
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Motion Planning for Autonomous Car
Manipulator

Vadym Ostapovych

Supervisor: doc. Ing. Tomáš Krajník
January 2022

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483578Personal ID number:Ostapovych VadymStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Motion Planning for Autonomous Car Manipulator

Bachelor’s thesis title in Czech:

Plánování pohybu pro autonomní mobilní manipulátor vozidel

Guidelines:
The aim of this work is to design, implement and experimentally test methods for planning the movement of a mobile
manipulator. The manipulator must be able load cars, move them to the intended location and unload unload them there.
This work will focus on a motion planning in spatially-constrained areas of a parking lot. This method will be integrated
into the Robotic Operating System (ROS) and experimentally verified on a real platform.
1) Familiarize yourself with the Lipraco Phoenix vehicle and its control system.
2) Familiarize yourself with the Robotic Operating System (ROS).
3) Prepare a simulation environment to test the developed methods.
4) Get acquainted with the motion planning methods used in mobile robotics.
5) Select suitable methods and perform their preliminary tests in the simulator.
6) Based on the results of preliminary experiments, select a suitable motion planning method and implement it for the
Lipraco Phoenix platform.
7) Integrate the method into the navigation system of this platform and verify it experimentally.

Bibliography / sources:
[1] Yoshiaki Kuwata et al.: Motion planning for urban driving using RRT. In IROS 2008.
[2] Summers, T. : Distributionally Robust Sampling-Based Motion Planning Under Uncertainty. In IROS 2018.
[3] Costa M.M. et al.: A Survey on Path Planning Algorithms for Mobile Robots. In ICARCS 2019.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomáš Krajník, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 04.01.2022Date of bachelor’s thesis assignment: 26.07.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Ing. Tomáš Krajník, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I want to thank my supervisor Tomáš Kra-
jník for fully supporting me and providing
all the necessary information during the
Bachelor’s thesis. Also, I’d like to thank
Skoda and CTU for the opportunity to
join and contribute to the Phoenix project.
Big thanks to the Phoenix project team
for their research and implementation of
the ROS driver for the Phoenix mobile
robot. And I’m very grateful to CTU
schoolmates for supporting in time of trou-
bles.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses

Prague, January 3, 2022

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 3. ledna 2022

v

Abstract
Mobile manipulators can be applied in
different fields for completing basic daily
things, and correct execution of their
movement is crucial. One of the ways
to do this is to implement basic motion
planning strategies to make the robot
more flexible to the environment and in-
teract with it. This work bases on the
joint project of Skoda and CTU called the
Phoenix robot and aims to find suitable
ways for completing the basic maneuvers
of the Phoenix car manipulator in the de-
fined domain. During the thesis, the first
task was for a robot to follow the preset
path. For this, the different path con-
trollers were designed, implemented and
experimentally evaluated. The next cru-
cial task of this work was to find suitable
path planners for navigating the robot
in the narrow spaces of Skoda parking.
The best ones were used to create the
maneuver library for further application
in the project which allow robot move
autonomously in the parking space.

Keywords: Motion planning, mobile
manipulator, path controlling, RRT,
Dubin’s curves, ROS, Gazebo simulation

Supervisor: doc. Ing. Tomáš Krajník
Center of Artificial Intelligence, FEL

Abstrakt
Mobilní manipulátory najdou uplatnění v
různých každodenních činnostech. Jedním
ze způsobů, jak dosáhnout jejich správné
činnosti, je implementovat základní strate-
gie pro plánování pohybu, neboť ty robo-
tům umožňují přizpůsobit svůj pohyb je-
jich prostředí a interagovat s jejich okolím.
Tato práce vychází ze společného projektu
Škoda Auto a ČVUT nazvaného robot
Phoenix a klade si za cíl nalézt vhodné
metody pro vykonávání základních ma-
névrů transportéru autonomních vozidel
Phoenix. Během práce bylo prvním úko-
lem, aby robot sledoval předem danou
dráhu. Za tímto účelem byly navrženy,
implementovány a experimentálně vyhod-
noceny různé metody řízení pohybu po za-
dané drázy. Dalším zásadním úkolem této
práce bylo najít vhodné plánovače cest
pro navigaci robota v úzkých prostorách
parkovišť. Ty nejlepší metody byly inte-
grovány do knihovny manévrů pro další
použití v daném projektu.

Klíčová slova: Plánování pohybu,
mobilní manipulátor, ovládání cesty,
RRT, Dubinsovy křivky, ROS, Gazebo
simulace

Překlad názvu: Plánování pohybu pro
autonomní mobilní manipulátor vozidel

vi

Contents
1 Introduction 1
1.1 Motivation and goals 1
2 State of art 3
2.1 Navigation overview 3
2.2 Related works 3
2.3 Path controlling overview 4
2.4 Motion planning research 5
2.5 Created software tools based on

the related works 5
3 Theoretical concepts 7
3.1 Kinematic description of the robot 7

3.1.1 Kinematic equations 7
3.1.2 Constraints and parameters . . 8
3.1.3 Transformation between

unicycle model and car-like model 8
3.2 Path-following problem 11

3.2.1 Point to Point Controller 11
3.2.2 Pure Pursuit Controller 13
3.2.3 Model Predictive Controller . 15
3.2.4 Pose Controller 16

3.3 Motion planning for the Phoenix
robot . 17
3.3.1 Straight-line maneuver 17
3.3.2 Rapidly-exploring random tree 18
3.3.3 Dubin’s maneuvers 21

4 Tools, software and robot system
description 25
4.1 Robot hardware and software,

proportions . 25
4.2 Simulation tools 26

4.2.1 Simulation in MATLAB 27
4.2.2 ROS . 28
4.2.3 Gazebo simulator 28
4.2.4 Environment, Mesh 28
4.2.5 RVIZ . 30

5 Experiments 31
5.1 Controllers 31

5.1.1 Constant tuning for speed
control law 31

5.1.2 Following the reference poses 33
5.1.3 Following the reference circle 37

5.2 Motion planning 40
5.2.1 Straight-line maneuver 40
5.2.2 Dubin’s curves 40
5.2.3 Basic RRT 43

5.3 Results of the simulation
experiments . 44
5.3.1 Path Controlling 44
5.3.2 Motion planning 45

5.4 Following the reference pose in the
narrow space on the real robot . . . 45

5.5 Conclusion of the performed
experiments . 47

6 Conclusion 49
6.1 Thesis results and conclusion . . . 49
6.2 Further work 49
Bibliography 51
A Intro to source codes 55
A.1 ROS platform codes 55

A.1.1 gazebo_path_plugin 55
A.1.2 trajectory_viewer 55
A.1.3 basic_maneuvers 55
A.1.4 The .csv format for trajectory 56
A.1.5 The library of maneuvers . . . 56

vii

Figures
3.1 Comparing the unicycle and

car-like models 9
3.2 The steering geometry and the

turn radius of the vehicle 10
3.3 The geometry of Pure Pursuit

Controller . 14
3.4 Model predictive controller 15

4.1 The Phoenix robot with the
docked car . 25

4.2 The Phoenix robot sensors 26
4.3 The Phoenix sizes [24] 27
4.4 The example of parsed mesh . . . 29

5.1 Following the zero speed reference
state with different proportional
gains . 32

5.2 Reducing the longitudal error for
different proportional gains 33

5.3 Reducing the speed errors for
Kv = 0.47 . 34

5.4 Following the reference poses for
Point to Point controller 35

5.5 Following the reference poses with
Pure Pursuit controller 35

5.6 Following the reference poses with
MPC . 36

5.7 Following the reference poses with
Pose Controller 37

5.8 Switching points by previous
distance for Pure Pursuit, Ns = 400 38

5.9 Circle following with controllers 39
5.10 Generating Dubin’s curves for

pose . 41
5.11 Comparing of trajectory points

number for [-3, -3, −π/2] 42
5.12 Tuning the parameters for

Dubin’s curves 42
5.13 Visualization of RRT using RVIZ 43
5.14 The generated path for different

search spaces 44
5.15 Result pose of the robot 46
5.16 Comparing of trajectories for real

robot . 47

Tables
3.1 Maximal inputs changing rates . . 8

4.1 Properties of mesh 28

5.1 Reference poses for the
experiment . 34

5.2 Orientational errors 37
5.3 The number of sampling in the

circle generation 38
5.4 Comparing of straight-line

maneuver time 40
5.5 Comparing of the accuracy dacc for

the different sampling periods 41
5.6 Comparing of different points

numbers and the result accuracy of
the maneuver 41

5.7 Differences between generated
paths for different search spaces . . 44

5.8 Differences between generated
paths for different search spaces . . 45

viii

Chapter 1
Introduction

This chapter briefly introduces the thesis’s motivation and defines the goals,
giving an overview of modern mobile robotic problems.

1.1 Motivation and goals

One of the crucial tasks of modern robotics is finding effective interaction
methods between human beings and the environment with the injection
of automated systems. Robots systems are appliable in many fields, from
industry and education to military and space. The field of research in this
thesis is mobile robotics in the industry and logistics.
The main feature of mobile robots is moving around a specific environment
without fixing it to one particular location. They work remotely and have
difficulties with unexpected updates of the domain. That is why they require
a precise and predefined environment to avoid wrong behavior. One of the
subclasses of mobile robots is the Automated guided vehicle [1] which uses
the navigation system based on the information parsed from sensors like
vision cameras, lidar scanners, GPS to perform movement along wires and
lines in 2D space. The navigation system aims to localize the robot and
find the sequence of motions that lead the robot to the target position using
planning methods. Motion planning can be divided into two types depending
on the current activity of the robot: offline and online. The first one aims
to find the path with the confidence that the further information of the
environment will be static; briefly, the robot knows the whole environment
and will find the path to the target if such exists, but the main disadvantage
is unexpected changes of the environments which can lead to the misbehavior.
The online way of planning is to find the target during robot moves and adjust
all the negative impacts on the environment, but this requires a tremendous
computational load on the system and a complicated architecture of the
decision process. This thesis uses an approach of discretizing the path as the
sequence of basic maneuvers calculated offline and choosing the best one in the
path decision process during the online part. Such an approach will minimize
the computation cost and better react to an unpredicted environment. In this
thesis, the main aim is to apply the methods of path following and planning
in the collision-free environment and implement the library of maneuvers

1

1. Introduction
for further use of AGV Phoenix. The proposed maneuvers will explore the
current navigation and localization system, which the Phoenix team tests on
the platform.
The thesis first briefly introduces navigation problems and presents the
theoretical background of implemented methods based on the related works.
The next chapters are devoted to the implementation tools and experiments,
discussing and comparing the achieved results.

