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1-Problem statement 
 

Introduction 

The present study is aimed to investigate the flow and agitation of purely 

viscous non-Newtonian fluids in the laminar flow regime. Firstly, rheological 

parameters of the investigated fluid (bovine collagen) are determined through 

the rectangular channel and concentric annulus for power-law and Herschel–

Bulkley models. 

 A new method is proposed for the determination of the shear viscosity 

of the power-law fluids for those geometries. The provided method is then 

validated by experimental and numerical methods. It is found that the 

proposed method is successful for the determination of the shear viscosity. 

Then, the provided method is utilized for the prediction of friction factor of 

the flow of power-law fluids in non-circular channels using the Reynolds 

number suggested by Metzner and Reed and a simple method is suggested 

for the rapid calculation of the friction factor of power-law fluids in laminar 

regime particularly for the engineering calculations. 

 Finally, the power and flow characteristics of a newly designed in-line 

rotor-stator mixer are investigated experimentally and numerically for the 

Herschel–Bulkley model. The power draw of the mixer is measured 

experimentally and then obtained power draw values are validated by 

numerical simulations. The power draw and Metzner-Otto coefficients are 

determined from the experimentally and numerically obtained power draw 

results and a new slope method is suggested based on the Rieger-Novak 

method for mixing of viscoplastic fluids in the laminar regime. The shear and 

velocity profile in the mixer analyzed via numerical methods and the effect 

of geometrical configuration on velocity, shear, and power consumption are 

discussed.  

 

 

 

 



Literature Survey 

Basics of non-Newtonian fluids  

Rheology is defined as the science of the deformation and flow of materials 

(Barners et al., 1989). For fluids, the applied external force is characterized 

by stress, and rate of deformation tensors (Darby,1976. The ratio between 

shear stress and the rate of deformation is a material property which is called 

viscosity such that 

τij = 2η(∆ij)∆ij  (1) 

where η(∆ij) is the material function called apparent viscosity, which is the 

function of the second invariant of the rate of deformation tensor (Sestak and 

Rieger, 2005). In the case of simple shear flow, shear rate is be described as, 

γ̇ = |√2II| = √2∆ij∆ji 
 (2) 

Where γ̇ is the shear rate, which is the magnitude of the rate of deformation 

tensor (Morrinson, 2001). The most frequently used purely viscous 

rheological models are given in table 1.  

Pressure driven rheometers and friction factor-Reynolds number 

relationship for power-law fluids 

The rheometer is a device that is used to determine the material function of 

the fluid (Morrinson, 2001; Malkin and Isayev, 2017). In pressure-driven 

rheometers, shear is generated by pressure gradients, and the shear rate-stress 

relationship is obtained from the measurement of mean velocity of the sample 

and corresponding pressure drop values within the fully developed region of 

the closed channel. The most frequently used method to imply the wall shear 

stress-shear rate of the power-law fluids in non-circular channels is a two-

parameter model suggested by Kozicki (Kozicki et al. 1966) 

τw = K [(b +
a

n
)

8u̅

Dh

]
n

 
 (3) 

is In Eq. 3, a and b are geometric parameters, these are the function of the 

cross-section of the channel and geometric ratios.  

Table 1 Purely viscous rheological models 

Power-law model η = K(|√2II|)n−1 

Cross model η − μ∞

μo − μ∞

=
1

1 + (θ|√2II|)p
 

Carreu model η − μ∞

μo − μ∞

= (1 + (θ|√2II|)2)(n−1)/2 

Bingham model η = τo/(|√2II|) + μp 

Herschel-Bulkley model η = τo/|√2II| + K(|√2II|)
n−1

 



The friction factor is one of the most frequently utilized design parameters in 

the industry. The friction factor is defined as the ratio of wall shear stress to 

the flux of inertial forces.  For the fully developed, laminar flow of power-

law fluids in circular duct friction factor-Reynolds number relationship is  

λReM = 16  (4) 

where ReM is the Reynolds number suggested by Metzner and Reed (Metzner 

and Reed, 1955) which is given by 

ReM =
ρu̅ 2−nDn

8n−1K(0.75 + 0.25/n)n
 

 (5) 

Concerning fully developed, laminar flow of power-law fluids in non-circular 

ducts, Kozicki (Kozicki et al. 1966) put forward the following expression for 

the determination of friction factor as follows 

λReG = 16  (6) 

ReG is the generalized Reynolds number for ducts of non-circular cross-

sections 

ReG =
ρu̅ 2−nDh

n

8n−1K(b + a/n)n
 

 (7) 

 Mixing of non-Newtonian fluids  

Mixing is a unit operation that is carried out to reduce non-uniformities and 

obtaining specified property of the final products by the intensification of 

transport processes. For Newtonian fluids, the relationship between Po and 

Re is given by (Netusil and Rieger, 1992) 

