
Czech Technical University in Prague
Faculty of Electrical Engineering

Rigid body dynamics model of bipedal wheeled robot

Bacherol thesis

Radoḿır Maćıček

Bacherol program: Cybernetics and robotics
Supervisor: Ing. Krǐstof Pučejdl

Prague, January 2022

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474418Personal ID number:Macíček RadomírStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Rigid body dynamics model of bipedal wheeled robot

Bachelor’s thesis title in Czech:

Matematický model dynamiky dvounohého kolového robotu

Guidelines:
Using a suitable method derive a full 3D rigid body dynamics model of a bipedal wheeled robot SK8O, including reaction
forces from the ground. Resulting model should be in some standard format for dynamical systemmodels allowing simulation
in Matlab, and suitable for model-based control (e.g., MPC).
(1) Review the literature and select a method for model derivation (Newton-Euler algorithm / Featherstone articulated body
method...).
(2) Compile a mathematical model based on the physical parameters of the SK8O robot.
(3) Verify the model by comparing the simulation results with a high-fidelity rigid body dynamics simulator.

Bibliography / sources:
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer, 2014.
[2] Klemm, Victor, et al. LQR-Assisted Whole-Body Control of a Wheeled Bipedal Robot with Kinematic Loops. IEEE
Robotics and Automation Letters, 2020, 5.2: 3745-3752.
[3] Kim, Donghyun, et al. Computationally-Robust and Efficient PrioritizedWhole-Body Controller with Contact Constraints.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, 2018, pp. 1-8.
[4] Kim, Donghyun, et al. Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive
Control. Preprint, 2019.

Name and workplace of bachelor’s thesis supervisor:

Ing. Krištof Pučejdl, Department of Control Engineering, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 04.01.2022Date of bachelor’s thesis assignment: 14.02.2021

Assignment valid until:
by the end of winter semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Krištof Pučejdl
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration

I declere that this work is all my own work and I have cited all sources I have used in the
bibliography. This Thesis has also not been submitted for any degree in previosly.

Radomı́r Maćıček
January 2022

iii

Abstract

This thesis focuses on the modelling full rigid body of a bipedal robot. The main objec-
tive is to find the equations of our robot’s motion. First, we describe the mathematical
knowledge. Then we describe our modelling tool. At the end, we describe our modelling
approach. We make the kinematic loop. We create it on the simplified model. We use
the force constraints to reach it. We finish the thesis with a summary of our results and
suggestions for future work.

Keywords: equation of motion (EoM), center of gravity(CoG), center of mass (CoM),
jacobian

Abstrakt

Tato práce se zabývá modelováńım plného matematického modelu dvounohého robota.
Hlavńım úkolem je naj́ıt rovnice pohybu našeho robota. Neǰŕıve poṕı̌seme matematické
znalosti. Následně poṕı̌seme naše modelovaćı nástroje. Nakonec poṕı̌seme náš př́ıstup k
modelováńı. Vytvoř́ıme kinematickou smyčku na zjednodušeném modelu. Aplikujeme ji
pomoćı silových omezeńıch. Práci zakonč́ıme shrnut́ım našich výsledk̊u a návrhem bu-
doućı práce.

Keywords: rovnice pohybu (EoM), centrum gravitace (CoG), těžǐstě (CoM), jakobián

iv

Acknowledgements

I want to thank my supervisor Krǐstof Pučejdl for the patience, guidance and educational
approach. I am grateful that he gives me a chance to work on this topic. I also want to
thank my family for their support and the text correction.

v

List of Figures

1.1 The robot’s dimensions . 2

2.1 Virtual displacement of single body . 5

3.1 The robot simulation . 16
3.2 The variables description . 18
3.3 The robot’s joints and . 19
3.4 The robot’s kinematic tree . 20
3.5 The simplified robot model . 21
3.6 Model projection with dimensions in 2D [mm,kg] 21

vi

Contents

Abstract iv

Acknowledgements v

List of Figures vi

1 Introduction 1
1.1 Problem statement . 1
1.2 Related work . 1
1.3 Robot description . 2

2 Methods 3
2.1 Dynamics . 3

2.1.1 State of the art . 3
2.1.1.1 Newton’s law for particles 4
2.1.1.2 Virtual displacement . 4
2.1.1.3 Virtual displacement of the single rigid body 5
2.1.1.4 Virtual displacement of Multi-Body Systems 6
2.1.1.5 Principle of the virtual work 6

2.1.2 Newton-Euler method . 7
2.1.3 Lagrange method . 8

2.1.3.1 Kinetic energy . 8
2.1.3.2 Potential Energy . 9

2.1.4 Projected Newton-Euler method . 9

3 Results 12
3.1 ProNEu Library . 12

3.1.1 The description of the library . 12
3.1.2 The dynamics script . 12

3.1.2.1 The World script . 15
3.1.2.2 The Simulation script . 15
3.1.2.3 Summary . 16

3.2 Modeling . 18
3.2.1 The coordinates and convention . 18
3.2.2 Kinematic tree . 19
3.2.3 Simplified 3D model . 19
3.2.4 The open kinematic loop . 20
3.2.5 The loop closure . 21

vii

CONTENTS viii

4 Conclusion 24

References 25

Chapter 1

Introduction

This thesis is about how to model the two-legged wheeled robot. We have to deal with a

new type of modeling of a floating body. The main task was to achieve a full mathematical

model. We use the projected Newton-Euler method to calculate the motion equations.

