
Czech Technical University in Prague
Faculty of Electrical Engineering

Information system for managing student club members

Bachelor thesis

Varvara Muzovatova

Study program: Software Engineering and Technology
Supervisor: Ing. Jǐŕı Šebek

Prague, January 2022

ii

Thesis Supervisor:
Ing. Jǐŕı Šebek
Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2
160 00 Prague 6
Czech Republic

Copyright © January 2022 Varvara Muzovatova

In Prague, January 2022

..
Varvara Muzovatova

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

371311Osobní číslo:VarvaraJméno:MuzovatovaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Informační systém pro správu členů studentského klubu

Název bakalářské práce anglicky:

Information system for managing student club members

Pokyny pro vypracování:
Proveďte analýzu řešení dané problematiky. Navrhněte a implementujte aplikaci pro správu členů
studentského klubu Masařka. Řešení implementujte jako webovou aplikaci primárně s použitím
technologií Java (Spring Boot), JavaScript, Docker a případně dalších vhodných dodatečných
technologií.
Aplikace by měla umožňovat a realizovat následující funkcionality:
1) evidence členů klubu a spravování jejich osobních informaci
2) autentizace uživatelů a autorizace k oprávněným funkcím na základě uživatelských roli
3) spravování zařízení členů klubu pro přístup k internetu
4) funkcionalita rezervačního systému pro přístup členů klubu do společenských a sportovních
místnosti Masarykovy koleje
5) periodické stahováni transakcí z bankovního účtu přes API banky
6) párovaní transakci s účty členů klubu a evidenci plateb členských příspěvku
Proveďte nasazení webové aplikace na produkční server. Zhodnoťte přínos aplikace z pohledu
koncových uživatelů informačního systému.

Seznam doporučené literatury:
[1] BASTANI, Kenny. LONG, Josh. Cloud Native Java: Designing Resilient Systems with Spring Boot,
Spring Cloud, and Cloud Foundry. Sebastopol: O'Reilly Media, 2017. ISBN 978-1449374648
[2] CARNELL, John. Spring microservices in action. Shelter Island, NY: Manning, 2017. ISBN 978-1-
61729-398-6
[3] HANCHETT, Erik. Vue.js in action. Shelter Island: Manning, 2018. ISBN 978-1-61729-524-9
[4] WALLS, Craig. Spring Boot in action. Shelter Island, NY: Manning, 2016. ISBN 978-1-61729-398-6
[5] PECINOVSKÝ, Rudolf. Návrhové vzory. Brno: Computer Press, 2013. ISBN 978-80-251-1582-4
[6] HEROUT, Pavel. Testování pro programátory. České Budějovice: Kopp, 2016. ISBN 978-80-7232-
481-1

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Jiří Šebek, kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 04.01.2022Datum zadání bakalářské práce: 21.02.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Jiří Šebek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Abstract

The aim of this bachelor’s thesis is to create a new information system for the Masarka
student club, which will eliminate the shortcomings of the existing solution and simplify
the registration of club members and the management of access to the club services. This
thesis describes the entire process of development starting with an analysis of the former
information system, the result of which was a summary of all available functionality and
its shortcomings. Based on the performed analysis and specified requirements a new
information system has been designed and implemented. After the implementation was
completed, the new system was deployed to the production server and tested by the
functional testing. At the end, the evaluation of the new system from the perspective of
end users was performed as well as the proposal for future extensions was given.

Keywords: Information system, Java, Spring Boot, Vue.js, JWT

v

Abstrakt

Ćılem této bakalářské práce je vytvořit nový informačńı systém pro studentský klub
Masařka, který odstrańı nedostatky stávaj́ıćıho řešeńı a zjednoduš́ı evidenci člen̊u klubu
a správu př́ıstupu ke klubovým službám. Tato práce popisuje celý proces vývoje poč́ınaje
analýzou bývalého informačńıho systému, jej́ımž výsledkem bylo shrnut́ı veškeré dostupné
funkcionality a jej́ıch nedostatk̊u. Na základě provedené analýzy a zadaných požadavk̊u
byl navržen a implementován nový informačńı systém. Po dokončeńı implementace byl
nový systém nasazen na produkčńı server a otestován funkčńım testováńım. Na závěr
bylo provedeno zhodnoceńı nového systému z pohledu koncových uživatel̊u a byl podán
návrh budoućıch rozš́ı̌reńı.

Kĺıčová slova: Informačńı systém, Java, Spring Boot, Vue.js, JWT

vi

Acknowledgements

I would like to thank my supervisor Ing. Jǐŕı Šebek for his help, useful advice and friendly
attitude throughout the writing of my thesis.

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.

viii

List of Tables

2.1 React advantages and disadvantages comparison [3] [6] 11
2.2 Angular advantages and disadvantages comparison [3] [6] 12
2.3 VueJS advantages and disadvantages comparison [3] [6] 12

ix

List of Figures

3.1 Project architecture diagram . 15
3.2 Class diagram . 18
3.3 Session-based authentication . 19
3.4 Token-based authentication . 20

4.1 Spring Security objects interactions . 26
4.2 Example of REST API using the Swagger UI 28
4.3 Login view . 32
4.4 Registration view . 33
4.5 Profile view . 34
4.6 Reservations view . 35
4.7 Banned reservations view . 35
4.8 Admin panel - Users view . 36
4.9 Admin panel - User roles view . 37

5.1 Graph for compiling possible testing scenarios 43

x

Contents

Abstract v

Abstrakt vi

Acknowledgements vii

Declaration viii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Aims of project . 2

2 Analysis 3
2.1 Analysis of the former system . 3

2.1.1 Technologies and security . 3
2.1.2 Functionality and usability . 3
2.1.3 Perspectives of repetitive exploitation 4

2.2 Analysis of user requirements . 4
2.2.1 Functional requirements . 4
2.2.2 Non-functional requirements . 7

2.3 Research of existing solutions . 8
2.3.1 Information system of Silicon Hill club 8
2.3.2 Information system of Pod-o-lee club 8
2.3.3 Information system on the Hlavkova dormitory 9
2.3.4 Conclusion . 9

2.4 Research of front-end technologies . 9
2.4.1 React . 10
2.4.2 Angular . 10
2.4.3 Vue.js . 10
2.4.4 Comparison of advantages and disadvantages 11

2.5 Back-end technologies . 13
2.5.1 Spring Boot . 13

xi

CONTENTS xii

3 Design of new information system 14
3.1 Architecture and used technologies . 14

3.1.1 Additional front-end components 15
3.2 Data model . 17
3.3 Authentication . 18
3.4 Authorization . 20

4 Implementation 22
4.1 Back-end application . 22

4.1.1 Spring Boot project initialization 22
4.1.2 Spring datasource configuration . 23
4.1.3 Spring cache configuration . 23
4.1.4 Spring Java Mail Sender configuration 23
4.1.5 Fetching of payments via bank API 24
4.1.6 Spring security configuration . 25
4.1.7 Spring Boot project directory structure 27

4.2 Front-end application . 28
4.2.1 Prerequisites . 28
4.2.2 Vue.js project initialization . 28
4.2.3 Front-end application directory structure 29
4.2.4 Axios configuration . 30
4.2.5 Vue Router configuration . 31
4.2.6 Vuex store . 31
4.2.7 UI development . 32

4.3 Deployment . 37

5 Testing 39
5.1 Functional testing . 39

5.1.1 Back-end API testing . 39
5.1.2 Selenium tests . 40
5.1.3 User testing . 44

6 Conclusion 45
6.1 Evaluation of the system from the perspective of end users 46
6.2 Ideas for further improvements . 46

6.2.1 Integration of payment gateway . 47
6.2.2 Users activity logging . 47
6.2.3 Language localisation . 47

Bibliography 49

Chapter 1

Introduction

Around 1997, a group of students created an experimental computer network at Strahov

dormitories, which in mid-1998 outgrew the dimensions of a private local network. There-

fore, the network had been dealing with numerous legislative and financial problems. The

solution turned out to be relatively simple, to integrate the functioning of the network

into the newly established CTU Student Union in the form of an autonomous club. This

is how the Silicon Hill club was founded, which became the first club of CTU Student

Union. Gradually, students have built all the infrastructure, not only the network, but

also application systems. All this has been performed within their own resources and

independently, often as various semester projects or bachelor’s and master’s theses. As

soon as this model proved successful, other dormitory clubs began to emerge and over

time became part of the CTU Student Union. One of them is a Masarka Student Club

(MAS), which was created by merging the Student Self-government of Masaryk dormi-

tory and the MAS club, which has so far been the club of administrators of the Masaryk

dormitory network and their network users. [1]

Over time, the list of services offered by clubs grew as did the number of active members,

and today clubs on most dormitories offer their members other services, such as running

fitness centers and entertainment rooms, organizing leisure activities and much more,

however the main mission of all dormitory clubs remains ensuring of a high-speed internet

connection and access to online study materials for students accommodated in Czech

Technical University in Prague (CTU) dormitories.

