided by 10-Link Community [2]. Next, we used the created model to
produce binary address space representing an instance 10-Link Master with an 10-Link Device within its
first port. Later we used UA Modeller to generate code to prototype a working application. The generated
application code was thoroughly analyzed, and new code was added create the required functionality for
our use case demonstration. The analysis of the OPC UA SDK and necessary tools used to build OPC UA
applications gave us insight on how to integrate 10-Link with OPC UA, by mapping SMI services to its
corresponding nodes and demonstrated the functionality for accessing data and calling methods that
interact with the GPIO of the Raspberry Pi that acts as an 10-Link Master. Despite the challenges risen
throughout the project, the work done serves great contribution for further complete integration of 10-
Link with OPC UA and prototyping custom OPC UA applications.

68

6. References

[1] “IO-Link System Description: Technology and Application” -https://io-link.com/

[2] “IO-Link Community and OPC Foundation: OPC Unified Architecture for 10-Link Companion
Specification Release 1.0 December 01,2018 - https://io-link.com/

[3] “IO-Link Interface and System Specification v.1.1.3 June 2019 Order no: 10.002” —

https://io-link.com/

[4] http://documentation.unified-automation.com/uasdkhp/1.4.1/html/index.html

[5] http://documentation.unified-automation.com/uamodeler/1.6.3/html/index.html

[6] http://documentation.unified-automation.com/uaexpert/1.5.1/html/index.html

[7] “OPC 10000-1 - UA Specification Part 1 - Overview and Concepts 1.04” — https://opcfoundation.org/
[8] http://www.ascolab.com/en/technology-unified-architecture.html

[9] “OPC 10000-3 - UA Specification Part 3 - Address Space Model 1.04” - https://opcfoundation.org/

[10] “OPC 10000-4 - UA Specification Part 4 - Services 1.04” - https://opcfoundation.org/

[11]
https://support.industry.siemens.com/cs/attachments/109755133/109755133 SiOME_DOC V19 en.pdf

[12] “OPC 10000-100 - UA Specification Part 100 - Devices 1.02.02” - https://opcfoundation.org/

[13] http://documentation.unified-automation.com/uamodeler/1.6.3/html/index.html

[14] https://github.com/brgl/libgpiod

[15] “CrossCompiling.pdf” - https://www.unified-automation.com/

[16] https://sourceforge.net/projects/raspberry-pi-cross-compilers

[17] 10-Link Integration — Edition 2, Specification for PROFINET

[18] PROFINET System Description — Technology and Application, 2014

69

https://io-link.com/
https://io-link.com/
https://io-link.com/
http://documentation.unified-automation.com/uasdkhp/1.4.1/html/index.html
http://documentation.unified-automation.com/uamodeler/1.6.3/html/index.html
http://documentation.unified-automation.com/uaexpert/1.5.1/html/index.html
https://opcfoundation.org/
http://www.ascolab.com/en/technology-unified-architecture.html
https://opcfoundation.org/
https://opcfoundation.org/
https://support.industry.siemens.com/cs/attachments/109755133/109755133_SiOME_DOC_V19_en.pdf
https://opcfoundation.org/
http://documentation.unified-automation.com/uamodeler/1.6.3/html/index.html
https://github.com/brgl/libgpiod
https://www.unified-automation.com/
https://sourceforge.net/projects/raspberry-pi-cross-compilers