PoRe =
P

μN2D3
= C 

 (8) 

where C is the power draw coefficient and is only depends on the geometry 

of the mixer. Metzner (Metzner and Otto, 1957) proposed a method for the 

determination of shear viscosity by introducing effective shear rate (γ̇eff) 

γ̇eff = ksN  (9) 

In terms of yield-shear thinning fluids, Herschel–Bulkley model and 

Reynolds number according to Herschel–Bulkley model is given as follows 

Re =
ρN2D2ks

τo + K(ksN)n
 

 (10) 

 

 



Objectives of the dissertation 

Mixing and transportation of the non-Newtonian fluids are commonly 

encountered processes in the industry. For the transportation of the non-

Newtonian fluids, the essential design and process control parameter is the 

pressure drop which is necessary for the sizing of the channels and selection 

of the pumps in the system. Especially, the friction factor-Reynolds number 

relationship for the fully developed laminar flow of power-law fluids through 

non-circular channels relies on approximate methods. And in these methods, 

Reynolds numbers are the function of the shape of the channel and geometric 

ratios. Regarding the laminar mixing of the non-Newtonian fluids, the 

essential design and process parameter is the power consumption of the 

mixer, and dimensionless power and Metzner-Otto coefficients are necessary 

for the determination of the power demand of the mixer in the laminar regime. 

In the case of the mixing of viscoplastic fluids, the total energy is dissipated 

in the mixer to overcome yield stress for initiating flow and providing fluid 

flow, however, there is no explicit correlation to express them individually. 

Furthermore, there is no practical method for the estimation of the Metzner-

Otto coefficient for the laminar mixing of viscoplastic shear-thinning fluids. 

Determination of the rheological parameters of the purely viscous fluids is 

essential for the design of the systems, prediction of the pressure drop or 

power demand of the mixer, and usually capillary or slit rheometers are 

employed for the determination of the rheological parameters. The objective 

of this work is listed as follows 

• To show that rectangular channels and concentric annulus can be 

used for the determination of rheological parameters of the power-law fluids 

as capillary and slit rheometers. An alternative, one parameter correlation will 

be suggested for the estimation of the rheological parameters. 

• To propose a new and very simple correlation for the prediction of 

the pressure drop for the laminar flow power-law fluids through non-circular 

channels by using geometrically independent Reynolds number and 

expressing friction factor-Reynolds number relationship by a simple linear 

equation.  

• Analyzing power characteristics and flow profiles of an in-line 

rotor-stator mixer experimentally and numerically using shear-thinning 

viscoplastic fluid under the laminar regime. And then, suggesting expression 

to specify the effect of yield stress on the power demand of a mixer. Finally, 

proposing a practical method for the determination of the Metzner-Otto 

coefficient for the Herschel–Bulkley fluids. 

 



3- Rectangular Channel Rheometer and a Method for 

the Prediction of Friction Factor of Power-Law Fluids   

In this section of our study, firstly, a simple and unique method is introduced 

for the determination of the shear viscosity of power-law fluids utilizing 

rectangular channels and capillary annulus. The suggested method is 

compared with existing methods analytically, experimentally, and employing 

numerical simulations. Then, based on the suggested method, a very simple 

equation is introduced for the prediction of the friction factor of the power-

law fluids in non-circular channels.  

1- Rectangular and capillary annulus rheometers 

The shear viscosity is one of the most measured rheological properties of the 

fluids and t measurement of shear viscosity is carried out by using a slit or 

capillary rheometers at high shear rates of the fluid. In this section, a 

simplified method is proposed for the measurement of shear viscosity using 

only one parameter especially for the rectangular and capillary annulus cross-

sections. The correlation is given in Eq. 6 quite successful to characterize 

shear stress- shear rate relationship but the method requires two geometrical 

parameters. A simpler approach can be obtained by expressing the wall shear 

stress -wall shear rate relationship by one parameter C instead of a and b 

relying on the method suggested by Ayas (Ayas et al. 2019-a). If the term 

(b + a/n)n in Eq. 3 is defined as α.  

α = (b + a/n)n  (11) 

The ratio of α to (0.75 + 0.25/n)n is ε 

ε = (
4(bn + a)

3n + 1
)

n

 
 (12) 

The curves of the ε versus flow index (n) for rectangular channel and 

concentric annulus with the aspect ratios between zero and one are 

demonstrated in figure 1. Ayas et al. (Ayas et al., 2019-a; Ayas et al., 2020-

a) has suggested that the ε can be assumed as a linear function of flow index 

for 0 < n < 1 for the rectangular channel and concentric annulus. Hence Eq. 

