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Abstract

This thesis deals with the reconstruction
of the Higgs boson mass decaying in the
21SS + 173,44 channel in the ttH produc-
tion. Based on the reconstructed mass,
the goal is to separate the signal from
background productions such as the tZ.

The data created by the full ATLAS
detector simulation are used to develop
two neural networks. First, a classifica-
tion neural network that organizes the
data by assigning detected particles to
corresponding positions in the channel.

Second, a regression neural network
that reconstructs the mass of the Higgs
boson. The developed neural network is
then tested on different data selections
and is shown to outperform the Missing
Mass Calculator technique.

Finally, the neural network is tested on
real ATLAS data.
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boson, Mass reconstruction, Neural
networks
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Abstrakt

V této praci se zabyvame rekonstrukci
hmotnosti Higgsova bosonu v rozpadovém
kanalu 2SS + 171,44 v produkci ttH. Na
zékladé rekonstruované hmotnosti separu-
jeme signél od pozadi, kterym je napiiklad
produkce ttZ.

Na datech ze simulace detektoru AT-
LAS vyvineme dvé neuronové sité. Nej-
prve klasifika¢ni neuronovou sit, ktera
data usporadava pritazenim castic do jed-
notlivych pozic v kanale.

Poté neuronovou sit, kterd rekonstru-
uje hmotnost Higgsova bosonu. Tuto sit
testujeme na ruznych selekcich dat a uka-
zujeme, ze dosahuje lepsich vysledki nez
technika Missing Mass Calculator.

Na zavér je proveden test na skutec¢nych
datech z detektoru ATLAS.

Klicova slova: CERN, ATLAS, Higgsuv
boson, rekonstrukce hmotnosti,
neuronové sité

P¥eklad nazvu: Aplikace strojového
ucéeni pro odhad hmotnosti Higgsova
bosonu z dat detektoru ATLAS
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Introduction

In the ATLAS detector, the Higgs boson can be produced alongside a pair
of top quarks. As the Higgs boson is short-lived, it decays before it can be
detected [1]. The decay products of the Higgs boson include visible particles
such as quark jets and leptons but also the undetectable neutrinos, which
make the reconstruction of the Higgs boson and its mass a challenging task.

While the Higgs boson mass is known to be 125.18 & 0.16 GeV [2], the
reconstruction of its mass can help us separate events, in which it is created,
from background events in which Z boson, W boson or different particles are
produced instead of the Higgs boson.

The Higgs boson, alongside the two top quarks, can decay in many different
channels, and we will be focusing on a particular one — the 2155 + 17344
channel in which two same-charged leptons and one hadronical tau candidate
are produced. With the decay narrowed down, we will first assign the detected
jets and leptons to the Higgs or one of the top quarks to make the data
structured. Then we reconstruct the mass from the organized data.

Both of these tasks will be done using machine learning — in particular,
neural networks. Our goal will be to develop such neural networks that will
allow us to reconstruct the mass of the Higgs boson and separate it from the
background.






Chapter 1

Theoretical background

B 1.1 CERN

CERN (from French Conseil Européen pour la Recherche NucléaireE[) is
an organization focused on research in fundamental physics most notably
through the usage of their world-class particle accelerator facilities . It was
established in the 1950s and since then has been a great contributor to the
world of physics and science [4].

In 2008 the Large Hadron Collider (LHC) started up and to this day it
remains the largest and most powerful particle accelerator in the world . It
consists of a two-ring hadron accelerator and collider built in a 27 km long
tunnel and it is designed for proton beams collisions with a centre-of-mass

energy of 14 TeV @ The schematic of the LHC is in Figure

LHC

Figure 1.1: Schematic of the LHC

Schematic showing detectors CMS, LHCb, ATLAS and ALICE. Also showing
other CERN accelerators — the Proton Synchrotron (PS) and the Super Proton
Synchrotron (SPS). Figure modified from source [7].

'In English European Council for Nuclear Research

3



1. Theoretical background

B 1.1.1 ATLAS

There are eight experiments operating at the LHC, focusing on different
particles and using different detectors. The two largest experiments are
ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid),
both being independent general-purpose detectors [g].

The ATLAS detector is 44 meters long and 25 meters in diameter. Around
1 billion proton-proton collisions (events) occurs each second inside of the
ATLAS detector. Each event produces multiple particles which are then
detected by one of the many sensors of the detector. These measured events
are then filtered by a hardware and a software trigger to a rate of around
2000 interesting events per second. The ATLAS detector measures properties
of the particles such as their direction, momentum, charge, energy and the
particle type @

) Tile LAr Hadronic
Muon Toroid Calorimeter End-cap and Forward
Spectrometer : Calorimeters

Detector

Electromagnetic
Calorimeter

Solenoid Semiconductor Transition
Magnet Tracker Radiation
Tracker

Figure 1.2: Model of the ATLAS detector with its distinct layers

Source .

. 1.2 Standard Model Particles

"The Standard Model of particle physics is the theory used to describe the
interactions of fundamental particles (or fermions) and fundamental forces
(which are conveyed by particles called bosons) ."

The Standard Model further divides fermions into quarks and leptons,
each fermion also has an antimatter counterpart with opposite charge but
otherwise same properties.



1.2. Standard Model Particles

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
I Il I
mass | ~2.2 MeV/c? ~1.28 GeVic® ~173.1 GeVic* 0 ) ~124 97 GeVic?
charge | % 24 % 0 0
spin §% U % C Y t 1 ‘ 0 H
" g e >
up J charm J top J gluon higgs
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o e T JL 2 o}
" [72]
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- @@ |® |[® |3
|—
L electron | muon tau _ o
il neutrino I neutrino I neutrino W boson (O] g

Figure 1.3: Particles of the Standard Model

Source )

B 1.2.1 Quarks

There are six different flavors of quarks: up (u) and down (d), charm (c)
and strange (s), top (t) and bottom (b). In this thesis, we will differentiate
between top, bottom and other quarks (abbreviated as non-b quarks).

The top quark is heavy enough to decay into a W boson and a b quark,
which is the dominant channel. The W boson then decays either into a pair
of quarks or a lepton and a neutrino , p. 638]:

t—=Wtb—=qqb

t—>Wrb—=0Tyb

Quarks are never observed directly in the detector. Instead they are
detected as sprays of hadrons called jets. Besides quarks, there is another
source of jets, which is gluons. Discriminating between quark and gluon jets
is a complex task and a focus of studies at ATLAS and CMS [15].

5



1. Theoretical background

B 1.2.2 Leptons

In the Standard Model, we differentiate between six leptons: electron (e),
muon (u), tau (7) and their corresponding neutrinos (v). In this thesis, we
will use a different nomenclature, where when referring to leptons (symbol /),
we will only consider the two light leptons, electron and muon.

Much like quarks, taus are also not detected directly, as they have a short
lifespan (2.8 x 10713 seconds) and decay into a tau neutrino and a virtual W
boson, which then decays either leptonically:

T =W v, = T, (1.1)
or hadronically:

T =W v, —hT v (12)

T =W v, = h bt hT v, '

where h is a hadron [16][17]. In the case of the leptonic decay, it is a

non-trivial task to associate the detected lepton to either the tau decay or a
different decay process (e.g. leptonic decay of a top quark).

B 1.2.3 Neutrinos

Neutrinos do not have charge, are nearly massless and very hard to detect,
as they only interact weakly [18]. In ATLAS, neutrinos are not detected and,
as such, are a source of missing energy in the detected decay process.

Because of this missing energy, it is a challenging task to reconstruct the
mass of any particle with a neutrino as one of its decay products.

B 1.2.4 Representation of Particles

In this thesis, particles will be represented in two interchangeable ways,
both of them being a vector of four values, that fully describes the particle
kinematics.

First is the (pr, 0, ¢, E)T vector, where pr = |pr| = |(px,py)’| is the
transverse momentum, 7 is pseudorapidity, ¢ is azimuthal angle and F is
energy. This is the representation in which the data of the particles is stored.

Second is the momentum and energy vector (px, py, pz, E)T, also called
the four-vector, where (px, py, pz)? is the momentum of the particle in
Cartesian coordinates. The variables in this representation will be used in
the NN. This representation also has one considerable advantage, which is
the fact that momenta and energy are conserved according to the laws of
conservation. This allows us to add children particles together to create their
parent particle. For example, we can write the following equation for the
Higgs boson:

H=71"+71", (1.3)

where H, 7+ and 7~ are the four-vectors representing those particles.

6



1.2. Standard Model Particles

The relations allowing us to switch between the two mentioned representa-
tions without losing information are the equations |19, p.26]

pPX = pr - COS P,
py = pr - sing, (1.4)
pz = pr - sinh 7.

B 1.2.5 Invariant mass and angular distance

There are two more particle characteristics we will be using — invariant mass
(mp) and angular distance (AR).

The invariant mass is a mass independent of the reference frame of the
particle’s momenta and energies [20]. It is calculated from the momenta and
energy as |19} p.26]

mo = /E - p3 — p — p?. (1.5)
Approximate invariant masses of notable particles are in Table |1.1][2].

Table 1.1: Approximate invariant masses of notable particles

Particle Invariant mass
Higgs boson 125.18 GeV
7 boson 91.19 GeV

W boson 80.38 GeV
Tau 1.78 GeV
Neutrinos 0.00 GeV

The angular distance between two particles is the angle between their mo-
mentum vectors. It is calculated from the difference between their respective
n and ¢ as [19, p.22]

AR = /(An)* + (A¢)? (1.6)

B 1.2.6 Missing transverse energy

The missing transverse energy is a characteristic of a whole event. It stems
from the fact that the two protons which collide in the detector come along
the beam pipe and thus only have non-zero momentum in the z-axis

by =(0,0,p2)T pz #0.

After their collision the total momentum has to be conserved, meaning
that the sum of the momentum vectors of all the particles that are created in
the collision has to be equal to the sum of the two proton momentum vectors

S F=rpp + -

created



1. Theoretical background

In reality, when we sum the momentum vectors of all particles detected in
an event, the sum will usually have the x and y component non-zero:

> P=(px.pv,pz)" px,py #0.
detected

This can be attributed to particles that escaped the detector undetected —
notably the undetectable neutrinos. We then define the missing transverse
energy as [21]

Er = (Erg,Bry)" = - > b, (L.7)

detected

where detected symbolizes the set of all detected particles.