1.1 Motivation

Today Masarka student club offers its members, who are mainly students accommodated

in Masaryk dormitory, two main categories of services. The first one is access to high-

speed internet connection via Wi-Fi and via cable connection, the second is an access to

sport and entertainment rooms available in Masaryk dormitory.

1

CHAPTER 1. INTRODUCTION 2

To ensure the effective functioning of the club, especially for the purposes of registration

of club members, management of their personal data, management of access to individual

services and an overview of paid membership fees, Masarka student club requires a proper

information system.

For many years, in MAS club there had been used the DIS information system for these

purposes, implemented in pure PHP far in 2008, also known as the “Disinformation Sys-

tem”, what doesn’t sound very optimistic. The former information system is very confus-

ing, outdated and no longer meets today’s common standards. In the recent period, there

have also been some changes in the configuration of network elements and the network

topology, as a result of which the existing system became to be not usable anymore. It’s

further exploitation would require a fundamental rework of the system. Due to these

reasons, it seems much more appropriate to implement a completely new system.

As a member of the board of the MAS club and also a long-term active member, I have

sufficient experience with the shortcomings of the previous information system and I also

have a concrete idea of what features and functionalities the new information system

should offer.

1.2 Aims of project

The aim of this bachelor’s thesis is to create a new information system for the MAS club,

which will eliminate the shortcomings of the existing solution and simplify the registration

of club members and the management of their services.

In the first steps the research and analysis will be performed. Based on the information

obtained from analysis, comprehensive requirements for the new information system of

the MAS club will be written. Subsequently, this system will be implemented and its

functionality tested. Finally, an evaluation of the entire system will be made and propos-

als for its possible further development will be presented.

As some of the requirements of the new information system are closely related to the

computer network, some chapters may contain basic information about network layer,

however, network topology, mounting or configuration of network elements, and other

network issues are not part of this project. Network layer and network elements are

already configured by network administrators and this project is focused on creation of

the information system.

Chapter 2

Analysis

This chapter deals with the analysis of user requirements, research of the former system

and other already existing solutions as well as choosing the relevant technologies for

application development. Thanks to the analysis, it is possible to correctly determine the

requirements and then design the system, which will best meet user requirements.

2.1 Analysis of the former system

As it was already mentioned, since the year 2008 the MAS club has been using the

DIS system, also known as the ”Disinformation System”. The system is very confusing,

outdated and after recent changes in network configuration, it no longer meets today’s

requirements.

2.1.1 Technologies and security

The former information system has been implemented using pure HTML, CSS and PHP

without using any libraries or frameworks. It also contained a set of support scripts writ-

ten in Bash, Python and PHP, which helped with automatization of some tasks. The

data storage function is performed by PostgreSQL RDBMS.

The security of the former system was very vulnerable and couldn’t be guaranteed. There-

fore an access to the information system has been regulated by firewall configuration,

allowing access only from IP addresses owned by network administrators.

2.1.2 Functionality and usability

The system successfully deals with its primary function to store information about club

members. It allows to store records of new pending registrations, records of already reg-

istered members and the records of their devices and membership payments. The system

also offers the functionality of facilities management system, which actually wasn’t fre-

3

CHAPTER 2. ANALYSIS 4

quently used because of its impracticality.

The main shortcoming of the former information system is that it does not distinguish

any user roles. The user simply can login the system, if its IP address has been added

into the access list. And if the user has access, then it already has access to everything.

Another shortcoming is that the reservation system, which allows members to make reser-

vations on sport and entertainment rooms, is not fully integrated into the common infor-

mation system and some simple operations, like adding a new room or banning a user,

could only be performed manually by direct database manipulation.

2.1.3 Perspectives of repetitive exploitation

The former information system successfully deals with its primary task, the club members

evidence. But it has a lot of disadvantages and if it should be used again, then it def-

initely will be necessary to solve all its shortcomings, first of all the security issues at least.

The implementation of a new information system in the MAS club has been under con-

sideration for a long period. In my opinion, it is much more reasonable to implement a

new system than to rework the former one.

2.2 Analysis of user requirements

Based on the experiences obtained during my work in MAS club, as well as based on the

analysis of the former information system and its shortcomings, that have been described

in the previous part, I will try to formulate basic requirements of the new information

system, in the following section.

2.2.1 Functional requirements

Functional requirements are product features, which focus on user requirements and de-

fine the basic system behaviour. Essentially, implementation of these features allows the

system to function as it was intended.

This section will first describe user authorization roles that the system should imple-

ment, including the detailed description of their access rights. Afterwards, there will be

described specific features of the information system related to the evidence of club mem-

bers, evidence of received membership payments and features related to the providing of

services to club members.

CHAPTER 2. ANALYSIS 5

User authorization roles

The MAS club is managed by a group of active members, that includes chairman of the

club, club board members, network administrators, registrars and facility managers, each

of them performs some specific function in the club.

This distribution of functions should be reflected in the new information system by pro-

viding the specific access rights to each group of users. The system definitely should have

at least the following user roles:

• Administrator

• Club chairman

• Club board member

• Registrar

• User

Administrator

The user with administrator role has an access to all system functionalities, except the

ability to manage user roles of other members, this feature is available only for the club

chairman.The list of administrator access rights:

• to manage and edit all system records, except the modification of user roles

• to register new club members

• to manage all system settings

• to ban (deactivate) the users for violation of club rules

• to activate the user without valid membership payment

• to assign a payment that cannot be automatically paired with a specific user

Club chairman

The club chairman has the same access rights like the administrator, but additionally he

is allowed to assign and change the user roles of any club member. Essentially, the club

chairman has absolutely all access rights.

Club board member

Club board members have access to absolutely all information in the system, but they

only can read it and can not modify any data.

CHAPTER 2. ANALYSIS 6

Registrar

The registrars are those active members who help the MAS club with registration of new

members. They can confirm pending registrations and manage already registered users.

The list of registrar access rights:

• to register new club members

• to manage and edit users personal information, except the modification of user roles

• to reset users password

• to review users payments, but without ability to modify

• to print paper registration form

Facility managers

Facility managers are those active members who help the MAS club with managing sports

or entertainment rooms.

The list of facility manager access rights:

• To review users personal information

• To review users reservations

• To manage settings related with reservation system

User

This role is implicitly assigned to each new member of the club.

The list of user access rights:

• To review its own profile and personal information

• To review its own membership payments

• To edit contact email address

• To edit password

Management of club members records

The application should allow to store and manage the records of club members. According

to the CTU Student Union regulations, for each member, it is necessary to register the

name, surname, date and place of birth, address of permanent residence, e-mail address

and registration date. Optionally the system can store some additional information like

phone number or dormitory room number.

CHAPTER 2. ANALYSIS 7

Registration of new members

The application should enable any not registered user to apply for a new membership.

Pending registrations are stored in a separate table and only after the identity of the

person is verified and paper registration form is signed, then the registration can be

completed and a new user record is created. The new members can be registered only by

users authorized by the club chairman, usually registrars and administrators.

Management of payments records

The new information system should be connected to the club bank account via its API and

information about new transactions should be regularly downloaded to the information

system database. Incoming payments should be automatically assigned to users based on

the matching of variable symbol and user ID. In the case that incoming payment can not

be assigned automatically, the administrators or club chairman should be able to assign

it manually.