12 can be expressed as follows 

ε = Mn + N  (13) 

As flow index n approaches zero, the limit of ε in Eq. 12 equals one which 

can be seen from the plot in figure 1.  



  

Figure 1 Relation between ratio ε and flow index n,  (A) – Rectangular channel (B)- 

Concentric Annuli (Ayas et al., 2019-a;  Ayas et al., 2020-a) 

lim
n→0

(
4(bn + a)

3n + 1
)

n

= lim
n→0

(Mn + N) = 1 
(14)  

From the obtained correlations given in Eq. 12 and  Eq. 13, the Eq. 11 (α) can 

be expressed by one parameter as follows 

α = (b + a/n)n = (Mn + 1) (
3n + 1

4n
)

n

 
 (15) 

Consequently, Eq. 3 can be stated as  

τw = K((
C

16
− 1)n + 1) [(

3n + 1

4n
)

8u

Dh

]
n

 
 (16) 

and the wall shear rate is  

γ̇w = [(
C

16
− 1)n + 1]

1/n

(
3n + 1

4n
)

8u

Dh

 
 (17) 

As seen from Eq. 16 and Eq. 17, the wall shear rate-wall shear stress can be 

expressed only one geometrical coefficient C instead of a and b (Ayas et al., 

2019-a; Ayas et al., 2020-a). A similar correlation can be obtained by using 

the parameters of parallel plates (a = 0.5 and b = 1). If the ratio of 

(1 + 0.5/n)n to Eq. 28 is defined as ε′ 

ε′ =
(1 +

0.5
n

)n

(b +
a
n

)n
=  [

2n + 1

2(bn + a)
]

n

 

 (18) 

The variation of ε′with respect to flow index in the range of 0 < n < 1 and 

geometric ratios for the investigated cross-sections are given in figure 2. 

From the regression analysis ε′can be assumed as a linear function of flow 

index and geometric ratios. 
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Figure 2 Approximated linear variation of ε' (A)- Rectangular channel, (B) - 

concentric annulus 

 Therefore Eq. 18 can be written for 0 < n < 1 as  

ε′ = M′n + N′  (19) 

As flow index n approaches zero, the limit of ε′ equals one, hence the 

constant N′should be equal to one, and the term (b + a/n)n can be written as  

α = (b +
a

n
)n =

(1 +
0.5
n

)
n

M′n + 1
 

                   (20) 

The value of M’ can be determined from the Newtonian flow case as 

M′ =
24

C
− 1 

 (21) 

and substituting Eq. 20 into Eq. 3, wall shear stress is given as follows 

τw =
K

M′n + 1
[(

2n + 1

2n
)

8u

Dh

]
n

 
 (22) 

 Validation and discussion 
The provided method is validated analytically and experimentally.  Ayas et 

al. (Ayas et al., 2019-a, Ayas et al., 2020-a) validated the suggested α 

functions given in Eq. 15 and Eq. 20 with Eq. 11 analytically. From the 

comparison, the maximum deviation between the equations was found less 

than 2.5%. The proposed correlation has been verified through experimental 

data available in the literature (Skocilas et al, 2017). Experiments were 

conducted in a piston-driven extrusion rheometer for the investigation of the 

rheological properties of the water solution of bovine collagen with a mass 

fraction of 9.5 % and density of 1100 kg/m3. The channel used in the 

experiment has a rectangular cross-sectional geometry with a length of 200 

mm and a width of 20 mm (see figure 3). Two different heights of channels 

were utilized in the experiment with the heights of 2 mm, and 4 mm. From 

the experimental data, obtained overall flow curve for the dies with H of 2 
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mm and 4 mm with a coefficient of determination of 0.98. The flow index 

has been found as 0.3 and consistency is 1060 Pa. sn.  

 
Figure 3 Overall flow curve for H = 2 mm and H = 4 mm 

A method for predicting the friction factor of power-law 

fluids in non-circular channels 
In this section, an alternative, simple method is proposed for the prediction 

of friction factor for the flow of power-law fluids in non-circular channels 

under the laminar flow regime. The simplification is achieved by using the 

Reynolds number suggested by Metzner and Reed and then a very simple 

correlation is introduced to express the relationship between friction factor 

and Reynolds number (ReM) based on the assumption given in Eq. 5 in the 

previous section (Ayas et al., 2020-a) for non-circular cross-sectional shapes 

(i.e. elliptical, concentric annuli, symmetrical L-shape, isosceles triangle, 

eccentric annuli, square duct with a central cylindrical core).  