B 13 Higgs Boson

To explain why the carriers of the weak nuclear interaction — the W and
7 bosons — have masses, while in theory, they should be massless, in 1964,
the Brout-Englert-Higgs (BEH) mechanism was proposed. This mechanism
required a new, yet-to-be-discovered field and its associated particle — the
Higgs boson [22].

On 4 July 2012, the Higgs boson has been confirmed by the ATLAS and
CMS experiments at CERN, when a new particle with a mass around 125
GeV was observed [22].

Since then, more experiments and studies have been carried out to further
explore its properties.

B 1.3.1 Production and Decay Channels

As our primary focus is reconstruction of the Higgs boson mass, we will be
distinguishing between signal and background events. Signal events are the
ones in which Higgs boson is produced and background events are the ones
where either a Z boson, W boson or other particles are produced instead.

B Signal events

The Higgs boson is produced in the LHC mainly through gluon fusion (ggF)
or vector boson fusion [23]. Along with the Higgs, there are often other
particles produced. In this thesis, we focus on the case, where the Higgs is
produced together with a pair of top quarks (¢¢H production):

gg —~ttH.

This is a production that has been observed recently in 2018 [24].
The Higgs boson has a very short lifetime (1.6 x 10722 seconds) thus it
decays before it can be detected [1]. As the Higgs boson has a great invariant

8



1.3. Higgs Boson

mass (approx. 125 GeV) it can decay into a pair of bosons or a pair of

fermions, for example [23]:

H —bb,
H—-WW,
H—rTr.

The last mentioned channel will be the one we will be focusing on.

As the taus also decay (leptonically or hadronically), we will narrow our
decay channel even more to a channel with two same charge leptons and a

hadronically decaying tau (the 2SS + 17j,44 channel) in its final state?

Lastly, we will narrow down the decay of the top quarks to the lepton+jets
case (Sec. |1.2.1— one top decays into a pair of quarks and the other one

into a lepton and a neutrino, both top decays also include a b quark):

tt—>WH bW~ b—qq bl vyb. (1.9)
An example® Feynman diagram of this channel is shown in Fig. |1.4.
b
q
qa
v
hadrons

Figure 1.4: Diagram of the 2¢SS + 17p44 decay channel

The final state particles on the right side of the diagram are the ones detected,
except for the undetectable neutrinos. Figure modified from source [19} p.23].

2Final state particles are the ones that are detected by ATLAS.

3There can be slight differences on a case by case basis, such as a permutation of the
top and anti-top pair decay or the permutation of the positively and negatively charged

tau pair decay.
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B Background events

The Z and W bosons are produced in quark-antiquark annihilations in the
LHC [25]. Similarly to the Higgs boson, they are also produced alongside a
pair of top quarks (ttH production):

g+qg—1ttZ,

N 1.10
q+qg—ttw. (1.10)

Another similarity between the Higgs boson and the W and Z bosons is
their short lifetime (approx. 3 x 1072° seconds), which means they also decay
before they can be detected.

The Z boson can decay into a lepton-lepton pair, a neutrino-neutrino pair,
a tau-tau pair or into hadrons:

Z =10,
Z = v, (1.11)
Z = TT.

The W boson, on the other, hand mainly decays into a lepton-neutrino pair,
a tau-neutrino pair or into hadrons [2]:

W — Ly,
W = 1u;, (1.12)
W — hadrons.

The important decay mode here is the tau-tau pair, which is available for the
Higgs and Z bosons, but not for the W boson. This means that the diagram
1.4 can be also used to describe the decay of the ttZ (with the replacement
of H for Z in the diagram), but it cannot be used for the t{W.

Other background productions exist such as tt. All these background
productions can decay in the 24SS + 17344 channel and as such cannot be
easily separated from the signal. The separation of signal and background
will be part of our task.

B 1.3.2 Missing Mass Calculator

Methods for reconstruction of the 7 7 mass exist, and we will focus on one of
them — the Missing Mass Calculator (MMC) — which outperforms other
common methods [26, p.18].

The technique first assumes perfect detector resolution and no neutrinos
outside of the 77 decay. We then have seven (for the case where one tau
decays hadronically and one leptonically) unknowns: py, py, pz and m*
for the invisible product of each of the two taus. For the hadronic tau the
invisible product is just one neutrino, so we can put its m = 0, reducing the

4Which is another representation of a particle, with mass instead of energy, similar to
the ones we have described in Sec. [1.2.4]

10



1.4. Artificial neural networks

eight variables to seven. For these seven unknowns we have the following four
momentum and mass conservation equations [26), p.5-6]:

ETX = Pmisy sin emis1 COS ¢mi51 + Dmiso sin HmiSQ 003¢mi52;
/E(Ty = Pmis; sin Hmisl sin ¢misl + Pmiso Sinemi@ sin ¢misza
le = m%ﬂsl + mgis1 + 2\/p121i51 + m12;i51 \/p%u'sl + m72ni31

_2pvis1pmisl CcOos AH't;ml s
M32 = mgﬂi82 + mgi32 + 2\/p121i52 + m’l2)i52 \/p%’liSQ + m72ni32

_2pvi52pmi52 Ccos Aevmg s

(1.13)

where mis and vis symbolize the invisible and visible tau products respec-
tively, M; = 1.777 GeV as per Table |1.1] and Af,,,, is the angular distance
between the visible and invisible product of the i-th tau |26, p.6].

With seven unknowns and four equations, this is an under-constrained
system and as such it does not have one exact solution. From all possible
solutions, the MMC chooses the most likely one. It finds it with the help
of additional information, such as "...the expected angular distance between
the neutrino(s) and the visible decays products of the T lepton." [26, p.6]
The probability density function of such angular distance is obtained from
simulated data [26), p.7].

The MMC will serve as a comparison to our mass reconstruction method.
A very important thing to note is that the assumption of no neutrinos outside
of the 7 7 decay is not satisfied in our decay channel (a neutrino is coming
from the anti-top branch in Fig. |1.4). This results in a drop in efficiency of
the MMC, but it does not make it unusable, as the MMC tries to mitigate
the effects of resolution in the measurement of E7 [26, p.10] and the outside
neutrino could be viewed as a source of larger resolution.

Lastly, the MMC reconstructs the 7 7 mass, therefore it is only applicable
to events with:

Z =TT,
(1.14)
H— 7,

and not at all to the ¢tW or ¢t production.

. 1.4 Artificial neural networks

"Artificial neural networks are popular machine learning techniques that
simulate the mechanism of learning in biological organisms." [27, p.2] The
building stone of a neural network (NN) is a neuron. In the artificial neural
network (ANN) the neuron is represented by a computational unit, which
takes weighted signals as input |27, p.3], processes them and outputs another
signal, which can then serve as an input for other neurons, creating a network.
The processing of the inputs will in our case be their addition and subsequent
use of an activation function:
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1. Theoretical background

y = d(wlx). (1.15)

To create a NN, the neurons are formed into layers. Besides an input and
output layer, there will be other intermediate hidden layers |27, p.5]. In the
NNs we will be using, the hidden layers will always be fully connected layers,
meaning that each neuron takes as an input the output of each neuron in the
preceding layer:

yij = (I)(W?yifl), (116)

where ¢ is the index of the layer and j is the index of the neuron in the
layer.

Neural networks can be used for different purposes. The two that will be
relevant for us are a regression neural network (rNN°), which predicts one
or multiple numerical values (e.g. predicting the mass of a particle), and
a classification neural network (CNN), which predicts into which of several
known categories does the data sample from which the input was generated
belong to (e.g. categorization of a particle into quarks and leptons).

B 1.4.1 Activation functions

Activation functions are used at the output of neurons. There are many
different options, the ones we will be using are following (also illustrated in
Fig. |1.5).

® Linear function calculated as [27) p.13]

O(v) = . (1.17)

® Rectified linear unit function (ReLU) calculated as [27, p.14]

®(v) = max{v,0}. (1.18)

® Sigmoid function calculated as [27] p.13]

_ 1
1 4ev’

®(v)

(1.19)

B 1.4.2 Loss function

In the training process of a neural network, two phases can be distinguished.
First is the forward phase, when the inputs are processed by the neural
network to produce outputs.

In the second — backward — phase, the loss function takes in the outputs
of the neural network (i.e. the predictions) and the desired outputs (i.e. the

5Not to be confused with the recurrent neural network.
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Linear RelLU Sigmoid
5.0 5.0 1.0
2.5 1 2.5 0.5
0.0 4 0.0 4 0.0 4
-2.5 -2.5+ -0.5 1
-5.0 T T T -5.0 r r -1.0 r r
-50 -25 00 25 5.0 250 —25 00 25 50 250 —25 00 25 50

Figure 1.5: Activation functions

truth) and calculates a score that quantifies the quality of performance of the
neural network. The neural network then backpropagates by computing the
gradient of the loss function with respect to the weights of the layers. Finally,
the weights are updated to minimize the loss p.22]:

oL
(aiw) )

W,:W—Oé'

(1.20)

where « is the learning rate.

The choice of the loss function defines to some extent the functionality of
the neural network.

For the regression a typical loss function is the mean squared error (MSE)

p.176]:

1 n
-~ Z yk — k). (1.21)
n :

For the classification into one of two classes (binary classification) the
binary cross entropy is used .

L=-—— Z yr - log(Jk) + (1 — yk) - log(1 — ). (1.22)
k 1
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Chapter 2
Data

B 21 Analysis levels

When it comes to the signal and background productions, there are two
different levels of data on which we can study these events:

® Real data measured by the ATLAS detector.

® Generated data produced by a program (e.g. the Monte Carlo genera-
tor PYTHIA [30]). It can be further split into two levels:

Event generator data (also called truth data). It contains full
information (pr, 7, ¢ and E) of each particle from the event as well
as its children and parentlﬂ relations with other particles.

Full ATLAS detector simulation level of data. At this level, a
program takes a generated event and aims to produce data similar
to how it would be measured by the real ATLAS detector. The
effects this has on the data will be presented in the next section. It
is this level of data on which we will study the reconstruction of
the Higgs boson mass before applying it to the real data.

. 2.2 Detector effects

The data produced by the detector simulation contains less information than
we have on the event generator level. This is caused by different effects that
are taking place in the detector.

