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transfer function between the periodic disturbance force and the target. We show that these
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1. INTRODUCTION

Vibration suppression is a crucial task in many engi-
neering applications. Let us for example mention ma-
chining tools, high-precision meteorology, electron micro-
scopes, deep space telescopes, etc. Both passive and ac-
tive approaches are widely used for vibration suppression
(Preumont, 2018). One of the most efficient methods for
entire absorption is known as the delayed resonator (DR)
(Olgac and Holm-Hansen, 1994; Olgac, 1995). Applying an
active time-delayed feedback, parameters of the passive
absorber are virtually modified so that the vibrations
of the platform are suppressed entirely. Note the many
modifications of the resonator concept, including a relative
position feedback absorber (Olgac and Hosek, 1997), a
torsional vibration absorber (Hosek et al., 1997), multiple
delayed resonators (Jalili and Olgac, 1999) and an auto-
tuning algorithm to enhance the robustness against uncer-
tainties (Hosek and Olgac, 2002, see also wide references
therein).
Recently, a complete dynamics analysis of a DR was
performed in Vyhlı́dal et al. (2014) and consequently
in Pilbauer et al. (2016) applying a distributed delay
which poses a filtration effect. Both the presented works
report relatively narrow operable frequency ranges, with
the limits resulting from stability and implementation
constraints. In Kučera et al. (2017, see also Eris et al.,
� This work was supported by the project CELSA/20/13 of the KU
Leuven Research Council, the project G092721N of the Research
Foundation-Flanders (FWO - Vlaanderen) and by the project 21-
00871S of the Czech Science Foundation.

2018) the extended delayed resonator was proposed to
mitigate this inefficiency. Let us also point to Vyhlı́dal
et al. (2019), where the stability analysis is conducted by
the DR’s force and energy demands. A robust DR concept
was proposed in Pilbauer et al. (2019) and Kuře et al.
(2018, see also Fenzi et al., 2017). A DR targeting multiple
frequencies was proposed in Valášek et al. (2019) and in
Šika et al. (2021) the DR concept was extended from 1D
to 2D vibration absorption.
It has to be stressed that above literature addresses the
standard collocated vibration absorption task where the
absorber is directly attached to the suppression target. In
this case it suffices to tune the absorber to have its reso-
nance frequency corresponding to the vibration. For many
systems, however, these vibration-affected parts of the
structure are also the most inaccessible ones for a variety of
reasons. For example, we cannot place an active vibration
absorber at the tip of the cutting tool in machining or at
the end-point of the micro-manipulator of a surgery robot.
In these cases, the vibration suppression need to be per-
formed by an absorber that is remotely located from the
point of suppression, which makes them non-collocated.
As recently identified in Jenkins and Olgac (2019), Olgac
and Jenkins (2021) and Olgac and Jenkins (2020), the
design complexity of the arising problem of non-collocated
vibration absorption increases dramatically. Next to the
active absorber, a whole resonant substructure including
a part of the underlying structure has to be involved in vi-
bration absorption. The problem formulation and analysis
is accompanied in Olgac and Jenkins (2021) by a design
approach based on assigning imaginary axis eigenvalues
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Fig. 1. Three body mass-spring-damper system excited by
an external vibration force f . An active vibration ab-
sorber (TVA) can be tuned to suppress the vibration
at either the collocated or the non-collocated target.

of an identified resonant substructure. However, as it will
be discussed further, such a substructure does not always
exist. This motivates us to present a novel, generally ap-
plicable design approach, grounded in directly assigning
imaginary axis zeros of the transfer function between the
disturbance force and the target.
The structure of the paper is as follows. In Section 2,
we highlight the differences between collocated and non-
collated absorption suppression and explain why identify-
ing a resonant substructure is not always possible. This
will motivate a new design procedure for vibration control
based on zero location constraints, which we describe in
Section 3. In Section 4 we apply the procedure on an
example and show a simulation result. Section 5 contains
concluding remarks.