2

Chapter 2
State of art

This chapter introduces the navigation overview in mobile robotics, related
works for path controlling and motion planning, presents the created software
tools based on these researches.

2.1 Navigation overview

Navigation [2] is the field of science aiming to reach the given position in the
frame of reference. This thesis is devoted to the navigation of the ground robot,
which localization parameters are orientation and position. The well-built
navigation architecture has to always complete the following tasks.▶◀self-localization..▶◀planning the path to the goal location..▶◀map-creating of the environment.

Self-localization is the ability to find the current robot’s configuration
which can be defined as the state of degrees of freedom DOF. The mobile
planar robot is represented with position and orientation—the set of possible
robot’s configuration form configuration space or C-space. For odometry,
planar robot C-space is three-dimensional, exploring the translational and
rotational ability of the robot [3]. Path planning is the extension of navigation,
which studies finding the path to the goal configuration. It requires the
representation of the environment, which can be done with a map. In this
thesis, the metric map is used for collision-free path planning. The most
common approach is detecting the obstacles as the polygons in the topological
or grid-based maps. Non-map navigation uses require complicated approaches,
usually requiring visual sensors like the camera for parsing the information
about the current location [4].

2.2 Related works

The navigation of AGV vehicles has been crucial in engineering since the
1950s when the first AGV was brought to the market by Barrett Electronics

3

2. State of art
of Northbrook. During the 20th century, the engineers were primarily looking
to apply such vehicles in small, closed spaces that did not require complicated
localization methods. With the development of lasers and satellite navigation,
the growth of computer science fields like machine learning and computer
vision, the area of AGV applications spread exponentially. One of the new
fields of the 21st century in AGV applications is automated dense parking,
which is caused by the increase of cars in urban areas. As an example, in
2015, german company Lodige Industries developed and implemented the
most extensive automated system in Denmark with 1000 cars.
The group of researchers from Stanley Robotics led by [5] Philip Polack
presented a new approach to dense automated parking which is applicable
on the parking with a large number of parking lots and requires precise
navigation, path following, and planning in the narrow lines. The members
of the Phoenix team aim to transfer the experience of Polack’s team for
navigation on the Skoda parking. The basic concept and reference results are
taken from the above paper. As mentioned, the whole task of this thesis may
be divided into two separate parts: proposing the most appropriate controller
for the path following and creating the motion planning strategy with further
exporting the founded maneuvers to the library or database. In this section, a
brief overview of implemented software for solving the described above tasks
is presented.

2.3 Path controlling overview

The path following is the first task for robotic engineers before applying any
proposed motion planning strategies. In this thesis, the four path controllers
were proposed and implemented in simulation: Basic Point to Point, Pure
Pursuit, Pose Controller, Model Predictive Controller(MPC). Point to Point
was also tested on the real robot 5.4.
All path control strategies can be divided into explicit and implicit. The first
one does not require the analysis of the dynamic model of the robot with the
known control theory methods; they aim to find interrelation between the
robot inputs and reference trajectory position. This approach is presented in
the article of data scientist engineer Ding[6] where she proposes three types
of path controller: Pure Pursuit, Stanley, and MDP. The work of Coulter [7]
describes the geometry, tuning, and implementation of Pure Pursuit. Model
predictive controller conception, theoretical background, and implementation
for the following reference are presented in the article of Hungarian researchers
led by Reda Ahmad. Point to Point steering controller for the nonholonomic
robot is presented in the chapter of robotics guide by Tim Bower [9] from
Kansas State polytechnic.
The implicit methods use the control theory methods to adjust the robot
dynamic to the required behavior, in our case path following. These methods
require the state-space model of the robot, but they are frequently used for
different controlling tasks, which also leads to deep analysis of the system,
which can be challenging to implement in the case of complicated state-space

4

............................... 2.4. Motion planning research

models. For example, Klanchar [10] used the linear state-space for the close
loop to enable the robot to follow the reference path and feedforward loop for
reference inputs. Also, Vieira [11] presented both ways of controller strategies
for a nonholonomic mobile robot, simple Point to Point Controller, Pose
controller, and PID controller for following the reference path, but he didn’t
aim to follow the input reference. One of the most significant research on
the topic of path following for mobile robotics is presented in the book of
Corke [12] who is the author of most modern robotics toolboxes for MATLAB.
In the chapter on Mobile robot vehicles, he presented the wheeled mobile
robots and control theory for them, which was implemented in Automated
Driving Toolbox: Pose Controller, Point to Point, and Trajectory following
with Stanley Controller. Some of the works of the presented authors were
taken into account during the proposing of the controller in this thesis.

2.4 Motion planning research

Motion planning requires the finding of valid sequences of robot configuration
from init configuration to the final one. Many authors have done great research
on this topic in the past 60 years. Generalized information about the methods
for solving motion planning problems can be founded in the book of Latombe
[13] where he summarizes the term of configuration space, describes the
methods of the 20th century for solving motion planning with most commonly
used algorithms which based on grid-based search, potential artificial fields,
and sampling-based algorithms. The more modern approach is described in
the book Modern Robotics of Kevin M. Lynch [14], which also pays attention
to an important part of trajectory generation and time optimality, metrics
problems, summarizes all the experience of robotics engineers.
The motion planning for nonholonomic robots with constraints is described in
the work of Pin[15], where he aims to find the method of computationally fast
trajectories which will be deterministic and take into account the ability of
forward and reverse motion of the vehicle in the environment with obstacles.
The new approach to motion planning strategy also presented Lamiraux [16]
where he considers the robot as a 4-D kinematic system for generating the
path and the sane 3-D system for finding collision-free paths. Many of the
described motion planning methods in the work of these authors were also
implemented in navigation software.

2.5 Created software tools based on the related
works

The research in the area of path following and planning found practical appli-
cation in some of MATLAB toolboxes like Navigation [17], and Automated
Driving [18], where the user can tune and adjust path controllers for the
required robot kinematic model on the grid-based maps or plan the path
with presented planners. In ROS, the motion planning package for the arm

5

2. State of art
robot is also presented and now is being developed and modified. Robotics
engineer Sakai implemented sample robotics algorithms in Python on his
Github page[19], which gives the programmer the practical understanding of
using these algorithms. Another Python-based module is efficient in the con-
text of control theory implementation in Python Control Systems Library[20],
and anyone can find the vehicle steering dynamic control example on their
pages. Phoenix team led by Tomáš Krajník presented their approach to solv-
ing motion planning problems from implementing simple grid-based search
algorithms and ending with a navigational system called BearNav. All the
code for the Phoenix robot is implemented in ROS driver written in C++.
Summarizing, the most illustrative solutions for path following and planning
problems can be observed in MATLAB toolboxes, but they can be used on
the actual platform, as in our case is ROS, only after integration to MAT-
LAB ROS toolbox, which is not practically used due to computational load
and problems with code transferring. The work of Sakai is illustrative and
practically understandable but requires the extra implementation in ROS,
the same as Python Control Systems Library. Most of the code for mobile
robotics is written in C or C++ languages for a faster communication, but
its sources are usually limited.

6

Chapter 3
Theoretical concepts

This chapter introduces the theoretical background for the proposed path
following and planning algorithms, describes the mathematical model of the
robot.

3.1 Kinematic description of the robot

The Phoenix 5.15 is represented with a car-like model based on the use of
Ackermann steering geometry with the center point in the axle of the front
wheels. It is an adaptation of the non-holonomic bicycle model.

3.1.1 Kinematic equations

The robot kinematics is described using the following differential equations

ẋ = v cos(θ + ψ) (3.1)
ẏ = v sin(θ + ψ) (3.2)

θ̇ = v

L
sin(ψ) (3.3)

v̇ = a (3.4)
ψ̇ = σ (3.5)

where

1) Outputs of the systems, the pose of the robot in the 2D, on the plane. (x, y) - position of the center point.. θ ∈ [−π, π) - orientation relatively to the world frame.

2) Inputs to the system, robot’s. v ∈ [−3; 3] ms - forward speed of the front wheels.. ψ ∈ [−π/2;π/2] - steering angle of the front wheels, defines the
robot rotational radius 3.2.

3) Parameters calculated from desired robot’s inputs from the equation
(3.8)

7

3. Theoretical concepts
. a ∈ [−amax; amax] m

s2 - rolling acceleration.. σ ∈ [−σmax;σmax] rad/s - steering velocity.

3.1.2 Constraints and parameters

From the system equations, the non-holonomic constraint can be withdrawn
ẋ

cos(θ + ψ) = ẏ

sin(θ + ψ) = v (3.6)

also can be written in Pfaffian form 1

ẋ sin(θ + ψ) − ẏ cos(θ + ψ) = 0 (3.7)

It represents the fact that the robot cannot move perpendicularly to the
forward speed vector.The desired inputs given on the system are

u⃗ =
[
u1
u2

]
=

[
vset
ψset

]
(3.8)

The inputs given on the robot wheels depend on the previous inputs. In every
step of the simulation, the discrete derivation of inputs is calculated

u̇i(t1) = ∆ui
∆t = ui(t1) − ui(t0)

t1 − t0
(3.9)

which represents the rolling acceleration a and angular velocity of steering
σ. The sign of these parameters depends on the newly received value of the
input

v = sgn(∆v) min(|∆v|
∆t , amax) (3.10)

σ = sgn(∆ψ) min(|∆ψ|
∆t , σmax) (3.11)

For the limiting the inputs changing rate the speed ramp is used, its parameters
were identified experimentally

Changing rate name Symbol Value
Maximal rolling acceleration amax 0.7[m/s2]

Maximal steering velocity σmax 0.7[rad/s]

Table 3.1: Maximal inputs changing rates

3.1.3 Transformation between unicycle model and car-like
model

The 2D unicycle robot 3.1a represents the simplified car-like model. It based
on the following system of equations

1∑N

i=1 ai dqi + b dt = 0, where qi - coordinates, ai, b - constants

8

........................... 3.1. Kinematic description of the robot

(a) : Unicycle model

(b) : Car-like model of the Phoenix robot

Figure 3.1: Comparing the unicycle and car-like models

ẋ = v cos(θ) (3.12)
ẏ = v sin(θ) (3.13)
θ̇ = ω (3.14)

For applying the Ackermann steering geometry [23] the reference point is
chosen somewhere on the wheelbase, in our case in the axle of the front wheels
and defining the new robot state in the form

s(t) = [x(t), y(t), θ(t), ψ(t), v(t)] (3.15)

9

3. Theoretical concepts
Based on the kinematics equations of the car-like model 3.1.1, our target is

Figure 3.2: The steering geometry and the turn radius of the vehicle

to find the transformation between the unicycle model and the car-like model.
We will apply Instantaneous Center of Rotation(ICR) illustrated on the figure
3.2 for the front wheels, which radius vector should be perpendicular to the
forward speed v.