We can only verify our results by the dimension control because it is just a mathematical

model. The result of our work is stored on the GitLab. The GitLab contains all scripts

with our calculations, which corresponds to our task.

1.1 Problem statement

The objective of this thesis is to create and calculate the full model. Firstly, we have

to find a library that helps us to calculate the kinematics and dynamics of our robot.

Secondly, we have to describe our robot in the library. Finally, we have to add features,

which are not supported by the library. We talk about force constraints, which are used

to deal with kinematic loops. The real testing was not done due to COVID 19 pandemic

state.

1.2 Related work

Robots became more popular in recent years. The increasing popularity of robotics also

rises the popularity of legged robots. One of the most famous leg robots is Spot made by

Boston Dynamics. The source of our inspiration is much geographically closer. It is a robot

Ascento made at the ETH in Zurich [1]. Sk8o shares the same topology but construction

is different. The other thesis was written on this type of robot which contains the driving

method of the linear pendulum [2]. We are focusing just on the robot’s model. That

means we are not able to control this robot, we want to get his moving equations, which

have high complexity. We followed the whole body control approach that was published

1

CHAPTER 1. INTRODUCTION 2

for the Ascento robot and tried to apply it to our robot, even though the robots are not

same.

1.3 Robot description

Even though I did not participate in the robot’s construction, we consider it essential to

mention the basis of its construction . We have to describe how this robot looks like for

better imagination and better orientation in this thesis. As we already mentioned the

robot has two legs with a closed kinematic chain. Both of them have a torsion spring

placed in the knee. The legs are ending with wheels. We have to work with the real

dimensions of the robot because we want to get as close to reality as we can. The main

task of the thesis was to create a kinematic and dynamic model, thus we don´t care about
robot electronics. The robot’s real dimensions we can see at Figure 1.1.

Figure 1.1: The robot’s dimensions

Chapter 2

Methods

2.1 Dynamics

This section will describe the mathematical and physical background behind our program

and calculations. It also explains what we will be looking for and why it is not easy to

find a solution [3].

2.1.1 State of the art

The main goal of this work is to find the Equation of the motion (EoM) for our robot.

The multibody description will be in formulated as equation (2.1) .

M(q)q̈ + b(q, q̇) + g(q) = τ + Jc(q)
TFc (2.1)

It consists of the following components.

M(q) ∈ Rn×n is generalised mass matrix

q, q̇, q̈ ∈ Rn are generalised coordinates, velocities and accelerations

b(q, q̇) ∈ Rn Coriolis and centrifugal component

g(q) ∈ Rn Gravitational terms

τ ∈ Rn External generalised coordinates

Fc ∈ Rn External Cartasian forces

Jc(q) ∈ Rn×n Geometric Jacobian corresponding to external forces

n ∈ N Number of degrees of the freedom

We use formulation for fixed-base systems, which is not commonly used for floating

base systems. We can use three methods, but the results will be equivalent. We are using

the projected Newton-Euler, which is based on the other two methods.

The Newton-Euler method uses the principle of conservation of angular and linear

3

CHAPTER 2. METHODS 4

momentum for all links. Then It applied it in the Cartesian space. The second is a

method known as the Lagrange method. It depends on the generalised coordinates. The

coordinates create scalar energy-based functions. The coordinates will also adhere to

the minimalisation principle. This means that the kinematic constraints of the system

are satisfied by the trajectories. This brings us to the method we will be using for our

computation. It combines the advantages of the Newton-Euler and Lagrange methods.

It uses the reformulation Cartesian coordinates in terms of generalised coordinates from

Newton-Euler. It satisfies the applicable kinematic constraints due to directly feasible

motions of the system.

To make the mathematics behind the following calculations of EoM explicit, we need to

describe our mathematical methods, conventions, and terms. We will start with classical

mechanics.

2.1.1.1 Newton’s law for particles

We describe the motion of point masses as mass with an infinitely small dimension. That

means all mass is concentrated in one point. The point is defined by position vector r.

Newton‘s second law is as follows.

r̈m = F (2.2)

We can think of infinitesimal mass dm to infinite small forces concentrated as at the

position of particles because we have defined:

r̈ṁ = dF (2.3)

We will use this knowledge as the basis for our calculation. They will have an essential

role in the derivative method we described. We will use them for a case of the Center of

Mass of rigid bodies.They describe the effects of the internal forces.

2.1.1.2 Virtual displacement

To simplify our thoughts, we use the concept of variable notation δ. It behaves the same

as the differential d but describes something different. The displacement describes the

infinitesimal change of the coordinates without changing time. It allows us to compute all

time-dependent quantities independently of the time. This is the reason why it is called

virtual. It has the following relation:

δr(q, t) =
n∑

i=1

∂r

∂qk
δqk (2.4)

CHAPTER 2. METHODS 5

2.1.1.3 Virtual displacement of the single rigid body

Figure 2.1: Virtual displacement of single body

A body with mass in 3D Cartesian space is represented by many particles placed

together to form our rigid body. We must compute each infinitesimal point-mass dm.