2. MOTIVATION

The general idea of suppressing vibrations using an ab-
sorber in the collocated case is to directly attach a mass ma

with a spring of stiffness ka and damping ca to the target of
suppression, as it is the case in Fig. 1 for a one dimensional
lumped mass-spring-damper system with target mass m2.
This passive absorber setup is further complemented by
a sensor-actuator pair between the target and the ab-
sorber body to create an actively tuned vibration absorber
(TVA). The controller of the local feedback loop u1 is
tuned so that it compensates the damping of the attached
mass and unifies the resonance frequency of the TVA with
the frequency to be suppressed. It is well known that such
an ideal resonator will completely absorb the vibration of
the body it is attached to. It is done via oscillating with
the exact amplitude and phase required to counter act the
vibration forces at the target and thus leaving the body
with mass m2 in Fig. 1 motionless for the said excitation
frequency.
This phenomena, often called anti-resonance, can also be
exploited to suppress the vibration of a body other than
the one to which the absorber is directly attached to. As a
specific example, this would be the case if the suppression
target is the body with mass m1 in Fig. 1. To give an
idea how it would work, we ignore the damping for a
moment and fix the position of the target body like it
would be a wall, which separates the setup into two parts:
One on the right, where the vibration force acts (the only
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k3

c0c1

c3

parallel spring

ma
ca

ka

u1

Fig. 2. The spring link between m2 and m0 renders existing
approaches of non-collocated vibration suppression
for the target m1 infeasible, since no substructure
can take the role of the absorber. An additional local
controller u2 is used to stabilize the overall system.

body it includes here is the one with mass m0), and one
on the left, which is independent of it (the bodies of
mass ma and m2 together with the respective springs).
If the latter part has now a resonant mode exactly at the
frequency of the vibration, it is able to freely oscillate and
sustain the counterforce on the target which is necessary
to balance the vibration forces exerted by the former part.
The mechanism is therefore the same as in the collocated
case, but instead of having a single mass in resonance,
a multibody resonant substructure takes the role of an
absorber.
The task of the local feedback u1 is then to ensure that the
absorber has an undamped mode at the desired frequency.
Compared to the collocated case, however, the tuning of
the controller is more challenging since it depends not
only on the parameters of the attached mass but also in
part on the original structure (Olgac and Jenkins, 2021).
In both cases the objective of the control is achieved by
shaping the spectrum of the absorber (the collocated case)
or the whole resonant substructure (the non-collocated
case) such that it has a pair of eigenvalues on the imaginary
axis corresponding to a resonant mode at the desired
suppression frequency.
We turn now to Fig. 2, where an additional spring (and
damper) is attached between the bodies with mass m0

and m2, but the suppression target stays the same. Fixing
the target body does not divide the structure into two
parts, where along one the vibration is propagated towards
the target and one that can act as an absorber. The
reason is that there is not only a single path from the
force through the target to what was before the absorber
substructure, but a parallel path bypassing the target. The
mechanism to achieve suppression of the vibration at the
target cannot be therefore based on a counterforce exerted
by a segregated substructure, but instead necessitates an
equilibrium of forces at the target body involving all of the
other bodies.
Consequently, we have to rethink the tuning of the con-
troller. Since a resonant substructure cannot be identified
we have to forgo placing the eigenvalues but look directly
at the transfer function from the vibration force to the
displacement of the target body. Complete suppression of
the vibration in fact corresponds to a pair of transmis-