Robot’s orientational angular velocity w depends on this radius in the
vector and scalar forms.

v⃗ = w⃗ × R⃗ =⇒ w = v

R
(3.16)

Turn radius is calculated using the Ackermann geometry 3.1b like

R = L

sin(ψ) (3.17)

By substituting the radius to the equation we obtain the transformation
between orientational angular velocity of unicycle and to the steering angle
for the car-like model

ẋ = v cos(θ + ψ) (3.18)
ẏ = v sin(θ + ψ) (3.19)

θ̇ = ω = v

R
= v

L
sin(ψ) =⇒ ψ = asin(ω L

v
) (3.20)

The following constraints pay for the transformation (3.20)

− 1 <= ω L

v
<= 1 =⇒ − v

L
<= ω <= v

L
(3.21)

The transformation between the coordinates speeds in the unicycle and car-
like model is determined applying the trigonometric identities and written

10

................................ 3.2. Path-following problem

with the 2D rotation matrix R(α) in the form[
ẋ
ẏ

]
= R(ψ)

[
v cos(θ)
v sin(θ)

]
(3.22)

ψ = asin(ω L
v

) (3.23)

θ̇ = ω (3.24)

This approach is useful for the further path-following problems solutions
where our target is to find the controller which will be able to follow the
reference for the unicycle and then transform to a car-like model used on the
real robot.

3.2 Path-following problem

In this subsection, the controller’s theoretical background for the path follow-
ing is described. The continuous trajectory for is defined as the sequence of
the robot states sref(t) (3.15). For the controller proposing, we will assume
that the target reference state defined as

sref(t) = [xref (t), yref (t), θref (t), 0, vref (t)] (3.25)

supposing that the reference of the steering angle is not followed, it is used
only to follow the robot’s other state’s values. If the trajectory is represented,
as the sequence of robot’s poses, than the steering angle error can be reduced
by close distances between generated poses (5.5).

3.2.1 Point to Point Controller

Point to Point Controller aims to find the control laws for the inputs that
will allow the robot to follow the reference position x = [xref , yref] and front
wheels rolling speed vref . Suppose the trajectory is the sequence of points.
In that case, the distance between the two points in the sequence is the line.
The orientation error can also be reduced by the dense generation of these
points. The position error in the world frame is defined as

eworld =
[
xref − x
yref − y

]
=

[
∆x
∆y

]
(3.26)

For the controller proposing, we’ll go over the position errors in the local frame
of the robot. With the linear transformation, we receive the longitudinal and
lateral errors.

erobot =
[
ex
ey

]
= R(−θ)

[
∆x
∆y

]
(3.27)

where R(−θ) - a counterclockwise 2D rotation matrix through an angle −θ.

11

3. Theoretical concepts
Steering control law

The idea of the steering law is to turn the robot precisely on the angle defined
by errors from the equation (3.27). We will assume that this angle is defined
in the same range as the steering angle, [−π/2;π/2]. The resulting control
law is

ψ = atan2(ey, |ex|) (3.28)
In case if the lateral error is zero, than the robot will be heading straight to
the point.

Speed control law

For the speed control law, we will assume that the robot should reduce the
distance error to the reference point

d =
√
e2
x + e2

y =
√

(∆x)2 + (∆y)2 (3.29)

that does not depend on the error measured frame, as the rotation is a linear
isometric transformation. The robot should approach the desired point with
the speed of the same sign as the reference one and reduce it gradually with
a reduction of the distance. We propose the proportional controller in the
form.

v = vref + sgn(vref)Kvd,Kv > 0 (3.30)
The problem of the presented controller is that in the case of the zero reference
speed, the robot will stay in the same place. This can be solved by proposing
the new sgn function depending on the reference speed.

˜sgn(vref) =
{

1, vref >= 0
−1, vref < 0

(3.31)

which implies that if the reference speed is zero, let the robot approach the
point with the positive speed. The controlling inputs should be saturated to
the defined ranges. The result control law for both inputs is following

v = vref + ˜sgn(vref))Kv

√
e2
x + e2

y (3.32)

ψ = atan2(ey, |ex|) (3.33)

Proposing of proportional constant Kv

The proportional constant Kv can be set experimentally. Here, we will derive
its value from the braking distance of the vehicle. From the speed control
(3.32) law

v − vref = ˜sgn(vref))Kpd =⇒ |∆v| = Kpd =⇒ Kp = |∆v|
d

(3.34)

Let us suppose that this member of the equation represents the speed change
rate which should be zero when the robot approaches the target point. If

12

................................ 3.2. Path-following problem

we assume that the maximum acceleration is 0.7 m/s2, then we can use the
uniformly accelerated motion distance.

x(t) = v0t− at2

2 = v(t2) − v(t20)
2a (3.35)

For the target zero reference speed

x(t) = v(t20)
2a (3.36)

The maximal possible speed changing rate is |∆vmax| = 3[m/s] due to the
speed constraints 3.1.1, in case the robot moves straight to the reference point
and needs to decrease the current speed from 3 to 0. Substituting to the
equation (3.36)

dmax = (3m/s)2

2 · 0.7m/s2 = 6.4[m] (3.37)

And here we can calculate the maximal possible value of proportional constant

Kv = |∆vmax|
dmax

= 3m/s
6.4m = 0.47 (3.38)

When the speed change rate is less than the maximal robot acceleration amax,
the front speed will be decreasing smoother without final overshoots.

3.2.2 Pure Pursuit Controller

The idea of the pure pursuit controller is to reduce the lateral error of the
robot by proposing the turn angle based on the look-ahead distance ld from
the axle of the front wheels. The radius R of the circle the robot should turn
to follow the path can be determined using the geometry from the sines law
based on the figure 3.3.

ld
sin(2α) = R

sin(π2 − α) (3.39)

R = ld
2 sin(α) (3.40)

By substituting the radius of the car-like model from the equation (3.17) the
control law is given as

sin(ψ) = L

R
= 2Lsin(α)

ld
=⇒ ψ = asin(2Lsin(α)

ld
) (3.41)

where the turn angle of the circle can be derived from the lateral error as

sin(α) = ey
ld

(3.42)

The final control law which expresses the desired steering angle to apply

ψ = asin(2Ley
l2d

) (3.43)

13

3. Theoretical concepts

Figure 3.3: The geometry of Pure Pursuit Controller

The look-ahead distance is an arbitrary parameter that can be chosen, de-
pending on the distance to the desired point. The first approach is to define it
as the distance from the current robot position to the reference and saturate
the resulting expression.

− 1 <= 2Ley
l2d

<= 1 (3.44)

The second possible approach is to use the proportional constant. If we know,
the sinus of the desired steering angle and the current steering angle, the
proportional control law can be applied

ψ = C (2Ley
l2d

− sin(ψcurrent)), C > 0 (3.45)

In this case, the control law expires the changing rate of the steering angle.
That is why for the smoother changing of the steering angle, the constant C
should be chosen in the range (0; 1).
The third possible approach is to express the look-ahead distance as the
proportional constant K of the front speed v in the form

ψ = asin(2Lsin(α)
K v

) (3.46)

The proportional controller can be designed but requires the saturation of
the fraction divider in the range

K v > 2Lsin(α) =⇒
{
K v > 2L, v > 0
K v > −2L, v < 0

(3.47)

14

................................ 3.2. Path-following problem

The particular case is when the α = 0 when the lateral error is zero. The
proposing of the constant K should be designed depending on these parame-
ters. For the testing, only the first two approaches were used. The last one is
only the alternative method for proportional control law.
The speed control law was used the same as in the Point to Point Controller
from the equation (3.32).

3.2.3 Model Predictive Controller

(a) : Connection of the MPC in the system

(b) : MPC prediction scheme

Figure 3.4: Model predictive controller

Model predictive controller requires the constant access to the plant model
of the system to predict the control inputs depending on the cost function
to maximize the goal behavior of the system. Using the sampling-based
inputs, the controller predicts p number of steps called the prediction horizon.
The control horizon is also an important parameter. It defines the number
of different control inputs in the first k steps of the prediction. After the
application of the p number of sample steps, the input given on the system
choice is based on the minimal value of the cost function. For example, if
the input is divided on the N samples and it the first k steps, totally Nk

possible resulting behavior is predicted, in the next p− k steps the behavior
is modeling without increasing the input sample.
Here, we will try to model the control law for the steering angle to enable the

15

3. Theoretical concepts
controller to apply the Point to Point controller. All the prediction is based
on the cost function in the form.

J(x(t), U) =
t+p−1∑
j=t

δxj|t
T Qxj|t + uTj|tRuj|t (3.48)

where

xj|t = erobot =
[
ex
ey

]
− error in position (3.49)

uj|t = ψj − ψt − difference between current and predicted steering angle
(3.50)

Q2x2 - diagonal matrix of weights q1, q2 and R is a single scalar r that can
be determined experimentally.
In every step of the simulation the steering angle is divided on N samples
and given to the plant model in the discrete form as

xt+1 = xt + ẋ∆t (3.51)
yt+1 = yt + ẏ∆t (3.52)
θt+1 = θt + θ̇∆t (3.53)

(3.54)

where the derivation members of the equations are calculated using the
constraints of the input and kinematic model of the car-like model from the
kinematic equations 3.1.1.
Also, we should mention that the smoother behavior of the system can be
achieved using the Adaptive Model Predictive Controller that requires the
linearized system in the operational point and based on the linearization the
prediction is made. In this thesis, the Adaptive Predictive Controller is not
implemented but also can be used as an alternative method.

3.2.4 Pose Controller

The idea of the Pose Controller is to find the control law that will be appro-
priate for the robot to find the reference of pose x = [xref , yref , θref]. The
reference of the front speed is achieved using the derived speed control law in
the equation (3.32).
The control law is based on computing the orientational angular velocity ωdes
for the unicycle model and applying the transformation between models and
proportional control law, and the steering angle is set. The control law of the
desired orientational angular velocity has the linear form

ωdes = k1α+ k2β (3.55)

where. α is the angle to turn based on lateral and longitudinal error as in the
equation (3.20) with the constraints of [−π/2; pi/2].