Each mass point is a subject motion of a total body. Now we can assign an absolute

position and velocity in instant time to them. We consider another point S on the body.

It has a relative position ρ of dm written in the point S. We use the rigid body kinematics

to describe the motion f an arbitrary point-mass dm. It is defined body b through another

point S:

r = ros + ρ (2.5)

ṙ = vs + Ω× ρ (2.6)

r̈ = as +Ψ× ρ+ Ω× (Ω× ρ) (2.7)

The rOs is the absolute position of point S. The ρ is the relative position of dm in S

coordinates. Vs,as,Psi and Ω are the final velocities and acceleration point S. Then we

applied the virtual displacement,

We describe the motion of point masses as mass with an infinitely small dimension.

That means all mass is concentrated in one point. The point is defined by position vector

r. The Newton‘s second law is as follows.

δr = δrS + δΦ× ρ (2.8)

CHAPTER 2. METHODS 6

2.1.1.4 Virtual displacement of Multi-Body Systems

The multi-body system can only exhibit motion which is limited by the joints. This

limits the relative motion between links. We describe it using generalized coordinates.

The previous concepts have now become relevant to our multi-body system. We are now

using the general coordinates q. (
Vs

Ω

)
=

[
Jp

JR

]
q̇ (2.9)

(
as

Ψ

)
=

[
Jp

JR

]
q̈ +

[
J̇p

J̇R

]
q̇ (2.10)

We can now use the displacement system to the multi-body system,consistent with the

joints. (
δrs

δΦ

)
=

[
Jp

JR

]
δq (2.11)

2.1.1.5 Principle of the virtual work

The following mathematical fundamental knowledge is the principle of virtual work. It

says to us how big will be Work W if we move with our body in any direction δr with

force F , known as the virtual displacement. It must be applied for each constraint force

Fc in their points rc. That means for the stable body following:

δW = δrTc · Fc = 0 (2.12)

We can use this definition if we extend this formulation with infinitesimal dm and consider

d’Alambert’s principle describing dynamic equilibrium for particles.

δW =

∫
B

δrT · (r̈ − dFext) = 0 (2.13)

dm infinitemisal mass

dFext external forces acting on dm

r̈ acceleration of element dm

δr virtual displacement of dm

B body system

CHAPTER 2. METHODS 7

2.1.2 Newton-Euler method

The first step is to describe the method on the simple body. We start with evaluating the

principle of virtual work and simplify extract to a bare minimum.

0 = δW =

(
δrs

δΦ

)T

(

[
I3×3 0

0 Θs

](
as

Ω

)
+

(
0

Ω×Θs · Ω

)
−

(
Fext

Text

)
)∀

(
δrs

δPhi

)
(2.14)

We use these definitions to define laws of conservation and angular momentum:

ps = mvs linear momentum

Ns = Θs · Ω angular momentum around center of gravity (CoG)

ṗs = mas change in linear momentum

Ṅs = Θs · Φ + Ω×Θs · Ω change in angular momentum

We can not forget that a free moving body must fulfil the change in linear momentum

equal to the sum of all external forces.

0 = δW =

(
δrs

δΦ

)T

(

(
ṗs

Ṅs

)
−

(
Fext

Text

)
)∀

(
δrs

δPhi

)
(2.15)

From this interference, we get Newton-Euler formulations.

ṗs = Fext (2.16)

The external forces Fext are acting through the COG.

Ṅs = Text (2.17)

The Text is the result of the external torque. We can not forget that numerical calculation

must be expressed in the same coordinate system. It applies to the external torque and

force. If the external forces do not act through the CoG, we must shift the equivalent

pair to the CoG. Then we use this method for the multi body system.

The first step is to divide multi-body system into separate bodies at all joints. We

consider every body as a single unit. The first step is to divide multi-body system into

separate bodies. For all these bodies, We have to change the force constraint of Fi at

the joints to external forces. For everybody, we apply the conservation of linear and

angular momentum. We add 5 degrees of freedom if the connection is with the ideal joint.

We must be sure that two bodies are connected correctly and do not move in any other

direction. Many packages work with this method. We can apply if it is a hard or soft

CHAPTER 2. METHODS 8

constraint.

2.1.3 Lagrange method

It is another common approach for deriving the motion equation of the system. The

system uses the so-called Lagrange method. It has origin in analytical mechanics. It is

very close to d’Alambert and Hamilton’s principle. The method centres around three

concepts. Define generalized coordinates q and velocities u, which can or can not encode

the information about constraints. The Lagrangian function L is the difference between

total kinematic energy T , and total potential energy U .