The first group of effects stems from the physical nature of the decay
process:

® We only detect final state particles (i.e. particles without children in Fig.

1.4).

® Neutrinos are not detected.

! Children meaning particles it decays into and parent meaning the particle from which
it came.
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2. Data

® We do not know the parents of the detected particles. That is, if we
detect two leptons in an event, we do not know which lepton is coming
from the Higgs branch?|and which is coming from the top branch.

B Quarks are detected as jets.
® More jets than four can be detected, because of gluon jets.

B Less jets than four can be detected, because two or more jets can overlap
and be detected as one.

The second group consists of effects associated with the imperfection of the
detector:

® There are no sensors in the beam pipe® and particles produced in the
decay can escape the detector’s sensors in this direction.

B Particles in the detector can overlap with each other and can be misiden-
tified or one object can be identified as multiple particles. To avoid the
latter, there is an overlap-removal procedure, where only certain particles
are kept, as part of the detector simulation data processing [31], so in our
case this is taken care of, but still it remains a source of more uncertainty
and error between the event generator and detector simulation data.

® Detector resolution defined by the ATLAS online glossary as the "measure
of the accuracy of a detector measurement, e.g. of energy or spatial
position" [32].

These effects present obstacles in the process of mass reconstruction. The
above is not necessarily a complete list, rather a list of effects which were
encountered during the work on this thesis.

B 2.3 RrOOT

ROOT is a framework for working with data created at CERN. Natively, it can
be used to write and run C++ programs with the built-in Cling interpreter,
but it can also be used with Python through the PyROOT library. It can be
used for storing and accessing data in a tree-like structure and plotting or
other processing of data [33].

An example of the structure of data stored in a ROOT file is on Figure [2.1

. 2.4 Provided datasets and selections

In this thesis two datasets provided by the ATLAS collaboration were used.
The first one contains data of the full ATLAS detector simulation (detector
available) as well as the event generator (truth) level. It consists of multiple

2Higgs branch meaning decay products of the Higgs and their further decay products.
3The pipe through which the beam of protons travels in Fig. [1.2|
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2.4. Provided datasets and selections

File Tree Branches

12SS1tau (boolean)

jet_ptO (float)
ttH.root ———> nominal
m_truth pt (vector of floats)

m_truth_children (vector of vectors of ints)

Figure 2.1: Root file diagram

ROOT files each containing events from either ttH, ttZ, ttW or tt production.
The total number of available events in each of the named productions is in
the All events column of Table[2.1l The individual file of these productions are
then further separated based on the decay of the top quarks — as mentioned
in Section [1.3.1, we will be mostly using the data of the lepton+jets decay
(Eq. |1.9) of the top quarks.

The events in the dataset were generated with a Monte Carlo generator
and the detector simulation is based on Geant4 [34].

As discussed in Section |[1.3.1, in this thesis we are focusing on the 2155 +
17hqq decay channel. Each event contains a detector available boolean variable
indicating whether the event is of this specific channel. This variable is
computed by requiring the event data to meet some conditions and as it relies
on the detected objects, it is not always correct. In addition to that, we will
be making a selection of events with at least three detected jets and at least
one detected b jet, which is also made based on detector available variables.
Making these selections allows for the data that we work with to be more
consistent.

The number of events after the application of the selections is in Table [2.1l

Table 2.1: Number of events

Number of all events for each production and number of selected events. The
selection requires the event to have the 21SS + 173,44 decay channel tag and to
have at least three detected jets with at least 1 b jet. These selections are based
on detector available variables.

Production ‘ All events Selected events Percentage selected
ttH 1 055 628 73 741 6.99%

ttz 1894 217 32 108 1.69%

ttw 614 984 13 295 2.16%

tt 252 225 6 027 2.39%

Total 3 819 054 125 171 3.28%

In the next chapter additional selections based on truth information will
be introduced on top of the ones mentioned here.

The selected events were further split into three separate datasets for
training, validation and testing of the neural networks. The ratio of the split
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2. Data

was 0.8, 0.1 and 0.1 respectively.

The second dataset contains real ATLAS data and as such it cannot be
separated into the different productions, but instead it contains all of them.
What can still be used, are the detector available selections of 2155 + 17,44
channel and of the required number of three detected jets with one b jet.

The number of expected events of the different productions with this
selection can be approximated and the value are listed in Table 2.3.

Table 2.2: Number of expected events of productions in real ATLAS data
The values were provided by my supervisor.

Production Events
ttH 22.8

ttzZ 18.2

tw 24.8

tt 22.2

Other 17.9
Total 105.9

The real data was produced in the years 2015-2018. The number of events
obtained each year is in Table [A.2l

Table 2.3: Number of expected events of productions in real ATLAS data
The values were provided by my supervisor.

Year of production Events
2015 4.04 x 109
2016 4.04 x 107
2017 5.28 x 107
2018 6.93 x 107
Total 1.63 x 108

B 2.4.1 Used variables

Here is an overview of the ROOT variables we will be using in the mass
reconstruction and the particle assignment process. The chosen variables are
closely related to the 2155 + 17,44 decay channel, specifically to the final
state particles in this decay (see Fig. |1.4]).

The detector available variables we will be using are the following:

® The 2[5S + 173,44 decay channel tag and variables indicating the number
of detected jets and b jets.

® Four-vectors of up to eight jets (the number differs in each event based
on how many have been detected by the detector).
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2.4. Provided datasets and selections

® For each jet a b-tag which indicates how likely is the jet coming from
a b quark based on characteristics such as "large mass" or "significant
lifetime" |35].

® Four-vectors of two leptons.
® Four-vector of a hadronically decayed tau.

® The decay mode of the hadronically decaying tau (either 1-prong or
3-prong?).

® Missing transverse energy characterized by its energy and azimuthal
angle.

® The sum of the total visible transverse energy (a scalar variable).

Variables listed above are stored as scalars (e.g. each four-vector is stored
in the form of four separate scalar variables).

The truth data on the other hand includes information of each particle
occurring in an event. It is stored in the form of eight vectors for each event
containing pt, eta, phi, E, ID, particle type, parent and children relations.
The last mentioned is a vector of vectors as a particle can decay into multiple
particles. Each particle is represented by an index at which the vectors can
be accessed to obtain the particle’s information.

4Decays into 1 or 3 charged particles.
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Chapter 3

Proposed methods

. 3.1 Task at hand

The task at hand is to reconstruct the mass of the Higgs boson from the data
produced by the ATLAS detector simulation on a per-event basis. First, the
data has to be preprocessed — jets and leptons have to be assigned to their
corresponding positions in the decay, so that the data is organized. Figure
3.1/ shows a simplified diagram of the described task.

ROOT data Particle Or%lez;zed Mass Mass
—_— . — N e
assignment reconstruction

Figure 3.1: Simplified diagram of the task pipeline

For both the particle assignment and the mass reconstruction a neural
network will be used. For the first mentioned, a classification NN based
approach inspired by the paper on jet-parton assignment in ttH events
cited at [36], and for the latter a regression NN. For the rNN, three loss
functions will be developed, each representing a different approach to the
mass reconstruction.

We will be training and testing the NNs on three selections of the simulated
data, which are based on truth information and are illustrated in Figure
3.2l More precisely, the particle assignment NN will be trained only on the
Narrow selection in (a) in the figure, because it requires a consistent structure
of the decay across all events, which is precisely what the Narrow selection
ensures. A mass reconstruction NN will then be trained and tested on each
of the three selections.

The choice of selections (a) and (b) is based on having the narrowed down
decay of the ttH and ttZ, that allows us to rely on the exact structure of the
channel (Fig. [1.4), allowing for the assignment of all the jets and leptons.
In addition to that, in the Additional backgrounds selection in (b) there is
also the ttW and tt background, which cannot have the top pair decay and
Higgs/Z boson decay cuts applied to it, since their decay channels are different
(e.g. the W never decays into 7 7), so we opt to take all the data.
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The Real data selection in (c) simulates the real ATLAS data structure,
where the productions cannot be distinguished, therefore we take all of the
data, without any truth-based selections.

All three of these sets will be using the common selection of requiring the
21S'S + 17544 channel tag to be true and at least three detected jets with one
b jet, which has been discussed in Sec. This selection will also be applied
to the real ATLAS data, on which we will test the NN trained on dataset (c)
from the figure.

Production ttH ttZ ttW tt
Higgs/Z decay T other 17 other
tt decay || lepton+tjets other lepton+jets other any any
(a) Narrow selection
Production ttH ttZ tW tt
Higgs/Z decay TT other 17 other
tt decay || lepton+tjets other lepton+jets other any any
(b) Additional backgrounds selection
Production ttH ttZ ttW tt
Higgs/Z decay 1T other 1T other
tt decay || leptontjets other lepton+jets other any any

(c) Real data selection

Figure 3.2: Three data selections used with NNs

In red is the selected data and in black are the cuts made for each selection.
The Narrow selection is in (a) as described in Section In (b) additional
background is added in the form of t£W and ¢t productions. Selection simulating
the real ATLAS data is in (c), where truth information cannot be used, therefore
the data cannot be separated on the conditions in the figure. The selection of
21SS + 17pqq channel and at least three jets with one b jet detected is used with
all three (not shown in the picture).

The number of events for the Narrow selection in Figure is in the Table
The number of events without applying the top pair and Higgs/Z boson
decay selection (i.e. Real data selection in the figure) has already been stated
in column Selected events in Table but will be repeated here in Table

22



3.2. Data augmentation

under the column Real data selection.

Table 3.1: Number of events after selection

Wide selection comprises of all events with the 2155 + 17344 channel and at
least three jets with one b jet. Narrow selection is obtained by applying the
requirement of 7 7 Higgs (or Z) decay and lepton+jets ¢t decay on the wide
selection. Wide selection only uses detector available variables, while the narrow
selection requires truth information.

Production Real data Narrow selection Percentage narrow
selection

ttH 73 741 18 124 24.58%

ttZ 32 108 10 886 33.90%

ttWw 13 295 - -

tt 6 027 - -

Total | 125 171 29 010 23.18%

Il 3.1.1 Data extraction code

The Python code used for data extraction from ROOT ntuples to a format
fit for the particle assignment NN is in the directory /source_code/root_
data_extraction. It produces all three of the selections in Fig. |3.2

In the same directory is also the code for extraction of selected events from
the real ATLAS dataset.