16

......................... 3.3. Motion planning for the Phoenix robot

. β is the angle between the current and reference orientation as

β = θ − θref , β ∈ [−π;π) (3.56)

The idea is that robot follows to the desired reference point on the straight
line that is shifted on the angle β and the final path has the form of the arc.
For the stability purposes the constant should be

k1 > 0, k1 > |k2|, k2 < 0 (3.57)

which means that the straight-line path following has a significant impact
than the orientational difference, but a little bit shifted; otherwise, the turning
will be too fast, and stability is broken.
After the computation of the desired angular velocity wdes the proportional
control law is applied to steering angle change rate in the form

ψ = C(wdes L
v

− sin(ψcurrent)), C > 0 (3.58)

C expressed the proportional change of the current steering angle and desired;
the less the constant is, the smoother the controller’s behavior. However, in
the case of too low gain, the dynamic can not be adapted fast enough to the
required changes.

3.3 Motion planning for the Phoenix robot

This thesis aims to develop the library of motion planning maneuvers that
would be the most appropriate for the robot in the context of motion planning.
All the maneuvers can be divided into non-trajectory and trajectory-based.
The non-trajectory require the set of parameters, and the maneuver is applied
directly without precomputed trajectory. As an example, we propose the
straight-line maneuver described in the subsection 3.3.1.
For the trajectory-based, the idea is to compute the robot’s trajectory leading
to the final pose and follow it with the path controllers. The trajectory is the
sequence of states from the equation 3.15. All the trajectory-based algorithms
use time sampling for generating the future states of the robots. For this,
we use the sample period Ts, which is chosen experimentally and defined as
the time before the robot executes the next state. That time is measured
using the clock as the additional ROS node on the actual platform. So, first,
we apply the algorithm for generating the trajectory, then save it into .csv
format and load it to apply on the robot using the controller.

3.3.1 Straight-line maneuver

Suppose we assume that the path to the desired state is collision-free, which
means there are not any obstacles that can lead to a collision between the
robot and the environment. In that case, the simplest idea is to use the

17

3. Theoretical concepts
Point to Point controllers to generate the path to the target state. The main
problem is that the robot final orientation θrobot will be different from the
desired θref because the Point to Point controller is based on the turning
robot toward the point without adjusting the orientation to the reference one.
That can be compensated if the turn angle is small

|α| < ϵ, ϵ ≈ 0 (3.59)

From the equation this condition is met if the lateral error ey relative to the
robot frame is also small

|ey| < ϵ =⇒ |α| < ϵ, ϵ ≈ 0 (3.60)

In that case, only the speed control law from the equation 3.32 from the PTP
is applied. For the straight-line maneuver, we define the move distance dmove
from the init position and the error

ed = |||xcur − xinit|| − dmove| (3.61)

• xcur - current position of the robot.

• xinit - init position of the robot, by default zero in both dimensions.
This type of maneuver can reduce only the longitudinal error ex and follow

the reference state front speed vref . Also, this maneuver is appliable if the
orientation error is minor or ideally zero.
The benefit of this maneuver is the simplicity, and the trajectory is not
required for the robot. All that is needed is the reference state and the
accuracy of approaching the final point ϵ. Also, the path can be discretized
using simple point-to-point and more complicated maneuvers.

Algorithm 1: Straight-line maneuver algorithm
Result: Robot final state sf (t)
Define the robot current state scur;
Define the accuracy, sampling time ϵ, Ts;
Defined distance to move dmove, reference speed vref Define the
current distance error ed = ∞;

while ed > ϵ do
ed = |||xcur − xinit|| − dmove|;
vset = SpeedControlLaw(vref , d = ed);
scur = UpdateState(scur, [v, ψ], Ts);

end
sf (t) = scur

3.3.2 Rapidly-exploring random tree

The more generalized approach for solving motion planning problems is
using the sample-based algorithm Rapidly-exploring random tree(RRT). It is
universal and can be appliable when the type of the required maneuver is
not known.

18

......................... 3.3. Motion planning for the Phoenix robot

Basic algorithm

This algorithm aims to build the tree in the configuration space C that
explores it as much as possible. After building the tree using the searching
algorithms the path in tree nodes that lead to the optimal solution is found.
First, we define the number of tree nodes Nit or the number of iterations
the algorithm explores the configurational space, then we randomly sample
the robot configuration Xrand, in our case, the pose X = [x, y, θ], search for
the nearest node that already is in the tree and generate the new node in
the direction of the random one using the most appropriate inputs [v, ψ]
that minimalize the defined Minkowski distance Lm between nodes in the
configuration space as

Lm = (|x1 − x2|m + |y1 − y2|m + |θ1 − θ2)m)1/m (3.62)

For Minkowski distances, the orientational difference should be normalized to
defined ranges of [−π;π). For the algorithm evaluation, we’ll use the m=2
distance, also known as the Euclidian distance, defined as

L2 = d(x1,x2) =
√

(x1 − x2)2 + (y1 − y2)2 + ((θ1 − θ2)[−π;π))2 (3.63)

In the ideal case, the distance between the goal state and the closest one
converges to zero. Also, after building the tree, every node’s costs can be
set to one because the time of jumping from one state to another one is the
same Ts. The shortest path is the path with minimal time or the number of
transition nodes. We assume that in this thesis, we work with collision-free
configurational spaces to leave the condition of checking the collisions.

Optimization techniques

The main problem of the basic RRT algorithms is the convergence to the
optimal solution that can be optimized using a heuristic approach. The
first problem is defining the minimal number of nodes when the algorithms
converge to an optimal solution. It is proportional to the distance between
the init and final configurations. Changing the value of coefficient K can help
to minimalize computational time or search for the path more efficient in the
similar configuration space ranges

Nmin = K d(xinit,xfinal) (3.64)

The algorithm is time computational for the ample C-space. One of the
optimizations is to define the constant number of iterations Nextra when we
wait for the convergence in the algorithms; if such is none, then stop the
loop to prevent extra computations. So, the basic idea is to iterate through
the configuration at least Nmin and then update the Nmin using constant
K. Also the possible approach is to generatene the m number of different
trees with constant Nmin and choose the tree with the best-found goal node
distance.
The next optimization problem is the clever random pose sampling in the

19

3. Theoretical concepts
Algorithm 2: Basic RRT algorithm
Result: RRT G(V,E)
Define the robot reference, current states sref , scur;
Define the RRT G(V,E) = {scur};
Define number of iterations Nit;
Define the accuracy, sampling time ϵ, Ts;
Define the current iteration it = 0;
while it < Nit do

xrand = RandomPose();
if Xrand is not collision-free then

Continue;
end
snearest = GetNearestNode(G(V,E), xrand);
snew = GenerateNewNode(snearest, xrand, Ts) ; /* Generate the
new node closest to the random one */

G(V,E) = Link(snearest, snew);
if Xnew is close to Xref with accuracy ϵ then

Break;
end
it+ +;

end

configuration space . The search space for the motion planning can be defined
using as

Q(xinit,xfinal) = [xmin;xmax] × [ymin; ymax] × [−π;π) (3.65)

where minimal and maximal values of the x interval(same for y) are chosen
with the user preferences of the search space of the algorithm.
The possible solution is to choose a random configuration using the uniform
random distribution of all three intervals. However, for the significant intervals
or the ample search space, the probability of finding the target configuration
using the random samples converges to zero, which minimizes the optimal
solution. This can be solved by defining the target point sampling probability
Pt , which defines that the final point is generated as the random one in
the current iteration. The algorithm generated the random probability. If
that one is greater than Pt, then use the uniform random distribution for
generating the random point; otherwise, use the target point as the random
one. The bigger the probability Pt, the more straight path will be found,
which is not optimal in the sense of configurational distance between found
goal and real goal states. Also we need to define the step sample value
between possible configurations xi.
The subsequent possible optimization is input optimization. The brute force
method divides the inputs v, ψ on some number of samples and finds the pair
of samples that generates the new state with the minimal Euclidian distance
to the random one. Due to the robot’s constraints, inputs do not change

20

......................... 3.3. Motion planning for the Phoenix robot

Algorithm 3: Random configuration generation
Result: Random configuration Xrand

Define the probability Pt;
Generate the random probability Prand;
if Prand ≤ Pt then

return Xtarget

end
Define Xrand;
Define the step step;
Define the ranges rangesXrand

for configuration xi in Xrand do
xi = UseUniformDistribution(xi, rangesxi , step)

end
return Xrand

at once; that is why the better solution is to use the values of the edges of
the input’s interval and the zero value. That leaves only the 32 = 9 pairs to
search for. If we aim to follow the front speed of reference state vref using
the equation 3.32, then we can use the Point to Point controller principle to
adjust speed and only then find the most appropriate steering angle between
three possible options. It can be illustrated using the below algorithm.

Algorithm 4: Input optimization
Result: State inputs [v, ψ]
Define the robot reference, current states sref , scur;
Define the random configuration sample Xrand;
Define coefficient K > 0 of proportional controller;
Define possible steering angles array ψtry = {−π/2, 0, π/2};
Calculate distance to the target position d;
if vref < 0 then

v = vref −Kv d
else

v = vref +Kv d
end
for ψi in ψtry do

Choose the one which minimizes the Euclidian distance to the
random configuration sample

end

After the generating the tree, any of the search algorithms can be found to
find the shortest path to the optimal solution.

3.3.3 Dubin’s maneuvers

Basic RRT is an effective algorithm for solving the motion planning problems
in the generalized case. In this section, we’ll propose the approach for
generating the paths to the target state when the type of maneuver is

21

3. Theoretical concepts
predefined or can be set using using the motion planing algorithms.

Basic Dubin’s curves

The path between two configuration for the planar mobile robot can be
derived from different types of Dubin’s curves. For the car-like robot model
they are represented using the sequence of the three basic motions {S,R,L}
with the robot inputs [vf , ψ]

• S = [vset, 0] - go straight.

• R = [vset,−π/2] - turn right with the maximal steering angle,

• L = [vset, π/2] - turn left with the maximal steering angle.

By Dubins the reverse motion is not allowed vf >= 0 and the front speed of the
robot is the constant during the all three basic motions, it’s value chosen exper-
imentally. The less it’s absolute value the more slowly is the robot orientation
speed ω. The basic 6 Dubin’s primitives are {LRL,RLR,LSL,LSR,RSL,RSR}.