L = T − U (2.18)

The Euler-Lagrange equation is applied to Lagrangian L and to all external generalized

forces τ :

d

dt
(
L
∂q̇

)− (
L
∂q

) = τ (2.19)

The Lagrangian is the function of generalised coordinates q and velocities q̇. It is also

time-dependent on the time t. Hence we redefine the scalar energy functions T = T (t, q, q̇)

and U = U(t, q), thus L = L(t, q, q̇).
The best feature of this formulation is the elimination of all internal reaction forces of

the system from EoM. On the other hand, Newton -Euler formulation explicitly account

for them. To apply derivation of the EoM, we have to consider additional aspects before

we use the three aforementioned concepts.

2.1.3.1 Kinetic energy

We compute kinematic energy through this equation:

T =
n∑

i=1

(
1

2
miṙ

T
SiṙSi +

1

2
ΩT

Si ·ΘSi · ΩSi) (2.20)

We need to express the kinetic energy as a function of general quantities. We get

this thanks to jacobian matrices, which are calculated for each body instead of the end

effector. We use the following relationship:

ṙSi = Jsq̇ (2.21)

ΩSi = JRiq̇ (2.22)

CHAPTER 2. METHODS 9

We can fill it to the previous definition and get this simplified form:

T (q, q̇) =
1

2
q̇T (

n∑
i=1

(JT
Si + JT

RiΘSiJRi))q̇ (2.23)

M(q) =
n∑

i=1

(JT
Si + JT

RiΘSiJRi) (2.24)

The quantity M(q) is defined as the generalised mass matrix or the generalised inertia

matrix. It is responsible for generating the inertial, centrifugal and Coriolis force in the

final EoM.

2.1.3.2 Potential Energy

The potential energy has two fundamental contributions to the mechanical system. Firstly,

the mass contribution act via gravitational potential energy. Secondly, the elastic element

contribution is caused by the deflection energy. Each body bi has potential energy caused

by the gravitational field potential field of the earth. We approximate it as linear and

nondirectional, despite non-linear on large scales. The unit vector e g acts through center

of the mass (CoM) of each body. Because we know the position r si of at the CoM of

each body, we can compute the potential energy of each body as:

Fgi = migeg (2.25)

U = −
n∑

i=1

RT
SiFgi (2.26)

Note that we can choose the zero energy level appropriately. We can not forget that many

applications use elastic contributions such as springs or the other nonlinear components.

We try to reasonably approximate the component to have a linear deflection to force or

deflection-to-torque relationship. Then the potential energy contributions are described

as:

UEj
=

1

2
kj(d(q)− d0)

2 (2.27)

The d(q) is a function of generalised coordinates, which describe the deflection of the

elastic element. The d0 is the configuration during the rest state without any forces.

2.1.4 Projected Newton-Euler method

The last method is the Projected Newton-Euler method. It describes the deriving EoM.

This method combines the classical Newton-Euler equations for dynamic equilibrium in

CHAPTER 2. METHODS 10

the Cartesian coordinates and Lagrange generalised coordinates with constraint com-

plaints, as was said earlier. This allows us to use both derived methods. The proNEu

result will be:

M(q)q̈ + b(q, q̇) + g(q) = τ + JT
c Fc (2.28)

Because we will use this method as the main method of calculation in our library, we will

perform a complete derivation from the basis of the remaining two. We directly applied

it to the multi-body system.(
ṗSi

ṄSi

)
=

(
maSi

ΘSiΨSi+ ΩSi×ΘSi · ΩSi

)

=

(
mJSi

ΘSiJRi

)
q̈ +

(
m ˙JSiq̇

ΘSiJRiq̇ + JRiq̇ ×ΘSiJRiq̇

) (2.29)

We get this definition after we connect the Newton-Euler with Lagrange definitions. We

will continue developing this concept.We combine patterns (2.11) and (2.15) with multi-

body system, which gives us the summation.

0 = δW = δqT
n∑

i=1

(

(
ṗSi

ṄSi

)
−

(
FExt,i

TExt,i

)
)∀q (2.30)

We can combine the two concepts, which we calculated in (2.29) and (2.30)

0 =
n∑

i=1

(
JSi

JRi

)T (
mJSi

ΘSiJRi

)
q̈+

(
JSi

JRi

)T (
m ˙JSiq̇

ΘSiJRiq̇ + JRiq̇ ×ΘSiJRiq̇

)
−

(
JPi

JRi

)T (
FExt,i

TExt,i

)
(2.31)

Our results is different from the solution we are looking for (2.28), because we need to

express our mass matrix M, Coriolis and centrifugal b and gravitational terms g.

M =
n∑

i=1

(JT
SimJSi + JT

RiΘSiJRi) (2.32)

b =
n∑

i=1

(JT
SimJ̇Si + JT

Ri(ΘSiJ̇Riq̇ + ΩSi ×ΘSiΩSi)) (2.33)

g =
n∑

i=1

−JT
SiFg,i (2.34)

We can not forget to choose the correct coordinate base because the members with JRi

jacobian applies to the different body than with JSi.

The left of the equation is now computed. Now we look at the right side with external

forces generalised by the force vector τ . We can express the external forces and torques to

CHAPTER 2. METHODS 11

generalised coordinates, but we must transform them from Cartesian coordinates through

the appropriate jacobian matrices. We use the external forces as the Fj and external

torque as Tk. The force Fj acts on point Pj, so we need the translational jacobian of that

point JPj
.