B 32 Data augmentation

Data augmentation is a technique used in machine learning to avoid overfitting
and to achieve better generalization of a NN on a dataset |27, p.335]. It
is commonly used in convolutional neural networks in the way of altering
(e.g. rotating, translating or squeezing) an image used as an input for the
network. The principle of generating altered data, that could possibly occur
in the original dataset (i.e. it follows the original data distribution) can be
transferred to our case as well.

We can make use of the rotational symmetry of the detector about the
beam pipe — the azimuthal symmetry [37]. While the symmetry is not
perfect, as the detector is not fully homogeneous, it is still a valuable tool
which brings us the benefits mentioned above.

Before being used as an input for the NN, each event will have its particles
rotated about the beam pipe axis. This way the overall number of events
stays the same, but the events differ across epochs. In practice this is achieved
by changing the azimuthal angle of the particles by the same random value:

o =+ Ao, (3.1)

where ¢ is a vector of the azimuthal angles of the original particles in an
event, ¢’ is the vector of the azimuthal angles of augmented particles and
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directiont,

)

X
tunnel center

Figure 3.3: Diagram of the detector with a coordinate system
Source of the image is Fig. 4.5 in [38].

A¢ = (Ap, A¢,...)T is a vector with the repeated value A¢ € [0, 27), which
is randomly generated for each event.

As we immediately input the ¢’ into a goniometric function to compute
the momentum (Eq. [1.4), we do not require ¢’ € [0, 27).

B 33 Particle assignment neural network

For the reconstruction of the Higgs boson mass we will be using a regression
neural network. As input for the network, we want to use data organized in a
way where we distinguish between two particles of the same type but coming
from different parent particles. Another way to put it is, that we want to
pair the positions at the decay diagram (Fig. |1.4) with the corresponding
detected particles or that we want to assign each jet and lepton to one of the
three decay branches (i.e. top, antitop and Higgs (or Z) branch).

The information that would allow us this (i.e. the information of the
child-parent relations between particles) is unavailable in the detector as has
been discussed in Sec. 2.2l This means that to organize the data of an event,
we will have to choose one out of many possible ways the particles can be
assigned to their positions. In this thesis, we call this process the particle
assignment or particle association.

There are two types of particles that have to be assigned — jets and leptons.
For the task of particle assignment, our goal is to create a program which
takes the raw ROOT data of an event on input and outputs data with jets
and leptons ordered correspondingly to their positions.

The proposed approach is a classification neural network, which for each
event takes in each possible permutation of jets and leptons at different
positions and outputs the respective probabilities of each of the positions
being assigned correctly. The most likely assignment is then chosen from
the permutations as the one with the largest product of the respective
probabilities.
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3.3. Particle assignment neural network

This process is schematized on Figure |3.4| which expands on Figure (3.1.
The inspiration for using permutations as input for the neural network
comes from the paper [36] mentioned in Section 3.1\

ROOT data: Organized data:

-jet 1, jet2, jet3... - top b jet, top W...

 lepton 1, lepton 2 - tau lepton, top lepton

- other variables Generate || 4 aviables Classification | Five probability values

e —— all —> neural
(one event) permutations (P permutations) network (P score vectors)

Organized data of permutation with

Choose the highest product of probabilities ' !
b ! Mass 1

est 1 .o
assignment (one permutation & score vector) : reconstruction

Figure 3.4: Diagram of the particle assignment process

First the ROOT data of an event has all possible permutations of the assignment
of leptons and jets generated. The permutations are then processed by the
(trained) NN, which assigns a score vector with five values to each permuation.
The permutation with the highest product of the individual values is then chosen
as the best particle assignment of the event. The event is then ready to have its
mass reconstructed.

B 3.3.1 Lepton and jet permutations

Looking at the decay diagram (Fig. |1.4) we distinguish two lepton positions

— one lepton originating from the tau and one lepton originating from the
top. Together with the fact that the detector usually detects exactly two
leptons, this gives us two possible permutations for each event.

For the jets we distinguish three positions. Two of them are the b jets
coming from the top and anti-top respectively. The third one is the sum of
the two non-b jets (effectively the W boson that the non-b jets come from, for
this reason we will call it the top W), as we do not distinguish between these
two, as their positions are interchangeable!. The number of jet permutations
can be quite substantial, depending on the number of detected jets (up to
eight).

The number of permutations P of an event with two leptons and n detected
jets is
n(n —1)

2

pP=2. -(n—2)(n—3), (3.2)

where "("2_1) is the number of combinations for the W jet pair and (n—2)(n—3)
is the number of permutations of the two b jets.

The numbers of permutations of an event for different numbers of jets,
obtained by application of the Eq. 3.2, are in Table 3.2l

"'We however still keep their separate four-vectors so as to not lose any information.
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Table 3.2: Number of event permutations in relation to number of jets

Jets 4 5 6 7 8
Permutations 24 120 360 840 1680

The total number of permutations, generated from the events of selection
(a) from Figure 3.2, which are the events we will be training and testing the
particle assignment NN on, is in Table |3.3.

Table 3.3: Number of permutations

The number of permutations generated from the events separated into the two
distinct productions. The number of events stated is identical to the numbers in
column Narrow selection in Table (3.1}

Production ‘ Events Permutations
ttH 18 124 4 294 080

ttZ 10 886 4 000 152

Total | 29 010 8 294 232

B 3.3.2 Applicability

As the particle assignment relates closely to the exact structure of the decay,
it is important to note that it can only be applied on the Narrow selection
from Fig. [3.2l This selection will be used for the training and testing of the
CNN.

Events of the other productions (¢¢W and tt) and the differently decaying
events of ttH and ttZ (e.g. the top quarks can both decay leptonically; the
Higgs can decay into a pair of W bosons instead of taus etc. — these are the
events we have removed by using the Narrow selection) will not be used in the
evaluation of the CNN. But as we will use them in the mass reconstruction,
these events will, in the end, also go through the particle assignment, even
though it will be ineffective.

This is an unavoidable issue, because there is too many different productions
and ways for them to decay, to have one united way of particle assignment.
A possible different approach, would be organizing the particles in an entirely
different way than by the positions in the decay. We have decided for the
described approach, because our main focus is the narrow selection.

B 3.3.3 Features

There are 70 features on the input of the particle assignment NN. Most
of them are the momentum and energy of final state particles (i.e. their
four-vectors) and also their masses and angular distances calculated from
these four-vectors (the equations for these calculations are in Section |1.2.5).
The full list of variables, grouped by the physical nature of the variables, with
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3.3. Particle assignment neural network

names of the particles based on their origin particle (e.g. anti-top lepton is
the lepton originating from the anti-top), is following.

Four-vectors (px, py, pz, E)T of detected particles which are the top b
jet, anti-top b jet, both top non-b jets, Higgs boson hadronically decaying
tau® (Higgs tau), Higgs boson lepton and anti-top lepton.

Four-vectors of intermediate particles of the decay, created by addition
of selected particles from previous paragraph. Specifically the top W
boson (sum of top non-b jets), top quark (sum of top b jet and top W
boson), visible part of the Higgs boson (sum of Higgs tau and Higgs
lepton) and visible part of the anti-top quark (sum of anti-top b jet and
anti-top lepton).

The mass of each detected particle or intermediate particle mentioned
above.

The angular distance between selected pairs of particles, the focus being
primarily on the particles that are being assigned (the jets and the
leptons). The pairs are the Higgs tau and Higgs lepton, the Higgs tau
and anti-top lepton, the anti-top b jet and Higgs lepton, the anti-top b
jet and anti-top lepton, the two top non-b jets, the top b jet and top W
boson and, finally, the top quark and the anti-top quark.

For each of the four jets a b-tag, which indicates how likely is the jet
coming from a b quark.

Missing transverse energy characterized by its K7, and 7, components.

The scalar sum of the total visible transverse energy and the scalar sum
of the transverse energy of all detected jets.

The number of jets with energy over 25 GeV.

Lastly the decay mode of the hadronically decaying tau.

Inspiration in the choice of the features was in the thesis of Petr Urban [19]
and the MMC, as the last three items on the list are variables also used in
there. We will be using the same features in the mass reconstruction NN as

well.

It should also be emphasized, that the names of the particles in the above
list refer to the positions, not to the actual particles assigned to them, because
finding the correct particles to assign to the positions is the task at hand.

2By this, we do not mean the tau itself, but rather the hadrons coming from the tau,
which are detected.
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B 3.3.4 Labels

Each permutation is labeled with a vector

I = (ap1, ap2, aw, a1, as2),

o — 1, if particle at position p is assigned correctly, (3.3)
P11 0, if particle at position p is assigned incorrectly,

where p € {b1,b2, W, (1,12} is one of the five positions we are assigning to.

The label for a permutation is created by comparing the assigned particle
to the correct particle for that position, which is known from the truth
information of the event, which is available in the dataset. As the particle is
not detected perfectly, the detected and true particle have to be compared
on some criteria to determine, whether they can be paired and the detected
particle assigned to the position.

The criteria on which we compare this pair to decide, whether the assign-
ment is correct, is the angular distance between the two [36, p.6]:

a = 1, d'LSt(ltruev assigned < 0.12,
0 dZSt(ltru67 assigned > 0-127

)

)
ap = 1’ dZSt(btru& asszgned) < 032,
0, dist(birye, asszgned) > (0.32,
)
)

o — 1, diSt(WtTuea assigned
q 0, diSt(Wtruea assigned

(3.4)

< 0.32,
> (.32,

where dist(p1,p2) symbolizes the angular distance between two particles.

As the W position is a sum of two non-b jets (symbol ¢), we compare the
two jets and if both meet the distance condition the W is labeled as correctly
assigned.

The right-side threshold values of the angular distances were obtained
from experimental results, as values that separate the two distributions
of correctly and incorrectly assigned particles such as in Fig. [3.5. These
distributions become apparent once we plot the distances between all possible
b jet combinations and the separation value is then selected.

B 3.3.5 Architecture and hyper-parameters

The inspiration for the architecture stems from paper on jet-parton assignment
[36]. Changes were made to the output and the exact architecture and hyper-
parameters were adjusted for our task.