RRT based on Dubin’s curves

The basic concept of Dubin’s curves is to calculate the best Dubin’s primitive
in constant time using the geometric relations between init robot pose and
goal pose, which is appliable in case of unicycle model if next conditions are
met.▶◀ The robot front speed is constant during all three basic motions..▶◀ The angular orientation velocity is changing instantly, with no time

constraints..▶◀ The result trajectory is not following the robot’s final pose reference
front speed.

In case of the car-like model with time constraints the best approach is to
search the time of applying the every basic motion. In case of three basic
motions and the constant sampling time Ts, the target is to find the three
numbers of iterations n1,2,3 that form the minimal number of curve iterations
in the form

n1 + n2 + n3 = Nmin, n1,2,3 > 0 (3.66)

The idea is iteratively find the iterations n1,2,3 that lead to the most optimal
solution for every possible curve and choose the best between them. Nmin

is heuristically chosen parameter that represents the minimal number of
iterations for period Ts. We start to search from Nmin and stop when the
founded goal state is close enough to the real one or when the there is no
update of the founded goal state for the some number of previous iterations.
From the equation (3.66) Nmin >= 3, Nmax = ∞. To prevent searching for
too many iterations, we can define the stop counter nstop, which defines if the

22

......................... 3.3. Motion planning for the Phoenix robot

better state was not found during the nstop iterations break the loop.
If we also want the robot to follow the reference front speed, we’ll define
the last basic primitive of Dubin’s curve is the Straight maneuver with the
reference speed S(vref) when the robot continuously alligns the steering
angle to zero and moving straight with the reference speed. We’ll define the
iteration number n4 , which is calculated after establishing n1,2,3 in the while
loop with the condition of setting steering angle to zero or exceeding some
n4max iterations. The result maneuvers are derived from the Dubin’s curves
as

{LRLS(vref), RLRS(vref), LSLS(vref), LSRS(vref), RSLS(vref), RSRS(vref)}
(3.67)

Also there were added two maneuvers for robot’s continus turn and inspired
by left and right turn of the vehicle

{SLS(vref), {SRS(vref)} (3.68)

For them only n1,2 are required and calculated, that implies from the equation
(3.66) n3 = 0. Totally we have 8 different maneuvers. We assume that the
search space is also collision-free, so we don’t need to check the found current
state of the robot after applying the maneuver.

23

3. Theoretical concepts
Algorithm 5: Dubin’s curves RRT
Result: Iterations n1−4,maneuvertype
Define the robot reference, current states sref , scur;
Define the interval edges of iteration Nmin, Nmax;
Define nstop ;
Define distance to goal as infinity ;
Set update counter = 0 ;
Define the front speed for maneuver vm, period dT;
Define the n4max ;
for N in [Nmin, Nmax] do

if update counter == nstop then
break;

end
for n1 in [1;N] do

for n2in[1;N] do
n3 = N − n1 − n3;
if n3 < 0 then

break;
end

end
for maneuver in maneuver types do

current state = maneuver(n1, n2, n3, vm, dT)
end
n4 = 0;
while |ψ| < 0 and n4 < n4max do

current state = GoStraight(n4, vref , dT);
n4 + +;

end
if n4 == n4max then

continue;
end
if current state is closer to goal state then

remember iterations, distance to goal, maneuver type ;
update counter = 0 ;

end
update counter ++;

end
end

24

Chapter 4
Tools, software and robot system
description

This chapter introduces the tools and software used in this thesis for off robot
testing and simulation, presents the hardware, construction, and software
used on the robot without mathematical description.

4.1 Robot hardware and software, proportions

Figure 4.1: The Phoenix robot with the docked car

Phoenix robot shown on the figure 4.1 is equipped with a control unit that
uses the code written with ROS C++, current the primary source is the
Phoenix driver. The robot is controlled with the inputs from the equation
3.8 published to the ROS node \cmd_vel and receives the information from
about current position and orientation from the publisher \odom. The user
can connect to the robot’s local network and run all the required ROS nodes.
The user also can use the joysticks for the robot moving or stopping in
emergency cases. Among the sensors, the robot has the Lidar scanners and
camera for navigation purposes. Also, the camera enables to display of the
world around the robot. The robot has 5 Lidars: two on the sides, two on
the front and one on the back shown on the figure 4.2. Another sensor is the

25

4. Tools, software and robot system description

(a) : Front view

(b) : Back view

Figure 4.2: The Phoenix robot sensors

GPS installed on the roof of the robot, which gives the opportunity of the
global localization.
The robot shape is quite conservative and visually consists of the box and
the car’s dock plane. It’s proportions are presented on the figure 4.3b. The
robot’s dynamical properties were not mentioned because they cannot be
established precisely. Experimentally, the center of the mass determined in
the middle of the docking plane. However, the most significant interest has
the kinematic of the robot, which is described in Chapter 3.

4.2 Simulation tools

The simulation and testing of the proposed algorithms were divided into two
parts. The testing of the algorithm’s performance was conducted in MATLAB.
Further implementation, with the source codes used on the real robot, was
performed in ROS with the simulation in Gazebo.

26

................................... 4.2. Simulation tools

Proportion Length[m]
a 2.6
b 1.5
c 3.5
d 2.0
L 4.18

(a) : Shapes of the Phoenix
robot.

(b) : The robot’s projection

Figure 4.3: The Phoenix sizes [24]

4.2.1 Simulation in MATLAB

MATLAB is an effective tool for projecting the required algorithms due
to the extensive built-in tools and simple programming language. All the
proposed controllers were created using this source, and further were adapted
for the actual platform. The robot mathematical model that is described in
Chapter 3 was implemented in MATLAB function SteerBot()same as the
one which is used for the real robot but with the slight difference that on
the actual platform, all the simulation is also discrete in time. All the time
steps for derivation or integration are performed using the clock, whenever in
MATLAB the preference was given to strict timesteps. Ts = 0.05[s].
All the simulation used for controllers proposing is quite primitive and per-
formed in the simple while loop when the outputs from controllers are fed
to inputs of the system. The controller, the MATLAB function, takes as
the input the current state of the robot, described in Chapter 3, and the
reference, which is the pose, position, or state of the trajectory depending on
the controller type.
MATLAB was also chosen because it allows fast graph plotting and controller
evaluation which would take more time if the preference to Gazebo simulator
had been given. After all, the ROS requires extra time for compiling a large
number of packages in the Phoenix driver.

27

4. Tools, software and robot system description
4.2.2 ROS

ROS(Robot Operating System)is an effective tool for multithreading operation
of the robot’s system used for the simulation and the real robot. Although
MATLAB is effective for projecting the algorithms, seeing the controller’s
behavior on the real Phoenix manipulator can be observed only with the
usage of ROS phoenix driver. All the packages in this driver are compliable
with ROS kinetic and melodic. In this thesis, all the simulation tests were
performed in ROS Melodic for Ubuntu 18.04. and Gazebo version 9.

4.2.3 Gazebo simulator

The Phoenix team has created a simple robot model in an SDF file format
which can be imported to the Gazebo simulator. But the implemented robot
has some disadvantages in simulation.▶◀It can’t be set to the required pose manually in the simulator; it initially

spawns in the origin of the world coordinate frame, which is caused by
the requirement of the BearNav navigation system on the real robot..▶◀The robot collisions cannot be simulated due to the undefined dynamic
parameters of the robot. It is impossible to follow the robot’s behavior
at the interaction with the obstacles or other objects..▶◀The model is static, and it is not possible to visually see the changing
of the inputs on the robot wheels.

However, the robot kinematic and the behavior of all the packages of the
Phoenix driver can be simulated similarly to the actual behavior of the robot.

4.2.4 Environment, Mesh

As mentioned, the robot works on the Skoda parking. Using the Lidar sensors
installed on the robot, the Phoenix team followed the path created the point
Cloud of the parking.
In this thesis, using the Open3D module and Ball-Pivoting algorithm in
Python [21] different types of mesh were created. The parameters of mesh
are in the table above.

Number of measure points Ball radius constant Size[MB]
7 ·106 3 52
7 ·106 5 49
20 ·106 3 150
20 ·106 5 140

Table 4.1: Properties of mesh

The resulting mesh of 1ml triangles was parsed manually in Blender to delete

28

................................... 4.2. Simulation tools

the empty holes and saved the .pynb file, which was used for exporting to
Gazebo. The resulting computational load was relatively high in Gazebo, and
loading to simulator the required meshed required about 5[s], which was not
acceptable for further testing and evaluation.

Figure 4.4: The example of parsed mesh

For visualizational purposes was created a simple turn part of the robot path
from the basic geometry objects from the Gazebo database [22]. In the project
was created a package gazebo_path_plugin for random car spawning on
the parking lots. Its description is available in Appendix A.1. Briefly, this
package enables to spawn N number of plains with the required number of
parking lots. It enables the user to spawn the cars randomly by the number
of parking lots or the specific required area shown on the fgire 4.5a. This
approach can be used for testing the loading maneuvers on the parking. Only
for visualization purposes, the package was created for the programmer to
see the path in the simulator shown on the figure 4.5b, which the robot was
moving. With the combination of these packages, the user can see the possible
collisions in the simulator. However, the testing will use the empty world for
faster loading and computational stability.

29

4. Tools, software and robot system description

(a) : Example of custom world with spawned parking lots

(b) : Path visualization node in Gazebo

4.2.5 RVIZ

In this thesis, the process of planning methods can be easily visualized in ROS
using the RVIZ, which allows visualizing the RRT as the markers array in the
configurational space where z-coordinate is equal to the robot’s orientation θ,
the red marker is the required goal state. The example of generated tree is
shown on the figure 5.13.

30

Chapter 5
Experiments

This chapter introduces the experiments and their evaluation for the proposed
algorithms of path following and planning in the simulation and on the real
platform.

5.1 Controllers

The evaluation of the path control efficiency is based on the following param-
eters.▶◀ The configurational distance described in the equation (3.63) between

goal pose and approached one using the control law. In all presented
controllers, except the Pose controller, we will take into account only
the positional distance because they do not aim to follow the robot’s
target orientation. For most of the experiments, we use the maximal
configurational distance dmax when we consider that robot approached
the goal pose..▶◀The speed deviation between the real and the reference one in the near
target state.