Reservations of sport and entertainment rooms

The new information system should integrate the reservation system for sport and en-

tertainment rooms managed by MAS club. Access to these rooms is one of the services

available to club members with paid membership fee. Users should be able to create reser-

vations on the desired room. Facility managers should have an ability to ban (deactivate)

access to the reservation system to users for violation of MAS club rules.

2.2.2 Non-functional requirements

Security

The new information system must ensure the security of user sensitive data and only

authorized user should be able to access users personal data.

Usability

The new information system should have clear and responsive design. It should work fine

on mobile and desktop devices. Working with this system should be easy and intuitive

without any necessity to learn users how to use it. All significant deletion operations must

be confirmed by pop-up dialogues to prevent accidental deletion of data.

Maintainability

The implemented solution should be easy to maintain. Administrators should be able

to easily monitor the status of the application and be able to restart it at any time if

necessary for some reason.

CHAPTER 2. ANALYSIS 8

Extensibility

The implemented system should take into account possible further extensions, so it should

be appropriately designed with this in mind.

2.3 Research of existing solutions

Research of the existing technologies was focused mainly on the information systems of

other clubs of the CTU Student Union, as their systems represent the closest alternative

to the system that satisfy requirements of the Masarka club. In the following section will

be presented only the systems that represent the highest perspective.

2.3.1 Information system of Silicon Hill club

The Information system of Silicon Hill club is a professional fully horizontally scalable

application. Its front-end was implemented using the Twitter Bootstrap framework. The

back-end application was implemented using the framework Ruby on Rails and Post-

greSQL as a datastore.

The system allows to distinguish different membership types and provides a pretty ver-

satile management of club members. But the system is primarily adapted to manage the

access to the internet connection and it doesn’t provide many options to manage other

types of services. Additionally, the system provides management of the club’s assets and

an overview of drawing funds from the club’s budget.

Information system of the Silicon Hill is definitely a professional and very complex solution

that proved itself on Strahov dormitories, where it has been operated to manage thousands

of users and their devices. Deployment of this system for the Masarka club purposes would

require an extensive adaptation of computer network configurations. Additionally it will

be necessary to extend the system and implement own reservation system. Therefore,

exploitation of this system for the Masarka club purposes is considered as too complex.

2.3.2 Information system of Pod-o-lee club

The information system of Pod-o-lee club is built from individual micro-services that are

implemented in Python. The system contains the following micro-services:

• Interface for an overview and management of club members.

• Micro-service for administration of whole system.

• Micro-service for communication with bank API.

CHAPTER 2. ANALYSIS 9

• Micro-service for communication with card chip system

All services are controlled by the front-end application that was implemented using the

Twitter Bootstrap framework. Services are implemented mainly in Python language us-

ing the Django framework. Communication between individual services is performed by

RabbitMQ message broker.

2.3.3 Information system on the Hlavkova dormitory

The information system on the Hlavkova dormitory was implemented using the Twitter

Bootstrap technology for front-end and PHP language with Nette Framework for the

back-end application. The information system provides the following functionalities:

• Management of club members.

• Management of devices and their access to the internet connection.

• Management of user payments and their automatic downloading via bank API.

• Integration with e-mail server and possibility to send emails.

• Integration with LDAP database.

• Generating of reports.

• Generating and printing of user registration form.

2.3.4 Conclusion

All three information systems, presented in this section, could theoretically be used for

the needs of the Masarka club. They all provide a sufficient functionalities to manage club

members, their devices and payments. But none of them has an implemented functionality

of the reservation system and all related issues. Another disadvantage is that each of these

systems requires its own specific computer network configuration and topology. This mean

that eventual exploitation of any of these systems would require an extensive adaptation

to make them suitable for the club needs.

2.4 Research of front-end technologies

This section will focus on research and comparison of JavaScript front-end technologies.

As I had almost no serious experiences with front-end development before, this analysis

will be based mainly on numerous articles available on internet. According to many

resources, today the top three most popular JavaScript front-end technologies are React,

Vue.js and Angular. At first these three technologies will be briefly introduced, afterwards

some pros and cons will be presented.

CHAPTER 2. ANALYSIS 10

2.4.1 React

React is an open-source JavaScript library for building user interfaces which has been

developed by Facebook engineers. It provides a powerful model for work and helps to

create declarative and component-oriented users interfaces featuring JSX syntax across

multiple platforms. [2] The key feature of React is a virtual Document Object Model

(DOM) with one-way data binding. Since React is a library, unlike other frameworks, it

does not maintain some important features. That’s why React is meant to work together

with other libraries, such as for state management, routing, and interaction with API. [3]

Key features:

• Open-source JavaScript library for building user interfaces, originally created by

engineers at Facebook.

• React provides simple and flexible component-based API.

• Components are a fundamental unit in React are extensively used in React appli-

cations.

• React implements a virtual DOM layer between the program and the browser DOM.

• Virtual DOM allows efficiently update browser DOM using a fast diffing algorithm.

• The virtual DOM allows for excellent performance. [2]

2.4.2 Angular

Angular or also referred as Angular 2+ is a modern TypeScript based open-source JavaScript

library that is sponsored and maintained by Google and has been used in some of their

large and complex web applications. Angular released in 2016 is an improved edition of

AngularJS, with a boosted performance and a bunch of powerful features added. Angular

taps into some of the best aspects of server-side development and uses them to enhance

HTML in the browser, creating a foundation that makes building rich applications simpler

and easier. Angular ensures two-way data binding for immediate synchronization between

the model and the view, so any change in the view will instantly reflect in the model and

in reverse. Angular features Directives that allow developers to program special behav-

iors of the DOM, making it possible to create rich and dynamic HTML content. Angular

applications are built around a clear design pattern that emphasizes creating applications

that are easily extendable, maintainable, testable and standardized. [4] [3]

2.4.3 Vue.js

Vue.js is a progressive open-source JavaScript library that allows to add interactive be-

havior and functionality into context wherever JavaScript is running. It can be used to

CHAPTER 2. ANALYSIS 11

create separate websites, or be the basis for an entire enterprise application. [5]

Vue.js is one of the most popular front-end frameworks nowadays that similarly to Re-

act features virtual DOM and component-based architecture but offers a two-way data

binding, which underlies its high-speed performance. All that makes it easier to update

related components and track data changes, what is desired for any application in which

real-time updates are a must. [3]

2.4.4 Comparison of advantages and disadvantages

Advantages Disadvantages

• Reusability of components

• Virtual DOM - consistent and seam-

less performance

• Can be combined with many other

JS libraries

• Frequently updated

• Backed by Facebook

• Lack of a well-elaborated documen-

tation

• Complexities related to JSX syntax

Table 2.1: React advantages and disadvantages comparison [3] [6]

CHAPTER 2. ANALYSIS 12

Advantages Disadvantages

• Component-based architecture

• Two-way data binding

• Directives and dependency injection

features

• Highly testable / manageable appli-

cations

• Strong community, good training

materials, etc.

• Backed by Google

• Difficult for beginners and over-

whelming for smaller teams

• Limited SEO capabilities

• Bloated code and large in size

Table 2.2: Angular advantages and disadvantages comparison [3] [6]

Advantages Disadvantages

• Fast and tiny in size

• Excellent documentation

• Component-based architecture

• Beginners friendly

• Simple syntax

• Typescript support

• Two-way data binding

• Has a positive effect on SEO

• Pretty new and developed by private

individuals

• Relatively small community

• Has no powerful business behind it

Table 2.3: VueJS advantages and disadvantages comparison [3] [6]

CHAPTER 2. ANALYSIS 13

2.5 Back-end technologies

Despite the fact that back-end technologies is a quite broad topic, this section will be

limited and focused mainly on a Java and Spring Boot framework. Therefore, it will be

more of a brief introduction to specific technology rather than a full research of a given

topic. It is my personal choice and it is reasoned by the fact that Java and Spring Boot

are the prime back-end technologies experienced and taught within my study program at

the CTU.