The proposed simplified method is based on analyzing the relationship 

between the Reynolds number suggested by Metzner and Reed (ReM) and by 

Kozicki (ReG) for shear-thinning fluids (Ayas et al., 2019-a). The Reynolds 

number defined by Metzner and Reed (ReM) for a rectangular channel can be 

written as 

ReM =
ρu2−nDh

n

8n−1K (
3n + 1

4n
)

n 
 (22) 

The ratio of ReM to ReG is 

ReM 

ReG

= (
4(bn + a)

3n + 1
)

n

 
 (24) 

As seen, the ratio ReM/ReG is equal to the defined function ε. Using the linear 

approximation for ε given in Eq. 13 for the flow indexes in the range of 0 <
n < 1, the ratio ReM/ReG is equal to 

y = 1064x0,3008
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ReM 

ReG

= Mn + N 
 (25) 

It has been shown that the value of coefficient N is equal to. Substituting Eq. 

25 into Eq. 6, the final expression is given as follows 

fReM = (C − 16)n + 16  (26) 

It can be seen that for the circular channel (C = 16) Eq. 26 reduces to Eq. 4. 

It has been pointed out by Ayas et al. (Ayas et al. 2020-a) that obtained linear 

approximation of ε exists for cross-sectional shapes of elliptical, concentric 

annuli, symmetrical L-shape, eccentric annuli, square duct with a central 

cylindrical core (Ayas et al.,2020-a) which is shown in figure 5.  

Alternatively, a different correlation can be obtained in terms of the 

parameters of parallel plates (a = 0.5, b = 1) especially for the channels with 

a narrow gap. It has been found that ε’ indicates better linearity for the 

channels with narrow gaps. The alternative correlation for the friction factor 

Reynolds relationship is  

fRe′M =
16C

(24 − C)n + C
 

 (27) 

where Re′M is  

Re′M =
ρu̅ 2−nDh

n

8n−1K (1 +
1

2n
)

n 
 (28) 

 

 

 

Elliptical Square duct with a central cylindrical core 
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Figure 4 The linear relation of ε and flow index (Ayas et al., 2020-a) 
 

 

 
 

Isosceles triangle Eccentric annuli for κ = 0.9 

Figure 5 The linear relation of ε’ and flow index 

The critical value of Reynolds number (ReM) for the onset of the turbulent 

region has been considered as 2100 and the effect of the shape of cross-

section on critical Reynolds number is neglected in this study.  

Validation and discussion 

The suggested method for the prediction of friction factor is initially 

compared with the method suggested by Kozicki by comparing relative 

deviation. The relative deviation is defined as  

Deviation =
(λG − λ𝑀)

λG

∗ 100 
 (29) 

In Eq. 29, λG indicates the friction factor obtained from Kozicki’s method 

and λM represents the friction factors for one-parameter models from Eq. 26. 
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Concentric annuli L-shape 
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The results of comparisons for the eccentric channel of κ = 0.9, square duct 

with a centered cylindrical core, and symmetrical L-shape are depicted in 

figure 6. As seen in figure 6, the deviations between Kozicki’s method (λG) 

and proposed method in Eq. 26 (λM) increase with the increasing values of 

e* and maximum deviation has been found less than 4 % for e*=0.9. 

Regarding the square duct with a centered cylindrical core and symmetrical 

L-shape suggested method in Eq. 26 maximum deviation has been found less 

than 2%. Another experimental verification (Ayas et al., 2019-a) was carried 

out using experimental data obtained by Hartnett (Hartnett and Kostic, 1985). 

Results of experimental data  and calculated friction factor values according 

to Eq. 6 and Eq. 26 are shown in table 2. The maximum deviation has been 

found less than 9 % and calculated friction factor values from Eq. 6 and Eq. 

26 are very close. 

 
 

Eccentric channel of κ = 0.9 The square duct with a centered cylindrical core 

 

 

Symmetrical L-shape  

Figure 6 Relative deviations of  λM and λG with respect to Kozicki's method 
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Table 2 Result of validation Eq. 26 and experimental data (Hartnett and Kostic,1985) 

n ReM ReG λexp λ (Eq. 6) λ (Eq. 26) 

0.542 297 292.5 0.04951 0.0539 0.0538 

0.563 616 606.3 0.02414 0.0260 0.0260 

0.577 749 736.9 0.02177 0.0214 0.0214 

0.59 1291 1269.7 0.01161 0.0124 0.0124 

0.601 1715 1686.2 0.00875 0.0093 0.0093 

0.616 2170 2132.6 0.00735 0.0074 0.0074 

The other comparison has been carried out by performing numerical methods 

using ANSYS FLUENT 15 for, isosceles triangles, eccentric and concentric 

annulus, elliptical, symmetric L-shape, and a square duct with central 

cylindrical core cross-sections (Ayas et al., 2019-a; Ayas et al., 2020-a). 