The controller with the best behavior minimize the described parameters. In
the set of experiments, we’ll consider that the initial state from the equation
(3.15) of the robot is always zero for all dimensions.

5.1.1 Constant tuning for speed control law

All the proposed controllers use the same control law for the front speed input
from the equation (3.32). This section will propose the proportional constant
with the maximum impact on the path following. The controller shouldn’t
have the overshoot and be fast.

Switching to the reference state

To test how effective robot follows the reference in x-coordinate we’ll define
the reference state with xref = 10, vref = 0 and zeros in other dimensions.

31

5. Experiments
The following state was chosen because we consider the proposed positional
reference is enough to reduce any speed error. In the presented experiment,
we’ll use the dmax = 0.05[m], and when the robot approaches the point,
switch to the reference speed of zero and measure the steady position, this
approach is based on the trajectory following when we discretize it on the set
of the points and follow every separately. The experiments were performed
with the following proportional gains

Kv = {5, 1, 0.5, 0.47, 0.25} (5.1)

From the figure 5.1 it can be seen that for the larger proportional gains, the
doesn’t have enough time to stop on the required position and pass by the
reference; for too small gains like 0.25, the robot is approaching the final
position too slow which is not very robust for the following trajectory. The
best-founded gains are limited to 0.5. Their deviation is smaller than required
one dmax = 0.05[m].

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

Figure 5.1: Following the zero speed reference state with different proportional
gains

Reducing the longitudinal error

The next experiment is similiar to the previous, but we’ll change the speed
control law to see the overshootings more precicely instead of ˜sgn(vref) in the
control law we’ll consider the sgn(ex). For zero reference speed and reference
y-coordinated, the control law simplifies to

vset = sgn(ex)|ex| = ex (5.2)

The experiment is peformed for the same gains From the figure 5.2 the larger

32

..................................... 5.1. Controllers

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Figure 5.2: Reducing the longitudal error for different proportional gains

gains oscillate and stabilize slower than optimal gains; smaller ones do not
have the overshoot but stabilize slower than optimal ones. The behavior of
the gains 0.5, 0.47 is quite similar. However, we will choose as the best one the
gain Kv = 0.47 because its behavior is based on the theoretical background
and was calculated from the braking distance from the equation (3.38).

Comparing of speed errors

The last experiment compares the speed errors for different references. We’ll
divide the reference speeds to 7 samples from [-3; 3] with the step 1 to see
whether the controller reduce all the errors when we switch to the position
described in the previous experiment. We’ll use the proportional gain with
the best behaviour.
From the figure 5.3 it can be seen that the robot reduced all the speed errors,
which confirms that the controller gain was chosen correctly.

5.1.2 Following the reference poses

The controller parameters were derived experimentally based on the set of the
experiments when we generated the reference poses and gradually reduced the
satisfactory distance of approaching dmax to 0.1[m]. Based on the resulting
trajectory, the constants were proposed. In this section, we present the
trajectories for poses inspired by the robot’s behavior on the crossroad, in
some turning cases, shown in the table 5.1. The reference speed vref in the
goal poses was set to 0.

33

5. Experiments

0 2 4 6 8 10 12

-3

-2

-1

0

1

2

3

Figure 5.3: Reducing the speed errors for Kv = 0.47

Reference pose pi Value [x, y, θ]
1 [5, 5, π/2],
2 [0, 5, π/2]
3 [−5, 5, π/2]
4 [−5,−5,−π/2]
5 [0,−5,−π/2]
6 5,−5,−π/2]

Table 5.1: Reference poses for the experiment

Point To Point

The proportional constant for Point to Point controller Kv = 0.47 was derived
in the previous experiment. The experiment showed that for smoother turns
the proportional constant to the steering control law (3.28) is required, it’s
value was set to Kψ = 0.6. The final control law is

ψ = Kψatan2(ey, |ex|) (5.3)

From the figure 5.4 we can see that the robot successfully followed all the
reference poses, but for edge poses like p2, p5 it required some extra turns.

Pure Pursuit

For Pure Pursuit controller was used the devoted approach described in the
equation(3.45) with the saturation from the equation (3.44). The proportional
speed constant was experimentally set to C = 0.45

34

..................................... 5.1. Controllers

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Figure 5.4: Following the reference poses for Point to Point controller

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Figure 5.5: Following the reference poses with Pure Pursuit controller

From the figure 5.5 we can see that controller has the preferable behavior,
similar to PTP but requires a more significant turn radius.

35

5. Experiments
Model Predictive Controller

MPC aims to predict only the steering input value, the front velocity is
calculated inpedentedtly using speed control law in the prediction process. The
implemented controller has the time horizon p = 3 simulation steps(k = 2),
the weights for position references x, y were q1, q2 = (2, 2) correspondantly,
for steering input ψ the weight is r = 0.25 described in subsection 3.2.3. The
time step was chosen T = 0.1[s]. The number of samples for the steering
input was chosen with the step 0.1, which implies the approximately N = 32
samples for ranges [−π/2;π/2] From the figure 5.16 we can see that the robot

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Figure 5.6: Following the reference poses with MPC

following the reference poses but struggles in r poses p2, p4 and finds weird
trajectories.

Pose Controller

For Pose Controller the proportional constants k1 = 1.75, k2 = −0.7 (3.55).
The proportional constant for steering speed C = 0.25 (3.58). For all presented
points we measured the deviation of orientaional errors eθ in the final position
5.1. The average absolute value of the errors is

eθ = 1
6

6∑
i=1

|eiθ| = 0.1390[rad] (5.4)

The robot reduces the orientational error quite precisive and follows the
reference poses, but the turn radiuses are even more significant than in Pure
Pursuit.

36

..................................... 5.1. Controllers

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Figure 5.7: Following the reference poses with Pose Controller

Position number Orientational error eθ[rad]
1 0.1365
2 -0.1357
3 -0.2097
4 0.2097
5 -0.0711
6 0.0711

Table 5.2: Orientational errors

5.1.3 Following the reference circle

The last experiment is based on the following reference circle trajectory. There
are two types of switching between the points in the trajectory..▶◀By tolerance. Define the approaching distance dmax and switch to

another point when the robot’s distance to the current point is less than
dmax. This approach is very effective in case we want the robot to reduce
the initial error, but in case of too small dmax, it can loop on one point ..▶◀By distance. Switch to another point when the robot’s distance to the
current one is greater than the previous distance. However, the robot
has to start precisely on the first point of the trajectory; otherwise, the
trajectory will be followed with the greater average deviation due to the
specific architecture of the controller.

37

5. Experiments
First, we’ll use the stop on the first approach. We’ll generate circle with
Ns samples with radius r = 10 and center in the beginning of the world
frame. The robot’s orientatioanl speed is constant and equal to w = 2π

Ns

Experimentally, it was derived that the maximal approach distance dmax is
approximately equal to the positional distance between samples.

dmax ≈ lcircle
Ns

= 2π r
Ns

(5.5)

The deviation from this law leads to the wrong behaviour in the trajectory
following.

NS dmax[m]
100 0.60
400 0.15

Table 5.3: The number of sampling in the circle generation

-10 -5 0 5 10

-10

-5

0

5

10

Figure 5.8: Switching points by previous distance for Pure Pursuit, Ns = 400

From the figures 5.9 it can be seen that all controllers follow the reference
circle precisely. The best behavior was achieved for Point To Point. From
the figure 5.9d we can see that robot does not stabilize quite precisely, so the
experiment with the point switching by distance was applied. The idea is to
switch points by previous distance when the robot finds the first point of the
trajectory. The result is presented on the figure 5.8. We can see that robot
followed the circle precisely.

38

..................................... 5.1. Controllers

-10 -5 0 5 10

-10

-5

0

5

10

(a) : Point To Point for Ns = 100

-10 -5 0 5 10

-10

-5

0

5

10

(b) : Point To Point for Ns = 400

-10 -5 0 5 10

-10

-5

0

5

10

(c) : Pure Pursuit for Ns = 100

-10 -5 0 5 10

-10

-5

0

5

10

(d) : Pure Pursuit for Ns = 400

-10 -5 0 5 10

-10

-5

0

5

10

(e) : MPC for Ns = 100

-10 -5 0 5 10

-10

-5

0

5

10

(f) : MPC for Ns = 400

-10 -5 0 5 10

-10

-5

0

5

10

(g) : MPC for Ns = 100

-10 -5 0 5 10

-10

-5

0

5

10

(h) : MPC for Ns = 400

Figure 5.9: Circle following with controllers

39

5. Experiments
5.2 Motion planning

The idea behind motion planning is to generate the trajectory as the sequence
of points with one of the proposed algorithms and follow it using the path-
controllers methods. The sequence of actions in our case is to generate the
trajectory, save it in .csv format, and load in the future testing, or choose
from already generated ones. As the parameters for maneuvers evaluating,
we will use the minimal time of maneuver, accuracy, or configuration distance
dacc between the found and real goal poses, the search space in 2D. The
presented methods are also part of the maneuver’s library.

5.2.1 Straight-line maneuver

The straight-line maneuver is not a classic motion planning problem because it
doesn’t require the reference trajectory and can be applied straightly without
any trajectory controllers. With the use of the proportional constant Kv =
0.47 derived in the speed control law, we have measured the simulation time
required for the robot’s stabilization near reference with some configurational
distance dacc. As the experimental set was chosen dmove = 10[m], vref =
0[m/s]: "move 10 meters straight and stop". The choice of dmove can be
explained because will have enough time to get to vmax = 3[m/s] and reduce
it to zero value.

Accuracy dmax Maneuver time t[s]
0.5 7.25
0.2 7.90
0.1 7.95

Table 5.4: Comparing of straight-line maneuver time

5.2.2 Dubin’s curves

For Dubin’s curves, the main parameters are the sampling time between
states Ts, the number of unchanged iterations nstop, the total number of
iterations Nmax. It’s difficult to compare the precise search space because the
path generating algorithm depends on the number of iterations for each basic
maneuver. Every point is added with the new iteration, which implies that
the less the total number of iterations(points) for the maneuver, the less is
the search space. Also, the theoretical time of maneuver applying is the sum
of iteration multiplied by period Ts. For comparing the result trajectories
we’ll use the reference pose of [5, 5, π/2], planning speed vplan = 1[m/s]. This
set of experiments will also show how to choose the most optimal trajectory.