τF,ext =
n∑

j=1

JT
PjFj (2.35)

τT,ext =
n∑

k=1

JT
RgTk (2.36)

We use a similar method to the torque. In the end, we need one vector τ . We can easily

add torque and force tau together because they are in the same coordinate system.

Chapter 3

Results

3.1 ProNEu Library

We use the Matlab proNeu library, which was created at E.T.H. university. The proNeu

name means the projected Newton-Euler equations used to calculate our equation of mo-

tion. That means the library is a potent tool to find our sought solution. Unfortunately, it

is not described enough to be user friendly[4]. So this chapter will be about its description.

3.1.1 The description of the library

The library works with three essential components: simulation script, dynamic script, and

world script. The most interesting component for us is the dynamic component. This

component calculates the rigid body dynamics as the EoM equations, then is stored as the

data file. The world component computes and stores information about the simulation

world and the world’s limitations. The last one is the simulation script. It takes data

from the other two and creates the visualised 3D simulation of our model.

3.1.2 The dynamics script

To compute the dynamics with this library, we have to simplify the robot into geometrical

shapes with the Center of Mass (CoM). We give each entity a kinematic chain number.

Then we can start filling body structure. The body structure is one of two input structures.

We use numbers from the kinematic chain and connect each part by its parent. The

variable x is the body number from the kinematic tree. Then we have to identify transition

and rotation against parent. The joints are applied through body(x).cs. It has two

options. The first one is body(x).cs.P r PB, which secures transition between child and

parent. The second one is body(x).cs.C PB, which secures rotational matrix. To change

these variables, we have to define them as thy degree of freedom with a symbolic variable.

12

CHAPTER 3. RESULTS 13

Then we use sub-body geometry body(x).geometry, which stores information about

geometry .params, colour .color, type .type and offset .offset. The last subclass

under is body(x).param. It stores information aboute position of the CoM .B r BCoM,

rotations about the CoM .C BCoM, the mass .m and the inertia vector .B theta.

1 %Body

2 i=1;

3 body(i) = RigidBodyDescription_v2;

4 body(i).name = ’B’;

5 body(i).ktree.nodeid = i; % Body number from kinematic

tree

6 body(i).ktree.parents = i-1; % Body parent ’s number from

kinematic tree

7 body(i).cs.P_r_PB = [0 0 0]; % Vector 3x1

8 body(i).cs.C_PB = []; % Rotation against parent

9 body(i).param.m = m_b; % Positive Real number

10 body(i).param.B_Theta_B = [];

11 body(i).param.B_r_BCoM = [0 0 0.7]. ’; % Vector 3x1

12 body(i).param.C_BCoM = sym(eye (3)); % Rotational Matrix 3x3

13 body(i).geometry.type = ’cuboid ’; % other options are Sphere

or Cylinder

14 body(i).geometry.issolid = true;

15 body(i).geometry.params = [body_l body_w body_h]; % Body dimension

vector

16 body(i).geometry.values = [body_l body_w body_h]; % Body dimension

vector

17 body(i).geometry.offsets.r = [0 0 0].’; % Body offset vector

18 body(i).geometry.offsets.C = eye (3); % Rotational Matrix 3x3

19 body(i).geometry.color = [197 172 202]/255; %RGB color definintion

We can apply forces and torques through class ftell, which is the second input function.

We have to specify the joint type ftell.type as rotational, linear and wrench. The ex-

ample explains how to apply every type of joint.

1 j=1; %Example for rotational joint with torque

2 ftel(j) = ForceTorqueDescription_v2;

3 ftel(j).name = ’W_R1’; %Joint name

4 ftel(j).type = ’rotational ’; %other options are linear and wrench

5 ftel(j).body_P = 1; %Parent number from kinematic

6 ftel(j).body_B = 2;

7 ftel(j).P_r_R = [];

8 ftel(j).B_r_A = sym ([0 0 0].’);

9 ftel(j).B_T = [0 T_Q1 0].’;

10

11 j=2; %Example for linear joint with force

CHAPTER 3. RESULTS 14

12 ftel(j) = ForceTorqueDescription_v2;

13 ftel(j).name = ’F_Sbf’;

14 ftel(j).type = ’linear ’;

15 ftel(j).body_P = 2;

16 ftel(j).body_B = 3;

17 ftel(j).P_r_R = sym ([0 0 0].’);

18 ftel(j).B_r_A = sym ([0 0 0].’);

19 ftel(j).B_F = [0 0 F_Sbf].’;

20

21 j=1; % Example of Environmental wrench

22 ftel(j) = ForceTorqueDescription_v2;

23 ftel(j).name = ’W_E’;

24 ftel(j).type = ’wrench ’;

25 ftel(j).body_P = 0;

26 ftel(j).body_B = 1;

27 ftel(j).P_r_R = [];

28 ftel(j).B_r_A = sym ([0 0 0].’);

29 ftel(j).I_F = [F_Ex F_Ey F_Ez].’; %Force to inertial system

30 ftel(j).I_T = [T_Ex T_Ey T_Ez].’; %%Torque to inertial system

The penultimate thing which we have to define is system definitions. They tell us

which variable is a generalised coordinate q j. We also specify external forces and torques

tau ext. We can not forget their internal counterparts tau j. Those are symbolic vari-

ables used in previous joint and body descriptions. In the end, we fill the RobotModel,

which generate the model object.