2.5.1 Spring Boot

Spring is an open-source framework that provides comprehensive infrastructure support

for developing Java applications. Spring Boot is basically an extension of the Spring

framework, which eliminates the boilerplate configurations required for setting up a Spring

application. Its main goal is to make Spring applications development faster and more

efficient.[7]

Main Spring Boot features:

• Ability to create stand-alone Spring applications

• Embedded web server Tomcat, Jetty or Undertow

• Provides set of ’starter’ dependencies to simplify build configuration

• Avoidance of complexities with XML configurations

• Provides production-ready features such as metrics, health checks, and externalized

configuration

Additionally, at the Spring official web-site there is available a Spring Initializr tool that

allows to prepare pre-configured Maven or Gradle projects with selected dependencies and

makes the development of Spring Boot applications even easier.

Chapter 3

Design of new information system

An analysis performed in the previous chapter revealed that the most of existing solu-

tions as well as the club’s former information system are inappropriate for the purposes

of MAS club. Their exploitation would require extensive modifications to satisfy all the

requirements of our club, therefore it seems to be much more reasonable to implement

new information system from scratch.

In this chapter the new information system will be designed. It will be designed primarily

with regard to today’s commonly used trends, with the main emphasis on the simplicity

of the system and especially on its easy extensibility.

3.1 Architecture and used technologies

Based on the performed analysis and user requirements it has been chosen, that new in-

formation system should be designed to be a web application of client-server model. As

it is expected that the functionality of the new information system may be extended in

the future, or it may be integrated with some other applications, the use of client-server

architecture will allow an easier integration of possible extensions.

The new information system will be developed as two separate applications, one for the

server side and one for the client side. Therefore in all further sections this will be taken

into account and distinguished respectively. The figure 3.1 demonstrates a simplified

project architecture diagram.

The selection of technologies was impacted mainly by today’s current trends and my

personal experiences from studying on CTU. The development of this application is per-

formed for exploitation in the MAS club, what is a non-profit organization, therefore the

selection of open-source libraries and frameworks is highly preferable.

The Java language and the Spring Boot framework were chosen as a core technology for

14

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 15

the back-end application. Beside my personal preferences, the reason for choosing Java

and Spring Boot framework is also the fact that Java and Spring Boot framework are fre-

quently taught on CTU and many administrators of the MAS club have also experienced

it during their studies. This also increases the chance that other programmers will take

over the further development of the system. The back-end application will be designed

to implement a RESTful API that will provide endpoints for manipulation with data.

The front-end part will be developed as a single-page application using JavaScript pro-

gramming language and Vue.js framework, which belongs to one of the most popular

open-source JavaScript frameworks today. Since I had no experience with any JavaScript

framework before, my personal choice for Vue.js can be reasoned mainly because of its

detailed documentation, excellent performance as well as its rising popularity and rich

variety of additional components.

In the following sections there will be briefly described all additional components and

technologies selected to be used within this project.

Figure 3.1: Project architecture diagram

3.1.1 Additional front-end components

Vue.js

Vue.js is a progressive and one of the most popular open-source JavaScript frameworks

nowadays. More detailed information about this framework and its features has been

presented in the previous chapter.

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 16

Vuetify

Vuetify is a complete UI framework built on top of Vue.js. It is developed exactly ac-

cording to Material Design specification with every component crafted to be modular,

responsive, and performant. The main goal of the project is to provide developers with

the plenty of tools and components they need to build rich and responsive user interfaces.

Vuetify puts a great emphasis on the responsive design and ensures that its applications

just works out of the box whether it’s on a phone, tablet, or desktop computer. [8]

Vuetify has a very active development cycle and is patched weekly. In addition, every

major release is accompanied with 18 months of long-term support for the previous minor

version. [8]

In this project I have decided to use Vuetify for the purposes of UI development as it

seems to be a good choice for it, as well as it seems to fully satisfy the responsive design

user requirement.

Vue Router

Vue Router is the official library for page navigation in Vue.js applications. It deeply inte-

grates with Vue.js core library and allows building of the SPA (Single Page Applications)

by associating certain URL routes to the specific components that should be rendered. [9]

In this project Vue Router component will be used for implementation of SPA page

navigation.

Vuex

Vuex is a the official state management pattern and library for Vue.js applications. It

serves as a centralized store for all the components in an application, with rules ensuring

that the state can only be mutated in a predictable fashion. [10]

Within this project, Vuex will be used to store the information of logged-in user and its

JWT token.

Axios

Axios is a promise-based HTTP client library. It will be used within the client application

to make the asynchronous requests to the RESTful API of the server application.

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 17

VeeValidate

VeeValidate is very useful form validation library for Vue.js applications. It enables not

only to ensure correct values are submitted, but also provides a pleasant UX (User Ex-

perience) for users and UI related features. VeeValidate allows significantly to save the

time spent working on custom form validation solutions. [11] VeeValidate main features:

• Tracking form state

• UI and UX

• Synchronous and asynchronous validation

• Handling submissions

In this project I have decided to use VeeValidate for the form validation tasks.

3.2 Data model

The figure 3.2 contains a class diagram that describes project entities and relationships

between them.

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 18

Figure 3.2: Class diagram

3.3 Authentication

When designing this application, two authentication options were taken into account.

The first option is a session-based authentication, quite simple and popular authentica-

tion method, that is frequently used on many websites.

The figure 3.3 demonstrates a process of session-based authentication, when a user logs

into a website, the server will generate a session for that user and store it in memory or

database. Server then returns a session id for the client to save it in browser cookies. Each

session on the server has its expiration time. After that time, the session expires and the

user must re-login to create another session. If the user has logged in and the session has

not expired yet, the cookie, including session id, is always sent with all HTTP requests

to the server. Server compares this session id with the stored session to authenticate and

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 19

then returns a corresponding response. [12]

Figure 3.3: Session-based authentication

The session-based authentication has proved itself and works well with many websites.

But the problem may occur, if the server application should serve not only for browser

clients, but also some others, as not all clients must support the cookies. For example if

one day a mobile client-side application will be developed and should be also served by

the same server application, then the session-based authentication may be not the best

solution. For these cases there exists another option, a token-based authentication, which

works in a slightly different way and may be more suitable. [12]

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 20

Figure 3.4: Token-based authentication

The figure 3.4 demonstrates a process flow of token-based authentication using JSON

Web Token (JWT). Instead of creating a session, the server application generates a JWT

from user login data and sends it to the client. The client saves the JWT and attaches

it to every request that requires authentication. The server will then validate the JWT

and return the corresponding response. In comparison with session-based authentica-

tion, that needs to store all sessions on the server side, the big advantage of token-based

authentication using JWT is that the tokens are stored in a local storage on the client side.

For the purposes of the information system from this project a token-based authentication

using JWT has been selected. As it was already mentioned, there is a perspective that

the given information system may be later integrated with other applications, therefore

the token-based authentication seems to be more suitable for this project. [13]

3.4 Authorization

In this project the authorization process will be performed on the both sides, one on

the side of back-end application and another control mechanism will made on the side of

front-end application. In the back-end application all authorization and authentication

settings will be configured together in Spring Security configuration classes. In the client

application authorization will be managed by Vue Router component, according to the

predefined rules, which will determine whether the requested view may be accessed by

CHAPTER 3. DESIGN OF NEW INFORMATION SYSTEM 21

currently logged-in user or not. Both applications will implement all authorization roles

defined in the analysis chapter, with the corresponding access rules.

Chapter 4

Implementation

In this chapter there will be summarized practical steps of implementation of new in-

formation system of the MAS club. Development of the information system has been

separated into two projects, one for the back-end application and another for the front-

end application, therefore all steps will be respectively distinguished for both applications.

4.1 Back-end application

4.1.1 Spring Boot project initialization

The Spring Boot application has been initialized as a Maven project using the Spring

Initializr tool, with the following components added:

• Spring Web - Component for building Spring web applications, including RESTful

applications. It contains embedded Apache Tomcat web server by default.

• Spring Security - Component allowing to customize authentication and autho-

rization of the Spring application.