The NN consists of multiple fully connected layers with ReLLU activation
functions. Dropout layers and data augmentation are used to reduce over-
fitting on the training data. Furthermore, L2 regularization was used on all
weights |27, p.182]:
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Figure 3.5: Delta R separation of correctly and incorrectly paired b jets

Data used was a combination of ttH and ttZ. All possible pairs were made for
each event and the angular distance was calculated. By plotting the distances
in a histogram a value is chosen to separate the two distributions that become
apparent.

d
L'=L+ND) wy, (3.5)
=0

where £ is the old loss function (in this case the binary crossentropy) £’ is
the loss function with regularization, A is the regularization parameter and
S w? is the sum of the weights squared.

Skip connections are used to accelerate the learning process [36]. A diagram
of the NN architecture is shown in Figure [3.6]
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Figure 3.6: The particle assignment neural network diagram
The exact specifications of the NN are in Table [3.4.
Learning rate step decay was used to make the training process smoother

[27, p.136]:
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Table 3.4: Specifications of the particle assignment CNN

Number of inputs 71

Number of outputs 5

Learning rate 0.0003

Optimizer Adam

Dropout rate 0.2

Dense layer neurons 500

Hidden layers activations ReLLU

Output layer activation Sigmoid
a; = ag - 0.99°, (3.6)

where t is the number of the epoch and «g is the initial learning rate.

The loss function is the binary cross entropy (Eq. |1.22). Since we are
outputting five values we calculate it for each output and the loss is then
their weighted mean. The mean has to be weighted, because the five outputs
each have a different ratio between the total number of zeros and ones in
their respective labels across all samples (imbalanced classification). For the
leptons, where in the vast majority?’| of cases there is one correct and one
incorrect permutation the classification can be considered balanced. For the
jets, on the other hand, there are usually multiple contenders but only one of
them is correct, this leads to more zero labels than ones.

This unbalance of the label classes (zero corresponding to incorrect assign-
ment and one corresponding to correct assignment) has to be offset, for which
weights in the binary cross entropy are used. These are calculated from the
exact ratio of the classes for each output separately (Table 3.5):

n
0_
b, = Z Qpy»
k=1

n

1 _

by =>_1—ap,
k=1

3.7
O o0 (3.7)
Wp =30 1 p1°
bp + bp
L2y

Wp =35 110
bp—i—bp

where n is the number of events, a,, is the label of position p of k-th event,
bg is a helper variable equal to the number of labels with 0 and wg is the
weight for class 0 for the position p being assigned to. The equations are

designed for the sum of the two class labels to be two:

wg + wll) =2, Vp. (3.8)

3Not always because of the detector effects which can (very rarely) cause for example
one of the leptons to be detected poorly.
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3.4. Mass reconstruction neural network

Table 3.5: Weights used in the loss function of the particle assignment CNN

Particle Class 0 Class 1

Top b jet 0.28 1.72
Anti-top b jet 0.29 1.71
Top W 0.07 1.93

Tau lepton 0.98 1.02
Anti-top lepton 0.99 1.01

B 3.3.6 Particle assignment code

The Jupyter notebook for the training of the particle assignment NN is at
/source_code/particle_assignment/particle_assignment_
training.ipynb. The code trains on the data of the Narrow selection
(Fig. 3.2) extracted from the ROOT ntuples.

To choose the best permutation for each event and thus process the data for
the mass reconstruction the Jupyer notebook at /source_code/particle_
assignment/particle_assignment_training.ipynb can be used.

A trained NN is also included in directory /source_code/trained NN_
models.

. 3.4 Mass reconstruction neural network

As has been stated in Sec. [3.1], for the mass reconstruction a regression
neural network will be used. The data on which the NN will be trained and
tested will be the three selections of Fig. 3.2, with the data processed by
the particle assignment NN. The particle assignment is only effective for the
Narrow selection from the figure. For the other two wider selections from
the figure, we will use the same particle assignment NN, although it will be
mostly ineffective, as the decay channels of the events added by these wider
selections are different. In the approach we have chosen, we do not have a
better method to assign the particles of these added events.

The MMC (Sec. |1.3.2) will serve as a comparison for the NN. An MMC
library from Athena (described as "the ATLAS FExperiment’s main offline
software repository" [39]) has been provided by the supervisor. The library has
been used in our script with the 2015 calibration set and the data used with
the MMC was the same as for the NN, which means, it was also processed
by our particle assignment NN (the MMC requires only the assignment of
leptons).

The C++ code for our implementation of a script that uses the MMC
library is in the directory /source_code/MMC, where are also the Jupyter
notebooks for evaluating the reconstructed mass data of the MMC.
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B 3.4.1 Mass reconstruction goal

The goal of the mass reconstruction is to predict the mass of the desired
particle. For the signal (t£H) events this particle is the Higgs boson and for
the background events this particle is the Z boson for ttZ, the W boson for
ttW and for the tt we will ideally predict a zero mass, as there is no particle
to be reconstructed?.

The values to which we will be comparing the predicted masses will be
calculated from the truth information that is present in the simulated dataset.
The masses calculated this way are not exactly equal to the known constant
masses but have a negligible variance, which is a property of the dataset we
are working with. Another almost equivalent approach would be to take the
constant invariant masses from Table [1.1L

B 3.4.2 Loss function

We propose multiple possible approaches each requiring a different loss func-
tion to be used with the NN. When choosing an approach (and its loss
function) we have to consider multiple things.

We expect the NN to distinguish between the signal and the background
and for the reconstructed masses to be close to their actual values.

There is also the question of what background signals do we want the
NN to be able to process. The MMC only works well with the ¢t¢H and ttZ
productions, but in the real ATLAS data there are also other productions
such as the ttW and tt.

The loss functions will use different labels, but each will be able to produce
the reconstructed mass from its output.

B MMC inspired loss

Inspired by the MMC, a loss function incorporating equations of the invariant
mass of reconstructed particles and the MET. The NN outputs the predicted
four-vectors of the four neutrinos. Then the masses of the neutrinos and also
of particles, reconstructed by adding together the neutrinos and the visible
particles (e.g. the neutrino and the lepton coming from the anti-top branch
when added together make the anti-top W boson), are calculated by the
formula Eq. [1.5. With four neutrinos, two W bosons, two taus, one Higgs
and one top this gives us ten predicted masses.

The predicted MET is calculated from the addition of all four neutrinos
and application of the formula Eq. [1.7°!

To calculate the loss itself, we subtract each of the predicted masses from
the known constant of the given particle (e.g. mpy — 80.38), square it and

4We could reconstruct the leptonically decaying top quark, but that would be inconsistent
with the other productions, where we also could reconstruct the top quark, but we do not,
as we reconstruct a different particle.

®Just without the negation, since in the formula we are summing the visible particles
and here we are summing the undetected ones.
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3.4. Mass reconstruction neural network

multiply it by a weight. We do the same with the MET. We then sum all of
these terms to obtain the loss.
The described loss can be written as

10 ) .
Ly = ag(my - )® + an (B — By ) + an(Er, — By )2 (3.9)
k=1

The weights are chosen in a way, that each part of the loss is approximately
equal after the training has gone through some initial epochs:

a1 (my — 1) = ag(mag — 1) ~ ... (3.10)

The optimization of the weights has not been necessary, as even large per-
turbations, such as multiplying some weights by four and dividing others by
four had negligible effect on the results of the trained network.

We obtain the predicted Higgs boson four-vector by adding the neutrinos
coming from the Higgs boson branch to the visible part of the Higgs decay
(a hadronically decaying tau and a lepton coming from the leptonically
decaying tau):

I‘i’ = ﬁThad —I—I?Tlep —I—ﬁg +7—had+€- (3.11)

The mass is calculated from the predicted Higgs boson four-vector with
the use of Eq. [1.5]

The applicability of this loss function is even stricter than of the MMC as
it requires precisely the Narrow selection in Fig. [3.2 (MMC does not require
the specific tt decay).

B Four-vector MSE loss

The output is the four-vector of the reconstructed particle (Higgs boson in
ttH, 7 boson in ttZ, W boson in ttW, four-vector of zeros in t¢t). From a
good prediction of the four-vector, we would ideally obtain a good prediction
of the mass. The used loss is MSE:

Lo = l(pe = D2)* + by = )" + (0= = =) + (B - E)*). (3.12)

The advantage of this loss function compared to the MMC is the option to
use it on ttH and ttZ as well as ttW and tt. This makes it useful even for
the real ATLAS data, where these background productions occur.

B Single output mass loss

The neural network outputs a single value equivalent to the reconstructed
particle’s mass. The difference between the predicted and truth value is then
squared, which serves as the loss function:

,Cg = (mo - mO)Q. (313)
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Also this loss function can be used on ttH and ttZ as well as ttW and tt.

This loss is similar to what Petr Urban has used in his thesis [19]. His work
is mentioned in the points one and two in the assignment of my thesis. His
NN code suffers from the issue that it has been trained and tested on ttH
only. When training, the NN only encountered labels with values around the
Higgs mass constant and when used on anything besides the ttH, it would
predict the same values no matter what would be on input (bias for the
constant Higgs boson invariant mass). By including other productions in the
training data we avoid this issue.

B 3.4.3 Features

The input features will stay the same as in Sec. [3.3.3] with the addition of
the output of the particle assignment NN added as five additional features
for each event. The five additional features represent the probabilities of
correct assignment and we use them to give the mass reconstruction NN the
information of how well are the particles (which four-vectors are also on the
input) assigned.

B 3.4.4 Architecture and hyper-parameters

The neural network will consist of a number of fully connected layers. The
architecture optimization was done on the Narrow selection ((a) in Fig. 3.2)
and with the last mentioned loss function (mass loss). This selection and loss
function were selected, as they were considered to be the most important,
ideally we would adjust the architecture for each loss and each selection.

Experiments with the specifics of the architecture were conducted and some
of the results are in the tables [A.1] through [A.3]in Appendix A. The tables
serve as more of an illustration of the differences between the architectures
being insignificant, than as a rigid optimization process, as each record in the
tables comes from only one iteration of the NN being trained and evaluated.
The chosen architecture is schematized on Fig. 3.7 with parameters per Table
3.6l
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Figure 3.7: The mass reconstruction neural network diagram
The NN contains an input layer, five sequential fully-connected hidden layers
and an output layer. Each fully-connected layer also includes a dropout layer.
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3.4. Mass reconstruction neural network

Table 3.6: Specifications of the mass reconstruction NN

Number of inputs 76

Initial learning rate 0.0005
Batch size 4096

Optimizer Adam

Dropout rate 0.2

L2 regularization 0.001

Dense layer neurons 720
Hidden layers activations ReLU
Output layer activation Linear

As with the particle assignment NN (Sec. 3.3.5)), the same learning rate
step decay was used.