As the first experiment, we’ll try to define the best sampling period that
minimizes the distance from the reference pose dmax. Also we set nmax = 10
and max of aligning iterations to zero steering angle is 20.
From the table 5.5 the most optimal sampling time Ts = 0.2[s] because it has

40

................................... 5.2. Motion planning

Sampling period Ts[s] Accuracy dacc[m] Maneuver type Number of Points
0.1 0.682 RLR 141
0.2 0.097 RSL 84
0.5 0.185 RSL 40

Table 5.5: Comparing of the accuracy dacc for the different sampling periods

the minimal value of dacc.
The parameters nmax should be correlated depending on trajectory preferences
and number of points. For the founded period we’ll compare the trajectories
for different nmax values and choose the one with the minimal value of the
search space and the best precise.

Accuracy dacc[m] Number of Points
0.714 40
0.336 60
0.097 84

Table 5.6: Comparing of different points numbers and the result accuracy of
the maneuver

0 1 2 3 4 5 6 7 8
Position x[m]

3

2

1

0

1

2

3

4

Po
sit

io
n

y[
m

]

Dubin's curves
N = 40
N = 60
N = 84
Reference Pose

Figure 5.10: Generating Dubin’s curves for pose

From the figure 5.10 all the maneuvers are of the same type, RSL, but the
more significant number of points give the better accuracy of approximating
the reference pose, but also require the bigger working space of the maneuver.
The number of stop iterations nstop should be also reckoned, although the
algorithm would work without that parameter, but it will search unnecessary
loop till Nmax.

41

5. Experiments

4 3 2 1 0 1 2 3 4
Position x[m]

4

2

0

2

4

6

8

Po
sit

io
n

y[
m

]

Dubin's curves
N = 43
N = 159
Reference Pose

Figure 5.11: Comparing of trajectory points number for [-3, -3, −π/2]

The generated path satisfies the workspace
and the accuracy

Generate the trajectories with different
sampling periods

START

END

Choose the period with the minimal
configurational distance to goal

Choose the number of maximal states
and stop iterations

Save path in .csv format
YESNO

Figure 5.12: Tuning the parameters for Dubin’s curves

42

................................... 5.2. Motion planning

To illustrate this, we’ll perform the same experiment with Nmax = 1000
for pose [-3, -3, −π/2]. For nstop = 10, the algorithms breaks at the iteration
N = 43 and finds very unprecive solution of dacc = 1.532, what doesn’t suits
us, we start to increase the value to nstop = 40 and the algorithm finds the
perfect solution of dmax = 0.067 and N = 159 but for bigger number of points
also increases the search space which can not be appliable in the narrow
spaces 5.11. We propose the following algorithm or the sequence of steps to
tune the appropriate parameters for the Dubin’s curves RRT 5.12.

5.2.3 Basic RRT

As the RRT is based on random sampling, we will use the principle of
generating some number of trees and choose the one with the minimal dacc.
Then we apply any search algorithm to find the shortest path to the generated
goal pose, the Djiskra algorithm.

Figure 5.13: Visualization of RRT using RVIZ

For RRT building the sampling period Ts = 0.5[s] and the target point
sampling probability Pt = 0.1 from the subsection 3.3.2 were chosen because
comparing to the other ones the accuracy dacc from the goal pose on the
same set experiments was minimal. The second parameter of the RRT is the
search space or the configurational space we search for when generating the
new random state.
To illustrate the trajectories difference and the result accuracy we’ll provide
the set of experiments to generate the path to goal pose [5, 5, π/2] for different
goal search spaces. The default set is to generate 50 trees with 3000 nodes or
points.

From the figure 5.14 and the table 5.7 we can summarize that the RRT
algorithm provides more significant precision for bigger search spaces, but
it can be challenging to apply in narrow spaces, so we should correlate the
search ranges depending on the space preference.

43

5. Experiments
Search space ranges [xmin, xmax] × [ymin, ymax] Accuracy dmax[m] Number of Points

[5, 5]x[5, 5] 617.8 ·10−3 30
[0, 10]x[-5, 10] 4.369 ·10−3 70

[-10, 10] x[10, 10] 1.213 ·10−3 75

Table 5.7: Differences between generated paths for different search spaces

0 2 4 6 8 10
Position x[m]

4

2

0

2

4

6

Po
sit

io
n

y[
m

]

RRT paths
N = 30
N = 70
N = 75
Reference Pose

Figure 5.14: The generated path for different search spaces

5.3 Results of the simulation experiments

We can summarize the conducted experiments in the simulation for completing
the full experiment on the real platform

5.3.1 Path Controlling

The path controlling problem was successfully solved using the proposed
controllers. The most powerful controller that reduces the distance error
turned up the simplest Point to Point. To summarize, the flaws of the
controllers.▶◀ Point To Point. Very straightforward, high front speeds require

bigger turning radiuses to reduce positional errors..▶◀ Pure Pursuit. Requires more time to stabilize, on the small accuracy
reference accuracy can cause turning on the circle with constant inputs
until following the reference position.

44

............. 5.4. Following the reference pose in the narrow space on the real robot

.▶◀ Model Predictive Controller. Computationally demanding some-
times causes unpredicted behavior for different poses..▶◀ Pose Controller. Requires a bigger workspace for finding the refer-
ence pose without following the pose similar to Point To Point Controllers.

5.3.2 Motion planning

The motion planning problem was solved using the basic RRT and Dubin’s
curves-based algorithms. They are also the part of motion library

Dubin’s curves

Dubin’s curves proved to be robust to find the specific trajectory. Tuning the
parameters of its generation, we receive the trajectories with the different
workspace. We can mention that the workspace is not predefined using this
algorithm as a flaw. We need to compare the trajectories with the different
points and choose the most appropriate. RRT can generate the path with
good accuracy to the goal pose, but the decreasing nodes reduces the accuracy
of approximating the pose. Also, this algorithm is very robust when the
theoretical trajectory is empirically known, and all are required to smooth
the path for the preferences.

Basic RRT

RRT is based on random sampling, so the result of the trajectory accuracy is
not predefined. The choice of generating the number of trees and choosing
the one with the best accuracy is one of the possible solutions, but due to
applying the Djiskta search algorithm for generating the shortest path, it can
be computationally long. That’s why all the trajectories should be generated
in the offline mode of the robot. The parameters tuning is easier compared
to Dubin’s curves. The workspace is specified.

5.4 Following the reference pose in the narrow
space on the real robot

On the real robot we conducted the experiment with the target to generate
path to the pose of [3; 3;π/4] from init and zero reference speed in the target
point.

Trajectory type Accuracy dacc[m] Number of Points
Generated 5.354 ·10−3 33

Real 8.72 ·10−2 33

Table 5.8: Differences between generated paths for different search spaces

45

5. Experiments

Figure 5.15: Result pose of the robot

Based on the simulation experiments results the path was generated using
the Basic RRT of ranges [0, 4]x[-1, 4]. To follow the reference trajectory the
PTP controller was chosen, the front speed inputs were saturated to [-0.3;
0.3] to follow trajectory more precisely, the switching between points was
performed using tolerance method 5.1.3 with the accuracy of 0.1[m].

As the result the robot successfully followed the trajectory with the big
precise in the required workspace shown on the figures 5.8 and 5.15.

46

........................ 5.5. Conclusion of the performed experiments

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Position x[m]

1

0

1

2

3

4
Po

sit
io

n
y[

m
]

Robot's trajectories
Generated
Real

Figure 5.16: Comparing of trajectories for real robot

5.5 Conclusion of the performed experiments

The path-following and motion planning methods were solved in the simulation
concerning the proposed requirements. The behavior of the controllers was
compared, and the Point To Point as the most successful was performed on the
actual platform experiment where we aimed to generate the path in the narrow
space with the minimal search space. A basic RRT algorithm completed this
task, and the path was successfully followed. Dubin’s curves and straight-line
maneuvers were tested only in the simulation but are appliable for other
motion planning problems.

47

48

Chapter 6
Conclusion

This chapter introduces the conclusions of the thesis, present the further
work.

6.1 Thesis results and conclusion

The path-following problem based on the theoretical background was success-
fully solved by applying the path controllers: Point To Point, Pure Pursuit,
Model Predictive Controller and Pose Controller. Their behavior was tested
on the set of experiments in the simulation of the environment. The motion
planning for the collision-free workspace based on the trajectory generation
was performed using Dubin’s curves and the basic RRT algorithm in the sim-
ulation. The ability of easier parameters tuning and simplicity in defining the
search-space was the main advantage of choosing RRT for the experiment on
the real robot in the narrow space. Point To Point controller was also chosen
as the most simple and robust. The task of the real platform experiment
was completed. The part of the motion planning solution is the straight-line
maneuver, which effectively reduces the distance error and doesn’t require the
precomputation of the trajectory. This maneuver and the described trajectory
generation algorithms consist of the library of maneuvers created for further
use on the Phoenix robot.

6.2 Further work

The possible improvement for the following work is to develop the method
of collision detecting for the robot because the algorithms are based on the
search space. It can be solved by comparing the polygons of the robot’s model
and the workspace objects on some semantic map. Also, the improvement of
RRT can be applied with the RRT star algorithm, which is always finite and
provides the shortest path to the goal without any further search algorithms.
In RRT generation, we have provided a Dijskra search algorithm that can be
replaced with UniCost search, which boosts the speed of finding the shortest
path. For Dubin’s curves, the most inappropriate part is the parameters
tuning which could be solved with the better heuristic of the possible path.

49

6. Conclusion......................................
Otherwise, the proposed algorithms and methods provide the solution of the
tasks defined in the introduction of this work.

50

Bibliography

[1] Automatic guided vehicles. (n.d.). AGV Overview. https://www.mhi.
org/fundamentals/automatic-guided-vehicles

[2] Robot navigation. (2021, November 27). In Wikipedia. https://en.w
ikipedia.org/wiki/Robot_navigation

[3] LaValle, S. M. (2006). Comp150-07: Intelligent robotics Notes on C-
Space. The Configuration Space. https://www.cs.tufts.edu/comp/
150IR/hw/cspace.html

[4] Ravankar A, Ravankar AA, Rawankar A, Hoshino Y. Autonomous and
Safe Navigation of Mobile Robots in Vineyard with Smooth Collision
Avoidance. Agriculture. 2021; 11(10):954. https://doi.org/10.3390/
agriculture11100954

[5] P. Polack, L. -M. Dallen and A. Cord, "Strategy for automated dense
parking: how to navigate in narrow lanes*," 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 9196-9202,
doi: 10.1109/ICRA40945.2020.9197088.