• Spring Data JPA - Component allowing to interact with data stores using the

Java Persistance API.

• PostgreSQL Driver - JDBC and R2DBC driver that allows Java programs to

connect to a PostgreSQL database.

• Spring Data Redis (Access+Driver) - Java Redis client that allows Spring

applications to interact with Redis cache.

• Spring Java Mail Sender - Java Mail client that allows to send e-mails in Spring

applications.

• Thymeleaf - Java HTML templating engine.

• Lombok - Java annotation library which helps to reduce boilerplate code.

22

CHAPTER 4. IMPLEMENTATION 23

• Apache PDFBox - An open-source Java library for working with PDF documents.

• (Optional) Spring Boot DevTools - Provides fast application restarts, LiveReload,

and configurations for enhanced development experience.

As a result, pre-configured project already contains prepared pom.xml file with all neces-

sary build configurations and dependencies.

4.1.2 Spring datasource configuration

PostgreSQL server application is running on the MAS server. Specific user account and

database for the given project have been created. The following configurations have been

added to application.properties file:

1 spring.datasource.driverClassName=org.postgresql.Driver

2 spring.datasource.url=jdbc:postgresql://mk.cvut.cz :5432/ masarka_is

3 spring.datasource.username=masarka_is

4 spring.datasource.password=<password >

This is the only place in project, where the database specific credentials are provided.

Therefore, theoretically, if it will be needed, database configuration can be easily switched

to some other database only by modifying this credentials.

4.1.3 Spring cache configuration

The cache configuration in Spring Boot project is performed similarly like datasource

configuration in application.properties file. For the purposes of this project a Redis

cache has been used. Redis server application has been launched in Docker on the MAS

server. The following configurations have been added to application.properties file:

1 spring.cache.type=redis

2 spring.redis.host=mk.cvut.cz

3 spring.redis.port =6379

4 spring.redis.password=<password >

To enable caching, additionally the @EnableCaching annotation must be added to main

Spring Boot application class. Afterwards cache-specific annotations @Cacheable, @CachePut

and @CacheEvict can be used inside the project classes to interact with the cache storage.

4.1.4 Spring Java Mail Sender configuration

The configuration of Java SMTP client in Spring Boot project was performed in ap-

plication properties file. Masarka club uses Google G-Suite services for hosting an e-

mail server. Therefore, the configuration of the e-mail client is similar like configura-

tion of any regular G-Mail account. The following configurations have been added to

application.properties file:

CHAPTER 4. IMPLEMENTATION 24

1 spring.mail.host=smtp.gmail.com

2 spring.mail.port =587

3 spring.mail.username=no -reply@mk.cvut.cz

4 spring.mail.password=<password >

5 spring.mail.properties.mail.smtp.auth=true

6 spring.mail.properties.mail.smtp.starttls.enable=true

After providing proper configurations to application.properties file, sending of e-mails

can be easily performed just by importing of an autowired JavaMailSender object and

then calling of an appropriate functions on it.

1 @Autowired

2 JavaMailSender javaMailSender;

3

4 public void sendRegistrationConfirmationEmail(User user) throws

MessagingException {

5 // create thymeleaf context object

6 Context context = new Context ();

7 context.setVariable("user", user);

8

9 // process email template

10 String emailText = templateEngine.process("emails/registration -

confirmation", context);

11

12 // create new email message object

13 javax.mail.internet.MimeMessage mimeMessage = javaMailSender.

createMimeMessage ();

14 MimeMessageHelper helper = new MimeMessageHelper(mimeMessage);

15 helper.setSubject("Masarka Club Registration");

16 helper.setText(emailText , true);

17 helper.setTo(user.getEmail ());

18

19 // send email message

20 javaMailSender.send(mimeMessage);

21 }

Listing 4.1: Example of method that sends a registration confirmation email

4.1.5 Fetching of payments via bank API

Regular payments fetching via Fio bank API was solved by implementation of Spring’s

scheduling tasks. Spring allows to create periodical tasks by adding the @Scheduled

annotation to the methods. A specific execution time is then defined by a classic cron

expression in the annotation of the given function. Additionally, to allow scheduling, the

@EnableScheduling annotation must be added to main Spring Boot application class.[14]

The process of fetching the payments and a subsequent users activation or deactiva-

tion is performed by two scheduled methods. One scheduled method just downloads the

CHAPTER 4. IMPLEMENTATION 25

payments and assigns them to the corresponding users. The second scheduled method

then iterates all users and activates only those, who have assigned payment for the given

semester with a sufficient amount.

1 @Scheduled(cron = "0 0 * * * ?")

2 public void fetchPaymentsFromBankAPI () {

3 try {

4 paymentService.fetchPaymentsFromBankAPI ();

5 } catch (JsonProcessingException e) {

6 System.out.println("ERROR Payments fetching failed");

7 }

8 }

Listing 4.2: Example of Spring scheduled method that runs payments fetching

Fetching of the transactions itself is then performed by sending appropriate HTTP request

to the URL with bank API token inside. Bank API token with read-only rights was

generated using the Fio bank internet banking.

1 public void fetchPaymentsFromBankAPI () throws JsonProcessingException {

2 RestTemplate restTemplate = new RestTemplate ();

3 String url = "https :// www.fio.cz/ib_api/rest/periods/" +

BANK_API_TOKEN + "/2021 -07 -01/2121 -01 -01/ transactions.json";

4 ResponseEntity <String > response = restTemplate.getForEntity(url ,

String.class);

5

6 ObjectMapper mapper = new ObjectMapper ();

7 JsonNode root = mapper.readTree(response.getBody ());

8 JsonNode transactions = root.path("accountStatement").path("

transactionList").path("transaction");

9

10 for (JsonNode transaction : transactions) {

11 Payment payment = parseTransactionNode(transaction);

12

13 if (! paymentRepository.existsByTransactionId(payment.

getTransactionId ())) {

14 paymentRepository.save(payment);

15 }

16 }

17 }

Listing 4.3: Example of method that fetches transactions via Fio bank API

4.1.6 Spring security configuration

As it was described earlier, this project is based on a token-based authentication using

JWT. All classes related to authentication are implemented in the security package. The

core of Spring Security configuration is a WebSecurityConfigurerAdapter class that has

been extended and customized in WebSecurityConfig class. It provides HttpSecurity

CHAPTER 4. IMPLEMENTATION 26

configurations to configure cors, csrf and rules for protected resources.

UserDetailsService interface has been implemented in UserDetailsServiceImpl class.

It overrides a method which loads user by username and returns a UserDetails object

that Spring Security can use for authentication and validation. UserDetails object imple-

mented in UserDetailsImpl class contains all necessary information, such as username,

password and authorities, to build an Authentication object.

UsernamePasswordAuthenticationToken gets username and password parameters from

login request and AuthenticationManager will use it to authenticate a login account.

AuthenticationManager object validates the UsernamePasswordAuthenticationToken

object and if successfully, then it returns a fully populated Authentication object, in-

cluding granted authorities. Based on this Authentication object, a new JWT token

is generated by a specific builder method of jjwt library. The JWT token is generated

using a HS512 signature algorithm with a preset secret and an expiration set to 86400000

ms. After JWT is generated, it is attached to the request response.

OncePerRequestFilter object provides a doFilterInternal() method that is executed

every time a new request to API is performed. The method performs parsing and valida-

tion of JWT, loading of user details and validation of authorities. After all authorization

constraints are met, then the appropriate request response is returned. All these Spring

Security objects interactions have been visualized in the figure 3.2. [13], [15], [16]

Figure 4.1: Spring Security objects interactions

CHAPTER 4. IMPLEMENTATION 27

4.1.7 Spring Boot project directory structure

All project classes are structured into the packages according to Spring Boot naming con-

ventions from official documentation. The project contains four typical packages model,

repository, service and controller, where the most of the server application is im-

plemented. The following graph demonstrates a source code directory structure of the

server application.

src

main

java

cz.cvut.mk.is

configs.....................................Additional config classes
controller

account...........................User account related controllers
auth....................................Authentication controllers
rest..REST API controllers

exceptions.......................................Custom exceptions
model...Entities
payloadCustom request/response classes
repository...Repository layer
scheduler....................................Spring scheduling tasks
security.........................Spring Boot Security related classes
service..Service layer
utils...Additional utils classes
MasarkaISApplication.java............Spring Boot Application class

resources

static..............................Contains built front-end application
templates

application.properties

test

Application controller package contains three other packages, where the controllers

are divided according to the provided functionality. Controllers of the account package

provide only the functionality related to currently logged-in user. Controller from the

auth package provides only the login endpoint. Controllers from the rest package provide

RESTful API for all entities. The figure 4.2 demonstrates the back-end application API

using the Swagger UI tool.