1 %% System Definitions

2

3 % Definition of the joint DoFs of 2-link system

4 q_j = [zeta_S].’;

5

6 % Controllable joint forces/torques

7 tau_j = [F_Sbf T_Bx T_By].’;

8

9 % External forces and torques

10 tau_env = [F_Cx F_Cy F_Cz T_Cx T_Cy T_Cz].’;

11

12 %% Generate Full System Model using proNEu.v2

13

14 robot_name = ’Sk80Model ’;

15

16 %Generate the model object

17 robotmdl = RobotModel(body , ftel , q_j , tau_j , tau_env , I_a_g , ’name’,

robot_name , ’type’, ’floating ’, ’orientation ’, ’cardanxyz ’, ’method ’,

’proneu ’, ’symsteps ’, 100);

CHAPTER 3. RESULTS 15

3.1.2.1 The World script

The world represents simulation conditions and stores information about the simulation

space. They are stored in the element class. It is defined as the WorldElementDescripion.

The element variable consists of name and geometry subclasses. The geometry saves the

same information as the ones mentioned previously.

1 %% Set up the World

2

3 k=1;

4 element(k) = WorldElementDescription;

5 element(k).name = ’floor’;

6 element(k).geometry.type = ’plane’;

7 element(k).geometry.issolid = false;

8 element(k).geometry.params = [w_floor l_floor];

9 element(k).geometry.values = [10.0 10.0];

10 element(k).geometry.offsets.r = [0 0 1].’;

11 element(k).geometry.offsets.C = eye (3);

12 element(k).geometry.color = [0.96 0.96 0.96];

13

14 %% Generate a Model of the World

15

16 % Set the world ’s name

17 world_name = ’Sk80World ’;

18

19 % Generate the world model object

20 worldmdl = WorldModel(element , @sk80_world_environemnt , ’name’,

world_name);

3.1.2.2 The Simulation script

This script loads data from the previous two saved data models. It allows us to simulate

calculated models. Whenever we load data, we define the initial system state as xinit

variable. Then we define params, which are static parameters from the model, which was

expressed explicitly through symbols. After that, we set up the actuator controller as

controller from function RobotController. Then we generate the simulation environ-

ment through function RobotSimulator(), which we save as a robot sim. The last part

is visualisation. To visualise, we use all variables defined earlier. We can see how the

simulation looks like at picture Figure 3.1,

1

2 % Define the internal actuator forces callback function.

3 controller = RobotController(@sk80_controller);

4

CHAPTER 3. RESULTS 16

Figure 3.1: The robot simulation

5 % Create the robot simulation engine

6 robotsim = RobotSimulator(robotmdl , controller , worldmdl , ’solver ’, ’

fsfb’);

7

8 % Generate 3D Visualization instance

9 robotviz = RobotVisualization(robotmdl ,worldmdl);

10 robotviz.open();

11 robotviz.load();

12

13 % Give the simulator access to the 3D visualization

14 robotsim.setvisualizer(robotviz);

15

16 % Execute the simlation engine

17 robotsim.run(simconf);

3.1.2.3 Summary

The library is not only able to simulate and create our robot model. It also generates all

matrices of a simplified model. This gives us a very powerful modelling tool because the

complexity of this calculation is very high. The result will have the following equation.

M(q)q̈ + b(q, q̇) + g(q) = ST
e τext + ST

a τact (3.1)

CHAPTER 3. RESULTS 17

We can see that the selection matrix S and τ is divided into two parts. The first part of

the selection matrix Sext takes care of the external forces of the τext. The second part of

the selection matrix shows us the actuator forces τact. The general tau we get by adding

these two together.

The library also stores information about each rotational body matrices the rotation of

each body to the inertial I and base B coordinates. We use this feature in our calculation

of the algebraic loop closure.

On the other hand, the library has one significant disadvantage: the computation time.

To calculate our Sk8o robot EoM, it takes two hours to calculate them. It is a pretty

significant time due to insufficient description of library.

CHAPTER 3. RESULTS 18

3.2 Modeling

This chapter is about the methods and mathematical statements used to get our full rigid

body model [1]. We are focusing on how we can obtain our solution and how we create

the model of the robot. Our main task is to find the motion equation of our robot in the

following shape.