sion zeros on the imaginary axis at the desired frequency.
Therefore, we introduce in this work a controller design
based on placing the transfer function’s zeros which is a
general approach and applicable to both collocated and
non-collocated vibration suppression, with and without
parallel springs.
A major point of concern for the application of active
tuned vibration absorbers is the stability of the overall
system. In the collocated case this is evident, because for
an ideal resonator, energy must be induced to overcome
the losses from the damping and as a result the system is
not passive anymore. Moreover, the absorber is actually
tuned to be marginally stable, so the rest of the structure
has to act as a stabilizing feedback. This puts a limit
to the admissible vibration frequencies, depending on the
structures ability to stabilize a particular configuration of
the control loop (Vyhlı́dal et al., 2019). To address this,
a second feedback loop can be added to the system to
be in charge of improving the dynamic response of the
system so that a wider range of vibration frequencies as
well as targets can be suppressed (Fenzi et al., 2017; Kuře
et al., 2018). This is done in the example of Fig. 2 by
a controller between the body with mass m2 and the
supporting wall. Note that there is an interdependence in
the tuning of the controller u1 to position the zeros and u2,
the stabilizing controller. It leads to a co-design problem,
where the task of vibration suppression has to be done
simultaneously with finding a stabilizing control law, both
which are addressed in the next section.

3. CONTROLLER DESIGN

As starting point for the problem of non-collocated vibra-
tion suppression we take the state-space representation of
the underlying lumped mass-spring-damper system

ẋ(t) = Ax(t) +Bf(t) +B1u1(t) +B2u2(t)

y(t) = Cx(t)

y1(t) = C1x(t)

y2(t) = C2x(t).

(1)

The input f(t) = F cos(ωt) is the external vibration force
with amplitude F and frequency ω. The output y(t) ∈ R is
the displacement of the target body. The additional input-
output pairs (u1, y1) and (u2, y2) are the two local feedback
loops formed by sensor and actuator pairs. Each of the
loops will house a controller among which the following
two goals will be divided: The first controller is tuned
so that the periodic vibration at the target body for the
given frequency ω > 0 is completely suppressed after some
transient response, i.e., limt→∞ y(t) = 0. In the application
addressed in the next section, it corresponds to the active
control of the delayed resonator. The second controller is
used to ensure that the overall system remains stable.
The control algorithms within the DR loop can take
various forms, ranging from delayed position (Olgac and
Holm-Hansen, 1994), velocity (Filipović and Olgac, 2002)
or acceleration (Olgac et al., 1997; Vyhlı́dal et al., 2014)
feedback. The feedback can also be taken from these
quantities passing through a distributed delay (Pilbauer
et al., 2016; Pilbauer et al., 2019). Let us also point to a
delay free resonator feedback in Rivaz and Rohling (2007).
The peculiar application of a delay has a clear motivation

in the collocated case in compensating for the phase shift
induced by the damping. Here the delayed relative position
of the absorber body is considered as feedback for the
vibration suppression.
For the stabilizing controller we will use in this work static
feedback of the displacement and velocity of another body.
The closing of the feedback loop is therefore expressed with

u1(t) = gy1(t− τ)

u2(t) = Ky2(t)
(2)

where the tuning parameters are the gain g ∈ R and delay
τ ≥ 0 for the first (absorber) controller and feedback-
matrix K ∈ R1×2 for the second (stabilizing) controller.
Due to the introduction of a delay, the system (1) and (2)
will be infinite dimensional.

3.1 Assigning of transmission zeros

As discussed in the previous section the fundamental role
in suppressing vibrations are played by the transmission
zeros. If a transmission zero is located on the imaginary
axis, then at steady state the corresponding frequency
will vanish from the output. Transmission zeros can be
obtained as the zeros of the transfer function, but instead
we will compute them from the state space representation
(1) and (2) of the closed-loop system.
Assuming that the system is exponentially stable, any
λ ∈ C for which f(t) = F eλt, F �= 0 leads to a stationary
solution characterized by y(t) = 0 is a transmission zero.
Inserting x(t) = x eλt into (1) and (2) gives[

λI −A− gB1C1 e
−λτ −B2KC2 −B

−C 0

] [
x
F

]
= 0. (3)