Simulations were carried out for isosceles triangle of 90o and eccentric 

channel of κ=0.7, e ∗=0.9 for the flow indexes (n) of 0.4, 0.5, 0.6, 0.7, 0.8 

and concentric annulus, elliptical, symmetric L-shape and a square duct with 

central cylindrical core cross-sections for n = 0.5 and various aspect ratios. 

The consistency (K) was chosen as 0.5 Pa.sn and the mean velocity was taken 

as 1.5 m/s for all simulations. For the boundary conditions, the inlet was 

chosen as velocity inlet, the outlet was selected as pressure outlet and the 

walls were taken stationary wall. For the solution method, the simple scheme 

was specified for pressure-velocity coupling and second-order pressure and 

momentum were selected for spatial discretization. The convergence criteria 

was taken for the continuity residual below 10-6.  

Numerically evaluated λReM values were compared with suggested methods 

and as well as conventionally used methods (Kozicki’s and Delplace’s 

methods). The results of the comparison are illustrated in figure 7. For 

concentric annulus, Eq. 26 yields better results than Kozicki et al. and 

Delplace and Leuliet’s methods, and maximum deviation remain less than 

5% for those three methods. For elliptical and L-shape channels predicted 

λReMvalues by Kozicki et al.’s method and Eq. 26 are very close and Deplace 

and Leuliet’s method yields less accurate results than the other two methods. 

For those two geometries, Eq. 26 ensures to predict friction factor less than 

4% deviation. For Square duct with a centered cylindrical core, Koziki’s 

method gives better results than Eq. 26 and Delplace’s method especially for 

the higher values of D/W. The difference between determined λReM values 

have been examined for D/W = 0.8 and different values of flow indexes.  

 



Figure 7 The comparison between approximate models and results of simulations 

It was found that Eq. 26 gives better results than Delplace’s method and the 

maximum deviation remains less than 5 % for the three methods. The 

  

a- Concentric annulus, n=0.5 (-) b- Elliptical channel, n=0.5 (-) 

 

 
c- Symmetrical L-shape, n=0.5 (-) d- Square duct with a centered cylindrical core, 

n=0.5 (-) 

 
 

e- Square duct with a centered cylindrical core, 

D/W=0.8 
f- Eccentric channel  κ=0.7 



difference between evaluated λReM is checked for the eccentric channel of  

κ = 0.7 and 0.3 ≤ e ∗≤ 0.9. It was found that investigated three methods 

provide a successful result for 0.3 ≤ e ∗≤ 0.5, with a deviation of less than 

4 % but for e*> 0.5, deviation increases as eccentricity increases for the three 

methods. Especially Eq. 26 yields unsatisfactory results with a deviation of 

15 % for e*=0.9.  

Conclusion 

In this section, rectangular channels of aspect ratios greater than 0.1 and 

concentric annulus were investigated for the measurement of shear viscosity 

of power-law fluids which is the most frequently used rheological model in 

the industry. An approximate one-parameter model was suggested for the 

determination of the wall shear rate for the power-law model. The provided 

correlation was validated using experimental data and compared with 

conventionally used methods. From the comparisons, it was deduced that 

provided correlation enables to determine shear viscosity of power-law 

fluids.   

The suggested correlation for the prediction of friction factor can be used 

successfully for the cross-sectional geometries of the rectangular, concentric 

annulus, symmetrical L-shape, square duct with a central cylindrical core, 

eccentric annulus with low aspect ratios, elliptical cross-sectional geometries 

for 0 < n < 1 with a deviation of less than 5% and the model ensures slightly 

better results than other one parameter Delplace and Leuliet’s method for 

those geometries. The alternative correlation based on Reynolds number 

Re′M specified in Eq. 44 is giving better results for the prediction of friction 

factor for the geometries with narrow clearances and isosceles triangles, 

hence it is recommended to use infinite plate parameters for the channels with 

narrow gaps. 

4 -Agitation of viscoplastic fluid in in-line rotor-stator 

mixer 
Mixing is one of the most frequently used unit operations in the industry 

which is carried out to reduce gradients of specified properties such as 

concentration, temperature, etc. Agitation of viscoplastic fluids gives rise to 

the formation of the well-mixed region in the vicinity of the impeller, and 

dead zones are generated next to the wall of the mixing vessel and which 

leads to poor mixing. In such cases, a more efficient mixing operation can be 

achieved by agitation viscoplastic fluids in rotor-stator mixers.  

The design of the studied mixer was created by the research and development 

team of the Process engineering department by Dr. Jan Skocilas, Ing. Dr. Jiri 

Moravec Ing., Dr. Lukas Kratky, and Prof. Dr. Tomas Jirout Ing. The newly 

designed in-line rotor-stator mixer consists of two serial mixing heads which 



are installed in a cylindrical barrel and two impellers were mounted on the 

same shaft. For the designed mixer, the radial clearance (cr) between the rotor 

and stator is 3 mm constant. The axial clearances (ca) between rotor and stator 

can be adjusted according to requirements of the process. The agitation of the 

mixer is provided by 45o four-pitch blade impellers with a diameter (D) of 

194 mm and the diameter of the stator (Z) is 200 mm. The inlet and outlet of 

the mixer are hollow disks and the shaft of the mixer is located at the center 

of the disk. (Ayas et al., 2019-c). 