To reduce overfitting the same data augmentation (Sec. |3.2) was used
as with the particle assignment. The effect of data augmentation on mass
reconstruction is demonstrated in Table [A.4] and Figure [A.1] in Appendix
A. L2 regularization was used on all weights to prevent overfitting on the
training data.

B 3.4.5 Mass reconstruction code

The Jupyter notebooks for the mass reconstruction NN, each containing
the NN with one of the three loss functions can be found in the directory
/source_code/mass_reconstruction. Each notebook contains both the
training and evaluation process.

Trained NN models are in the directory /source_code/trained_NN_models.
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Chapter 4

Results

B 41 Particle assignment

A visualisation of the performance of the particle assignment NN on a test
dataset is in Figure 4.1 The data in the test data set had the same properties
as the data the NN was trained on, it was of the Narrow selection from Fig.
and each event was represented by all possible permutations of jets and
leptons.

Top b jet assigment

Anti-top b jet assigment Top W boson assigment

-0.6 -0.6 -06
o o o
2
. 04 -0.4 0.4
s
=3
2
- 0z _ 3.3% 11.0% (02 _ 02
0.0 -0.0 L 0.0
0 1 0 1 0 1

Predicted label

Tau lepton assigment Anti-top lepton assigment

-0.6
=W 40.5% 10.1% W 40.3% 10.3%

Actual label

- 7.3% 42.2% - 7.0% 42.3%

0 1
Predicted label

Figure 4.1: Particle assignment NN confusion matrices

Confusion matrices of the assignment of particles of the NN on a test dataset.
Each event from the dataset is represented by all possible jets and leptons
permutations.

The main metric measured in the particle assignment is the Matthews
correlation (MCC) (Eq. [4.1), which is a suitable metric for imbalanced
classification problems .
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TP-TN - FP-FN
MCC = , (4.1)
V(ITP+FP)-(TP+FN)-(TN+FP)-(IN+FN)
where TP stands for the number of true positives, TN for true negatives, FP
for false positives and FN for false negatives. The MCC expected value is
0 for random classification and 1 for perfect classification [40]. The MCC

obtained on the test dataset is in Table 4.1l

Table 4.1: Particle assignment Matthews correlation

Assigned particle Matthews correlation
Top b jet 0.314
Anti-top b jet 0.442
Top W 0.232

Tau lepton 0.654
Anti-top lepton 0.655

From the confusion matrices and the MCC we see, that the assignment of
the leptons is more accurate than the assignment of the jets. This can be
attributed to the fact, that leptons are detected better by the detector than
the quarks which evolve into jets before being detected and also are less likely
to be misidentified. Jets can also come from gluons, which further increases
the uncertainity. Also, with the leptons we only choose one permutation
out of two, while with the jets there are usually many more permutations to
choose from.

Another point to notice is that while the assignment of the two leptons
has very similar performance, the jet assignment performances differ between
one another. The anti-top b jet seems to be the easiest of the three to assign,
which can be explained by it being in the same branch of the decay as one of
the leptons, while the top b jet and the top W boson are both coming from
the same parent particle (Fig. [1.4). Since the lepton is assigned correctly in
a large number of cases, it is then easier for the corresponding b jet to be
chosen.

The top W, which is in reality the two non-b jets which the W boson decays
into, is the most difficult to assign, because if one of the two jets is poorly
detected or misidentified, which is two times more likely than for the single b
jet, the top W is then more difficult to reconstruct.

What the confusion matrices and MCC do not show, is how well we are
able to choose the best possible assignment out of all the permutations for
each event. Out of all the permutations we choose the one with the largest
product of the five output values:

arg maxH&;, (4.2)
v P

where ¢ symbolizes the current permutation, p € {b1,b2, W, 11,12} is the
position being assigned to and a is the output of the neural network — that
is the predicted probability of the particle being correctly assigned.
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4.1. Particle assignment

We can then look at the rate with which the chosen assignment has the
respective particles assigned correctly.

It needs to be taken into account, that it is not always the case, that the
best assignment has each particle assigned correctly (e.g. when a detected jet
has been misidentified). To account for this, we calculate the mean of correct
assignment of each position (MCA; symbol A) calculated as

Ap==>a, (4.3)
k=1

SEE

where n is the number of events and a is one if assigned correctly and zero
otherwise (as in Eq. 3.3).

In Table [4.2|is the MCA per particle in the chosen permutation and in
the best possible permutation (i.e. the one with the most correctly assigned
particles) for ttH and ttZ.

Table 4.2: Particle assignment mean of correct assignment
Separately for the chosen assignment and the best possible assignment in each
event. Separated into tH and ttZ.

Assigned particle M?A chosen . MCA_best possible B
ttH ttz ttH ttz
Top b jet 0.43 0.42 0.84 0.84
Anti-top b jet 0.57 0.53 0.85 0.86
Top W 0.20 0.18 0.50 0.48
Tau lepton 0.80 0.85 0.99 0.98
Anti-top lepton 0.80 0.86 0.99 0.99

Additionally, by dividing the value of the chosen and best possible MCA,

A

D = Ig’ (44)

we can obtain the relative MCA (Table |4.3)).

Table 4.3: Particle assignment relative mean of correct assignment

Assigned particle relative MCA

ttH ttZ

Top b jet 0.52 0.50
Anti-top b jet 0.67 0.62
Top W 0.40 0.38

Tau lepton 0.81 0.87
Anti-top lepton 0.81 0.87

The above tables confirm that the leptons are assigned more accurately
and that the anti-top b jet is easier to assign than the other jets. We can
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now also compare and see that the t¢H has slightly worse lepton assignment
than the ¢£Z, which does not seem to have an obvious explanation, since the
decay channels are the same. The only obvious difference between the two
production is, that the Z boson is less massive than the Higgs boson, which
could have an positive effect on the lepton assignment, as one of the leptons
is coming from the Higgs/Z boson branch.

A comparison was made between the above results and the paper [36],
which inspired the NN architecture and the use of permutations for the
assignment task. A direct comparison is not possible, because the two differ
in some very important aspects. Some of the major differences from the side
of the paper are the H — b b decay channel being analysed, not including
any other production besides t¢H, having 700 000 events, the events selection
being stricter and six jet positions being assigned to.

The cited paper states, that in 52% of cases it reconstructed the event
perfectly [36]. We can calculate a similar metric, where we compare the
chosen assignment to the best possible assignment and see if they have the
same number of correctly assigned particles:

Ty = P P (4.5)
0, XaF <> agk,
p p

where 7, marks, if for the k-th event we have chosen the best possible

assignment, and 3 is sum of the label of either the chosen (ag*) or the best
P

possible (agk) assignment for event k. Then we calculate the mean across all
events and finally get the percentage of events in which the perfect assignment
has been chosen as:

1 n
R=100%-— > rp. (4.6)
gt

On the test set this metric gives us:

Table 4.4: Percentage of perfectly assigned events
Perfectly assigned event is an event in which a permutation that was chosen has
the maximum possible number of correctly assigned particles.

Perfectly assigned events
ttH ttz
32% 31%

Compared to the paper’s 52%, our performance is worse, but as has been
said a direct comparison does not make sense, since there are too many differ-
ences, it is rather to give a different perspective on the achieved performance.
Some major differences have been already mentioned above, some of them
cannot be dealt with (different decay channel, different productions, different
particles being assigned), but what could be improved is the number of events
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the neural network is trained on, by obtaining a larger dataset, which could
boost the performance.

. 4.2 Mass reconstruction

In Section |3.1| we have proposed three data selections and in Section |3.4.2 we
have proposed three loss functions. We will first compare the loss functions
on the Narrow selection from Fig. 3.2 that is the selection comprising of only
ttH and ttZ with the specified decay channel. In the comparison we will also
include the MMC used on the same test dataset as the NNs. It is important
to note, that using the same dataset implies, that not only the NN but also
the MMC will be affected by the particle assignment, by which all the data
was processed.

In some of the events, the MMC does not produce a result as it does not
find a solution for the equations [1.13. It might be in part because of the
broken assumption of no neutrinos outside of the Higgs that does not apply to
our channel, as has been discussed in [1.3.2l Even though they are not shown
in Fig. 4.2 the events which lead to the zero mass prediction are accounted
for in Table [4.6. The exact numbers for the unsolved events are in Table
4.5, which includes not only the t¢H and ttZ but also the other productions,
which will be relevant later on.

Table 4.5: Percentage of unsolved events by the MMC

The first two rows in the table correspond to the currently discussed Narrow data
selection ((a) in Fig. [3.2), narrow meaning the selection of the exact structure
of the decay channel of the productions made using the truth information. The
remaining rows correspond to the selections without the truth-based requirement
on the Higgs/Z or the top pair deacy from the same figure.

Dataset Unsolved events
ttH narrow 14.1%
ttZ narrow 17.6%

ttW all 30.5%

tt all 18.2%

ttH all 23.2%

ttZ all 19.9%

The higher numbers in Table |4.5|for the ¢tW and tt can be attributed to the
fact, that the MMC is not suited to reconstruct mass for these productions,
as has been discussed in |1.3.2. For the ttH and ttZ the particle assignment
can play a role as well. As we can see, the events of the narrow selection,
which the particle assignment has been developed on, are solved more often
than the ones of the all selection, which includes many events with poorly
assigned particles.
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B 4.2.1 Metrics

The main metric on which we compare the different approaches is the weighted
maximum separation of the signal from the background calculated as:

o flltn )
s =mpx { G @+ G ol 6

where h and z are the test sets of Higgs (or Z) events, d is a value between the
minimum and maximum of all predicted masses, which serves as a separator
between predicted signal and background, where we assume all predicted
masses larger than the separator to be from signal events and others to be
from background events:
. | signal, m(e) > d,
event e is { background, 1 (4.8)
and h.(d) and z.(d) are the sets of events correctly assigned from the original
sets by Eq. [4.8 for the given separator value d. The separation is calculated
for one thousand evenly distributed separator values. The values in Eq. [4.7
are set in a way so that for both extreme separations!| |h.| = |h| A 2| =0
and |he| =0 A |z.| = |2| the separation is 50%.
For the separation, the larger the value, the better, and 50% is the baseline
of random separation.
Other metrics are the mean g and standard deviation o of the Gaussian
function (Eq. 4.9, [41]) fit on the histogram of the predicted masses.