The existence of a non-zero solution for
[
xT FT

]T is
equivalent to

det

(
λ

[
I 0
0 0

]
−
[
A+B2KC2 B

C 0

]
−
[
gB1C1 0

0 0

]
e−λτ

)
= 0,

(4)
which can be interpreted as a generalized nonlinear
eigenvalue problem associated with a delay differential-
algebraic equation (DDAE) system. The solutions of the
eigenvalue problem, the so-called invariant zeros, can
therefore be computed with the same methods as, e.g., for
characteristic roots of neutral time-delay systems. If such
a solution λ is not a characteristic root for f(t) ≡ 0, then
a corresponding nonzero solution of (3) satisfies F �= 0,
implying that λ is also a transmission zero.
The relation to eigenvalues inspires now a method to assign
invariant zeros to λ = ±jω, which are transmission zeros
by the exponential stability of the system, and, in this
way, to find suitable controller parameters for suppressing
vibrations. Following Michiels et al. (2010, Section 2), we
apply the matrix determinant lemma to turn (4) with
λ = jω into

1− g e−jωτ z = 0 (5)
with the complex number

z = [C1 0]

[
jωI −A−B2KC2 −B

−C 0

]−1 [
B1

0

]
.

Note that in order to have a solution, the condition
z �= 0 has to be guaranteed by making suitable choices
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sion zeros on the imaginary axis at the desired frequency.
Therefore, we introduce in this work a controller design
based on placing the transfer function’s zeros which is a
general approach and applicable to both collocated and
non-collocated vibration suppression, with and without
parallel springs.
A major point of concern for the application of active
tuned vibration absorbers is the stability of the overall
system. In the collocated case this is evident, because for
an ideal resonator, energy must be induced to overcome
the losses from the damping and as a result the system is
not passive anymore. Moreover, the absorber is actually
tuned to be marginally stable, so the rest of the structure
has to act as a stabilizing feedback. This puts a limit
to the admissible vibration frequencies, depending on the
structures ability to stabilize a particular configuration of
the control loop (Vyhlı́dal et al., 2019). To address this,
a second feedback loop can be added to the system to
be in charge of improving the dynamic response of the
system so that a wider range of vibration frequencies as
well as targets can be suppressed (Fenzi et al., 2017; Kuře
et al., 2018). This is done in the example of Fig. 2 by
a controller between the body with mass m2 and the
supporting wall. Note that there is an interdependence in
the tuning of the controller u1 to position the zeros and u2,
the stabilizing controller. It leads to a co-design problem,
where the task of vibration suppression has to be done
simultaneously with finding a stabilizing control law, both
which are addressed in the next section.

3. CONTROLLER DESIGN

As starting point for the problem of non-collocated vibra-
tion suppression we take the state-space representation of
the underlying lumped mass-spring-damper system

ẋ(t) = Ax(t) +Bf(t) +B1u1(t) +B2u2(t)

y(t) = Cx(t)

y1(t) = C1x(t)

y2(t) = C2x(t).

(1)

The input f(t) = F cos(ωt) is the external vibration force
with amplitude F and frequency ω. The output y(t) ∈ R is
the displacement of the target body. The additional input-
output pairs (u1, y1) and (u2, y2) are the two local feedback
loops formed by sensor and actuator pairs. Each of the
loops will house a controller among which the following
two goals will be divided: The first controller is tuned
so that the periodic vibration at the target body for the
given frequency ω > 0 is completely suppressed after some
transient response, i.e., limt→∞ y(t) = 0. In the application
addressed in the next section, it corresponds to the active
control of the delayed resonator. The second controller is
used to ensure that the overall system remains stable.
The control algorithms within the DR loop can take
various forms, ranging from delayed position (Olgac and
Holm-Hansen, 1994), velocity (Filipović and Olgac, 2002)
or acceleration (Olgac et al., 1997; Vyhlı́dal et al., 2014)
feedback. The feedback can also be taken from these
quantities passing through a distributed delay (Pilbauer
et al., 2016; Pilbauer et al., 2019). Let us also point to a
delay free resonator feedback in Rivaz and Rohling (2007).
The peculiar application of a delay has a clear motivation