In this section energy consumption, flow profile of given in-line rotor-stator 

mixers are investigated experimentally and numerically. Power consumption 

of the rotor-stator mixer is measured using yield shear-thinning fluid 

experimentally and obtained power consumption values are validated using 

numerical methods by ANSYS FLUENT. Then, power consumption, flow 

field, velocity profile, and shear profile will be studied using numerical 

methods for Newtonian, power-law, and Herschel–Bulkley model. Mixing 

Reynolds number-power number relationship are discussed. 

Theory 
In terms of in-line rotor-stator mixers, the generated power is the sum of 

power created by impellers (PR) and power of flowing fluid (Pf) between the 

inlet and outlet sections of the mixer (Kowalski, 2009). 

Ptotal = PR + Pf  (30) 

The total power number (Cooke et al., 2012) for an in-line rotor-stator mixer 

alternatively can be written as follows  

Po = PoR + kNQ  (31) 

Where k is power flow constant and NQ is the flow number. It was suggested 

that the effect of fluid flow on the power consumption (Pf)  of a rotor-stator 

mixer in a laminar flow regime is neglected (Cooke et al., 2012). Introducing 

effective shear rate, Hedstrom number for Herschel–Bulkley can be stated as 

He =
ρτ0D2

(K(ksN)n−1)2
 

 (32) 

and using Reynolds number (ReMO) suggested by Metzner and Otto, 

Bingham number is described as 

Bi =
He

ReMO

=
τ0

K(ks)n−1(N)n
 

 (33) 

Using Bi and ReMO, Eq. 27 can be stated alternatively as follows. 

PoReMO =
C

ks

Bi + C 
 (34) 

Dividing both sides of Eq. 52 by (ks)n−1, the Eq. 52 is expressed by ReRN 

such that 



PoReRN =
C

ks

Bi∗ + C(ks)n−1 
 (35) 

where Bi∗ is (Archard et al., 2006) 

Bi∗ =
τ0

K(N)n
  (36) 

According to Eq. 35, the plot of PoReRN versus Bi∗ for the same fluid at 

different velocities should be linear and the slope of that curve is equal to 

C/ks. Hence, ks the value of the mixer can be calculated from the slope of 

the linear curve if the C value is known. On the other hand, power number 

according to Eq. 35 can be expressed as follows (Ayas et al., 2020-b) 

PoR = PoY + PoS  (37) 

where PoY indicates the power number for overcome yield stress and PoS 

represents the power number of the sheared flow and can be defined by the 

following equation.  

PoY =
CBi∗

ReRNks

 
 (38) 

PoS =
C(ks)n−1

ReRN

 
 (39) 

For an efficient mixing process of yield-shear thinning fluid, PoS should be 

high enough since mixing efficiency is proportional to the created shear in 

the mixer in the laminar flow regime (Ayas et al., 2020-b). Hence, mixing 

process efficiency in the laminar regime can be defined as  

X =
PoS

PoY + PoS

=
PoS

Po
 

 (40) 

From Eq. 40, it is obvious that the efficiency increases with rotor speed and 

Metzner-Otto coefficient and decreases by yield stress.  

 

Figure 8 Investigated rotor-stator mixer 

 



Experiment and simulation 

The investigated in-line rotor-stator mixer has been designed with the aim of 

preparation of homogeneous dispersion of dye in collagen matter which is an 

extremely viscous material. The pressure drop of the fluid between the inlet 

and outlet sections and temperature increase due to viscous heat dissipation 

and the power consumption of the investigated mixer was measured. All 

measurements were taken for the axial clearances of 1 mm, 2 mm, and 3 mm 

and rotor speeds of 150 RPM, 300 RPM, and 500 RPM. The water solution 

of the bovine collagen with a mass fraction of 7.7 % was used as a test 

material. The rheological properties of the test fluid were examined by a 

capillary rheometer. It was found that the fluid exhibits a yield shear-thinning 

characteristic and obtained rheological properties are τ0 = 4600 Pa, K=420 

Pa.sn, n=0.34 (Skočilas et al., 2016).  Iced water was used as a coolant. The 

pressure of fluid was measured by a diaphragm manometer which is located 

at the inlet of the barrel and at the outlet of the barrel the pressure of the fluid 

was considered as zero-gauge pressure. The optimum flow rate of the 

collagen was determined as 6 kg/min. 