CHAPTER 4. IMPLEMENTATION 28

Figure 4.2: Example of REST API using the Swagger UI

4.2 Front-end application

4.2.1 Prerequisites

Development of JavaScript applications usually requires two prerequisites to be installed.

The first is Node.js - an open-source, cross-platform, JavaScript runtime environment

that executes JavaScript code outside a web browser. The second is npm (Node Package

Manager), which allows to install additional packages. In my case Node.js v14.16.0

and npm 7.10.0 versions have been used.

Additionally, Vue CLI component is required to initialize the Vue.js project. It can be

easily installed by npm using the following command npm install -g @vue/cli. After

installation is complete, there will become available new executable command vue in the

terminal. In this project Vue CLI version 4.5.11 has been used.

4.2.2 Vue.js project initialization

At this moment it is assumed, that all prerequisites from the previous section are al-

ready installed. Now a new Vue.js project can be initialized using the following command

vue create project-name, where the ”project-name” should be replaced by actual name

of the project. Alternatively, the Vue.js projects can be initialized and then managed by

a very handy graphical tool, that can be launched by command vue ui.

CHAPTER 4. IMPLEMENTATION 29

After running the vue create command, the Vue CLI tool will start an interactive com-

mand line dialog, where the default preset or manually configured settings can be selected.

The manual mode is preferred, as in the next step it will allow to specify which settings

and additional components should be used in the project. For example in my case addi-

tional components Vue Router and Vuex have been selected. Another important option

to be selected is a version of Vue.js library to be used. In this project Vue.js version 2

has been used.

After the project initialization is complete, the rest of additional components should be

installed. Additional components like Vuetify, Axios, VeeValidate can be easily installed

using the npm tool.

After the all installations are complete, information about all dependencies will be re-

flected in the package.json file.

4.2.3 Front-end application directory structure

The following graph demonstrates a source code directory structure of the client applica-

tion with a brief description of most important folders and files.

src

assets

axios

headers.js

index.js......................................Axios main configuration file
components

ui..UI components
admin..................................Admin panel related components
mainUser panel related components

layouts...Layout components
plugins......................................Additional plugins configurations
router

routes..Routes used in Vue Router
index.js................................Vue Router main configuration file

services

store

modules...Vuex modules files
index.jsVuex main configuration file

utils

views................All Vue components that may be rendered as a whole page
App.vue...Main Vue.js application file
main.jsMain JavaScript file where Vue.js application is mounted

CHAPTER 4. IMPLEMENTATION 30

4.2.4 Axios configuration

In this application Axios component will be used for HTTP communication with server

application. Its main configuration has been placed to the following file axios/index.js.

First important thing that is going to be configured here is a base URL of the server

application, so later only the relative paths can be used in whole application. And in the

case the base URL will be changed for some reason, it will be enough to change it only

in one place.

Another important things that can be set here are interceptor functions, that should be

executed before or after sending HTTP requests. In this application there will be set an

interceptor for processing HTTP response status. In any case the response status code

equals 401 (Unathorized), 403 (Frobidden) or 500 (Server error), the corresponding alert

message will be displayed to user.

1 ...

2 const requestAxios = axios.create ({

3 baseURL: process.env.VUE_APP_SERVER_URL

4 })

5

6 requestAxios.interceptors.response.use(null , error => {

7 // console.log(error)

8 if (error.response.status === 401) {

9 router.push('/login?alert=login ')
10 }

11 if (error.response.status === 403) {

12 store.dispatch('alert/setAlert ', {

13 message: 'Unauthorized - You don\'t have permission to perform

this action.',
14 type: 'warning '
15 })

16 }

17 if (error.response.status === 500) {

18 store.dispatch('alert/setAlert ',
19 {

20 message: error.response.data.message ? error.response.data.

message : 'Unknown error',
21 type: error.response.data.type ? error.response.data.type : '

error '
22 })

23 }

24 return Promise.reject(error)

25 })

Listing 4.4: Example of axios/index.js file

CHAPTER 4. IMPLEMENTATION 31

4.2.5 Vue Router configuration

In this application Vue Router component has been used to implement page navigation

between individual views. Additionally, Vue Router plays very important role in man-

aging access to views based on the predefined authorization roles. All main Vue Router

configurations can be found in the router/index.js file. This file basically contains

initialization of new router object and definition of routes array, which are imported and

concatenated from individual routes files in routes folder. Routes parameter is an array

of objects, that keep an information about URL path and its corresponding view com-

ponent to be rendered. Additionally every object keeps an information about the auth

parameter, which determines whether the authentication is required to access this view

and roles parameter which defines user roles that may access this view.

Additionally, in router/index.js there is implemented a router beforeEach() function,

which acts like an interceptor that is executed each time when some view is accessed. It

checks whether all conditions for the given view are met. If yes, the requested view is

rendered. If no, the proper alert message is displayed or redirect performed.

4.2.6 Vuex store

In this application Vuex store plays a fundamental role in implementation of JWT authen-

tication. After the login request is successfully sent and JWT token is received from the

server application, the JWT token is then stored into the centralized Vuex store, which is

accessible from any component of Vue.js application. Afterwards, before each request to

server, the JWT token is retrieved from the store and attached to request headers. The

following code snippet demonstrates a login function implemented in Vuex authentication

module (store/modules/auth.module.js):

1 actions: {

2 async login ({ commit , dispatch }, payload) {

3 try {

4 const { data } = await axios.post('/auth/login ', { ... payload })

5 commit('setUser ', data)

6 commit('setToken ', data.accessToken)

7 await router.push('/')
8 } catch (e) {

9 await store.dispatch('alert/setAlert ', {

10 message: 'Wrong credentials.',
11 type: 'error '
12 })

13 }

14 }

15 },

Listing 4.5: Example of login function from Vuex auth module

CHAPTER 4. IMPLEMENTATION 32

4.2.7 UI development

In this section there will be briefly described the development of UI components of the

front-end application. All UI components can be categorized into three groups. The

layout components, smaller building components like header, sidebar, footer, and the last

group are view components, which combine everything together and present page as a

whole. According to the access rules, all views can be further divided into the views with

public access, views of authenticated user and views of the admin panel.

Login view

Any unauthenticated user is automatically redirected to Login view (4.3).

Figure 4.3: Login view

CHAPTER 4. IMPLEMENTATION 33

Registration view

Each field of the registration form is validated using VeeValidate component. Submit

button is available only after all input fields are correctly filled (4.4).

Figure 4.4: Registration view

CHAPTER 4. IMPLEMENTATION 34

Profile view

After the successful login, user is automatically redirected to the Profile view (4.5), where

can be observed all personal data filled during the registration. User can only change its

email or update password. Other data can be changed only in admin panel by authorized

users.

If the currently logged-in user is authorized to access the admin panel, then the corre-

sponding ”Admin panel” button in the top-right corner will be available (next to the

Home button).

On the left side of the screen is a collapsible sidebar with menu navigation.

Figure 4.5: Profile view

CHAPTER 4. IMPLEMENTATION 35

Reservations view

The following figures demonstrate Reservation view, where the user can make a reservation

for sport and entertainment rooms.

Figure 4.6: Reservations view

Figure 4.7: Banned reservations view

CHAPTER 4. IMPLEMENTATION 36

Admin panel - Users view

Figure 4.8 demonstrates admin panel for managing user records. It allows to add new

user, edit or remove existing user, reset user’s password. Data table is interactive and

allows to search items by specified word.