in the collocated case in compensating for the phase shift
induced by the damping. Here the delayed relative position
of the absorber body is considered as feedback for the
vibration suppression.
For the stabilizing controller we will use in this work static
feedback of the displacement and velocity of another body.
The closing of the feedback loop is therefore expressed with

u1(t) = gy1(t− τ)

u2(t) = Ky2(t)
(2)

where the tuning parameters are the gain g ∈ R and delay
τ ≥ 0 for the first (absorber) controller and feedback-
matrix K ∈ R1×2 for the second (stabilizing) controller.
Due to the introduction of a delay, the system (1) and (2)
will be infinite dimensional.

3.1 Assigning of transmission zeros

As discussed in the previous section the fundamental role
in suppressing vibrations are played by the transmission
zeros. If a transmission zero is located on the imaginary
axis, then at steady state the corresponding frequency
will vanish from the output. Transmission zeros can be
obtained as the zeros of the transfer function, but instead
we will compute them from the state space representation
(1) and (2) of the closed-loop system.
Assuming that the system is exponentially stable, any
λ ∈ C for which f(t) = F eλt, F �= 0 leads to a stationary
solution characterized by y(t) = 0 is a transmission zero.
Inserting x(t) = x eλt into (1) and (2) gives[

λI −A− gB1C1 e
−λτ −B2KC2 −B

−C 0

] [
x
F

]
= 0. (3)

The existence of a non-zero solution for
[
xT FT

]T is
equivalent to

det

(
λ

[
I 0
0 0

]
−
[
A+B2KC2 B

C 0

]
−
[
gB1C1 0

0 0

]
e−λτ

)
= 0,

(4)
which can be interpreted as a generalized nonlinear
eigenvalue problem associated with a delay differential-
algebraic equation (DDAE) system. The solutions of the
eigenvalue problem, the so-called invariant zeros, can
therefore be computed with the same methods as, e.g., for
characteristic roots of neutral time-delay systems. If such
a solution λ is not a characteristic root for f(t) ≡ 0, then
a corresponding nonzero solution of (3) satisfies F �= 0,
implying that λ is also a transmission zero.
The relation to eigenvalues inspires now a method to assign
invariant zeros to λ = ±jω, which are transmission zeros
by the exponential stability of the system, and, in this
way, to find suitable controller parameters for suppressing
vibrations. Following Michiels et al. (2010, Section 2), we
apply the matrix determinant lemma to turn (4) with
λ = jω into

1− g e−jωτ z = 0 (5)
with the complex number

z = [C1 0]

[
jωI −A−B2KC2 −B

−C 0

]−1 [
B1

0

]
.

Note that in order to have a solution, the condition
z �= 0 has to be guaranteed by making suitable choices
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for C1 and B1. In practise, the solvability requirement
determines possible locations of the feedback loop from
which imposing zeros at ±jω is feasible.
With the help of (5) we can determine the gain g and delay
τ of the first controller by taking the angle and modulus

g = sgn(Im(z))
1

|z|

τ =

{
arg(z)

ω if Im(z) ≥ 0
arg(z)+π

ω if Im(z) < 0
,

(6)

where arg(·) maps to (−π, π]. In distinguishing the cases
we take into account that it is physically impossible that
the delay is negative while at the same time a smaller
delay has most likely a better impact on overall stability
of the system. This motivates us to select the smallest
non-negative solution for the delay.