M(q)q̈ + b(q, q̇) + g(q) = τ (3.2)

3.2.1 The coordinates and convention

We defined the generalised coordinates, velocities, accelerations, and actuation torque

followingly:

r =

x

y

z

ϕ =

α

β

γ

 q =

r

ϕ

Φ1−8

u =

v

ωαβγ

ω1−8

 u̇ =

a

˙ωxyz

˙ω1−8

 (3.3)

The variables meaning are shown in the following pictures:

Figure 3.2: The variables description

The vector q ∈ R14 describes the whole body position of the robot. It consists of the

position vector r, the rotational vector ϕ and the vector of robot generalised coordinates

Φ1−8.The r vector describes the relative location of our body in the inertial frame I to base

robot frame B. The rotational vector ϕ describes rotation from the inertial coordinates

to our robot base coordinates. The vector Φ1−8 describes the generalised coordinates of

the robot’s body, precisely the rotation of each connection. Then we calculate the vector

of the speeds u ∈ R14 as the first derivation of the vector q. The second derivation on the

same vector gives us the vector of the acceleration u̇ ∈ R14. Each subfolder of the vector

q also has its new sign. The specific symbol [·]x means the skew-symmetric cross-product

matrix. We will use it with the closure of the kinematic loop in chapter .

CHAPTER 3. RESULTS 19

Figure 3.3: The robot’s joints and

3.2.2 Kinematic tree

We use for our notation kinematic tree[5]. Its work is to simplify body structure. This

allows us to use two principal coordinates, inertial I and body Base. All other coordinates

are dependent on the body coordinates and its degrees of freedom. That means if we

know the exact location of the robot and all degrees of freedom coordinates. We can

compute the exact position and rotation of the body in generalised coordinates. We use

the kinematic chain in the description of our robot in the proNEu library. Each part of

the model has its number, which corresponds to the number in the kinematic tree.

3.2.3 Simplified 3D model

In the beginning, we must simplify the robot body to the geometrical shape, as is stated

in the section with proNEu library. Then, we give each body number from the kinematic

chain. We take the body as the root. It has simple reasons. The robot is axe symmetrical

through that part because this feature will help us with the algebraic loop closure. Then,

we divide the body into two sides, right and left. The sides are chosen from the robotic

view. We use sites in body parts marking. The leg is made of the upper leg, lower leg,

free leg, and wheel. We can see the numbers in Figure 3.4. The simplified model has no

joint between the body and the free leg. This joint creates a kinematic loop, and that is

why it is not applied in a simplified model, and we call it the free leg. The other joints

are rotational. The joints Φ2 and Φ6 between the upper leg and lower leg have the torsion

CHAPTER 3. RESULTS 20

Figure 3.4: The robot’s kinematic tree

spring. The joints are described here . We have to make a model with an open kinematic

tree.

3.2.4 The open kinematic loop

All of this data helps us to create the open kinematic loop model[6]. The equation will

have the following equation shape.

M(q)u̇+ b(q, u) + g(q) + s(q) = ST τ (3.4)

We changed a marking in the equation to be closer to our library. The S ∈ R14×14

describes us which generalised coordinates is τ acting. We also add member s(q) ∈ R14,

which express our torsion spring in joints Φ2 and Φ6. All other equation members are

described previously in the projected Newton-Euler chapter (2.1). But in this case, their

dimensions are M(q) ∈ R14×14, b(q, u) ∈ R14 and g(q) ∈ R14. The motors are in joints

Φ1, Φ3, Φ5 and Φ7. It means that we need to simulate the algebraic loop to be able

to move with legs[7]. The model will collapse without this loop. Another option is to

change rotational links to one translational joint in each leg. Nevertheless, we stayed

with the difficult one. We create these simple dynamics with the sk80 simulation and

sk80 dynamic scripts. The model with the open kinematic loop is on this Figure 3.1.

We can see the picture from the simulation at the left side. It is not very clear. This is a

reason why we use an external model for better readability.

CHAPTER 3. RESULTS 21

Figure 3.5: The simplified robot model

3.2.5 The loop closure

The key to calculate the closure is our disconnected joint[8]. We apply a loop closure

through force limitations in this joint. This loop closure force is FL[1]. It is reacting on

the hinge points on the opened loop. We give hinge points the names A, B on the right

site and C, D on the left side as describe in the picture. We add the force directly to our

equation.

Figure 3.6: Model projection with dimensions in 2D [mm,kg]

mu̇+ b+ g + s+ JT
I,A,BFL − JI,B,AFL = ST τ (3.5)

The JI,B,A means the jacobian in I as inertial coordinates. It is evident that loop closure

forces are acting in the loop plane Λ with normal direction nλ.

Because the robot is a floating based system, the orientation of the plane change over

time.We can stick to our plane. However, it helps us because we can calculate in 2D

CHAPTER 3. RESULTS 22

instead of 3D. We can then change the equation following way:

mu̇+ b+ g + s+ (JT
Base,A,B,Lin − JBase,B,A,Lin)FBase,L = ST τ (3.6)

JL = JT
Base,A,B,Lin − JBase,B,A,Lin (3.7)

We can divide the jacobian JL to the left and right kinematic loop. We can transform

the equation the following way:

mu̇+ b+ g + s+
[
JLl

JLr

] [FLl

FLr

]
= ST τ (3.8)

We must compute a jacobians. This jacobian use the following marking:[
vI,A,B

ωI,A,B

]
=

[
JI,A,B,Lin

ω
Base,A,B,Rot

]
u (3.9)

The first index describes the acting coordinate system. The second and third describe

the vector position. We have to determine the unknown loop closure forces. We know

that the position of rA,B = 0 at the acceleration level. We can perform two derivatives by

the time on our rA,B to get our forces. After the second differentiation step, we check our

method. We are acting in 2D, but we are using a 3D vector. The y coordinates equal 0

as it has according to the 2D theory. Than, we can simplify our solution in terms of the

jacobians due to u and u̇. We will obtain jacobian by deriving our force by the generalised

coordinates. All things described in this article are applied in the script loop closure.