Figure 4.8: Admin panel - Users view

Admin panel - User roles view

Figure 4.8 demonstrates admin panel for managing user roles. Currently, only the user

with ”chairman” role can assign or change users roles.

CHAPTER 4. IMPLEMENTATION 37

Figure 4.9: Admin panel - User roles view

4.3 Deployment

Both, the back-end and the front-end, applications were deployed as Docker containers

on the production server of the Masarka club. All the communication with Docker con-

tainers is performed through the Traefik proxy server, which ensures three very important

functionalities in this project:

• It assigns domain names to a corresponding containers

• It redirects all traffic from HTTP to HTTPS

• It ensures automatic generation of Let’s Encrypt TLS certificates for HTTPS com-

munication

The source codes of both, the back-end and front-end, applications are accessible in the

following GitLab repositories:

• Back-end repository - https://gitlab.fel.cvut.cz/muzovvar/masarka-is-backend-app

• Front-end repository - https://gitlab.fel.cvut.cz/muzovvar/masarka-is-frontend-app

Building processes for both, back-end and front-end, applications are handled by CI/CD

pipelines of GitLab. Used Dockerfile and .gitlab-ci.yml files can be observed in

corresponding repositories.

https://gitlab.fel.cvut.cz/muzovvar/masarka-is-backend-app
https://gitlab.fel.cvut.cz/muzovvar/masarka-is-frontend-app

CHAPTER 4. IMPLEMENTATION 38

The new information system was launched in October 2021 and since that moment the

system has been successfully operated in the Masarka club for the entire period of the

winter semester 2021/2022.

Production version of the information system can be accessed on the following URLs:

• Main application (front-end) - https://is.mk.cvut.cz

• API (back-end) - https://api.is.mk.cvut.cz

https://is.mk.cvut.cz
https://api.is.mk.cvut.cz

Chapter 5

Testing

Testing is an important part of any software development project. It allows to determine

whether the application meets all function and non-functional user requirements. In this

chapter there will be presented functional tests that were used to test the implemented

system.

5.1 Functional testing

Functional tests are used to verify that the resulting application performs all the tasks

for which it is meant to. In general, all functionality implemented in the application is

tested and it is verified that this functionality works properly, meets user requirements

and has all the required functionality specified in the customer’s requirements list.

In this project application functionality has been tested by two sets of tests. One for

testing the back-end application API and another set of integration tests for testing the

functionality of the whole system.

5.1.1 Back-end API testing

During the development phase of the back-end application, a set of regression tests was

created to help debug and verify the functionality of the back-end API. Postman appli-

cation was used for these purposes. It is a quite popular tool for manual testing of the

RESTful APIs, but it also allows to create collections of automatic tests, which then can

be run at once. The set of tests may be run using the graphical user interface of Postman

application as well as in the command line using the Newman tool.[17] The Postman

application allows to save the whole collection of tests and export them to the one JSON

configuration file.

The Postman application allows to test the request response status, data querying using

GET method, data storing using POST method, data deletion using DELETE method.

39

CHAPTER 5. TESTING 40

Basically, it allows to cover all types of requests for RESTful API. For more complex solu-

tions the Postman also allows to create environments and work with the variables across

the various tests.[18] This functionality is very useful for handling the user authentication

and authorization processes.

While developing RESTful API, I have created a set of regression tests using the Post-

man tool, what made the application development much easier. Created tests cover the

functionality of CRUD methods for all project entities as well as the testing of other

methods related to user account. All tests have been saved to one collection and exported

to MAS_IS_postman_tests.json file. The file is available in the Gitlab repository of the

back-end application. This set of tests can be very useful in case of any further extensions

development.

All Postman tests can be accessed at the back-end project GitLab repository:

https://gitlab.fel.cvut.cz/muzovvar/masarka-is-backend-app

5.1.2 Selenium tests

Selenium is an open-source project that brings together a number of tools and libraries

aimed to automate web browsers. It is mainly used for automated testing of web applica-

tions, but certainly it is not limited to just that.[19] It provides web drivers for all popular

web browsers and supports wide range of programming languages including Python, Java,

Ruby, Perl, PHP, JavaScript and others.[20]

In this project, selenium tests were implemented to test the functionality of the front-end

application and system as a whole, therefore they act in the role of some kind of accep-

tance tests. The tests itself were implemented in Python using the selenium package and

the Firefox web driver.[21]

In following section are described possible passages through the application. For detailed

analysis have been chosen all possible patterns of the user with the chairman role, which

has all options of the user role and at the same time the possibilities of all other available

roles.

Branch points:

• Start

• LP - Login panel

• PREG - Show pre-registration form

• FP - Send link to reset password

https://gitlab.fel.cvut.cz/muzovvar/masarka-is-backend-app

CHAPTER 5. TESTING 41

• SPP - Show profile panel

• SNER- Save new email or room

• CP - Change password

• SUP- Show user payments

• SUD - Show user devices

• SUR - Show user reservations

• ND - Add new device

• ED - Edit device

• DD - Delete device

• CHR - Choose room

• SMR - Show my reservations

• SRR- Show reservations of the room

• NR - Save new reservation

• DMR - Delete my reservations

• SAP - Show admin panel

• SREG - Show registrations panel

• SNU - Submit new user

• DREG - Delete registration

• SU - Show all users

• RES - Reset password

• SGP - Show generated pdf

• EDU - Edit user

• DELU - Delete user

• SURL - Show users roles

• CURL - Change user roles

• SD - Show all devices

CHAPTER 5. TESTING 42

• ND - Save new device

• EDD - Edit device

• DELD - Delete device

• SP - Show all payments

• EDP - Edit payment

• DELP - Delete payment

• SR - Show all reservations

• EDR - Edit reservation

• DELR - Delete reservation

• SRI - Show reservation items

• NRI - Save new reservation item

• ERI - Edit reservation item

• DRI - Delete reservation item

• BANS - Show all bans

• NB - Save new ban

• EDB - Edit ban

• DELB - Delete ban

• End

CHAPTER 5. TESTING 43

Figure 5.1: Graph for compiling possible testing scenarios

Implemented selenium tests cover all presented combinations.

All selenium tests can be accessed at the front-end project GitLab repository:

https://gitlab.fel.cvut.cz/muzovvar/masarka-is-frontend-app

Test results

Functional tests helped to reveal a series of bugs related mainly to the functionality of

the reservation system. For example, users could make reservations with the wrong time

ranges or make parallel reservations for the same item, which should not be available. All

detected mistakes have been fixed.

https://gitlab.fel.cvut.cz/muzovvar/masarka-is-frontend-app

CHAPTER 5. TESTING 44

5.1.3 User testing

In parallel with the automated functional testing, user testing was also being performed

with the help of the club administrators team. User testing covered approximately the

same testing scenarios that have been presented with selenium tests.

Chapter 6

Conclusion

The main aim of this project was to create a new information system for the administra-

tion of members and services of the Masarka student club, which would fully replace the

former system and at the same time eliminate its shortcomings, as the former system was

very outdated and no longer satisfied all the needs of the club.

In the first steps an analysis of the former information system solution was performed, the

result of which was a summary of all available functionality and its shortcomings. During

this analysis, major shortcomings were revealed, which mainly concerned the security is-

sues, the absence of user authorization roles, inability of the user to register its devices by

himself and the absence of one centralized system for managing all club services including

user reservations.

In the next step, based on the results of the analysis of the former solution, the com-

prehensive functional and non-functional requirements for the new information system

were designed and presented. With regard to these requirements, an analysis of available

existing solutions was performed, oriented primarily on the open-source projects. The

research of available technologies revealed that neither of the solutions covered all the re-

quirements of the club, and their eventual exploitation would require some kind of further

adaptation to make them suitable for the club needs. Based on the results of research, I

decided that the implementation of a new information system is much more reasonable.

The choice of back-end technologies to be used in the implementation was mainly affected

by my personal experiences and knowledge acquired during the study on CTU. Therefore,

Java programming language and Spring Boot framework were preferred. But in the case

of front-end technologies the choice was not so obvious, as I previously had almost no

experience with front-end development. In the next step I performed a brief research of

the most popular JavaScript front-end technologies and decided to choose Vue.js as the

main framework for the further front-end development.