Three-dimensional numerical simulations (Ayas et al., 2020-b) were carried 

out in order to verify experimental data, for the determination of the power 

draw coefficient C and analyzing velocity and shear profile within the mixing 

heads. After creating the fluid domain, the next step is the generation of grids 

(meshes) in the ANSYS workbench. The geometry of the heads is not 

uniform, thus unstructured meshes were created. The simulation of 

investigated in-line rotor-stator mixer is carried out for the steady-state flow 

case, under the laminar flow regime and isothermal flow case, and MRF 

method was applied to model rotation of the impellers. Regarding boundary 

conditions, the inlet of the barrel is assigned as a mass flow inlet, and the 

outlet of the barrel is pressure outlet. 

 
Figure 9 Created grids for the simulations 

Shaft and impellers are selected as moving wall. It has been assumed that the 

effect of wall-slip is negligible. The SIMPLE scheme was applied for the 



pressure-velocity coupling and, second-order pressure and second-order 

upwind velocity schemes were utilized. Convergence criteria for the 

continuity is below the 10-9 for the Herschel–Bulkley model, 10-6 for the 

power-law model, and Newtonian case.  

Result and Discussions 
The results of measured power consumption values are given in figure 10. As 

seen from the figure, the power consumption of the mixer varies almost 

linearly with the rotational speed of the rotor due to the effect of the high 

yield stress value of the fluid and ca does not have a significant effect on the 

power draw.  

 
Figure 10 Experimentally measured power values 

The power arising from fluid flow (Pf) is much less than the power of the 

rotor, so the power of fluid flow on the power consumption of the mixer is 

negligible. From the experimentally measured power consumption values, 

determined Po and Reynolds number (ReRN) values are given in table 3.  

Table 3 Experimentally determined Po and Re values 

 
As seen from table 3, the power number decreases with increasing values of 

the rotor speed and Reynolds numbers, which confirms that the experiments 

were carried out in the laminar flow regime. The results of numerically 

evaluated power consumption values of the investigated mixer and a 

comparison with experimental data are depicted in figure 11. The difference 

between numerically and experimentally obtained values is less than 5% 

which is in an acceptable range. 



 
 Figure 11 Experimentally and numerically obtained power draw values 

The power constant C values have been determined for ca of 1 mm, 2 mm, 

and 3 mm by simulations for the Newtonian case in the laminar regime. From 

the result of simulations, the acquired Po versus the Re curves and evaluated 

C values are given in figure 13. The values of the Metzner-Otto coefficient 

ks for the investigated in-line mixer have been evaluated from the 

experimentally and numerically obtained methods given in table 4.  

Table 4 Experimentally and numerically determined ks values (Ayas et al., 2020-b) 

 
From the experimentally and numerically obtained power consumption 

values, created PoReRN versus Bi* curves are illustrated in figure 12. From 

the curves of CFD results, ks values are found as 84.4 and 61.8 for axial 

clearances (ca) of 1 mm and 3 mm respectively which are identical to 

obtained results of the direct method given in table 4. On the other hand, from 

the experimental obtained ks values were found as 73 and 53.4 for the  

 
 

Figure 12 𝑃𝑜𝑅𝑒𝑅𝑁 versus Bi* curves (A)-Experiment, (B)- CFD 

axial clearances of 1 mm and 3 mm which shows a reasonable agreement, 

namely there is a 9 % deviation for ca = 3 mm and 13 % deviation for ca =
1 mm and the reason deviation may arise from the measurement errors, 



however, results are still in the acceptable range. Another studied parameter 

associated with the power draw of the mixer is the efficiency (X) given in Eq. 

40. The evaluated Poy, PoS and X values from the results experimental and 

numerical data are given in table 5.  

Table 5 𝑃𝑜𝑦, 𝑃𝑜𝑆 and efficiency values 

 

the ca values of 1 mm, 2 mm, and 3 mm. The shear rate distribution is 

investigated in midplanes between rotor and stator only. From the result of 

simulations, evaluated non-dimensional shear rate (γ∗ = γ̇/N) curves for the  

ca values of 1 mm and 3 mm are given in figure 13. From the figures, it can 

be concluded that the evaluated dimensionless shear profile is independent of 

rotor speed and significantly hinge upon the geometry.  

  
Figure 13 Effect of axial clearance on the dimensionless shear rate for N=500 RPM 

Conclusion 
In this chapter, the power characteristics of a newly designed in-line rotor-

stator mixer have been investigated experimentally and numerically. The 

experiments were carried out for the three rotational speeds of the rotor and 

three axial clearances between rotor and stator using viscoplastic shear-

thinning fluid. The power demand of the mixer and the pressure gradient 

between inlet and outlet sections of the mixer were measured by experiments. 