@) = M;? e (4.9)

We also calculate the scaled o’ of the Gaussian fit scaled to the Higgs boson
mass constant 125.18 as:

125.1
o'=0- i 8. (4.10)

For the Higgs boson mass mean, the value should be as close to the constant
125.18 GeV as possible and have a small o.

The separation is considered to be the most important metric as it is not
trivial to achieve. For the mean and the o of the mass distribution, we could
always predict the constant 125.18 GeV for each event and we would achieve
a perfect mean and o, but no separation.

The results that will be presented, will have the original predicted mass
presented, but the mass distributions could also be scaled to have the mean
equal to 125.18 GeV, while the separation would stay the same, but the o
would change. To represent such scaling we introduced the scaled ¢’ (Eq.
4.10).

!Predicting all events to be signal or all events to be background.
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4.2. Mass reconstruction

B 4.2.2 Mass reconstruction results

From Figure 4.2 and Table 4.6/ we can analyze the performance of the different
loss functions.
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Figure 4.2: Mass histograms — loss functions and MMC

Mass reconstructed by neural networks with different loss functions in (a),(b)
and (c). In (d) is the reconstructed mass from the MMC for comparison with
unsolved events omitted from the plot. Data of Narrow selection from Fig.
Number of events scaled by weighting 2 to match the ¢tH, which had a
larger dataset. Gaussian function fit in (a) for illustration of mean and STD
measurement — left out of (c), (b) and (d) for better readability. Dashed lines
mark the Higgs invariant mass 125.18 GeV and Z invariant mass 91.19 GeV.

The poor performance of the four-vector MSE loss in (b) of the figure
can be accounted to the loss being focused on the values of the four-vector
(momentum and energy) and not directly taking into account the mass, which
is the goal value. The thought behind the loss — which was that if we predict
the four-vector we can calculate the mass — would require for the four-vector
prediction to perform better.

The MMC inspired loss in (a) performed slightly worse than the MMC in
terms of separation. The idea of having the NN learn to conserve masses and
MET equations translated to the NN quite well and the distributions have
a similar shape to the MMC in (d). However, the mean of the distribution
is almost two times smaller and even changing the weight of the Higgs (or
Z) mass in had no effect on this, as the NN always had about the same
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Table 4.6: Mass reconstruction metrics — loss functions

Mean g and STD o of Gaussian fit of the mass distribution (as in Fig. 4.2)).
Highlighted in bold the best performing of the given metric. For Mass loss we also
note a = 113.14 GeV, o = 8.11 GeV and scaled ¢’ = 8.97 of the distribution
itself (not the Gaussian fit), as the Gaussian does not fit the distribution well.

Metric | MMC inspired Four-vector Mass loss MMC
loss MSE loss

Separation 65.84% 56.25% 69.33%  67.63%

Higgs mass 67.00 144.85 120.77 118.98
(GeV)

Higgs mass o 19.28 5.77 12.95 33.55
(GeV)

Higgs mass o’ 36.02 4.99 13.42 35.30
scaled (GeV)

performance.

The best separation is achieved by the Single output mass loss in (c¢) even
outperforming the MMC. With the loss fully focused on the goal variable,
the NN achieves the best results. The mass distributions are between the Z
(91.19 GeV) and Higgs (125.18 GeV) boson constant mass and the NN never
predicts outside of the range, as it has not been trained on any values outside
of the mentioned range. This additional information (i.e. that the masses lie
in this range) that is given to the NN lets it achieve a very good mean and
width of the Higgs mass distribution.

The peaks of the MMC mass distributions in (d) being shifted slightly
towards lower values than the mass constants, can be explained by the missing
energy in the form of an outside?| neutrino coming from the anti-top branch,
which, as has been discussed in Sec. [1.3.2] is not accounted for by the MMC.

B 4.2.3 Additional background

The Additional backgrounds selection as illustrated in (b) of Fig. |3.2 expands
the previous selection to include the W and tt background productions.

The separation metric will still be used as defined by Eq. 4.7, but with all
three backgrounds instead of just the ttZ.

On this broader dataset we will train and test our NN with the best
performing loss function — the Single output mass loss. To have a comparison
for the NN, we will once again use the MMC, although as has been discussed
in Sec. [1.3.2, the MMC is not suited to deal with these added backgrounds,
so we will not make any conclusions in regards to the following comparisons.

Figure 4.3| shows the distributions of the predicted masses for the different
productions. The histograms of the background had to be scaled to match
the ttH, which had the most test events.

2Qutside of the Higgs/Z branch of decay.
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Figure 4.3: Mass histograms — additional background

Histograms of reconstructed mass by the NN with the Single output mass loss
function in (a) and by the MMC in (b). Data of the Additional backgrounds
selection from Fig. [3.2l Number of events scaled by weighting background
productions to match the signal, which had the largest test dataset. Dashed
lines mark the Higgs invariant mass 125.18 GeV, Z invariant mass 91.19 GeV and
W invariant mass 80.38. For ¢t a 0.00 GeV mass is assumed as the goal value.

From the figure it is visible, that while the t¢H and ttZ data stayed the
same as in the previous data selection in Fig. 4.2, the separation has worsened,
as the NN had to account for the new backgrounds as well. The ttW and tt
both have a similar wide distribution, with W having a sharper peak at its
corresponding constant mass. The Higgs boson separation from these two
backgrounds is much better than from the ¢£Z, which can be explained by
the Higgs and Z boson productions being very similar, while the other two
differ more from the Higgs boson.

The MMC performs excatly the same on the ttH and ¢tZ, as in Fig.
4.2, because it does not train on the data as the NN does, instead it is
deterministic in its calculations. For the ttWW and tt it performs poorly, with
a wide distribution with similar peaks to the Higgs, as was expected.

Values supporting the above figure are in Table 4.7

Table 4.7: Mass reconstruction metrics — additional background

Mean g and STD o of Gaussian fit of the mass distribution (in Fig. [4.3)). For
Mass loss we also note a pu = 105.09 GeV, o = 12.68 GeV and scaled ¢’ = 15.10
GeV of the distribution itself (not the Gaussian fit), as the Gaussian does not fit
the distribution well.

Metric ‘ NN (Mass loss) MMC

Separation 67.77% 61.59%

Higgs mass p (GeV) 107.78 118.98
Higgs mass o (GeV) 5.71 33.55
Higgs mass o’ (GeV) 6.63 35.30

The last detector simulation dataset selection — the Real data selection
in Fig. [3.2] — includes all data tagged with the 2155 + 173,49 decay channel
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variable and with at least three detected jets and one b jet. Compared to
the previous selection above, we no longer require the exact decay of the
ttH and ttZ and as such, this selection is done without the use of truth
information. These additional ttH and ttZ events go through the particle
assignment NN first, but as their decay structures differ from the one the
NN has been developed on, the particle assignment is not effective on these
events.

Such events are then more poorly reconstructed by both the NN and the
MMC and further worsen the achieved separation as can be seen in Figure
4.4 and Table 4.8,
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Figure 4.4: Mass histograms — all data

Histograms of reconstructed mass by the NN with the single output mass loss
function in (a) and by the MMC in (b). Data of selection (¢) from Fig. |3.2,
which simulates the real ATLAS data. Number of events scaled by weighting
background productions to match the signal, which had the largest test dataset.
Dashed lines mark the Higgs invariant mass 125.18 GeV, Z invariant mass 91.19
GeV and W invariant mass 80.38.

Table 4.8: Mass reconstruction metrics — additional background

Mean p and STD o of Gaussian fit of the mass distribution (as in Fig. [4.4).For
Mass loss we also note a p = 102.25 GeV, o = 8.19 GeV and scaled ¢’ = 10.03
GeV of the distribution itself, although the Gaussian function fits quite well.

Metric | NN (Mass loss) MMC

Separation 59.21% 53.39%

Higgs mass p (GeV) 105.08 116.44
Higgs mass o (GeV) 7.41 37.71
Higgs mass o’ (GeV) 8.83 40.54

The NN is still able to achieve some separation, but the Higgs and Z further
overlap and the ¢tW and tf peaks also shift to higher values and overlap with
the Higgs more than previously. Still some separation is achieved with the
59.21%.

The MMC also achieves poorer reconstruction, than on the previous selec-
tion, of both the ttH and ttZ with wider and more over-lapped distributions.
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4.3. Real ATLAS data

As this data selection is equal to the data in the real ATLAS data, we also
scale the mass distribution by the expected number of events from Table
Mass distribution scaled to the expected number of events is shown in Figure
4.5
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Figure 4.5: Mass histograms — all data scaled

Mass reconstructed by the NN with Mass loss. Data of selection (c¢) from Fig.
which simulates the real ATLAS data. Number of events scaled to be equal
for each production to the number of expected events as per Table

B 4.2.4 Future improvements

The performance of the NN could be further improved by a more careful
feature selection, as the features we have selected were based on the thesis of
Petr Urban and the inputs of the MMC.

The architecture and choice of the parameter values of the NN also has
some space for improvement as it has not been thoroughly optimized (e.g. by

grid search p.125]).

B 4.3 Real ATLAS data

The neural networks trained on the simulated data will now be used on the
real ATLAS data.

For a test on the real data, ideally, we would use the NN trained on the Real
data selection from Fig. which uses no truth information and therefore
a neural network trained on such selection is suited to be used on the real
ATLAS data, but there are some differences in what variables are in the
simulated and the provided real ATLAS datasets.

In the simulated dataset we had the pr, , ¢ and E information of up to
eight detected jets.

The provided real ATLAS dataset has the information of the pr and n of
the three most energetic jets detected.
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We have therefore decided to study the particle assignment and mass
reconstruction of the real ATLAS data without jets and the inclusion remains
to be done.

From the features listed in Sec. we will only use the ones independent
of the jets.

B 4.3.1 Particle assignment

We retrain the particle assignment NN to accommodate for the new reduced
features.