45

CHAPTER 6. CONCLUSION 46

Based on the performed analysis and specified requirements a new information system

has been designed and implemented, using the selected technologies. After the imple-

mentation was completed, the new information system was deployed on the production

server of the Masarka club. Afterwards, it was necessary to test the functionality of the

complete system before it could be launched for public exploitation by students. A set of

automatic tests and user testing by a team of club administrators was performed. Few

iterations of tests helped to reveal some bugs, which were then gradually fixed and the

system was finally launched for public access by club members.

The new system was launched in October 2021 and since that moment the system has

been successfully operated in the Masarka club. For the entire period of operation in the

winter semester 2021/2022 approximately 250 new users have been registered, more than

650 user devices have been added and more than 1500 reservations have been performed

by club members. Currently, since the moment the system was launched for public access,

no significant errors or shortcomings were detected.

6.1 Evaluation of the system from the perspective of

end users

From the point of view of the regular user as well as the privileged user (user with at least

one additional user role), the main advantages of the new system can be summarized as:

• An intuitive and responsive design, that works fine on mobile and desktop devices.

• One common system for managing all club services at one place.

• Ability of regular users to add their own devices without necessity to contact ad-

ministrators.

• Fast and regular synchronization of payments from bank account.

• Intuitive pre-registration form with fields validation, that makes the process of users

registration faster.

Especially, the ability of regular users to add their own devices without the necessity to

contact the club admins, was very positively evaluated by club members. Basically, it

brings simplicity for regular users and less work for club administrators.

6.2 Ideas for further improvements

There are many ideas for further extensions, but the most significant are the following:

CHAPTER 6. CONCLUSION 47

6.2.1 Integration of payment gateway

Currently, the information system can only fetch transactions from the bank account and

pair them with the corresponding user, but it doesn’t provide users any options on how to

pay the membership fee online. It would be great to implement this feature, integrate the

information system with some payment gateway and enable users to pay their membership

fees directly in our system.

6.2.2 Users activity logging

Currently, the information system doesn’t provide any sophisticated logging of users ac-

tivity. It would be good to implement it, as it can be very useful while monitoring some

suspicious activity. For example, it can be useful for monitoring the frequent switching of

user devices, which can lead to a suspicion of an internet connection sharing.

6.2.3 Language localisation

Currently, the information system provides only the English language localisation, as the

most students at Masaryk dormitory are international students. But in general, it would

be good to adapt the application and implement an ability to simply add other language

localisations.

Bibliography

[1] Historie: Studentská unie čvut. [Online]. Available: https://old.su.cvut.cz/cs/
historie.

[2] M. T. Thomas, React in action. Manning Publications, 2018, isbn: 978-1617293856.

[3] D. Karczewski, What are the best frontend frameworks to use in 2021? [Online].
Available: https://www.ideamotive.co/blog/best-frontend-frameworks.

[4] A. Freeman, Pro Angular 9 build powerful and dynamic web apps. Apress, 2020,
isbn: 978-1484259979.

[5] E. Hanchett, Vue. js in action. Manning Publications Company, 2018, isbn: 978-
1617294624.

[6] Best frontend frameworks of 2021 for web development, 2021. [Online]. Available:
https://www.simform.com/best-frontend-frameworks/.

[7] Baeldung, A comparison between spring and spring boot, 2021. [Online]. Available:
https://www.baeldung.com/spring-vs-spring-boot.

[8] Why you should be using vuetify. [Online]. Available: https://vuetifyjs.com/en/
introduction/why-vuetify/.

[9] Vue router. [Online]. Available: https://router.vuejs.org/.

[10] What is vuex? [Online]. Available: https://vuex.vuejs.org/.

[11] Vee-validate overview. [Online]. Available: https://vee- validate.logaretm.

com/v4/guide/overview.

[12] Y. Balaj, “Token-based vs session-based authentication: A survey”, Sep. 2017.

[13] A. Anand, Spring boot api security with jwt and role-based authorization, 2020.
[Online]. Available: https://medium.com/@akhileshanand/spring-boot-api-
security-with-jwt-and-role-based-authorization-fea1fd7c9e32.

[14] Scheduling Tasks. [Online]. Available: https://spring.io/guides/gs/scheduling-
tasks/.

[15] J. Carnell, Spring microservices in action. Manning Publications Company, 2017.

[16] C. Walls, Spring Boot in action. Manning, 2016.

[17] Postman, Running collections on the command line with newman. [Online]. Avail-
able: https://learning.postman.com/docs/running- collections/using-

newman-cli/command-line-integration-with-newman/.

[18] Postman2, Postman writing tests. [Online]. Available: https://learning.postman.
com/docs/writing-scripts/test-scripts/.

48

https://old.su.cvut.cz/cs/historie
https://old.su.cvut.cz/cs/historie
https://www.ideamotive.co/blog/best-frontend-frameworks
https://www.simform.com/best-frontend-frameworks/
https://www.baeldung.com/spring-vs-spring-boot
https://vuetifyjs.com/en/introduction/why-vuetify/
https://vuetifyjs.com/en/introduction/why-vuetify/
https://router.vuejs.org/
https://vuex.vuejs.org/
https://vee-validate.logaretm.com/v4/guide/overview
https://vee-validate.logaretm.com/v4/guide/overview
https://medium.com/@akhileshanand/spring-boot-api-security-with-jwt-and-role-based-authorization-fea1fd7c9e32
https://medium.com/@akhileshanand/spring-boot-api-security-with-jwt-and-role-based-authorization-fea1fd7c9e32
https://spring.io/guides/gs/scheduling-tasks/
https://spring.io/guides/gs/scheduling-tasks/
https://learning.postman.com/docs/running-collections/using-newman-cli/command-line-integration-with-newman/
https://learning.postman.com/docs/running-collections/using-newman-cli/command-line-integration-with-newman/
https://learning.postman.com/docs/writing-scripts/test-scripts/
https://learning.postman.com/docs/writing-scripts/test-scripts/

BIBLIOGRAPHY 49

[19] The Selenium Browser Automation Project. [Online]. Available: https://www.

selenium.dev/documentation/.

[20] S. Raghavendra, Python Testing with Selenium: Learn to Implement Different Test-
ing Techniques Using the Selenium WebDriver, 1st ed. Apress, 2020.

[21] Selenium with Python — Selenium Python Bindings 2 documentation. [Online].
Available: https://selenium-python.readthedocs.io/index.html.

https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/
https://selenium-python.readthedocs.io/index.html

	Abstract
	Abstrakt
	Acknowledgements
	Declaration
	List of Tables
	List of Figures
	Introduction
	Motivation
	Aims of project

	Analysis
	Analysis of the former system
	Technologies and security
	Functionality and usability
	Perspectives of repetitive exploitation

	Analysis of user requirements
	Functional requirements
	Non-functional requirements

	Research of existing solutions
	Information system of Silicon Hill club
	Information system of Pod-o-lee club
	Information system on the Hlavkova dormitory
	Conclusion

	Research of front-end technologies
	React
	Angular
	Vue.js
	Comparison of advantages and disadvantages

	Back-end technologies
	Spring Boot

	Design of new information system
	Architecture and used technologies
	Additional front-end components

	Data model
	Authentication
	Authorization

	Implementation
	Back-end application
	Spring Boot project initialization
	Spring datasource configuration
	Spring cache configuration
	Spring Java Mail Sender configuration
	Fetching of payments via bank API
	Spring security configuration
	Spring Boot project directory structure

	Front-end application
	Prerequisites
	Vue.js project initialization
	Front-end application directory structure
	Axios configuration
	Vue Router configuration
	Vuex store
	UI development

	Deployment

	Testing
	Functional testing
	Back-end API testing
	Selenium tests
	User testing

	Conclusion
	Evaluation of the system from the perspective of end users
	Ideas for further improvements
	Integration of payment gateway
	Users activity logging
	Language localisation

	Bibliography