3.2 Stabilization with direct optimization

Shifting a zero in the complex plane requires two degrees
of freedom, which are provided by closing the loop with the
first controller using delayed position feedback. However,
with the gain and delay obtained from (6), we are not
only positing a zero to the desired frequency but also
changing the overall dynamics of the system with the
possibility of destabilizing it. A second control loop with
a local static feedback is therefore introduced, providing
additional degrees of freedom to mitigate the effects of the
first control. Given that the additional controller is finite
dimensional but closing the loop with a delay induces an
infinite spectrum, we cannot control all of the eigenvalues
but have to settle with influencing the right-most ones.
This inevitably leads to an optimization problem with
respect to the entries of the feedback matrix K to minimize
the spectral abscissa function

min
K∈R2

α(K) := sup (Re(λ) : det(M(λ,K)) = 0) . (7)

with the characteristic matrix of system (1) and (2)
M(λ,K) = λI −A− g(K) e−λτ(K) B1C1 −B2KC2,

where we stress in the notation that the solutions of (6)
depend on K.
Since the cost function in (7) is non-convex and non-
Lipschitz continuous but almost everywhere smooth, we
solve it with HANSO (Overton, 2021). It requires the
evaluation of the cost function as well as its derivative
if it exists. Generally, the derivative of a simple eigenvalue
with respect to a parameter p is

dλ

dp
= −

w∗ ∂M
∂p v

w∗ ∂M
∂λ v

,

where w and v are the left and right eigenvector of the
characteristic matrix M , respectively. The solution (6) is
then incorporated using the chain rule.
Note that distinguishing the two cases in (6) leads to a
discontinuity in the cost function along the curve where
Im(z(K)) = 0. Such a jump in the cost function might
negatively affect the convergence properties for values of
the delay close to τ = 0 or τ = 2π

ω . We can circumvent this
issue by solving a constrained optimization problem (using
a barrier function) for each case separately and picking

Table 1. Parameter values

Mass in kg Stiffness in Nm−1 Damping in Nsm−1

ma 0.5 ka 400 ca 1.9
m0 1 k0 410 c0 2.1
m1 0.5 k1 1450 c1 4.9
m2 1.15 k2 380 c2 2.2

k3 405 c3 2
kp 1500 cp 5

then the solution which leads to the smaller spectral
abscissa.

4. EXAMPLE

For the case study, we consider the example in Fig. 2. It
is a minimal example with three bodies to reveal the new
mechanism of general equilibrium of forces without reso-
nant substructure. An additional mass is attached to the
structure following the overall paradigm of tuned vibration
absorbers, although, strictly speaking, it is not necessary
since an equilibrium can in theory occur within the three
bodies only. Here it is used to adjust the dynamics in the
uncontrolled case in order to bring a transmission zero
closer to the desired suppression frequency and it also
serves as acting point for the first controller.
For the state

x = [x0 ẋ0 x1 ẋ1 x2 ẋ2 xa ẋa]
T

composed by the displacements and velocities of the bod-
ies, the state matrix A is given at the top of the next page.
The system input and output matrices are

B =
[
0 1

m0
0 0 0 0 0 0

]T
C = [0 0 1 0 0 0 0 0] ,

corresponding to an external excitation at the body with
mass m0 and the one with mass m1 as the target of
suppression. The input and output matrices of the first
feedback loop are

B1 =
[
0 0 0 0 0 − 1

m2
0 1

ma

]T
C1 = [0 0 0 0 −1 0 1 0] ,

corresponding to a force and the relative displacement,
respectively, between the bodies with mass ma and m2.
The second feedback loop’s input and output matrices are

B2 =
[
0 0 0 0 0 1

m2
0 0

]T

C2 =

[
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

]
,

which correspond to a force between the wall and the body
with mass m2 and its displacement and velocity.
The values for the mechanical parameters of the setup are
given in Table 1. In the uncontrolled case, they result in a
pair of zeros at approximately −7.1±j59.9 and −1.6±j26.4
as well a real one at −195. Without the damping there
would be two imaginary pairs of zeros at approximately
±26.5 and ±60.3. We suppose now that the frequency
of the vibration we want to suppress is ω = 19s−1 (i.e.
far from the zeros of the uncontrolled system so that a
stabilizing controller is likely required).
For illustration, we first select K = 0 (i.e. a stabilizing
controller is not employed) and choose for the first con-
troller a gain g ≈ −212.22Nm−1 and a delay τ ≈ 0.1561s