The particle assignment will only assign the two detected leptons in one
of two ways. It is again trained and evaluated on the simulated dataset,
specifically on the Narrow selection from Fig. but with only the reduced
features.

The results of the evaluation of the trained NN on permutations generated
from the simulated test dataset are shown in Figure in the form of
confusion matrices.

Tau lepton assigment Anti-top lepton assigment

-0.6 -0.6
_o 40.4% 10.2% o 40.7% 9.9%
[
E -0.4 0.4
©
=]
E) -0.2 0.2
- 14.8% 34.7% T~ 14.6% 34.8% '
-0.0 0.0

0 1
Predicted label

Figure 4.6: Leptons assignment with reduced features

Confusion matrices of the assignment of the leptons of the NN on a simulated
test dataset. Results of assignment over all permutations of all events in the
dataset. Reduced features without jet information used.

The Matthews correlation is listed in Table [4.9.

Table 4.9: Lepton assignment Matthews correlation with reduced features

Assigned particle Matthews correlation
Tau lepton 0.502
Anti-top lepton 0.512

If we compare the results of the particle assignment that are in Figure 4.6
and Table with reduced variables with the particle assignment with all
the variables (Sec. , we see that the performance has dropped, as the
Matthews correlation went from 0.654 and 0.655 to 0.502 and 0.512 and the
percentage of correctly assigned leptons went from 42.2% to 34.7% as per the
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confusion matrices. This was expected because we are training the NN on
less information. The drop in performance is not too significant for the real
data, as the particle assignment is only effective for the Narrow selection of
the events, as has been discussed in Sec. |3.3.2.

B 4.3.2 Mass reconstruction

The mass reconstruction NN will be the same as presented in previous sections.
We will be using the Single output mass loss, which has been evaluated on
the Real data selection (Fig. |4.4).

We retrain the mass reconstruction on the simulated dataset with the
reduced features and then use the trained NN on the real ATLAS data.

The mass distribution plot with results on the simulated dataset scaled to
the expected number of events for each production (similar to the one in Fig.
4.5) is shown in Fig. |4.7.
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Figure 4.7: Simulated data mass with reduced features

Mass reconstructed by the NN with Mass loss. Data of the Real data selection
from Fig. [3.2. Only available features used without jet information. Number of
events scaled to be equal for each production to the number of expected events
as per Table |2.3.

The metrics derived from the reconstructed Higgs boson distribution pro-
duced by the NN with reduced features are in Table [4.10L

A comparison with the results obtained using all the variables (Tab. 4.8)
is in place. The separation dropped from 59.21% to 55.65%, which is a
significant difference and is caused by the reduced features containing less
information. Still there is some separation achieved.

With the trained neural networks with reduced features ready, we move on
to their application on the real data.

First the real data has been extracted from the ROOT ntuples and 101
events were obtained compared to the expected 105.9 events (as was stated
in Table 2.3). The selection used for the extraction of the events was similar
to the one we used with the simulated data which was the requirement of
the 2155 + 17344 tag to be true in an event and at least three detected jets

49



4. Results

Table 4.10: Mass reconstruction with reduced features

Separation of the signal from the background. Mean p and STD ¢ of Gaussian fit
of the Higgs boson mass distribution (as in Fig. |4.7)). We also note a p = 101.49
GeV, o = 5.12 GeV and scaled ¢’ = 6.31 GeV of the distribution without a
Gaussian fit.

Metric ‘ NN (Mass loss)

Separation 55.65%
Higgs mass p (GeV) 102.91
Higgs mass o (GeV) 3.45
Higgs mass o’ (GeV) 4.20

with at least one of them being a b jet. By using the 2155 + 17,4 tag and
number of jets requirements, we would select 953 events, so such selection
would be less strict. The exact selection we used for the real data is in Fig.
B.1in Appendix B.

The 101 events were processed by the trained particle assignment NN
and then the mass was reconstructed for each event by the trained mass
reconstruction NN. The reconstructed mass distribution is shown in Fig. [4.8.
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Figure 4.8: Reconstructed mass of real ATLAS data

Mass reconstructed by the NN with Mass loss trained on simulated data. Re-
constructed from real ATLAS data with the selection according to Appendix
B, which is similar to the selection of 2155 + 173,49 decay with at least three
jets and one b jet. The error bars show the statistical uncertainties. Graphical
representation of the distribution different from the previous figures chosen for
the real data.

The distribution in Fig|4.8 is similar to the one in Fig. 4.7, which confirms
that the events from the simulated dataset are similar to the real ATLAS
data.

Lastly, we would like to select three events as the best reconstructed events
in which a Higgs boson is produced. We will first reduce the 101 events to 10
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events with the best assigned leptons. We do that by choosing the events for
which the particle assignment NN returns the highest probabilities of correct
assignment (we compute the product of the probabilities similar to Eq. 4.2,
but across events not permutations).

The predicted masses of the 10 best assigned events are in Fig. [4.9.
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Figure 4.9: Mass of the best assigned real events

The 10 best assigned events were chosen from the 101 selected real events. The
mass was reconstructed by the NN with the Mass loss trained on simulated data
with reduced features. The error bars show the statistical uncertainties.

The ttH achieves the best separation in the highest mass values, as the
Higgs boson is the most massive of the reconstructed particles. From the 10
events, we select the 3 with the highest mass as the best reconstructed Higgs
boson events. The event numbers of these three events are listed in Table
4.111

Table 4.11: The best reconstructed real ttH events

The event number is an identifier of an event produced in ATLAS. The year
of production is the year in which the event was detected in ATLAS. The run
number is the identifier of the run of ATLAS.

Event number Year of production Run number
777623619 2016 307716
1112036381 2018 351455
1139537422 2018 358577

o1
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Conclusion

A method for the assignment of detected leptons and jets in the 2155 + 17h44
decay of the ttH and ttZ productions has been developed in the form of
a classification neural network trained and tested on the ATLAS detector
simulation data. The neural network achieved the rate of 32% perfectly
assigned ttH events and 31% perfectly assigned ttZ events.

On the data processed by the particle assignment neural network, a mass
reconstruction neural network has been developed. The best out of the three
proposed loss functions has achieved a separation of signal from background of
69.33% on a test set of the aforementioned decay, outperforming the Missing
Mass Calculator which achieved a separation of 67.63%.

The NN was further trained and tested on a dataset with the addition of
the ttW and tt background productions. On this data the NN achieved a
separation of 67.77%.

The final selection of the simulated data included the data from all the
mentioned productions without any cuts based on truth information. This
selection was equivalent to the data produced by the real ATLAS detector
and the achieved separation of the NN was 59.21%.

The developed methods were applied on the real ATLAS data. We have
decided for a study without the jets information. The adjusted networks were
used and three best reconstructed Higgs boson events were identified.

In conclusion, the developed neural networks fulfilled the assigned tasks.
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Appendix A

Figures and tables
In this appendix are additional figures and tables.

Table A.1: Neural network architecture experiments - width

Width (neurons in layer) Separation  Higgs mass mean (GeV)
360 70.22 112.22

720 70.74 112.73

1440 70.48 113.19

Table A.2: Neural network architecture experiments - depth

Depth (layers) Separation  Higgs mass mean (GeV)
3 70.13 112.23
4 70.63 112.57
) 70.29 112.24
7 70.66 113.16

Table A.3: Neural network architecture experiments - skip connections

Skip connections

Separation  Higgs mass mean (GeV)

70.31 112.77
70.48 113.27

yes
no
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Figure A.1: Demonstration of the effect of data augmentation on the mass
reconstruction NN. The values derived from the histograms are in Table

Table A.4: Mass reconstruction metrics - data augmentation
Neural network trained with data augmentation achieved better separation and
mean of the mass distribution closer to the 125 GeV constant.

Metric Augmentation No augmentation

Separation 71.01% 69.38%

Higgs mass Gaussian fit u 117.27 111.30
Higgs mass Gaussian fit o 10.42 7.39
Higgs mass p 112.87 112.48

Higgs mass o 7.85 8.41
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Appendix B

Real data selection criteria

In this appendix is the selection used on the real ATLAS data to extract the
wanted events.

if ((abs(lep ID 0)==13 and (lep isMedium 0)and (lep isolationFCLoose 0)
and event.passPLIVVeryTight 0) or (abs(lep ID 0)==11and (lep isolationFCLoose 0)
and (lep_isTightLH 0) and event.lep_chargeIDBDTResult__recale rel207__tight 0=0.7
and event.passPLIVVeryTight_0)) and ((abs(lep_ID_1)==13 and (lep_ isMedium_ 1)
and (lep isolationFCLoose 1) and event.passPLIVVeryTight 1) or (abs(lep ID 1)==11
and (lep_isolationFCLoose__1) and (lep_isTightLH_1) and
event.lep_chargeIDBDTResult_recalerel207__tight_ 10.7 and event.passPLIVVeryTight_ 1))
and (((abs(lep_ID_0) == 13) or ( abs( eventlep ID_ (0 ) == 11 and
(lep_ambiguityType_0) == 0 and ( not ((lep_ Mtrktrk atPV_CO_0<0.1
and event.lep Mtrktrk atPV CO 0>0) and not (lep RadiusCO  0>20 and
(lep_Mtrktrk atConvV_CO_0<0.1 and event.lep_ Mirkirk atConvV_CO_0>0)))
and not (lep_ RadiusCO__0>20 and (lep_ Mtrktrk atConvV_CO_0<0.1 and
event.lep Mtrktrk atConvV_ CO 0>0))))) and ((abs( event.lep ID 1) ==
11 and (lep ambiguityType 1) ==0and not ((lep  Mirkirk atPV CO 1<0.1
and event.lep_ Mtrktrk_atPV_CO_1>0) and not (lep_ RadiusCO_ 120 and
(lep_ Mitrkirk_atConvV_CO_1<0.1 and event.lep_ Mtrkirk atConvV_CO_1>0)))
and not (lep RadinsCO  1>20 and (lep Mtrktrk atConvV_ CO 1<0.1 and
event.lep Mtrktrk atConvV_CO_1>0))) or (abs(lep_ID 1) == 13))) and
(nTans. OR_Pt25)>=1and ((nJets OR_TauOR)>2and (nJets_ OR_DL1r T0)>0)
and (dilep_type and event.lep ID_0*event.lep ID_1>0)

Figure B.1: Selection used with the real ATLAS data in Python code
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