The closure must then fulfil existential constraints:

X̃u+ Ỹ u̇ = 0 (3.10)

We use X̃ and Ỹ are used for the left and right sides. The constraints for the whole robot

are: [
X̃L

X̃R

]
u+

[
Ỹ L

Ỹ R

]
u̇ = 0,

[
X̃L

X̃R

]
= X,

[
Ỹ L

Ỹ R

]
= Y → Xu+ Y u̇ = 0 (3.11)

We can not forget to show how each constraint look like:

X̃ = RBase,I(−[ωI,I,Base]×[rI,A,Base]×JI,I,Base,Rot + [rI,A,Base]× · JI,I,Base,Rot

−2[ωI,I,Base]×JI,A,B,Lin + ·JI,A,B,Lin

(3.12)

CHAPTER 3. RESULTS 23

Ỹ = RBase,i([rI,A,B]×)JI,I,Base,Rot + JI,A,B,lin) (3.13)

The definition of the kinematic loop is complete after calculation and implementation. We

perform the calculation by first calculating u̇ and then substituting it into the resulting

conditions. The F is an unknown constraint force. The J is our calculated jacobian.

mu̇+ b+ g + s+ JF = ST τ (3.14)

Xu+ Y u̇ = 0 (3.15)

The force from the previous two equations we calculate folowingly:

F = (YM−1JT)(Xu+ YM−1(ST τ − n− g − s)) (3.16)

This gives us all information we are looking for in this thesis. This loop closure is simulated

in the script closed loop.m.

Chapter 4

Conclusion

Main goal of this thesis was to find the complete mathematical model of the sk8o robot.

In particular, that means finding a suitable modelling tool.

We used a different modelling approach to modelling. We also described the mathematical

and physical methods behind the library we used and behind our methods.

We found a tool that helped us to solve our complex equations in chapter 2. We

examined several libraries, and the best was the Matlab proNeu library. We described it

in chapter 3. Thanks to this library we calculated the EoM for the simplified model. We

introduced the force limitations. These limitations helped us to create the model with

the algebraic loop. We were able to find the EoM of the full model. Simulation not done

due to Covid.

The future work can focus to ground contact. The ground contact is far more complex

than the closure of the kinematic loop. However, it is based on the same principles as the

loop. It brings new challenges notably to how to solve the wheel’s rotation and now to

deal with the additional dimension.

24

References

[1] Klemm, Victor, et al. LQR-Assisted Whole-Body Control of a Wheeled Bipedal

Robot with Kinematic Loops. IEEE Robotics and Automation Letters, 2020, 5.2: 3745-

3752.

[2] Kollarč́ık, Adam. Modeling and Control of Two-Legged Wheeled Robot. Prague,

2021. Master’s thesis. CTU. Supervisor Ing. Martin Gurtner.

[3] “Robot Dynamics Lecture Notes.” Accessed: Jan. 03, 2022. [Online]. Available:

https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-

dam/documents/RobotDynamics2017/RD HS2017script.pdf.

[4] Marco, Hutter and Christian, Gehring, “proNEu Documentation”,2012 , ”Unpub-

lished” https://bitbucket.org/leggedrobotics/proneu/src/master/documentation/ma-

nual/proNEu documentation.pdf (accessed Jan. 03, 2022).

[5] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer, 2014.

[6] Kim, Donghyun, et al. Highly Dynamic Quadruped Locomotion via Whole-Body

Impulse Control and Model Predictive Control. Preprint, 2019.

[7] Kim, Donghyun, et al. Computationally-Robust and Efficient Prioritized Whole-

Body Controller with Contact Constraints. IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS), Madrid, 2018, pp. 1-8.

[8] M. Iwamura and M. Nagao, “A method for computing the Hessian tensor of loop

closing conditions in multibody systems,” Multibody System Dynamics, vol. 30, no. 2,

pp. 173–184, Dec. 2012, doi: 10.1007/s11044-012-9334-7.

25

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Problem statement
	Related work
	Robot description

	Methods
	Dynamics
	State of the art
	Newton's law for particles
	Virtual displacement
	Virtual displacement of the single rigid body
	Virtual displacement of Multi-Body Systems
	Principle of the virtual work

	Newton-Euler method
	Lagrange method
	Kinetic energy
	Potential Energy

	Projected Newton-Euler method

	Results
	ProNEu Library
	The description of the library
	The dynamics script
	The World script
	The Simulation script
	Summary

	Modeling
	The coordinates and convention
	Kinematic tree
	Simplified 3D model
	The open kinematic loop
	The loop closure

	Conclusion
	References