A =




0 1 0 0 0 0 0 0

− k0+k3+kp

m0
− c0+c3+cp

m0

k0
m0

c0
m0

k3
m0

c3
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0 0

0 0 0 1 0 0 0 0
k0
m1
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m1
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k1
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0 0
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Fig. 3. Pole-zero plot after assigning zeros without simul-
taneous stabilization

using (6). Fig. 3 shows that there is indeed a pair of zeros
at the desired location on the imaginary axis but also
that there are poles on the right half-plane causing the
system to be unstable. It means that for this frequency
we cannot accomplish the task of vibration suppression
with the first controller only. Following the optimization
procedure (7) we select for the stabilizing controller the
feedback matrix K = [317 −13], to obtain from (6) the
gain g ≈ −211.54Nm−1 and delay τ ≈ 0.1558s. In Fig. 4
the poles and zeros close to the imaginary axis are shown
when both controllers are applied. The eigenvalues have
been successfully shifted to the left-half plane while the
zero locations constraints are again satisfied (note the two
right-most eigenvalue pairs which explain why it is not
possible to further decrease the spectral abscissa with a
two dimensional static controller).
Fig. 5 shows a simulation result with the displacements
of all the bodies for an excitation force with amplitude
F = 4N. In the beginning the controller used to suppress
the vibrations is not turned on (i.e. u1 = 0) such that the
vibrations which the target body undergoes are visible.
At t = 10s the controller is turned on and after a tran-
sient period the vibrations of x1 are indeed successfully
suppressed. As can also be seen in Fig. 5, silencing x1 is
at the cost of slight amplification of x0 and more distinct
amplification of the absorber mass amplitude xa.

5. CONCLUSION

The concept of non-collocated vibration absorption re-
cently introduced by Olgac and Jenkins was extended to
a general system structure where a resonant substructure
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Fig. 4. Pole-zero plot after stabilization with zero location
constraints

cannot be identified. The design of the active absorber
feedback rests on directly assigning imaginary axis zeros
of the transfer function between the periodic disturbance
force and the target. Even though the problem was studied
for a three body lumped system, the proposed method is
generally valid and the extension to a more complex struc-
ture is straightforward. Besides, an additional controller is
included to the scheme to achieve or enhance stability of
the overall system. Future research steps involve experi-
mental verification of the proposed concept. Subsequently,
the attention will be paid to optimizing the parameters
and position of the absorber and the stabilizing controller
actuation. Feasibility ranges of the suppression frequency
shall also be studied.
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that there are poles on the right half-plane causing the
system to be unstable. It means that for this frequency
we cannot accomplish the task of vibration suppression
with the first controller only. Following the optimization
procedure (7) we select for the stabilizing controller the
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gain g ≈ −211.54Nm−1 and delay τ ≈ 0.1558s. In Fig. 4
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been successfully shifted to the left-half plane while the
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possible to further decrease the spectral abscissa with a
two dimensional static controller).
Fig. 5 shows a simulation result with the displacements
of all the bodies for an excitation force with amplitude
F = 4N. In the beginning the controller used to suppress
the vibrations is not turned on (i.e. u1 = 0) such that the
vibrations which the target body undergoes are visible.
At t = 10s the controller is turned on and after a tran-
sient period the vibrations of x1 are indeed successfully
suppressed. As can also be seen in Fig. 5, silencing x1 is
at the cost of slight amplification of x0 and more distinct
amplification of the absorber mass amplitude xa.
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cannot be identified. The design of the active absorber
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of the transfer function between the periodic disturbance
force and the target. Even though the problem was studied
for a three body lumped system, the proposed method is
generally valid and the extension to a more complex struc-
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included to the scheme to achieve or enhance stability of
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