[6] Ding, Y. (2020, November 16). Simple Understanding of Kinematic
Bicycle Model - Yan Ding. Medium. https://dingyan89.medium.c
om/simple-understanding-of-kinematic-bicycle-model-81cac
6420357

[7] Coulter, R. Craig. “Implementation of the Pure Pursuit Path Tracking
Algorithm.” (1992).

[8] Reda Ahmad, Bouzid, Ahmed, Vásárhelyi, József. (2020). Model Pre-
dictive Control for Automated Vehicle Steering. Acta Polytechnica
Hungarica. 17. 163-182. 10.12700/APH.17.7.2020.7.9.

[9] Bower, T. (n.d.). 5.4.2. The Point Forward Steering Controller —
Robotics Programming Study Guide. Robotics Programming Study
Guide. http://faculty.salina.k-state.edu/tim/robot_prog/Mo
bileBot/Steering/pointFwd.html#the-point-forward-steering-
controller

51

https://www.mhi.org/fundamentals/automatic-guided-vehicles
https://www.mhi.org/fundamentals/automatic-guided-vehicles
https://en.wikipedia.org/wiki/Robot_navigation
https://en.wikipedia.org/wiki/Robot_navigation
https://www.cs.tufts.edu/comp/150IR/hw/cspace.html
https://www.cs.tufts.edu/comp/150IR/hw/cspace.html
https://doi.org/10.3390/agriculture11100954
https://doi.org/10.3390/agriculture11100954
https://dingyan89.medium.com/simple-understanding-of-kinematic-bicycle-model-81cac6420357
https://dingyan89.medium.com/simple-understanding-of-kinematic-bicycle-model-81cac6420357
https://dingyan89.medium.com/simple-understanding-of-kinematic-bicycle-model-81cac6420357
http://faculty.salina.k-state.edu/tim/robot_prog/MobileBot/Steering/pointFwd.html#the-point-forward-steering-controller
http://faculty.salina.k-state.edu/tim/robot_prog/MobileBot/Steering/pointFwd.html#the-point-forward-steering-controller
http://faculty.salina.k-state.edu/tim/robot_prog/MobileBot/Steering/pointFwd.html#the-point-forward-steering-controller

6. Conclusion......................................
[10] Klančar Gregor, Matko, D., Blazic, Saso. (2005). Mobile Robot Control

on a Reference Path. 1343 - 1348. 10.1109/.2005.1467211.

[11] Vieira, F.C., Medeiros, A.A., Alsina, P.J., Araújo, A.P. (2004). Posi-
tion and Orientation Control of a Two-Wheeled Differentially Driven
Nonholonomic Mobile Robot. ICINCO.

[12] Peter Corke. 2013. Robotics, Vision and Control: Fundamental Algo-
rithms in MATLAB (1st. ed.). Springer Publishing Company, Incorpo-
rated.

[13] Jean-Claude Latombe. 1991. Robot Motion Planning. Kluwer Academic
Publishers, USA.

[14] Kevin M. Lynch and Frank C. Park. 2017. Modern Robotics: Mechanics,
Planning, and Control (1st. ed.). Cambridge University Press, USA.

[15] Pin, F., Vaaseur, H.A. (1990). Autonomous Trajectory Generation for
Mobile Robots with Non-Holonomic and Steering Angle Constraints.
Proceedings of the IEEE International Workshop on Intelligent Motion
Control, 1, 295-299.

[16] Lamiraux, Florent, Laumond, Jean-Paul. (2001). Smooth motion plan-
ning for car-like vehicles. Robotics and Automation, IEEE Transactions
on. 17. 498 - 501. 10.1109/70.954762.

[17] Navigation Toolbox Documentation. (n.d.). MATLAB. https://www.
mathworks.com/help/nav/

[18] Automated Driving Toolbox Documentation. (n.d.). MATLAB. Re-
trieved November 1, 2021, from https://www.mathworks.com/help
/driving/

[19] Sakai A. (n.d.). atsushisakai.github.io. Python Robotics. https://at
sushisakai.github.io/

[20] P. (n.d.). GitHub - python-control/python-control at 0.8.3. GitHub. ht
tps://github.com/python-control/python-control/tree/0.8.3

[21] Poux F., PhD. (2021, April 12). Generate 3D meshes from point clouds
with python | Towards data Science.https://towardsdatascience.c
om/5-step-guide-to-generate-3d-meshes-from-point-clouds-
with-python-36bad397d8ba

[22] O. (n.d.-a). GitHub - osrf/gazebo_models: Model database. Gazebo
Database. https://github.com/osrf/gazebo_models

[23] Vogel, J. (2021, April 6). Tech Explained: Ackermann Steering Geome-
try. Racecar Engineering. https://www.racecar-engineering.com/
articles/tech-explained-ackermann-steering-geometry/

52

https://www.mathworks.com/help/nav/
https://www.mathworks.com/help/nav/
https://www.mathworks.com/help/driving/
https://www.mathworks.com/help/driving/
https://atsushisakai.github.io/
https://atsushisakai.github.io/
https://github.com/python-control/python-control/tree/0.8.3
https://github.com/python-control/python-control/tree/0.8.3
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://towardsdatascience.com/5-step-guide-to-generate-3d-meshes-from-point-clouds-with-python-36bad397d8ba
https://github.com/osrf/gazebo_models
https://www.racecar-engineering.com/articles/tech-explained-ackermann-steering-geometry/
https://www.racecar-engineering.com/articles/tech-explained-ackermann-steering-geometry/

.....................................6.2. Further work

[24] Pěčonková V.(2021). Motion Planning for Autonomous Car Manipu-
lator[Bachelor’s thesis, Czech Technical University in Prague]. ČVUT
DSpace. https://dspace.cvut.cz/bitstream/handle/10467/9665
6/F3-BP-2021-Peconkova-Veronika-Peconkova%20Veronika%20-
%20BP%20-%20motion_planning_for_autonomous_car_manipulator
.pdf?sequence=-1&isAllowed=y

53

https://dspace.cvut.cz/bitstream/handle/10467/96656/F3-BP-2021-Peconkova-Veronika-Peconkova%20Veronika%20-%20BP%20-%20motion_planning_for_autonomous_car_manipulator.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/96656/F3-BP-2021-Peconkova-Veronika-Peconkova%20Veronika%20-%20BP%20-%20motion_planning_for_autonomous_car_manipulator.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/96656/F3-BP-2021-Peconkova-Veronika-Peconkova%20Veronika%20-%20BP%20-%20motion_planning_for_autonomous_car_manipulator.pdf?sequence=-1&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/96656/F3-BP-2021-Peconkova-Veronika-Peconkova%20Veronika%20-%20BP%20-%20motion_planning_for_autonomous_car_manipulator.pdf?sequence=-1&isAllowed=y

54

Appendix A
Intro to source codes

The source codes consist of MATLAB and C++ ROS. Matlab provides the
path controlling methods in the discrete-time and might be shown for the
constant tuning of the proposed controllers.

A.1 ROS platform codes

The source codes implemented for the real robot are provided in the default
folder named Path-Planner-For-Phoenix-Environment. You need to add the
src folder of your ROS workspace; then, you need to clone from GitHub the
actual version of the Phoenix driver and Skoda simulation(private links) to
your workspace. After catkin_make your workspace, you are ready to use
the packages and nodes of implemented code.

A.1.1 gazebo_path_plugin

Allows generating the parking world with slots without collisions with the
real robot. Some of the words have already been generated for visualization
purposes. The loading of the world to Gazebo simulator has to be combined
with the launch files provided in sim launcher of Skoda simulation.’

A.1.2 trajectory_viewer

Spawns the circles that visualizes the trajectory in the Gazebo, the subscriber
to status and odometry publishers from Phoenix ROS driver. 4.5b

A.1.3 basic_maneuvers

The main package is described in the thesis’s algorithms and methods. We’ll
describe the main nodes of these packages.▶◀applyController : moves to the specific state using one of the imple-

mented controllers..▶◀applyDubins: applies the specific Dubin’s maneuver without any prede-
fined trajectory on the preferable number of iterations for every basic
maneuver.

55

A. Intro to source codes
.▶◀generateRRTpath: generates the RRT, applies Dijisktra search for the

shortest path and saves the generated trajectory to a specific folder..▶◀generateDubins: generates the path based on Dubin’s curves..▶◀followByDistance: run, when you need the robot follow the generated
trajectory by distance method 5.1.3, load .csv trajectory from the specific
folder..▶◀followByTollerance: robot follows the trajectory By some tolerance or
accuracy the point, specify it and load the trajectory in .csv format.

A.1.4 The .csv format for trajectory

The trajectory is saved as the matrix (n+1)x5, where the columns of the
matrix are [x, y, θ, ψ, v], the first row is skipped and has the string format as
[x, y, theta, psi, v]. It can be easily viewed with different tools like Python or
MATLAB.

A.1.5 The library of maneuvers

The library is provided with the trajectories and nodes for generetaing them
generateRRTpath, generateDubins where the user can choose the most ap-
propriate one and the nodes of applyController, applyDubins, straight-
LineManeuver where the user can try the maneuver without the previosuly
generateed trajectory.

56

	Introduction
	Motivation and goals

	State of art
	Navigation overview
	Related works
	Path controlling overview
	Motion planning research
	Created software tools based on the related works

	Theoretical concepts
	Kinematic description of the robot
	Kinematic equations
	Constraints and parameters
	Transformation between unicycle model and car-like model

	Path-following problem
	Point to Point Controller
	Pure Pursuit Controller
	Model Predictive Controller
	Pose Controller

	Motion planning for the Phoenix robot
	Straight-line maneuver
	Rapidly-exploring random tree
	Dubin's maneuvers

	Tools, software and robot system description
	Robot hardware and software, proportions
	Simulation tools
	Simulation in MATLAB
	ROS
	Gazebo simulator
	Environment, Mesh
	RVIZ

	Experiments
	Controllers
	Constant tuning for speed control law
	Following the reference poses
	Following the reference circle

	Motion planning
	Straight-line maneuver
	Dubin's curves
	Basic RRT

	Results of the simulation experiments
	Path Controlling
	Motion planning

	Following the reference pose in the narrow space on the real robot
	Conclusion of the performed experiments

	Conclusion
	Thesis results and conclusion
	Further work

	Bibliography
	Intro to source codes
	ROS platform codes
	gazebo_path_plugin
	trajectory_viewer
	basic_maneuvers
	The .csv format for trajectory
	The library of maneuvers