It was shown that experimentally and numerically acquired power 

consumption values were in good agreement with a 6 % maximum deviation. 

It was shown that evaluated Metzner-Otto coefficients from the experimental 

and numerical data are very close. A new correlation was proposed to express 

the power characteristics of a mixer for the Herschel–Bulkley model. 



According to the suggested correlation, the total power consumption of a 

mixer can be written as the sum of the power necessary to overcome yield 

stress, and the required power shear flow and corresponding power numbers 

(Poy, Pos) were defined. By using defined Poy and Pos the new term efficiency 

(X) was introduced to analyze the shear efficiency of the agitation of yield 

stress fluids. It was shown that higher shear rates can be acquired by reducing 

axial clearance and the power draw of the mixer is significantly varies with 

the rotor speed. 

5-Annotation 
This work deals with the measurement of rheological properties of the purely 

viscous non-Newtonian fluid, prediction of friction factor, and power and 

flow characteristics of an in-line rotor-stator mixer. Firstly, a method is 

suggested for the evaluation of the rheological parameters for the power-law 

fluids using the rectangular channel and concentric annuli. According to the 

method, the relationship between wall shear rate and wall shear stress can be 

represented by one geometrical parameter for any aspect ratios. It has been 

shown that rectangular channels and concentric annulus can be used for the 

determination of rheological parameters the same as slit and capillary 

rheometers for the power-law fluids. The provided method is validated by 

comparing the most frequently used methods and through numerical 

simulations and it was found that the suggested method can predict friction 

factor accurately.  

Finally, the power characteristics and flow field of a newly designed in-line 

rotor-stator mixer have been analyzed experimentally and numerically 

according to the determined rheological parameters in the previous section. 

Initially, the power draw of the mixer has been measured experimentally for 

the three rotational speeds of the impeller and three different axial clearances 

of the mixer, and then obtained power draw results have been validated by 

numerical simulation, and a good agreement was found between the 

numerically and experimentally obtained power values. The Newtonian 

power draw coefficient has been calculated by numerical simulations and 

then, Metzner-Otto constants have been determined from the experimentally 

and numerically obtained power draw results. It was found that determined 

Metzner-Otto coefficients from the experimental and numerical methods are 

in good agreement. A slope method was proposed for the determination of 

the Metzner-Otto coefficient for the Herschel–Bulkley model and it was 

shown that the introduced method is successful for the prediction of the 

Metzner-Otto coefficient. In the final step, the effect of axial clearance on 

velocity and shear profile is discussed and it was found that axial clearance 

has a remarkable effect on flow profile on the agitated fluid in the mixer.  



Nomenclature 

a, b   Geometrical parameters of Eq. 3 (-) 

A, B  Dimensions of the symmetrical L-shape duct (m) 

Bi∗  Bingham number for Herschel-Bulkley model (-) 

C  Geometric parameter of the Newtonian fluids (-)  

C  Newtonian power constant (-) 

d, D  Diameter (m) 

Dh  Hydraulic diameter (m) 

e∗  Dimensionless eccentricity (-) 

e  Length of eccentricity (m) 

h  Height of impeller blade (m) 

H  Height of the rectangular duct (m) 

He  Hedstrom number (-) 

K  Fluid consistency (Pa.sn) 

ks  Metzner-Otto coefficient (-) 
L  Length (m) 

m  Consistency for Casson model (Pa.sn) 

M  Number of mesh elements (-) 

M, N  Parameters of Eq. 13 (-) 
M’, N’  Parameters of Eq. 19 (-) 

n  Flow behavior index (-) 

N  Rotational velocity (RPM) 
p  Pressure (Pa) 

p  Parameter of Cross model (-)  

P  Power (W) 

Po  Power number (-) 

R  Radius (m) 

Re  Reynolds number for Newtonian fluids (-) 

ReG  Generalized Reynolds number by Kozicki (-) 

ReM  Reynolds number, as defined by Metzner and Reed (-) 

ReM′  Reynolds number, as defined in Eq 3-19 (-) 

ReMO  Reynolds number defined by Metzner and Otto (-) 

ReRN  Reynolds number defined by Rieger and Novak (-) 

t  Time (s) 

T  Torque (N.m) 

u  Velocity (m/s) 

u̅  Mean velocity (m/s) 

V  Volume (m3) 

V̇  Volume flow rate (m3/s) 

W  Width of the rectangular duct (m) 

X, Y  Major and minor axes of an elliptical duct (m) 

Greek letters 

α  Function given in Eq. 11 

ε  Ratio of ReM to ReG (-) 

ε′  Ratio in Eq. 18 (-) 

θ  Apex angle of an isoscale triangle (°) 



θ  Parameter of Carreu model  

σ  Total stress (Pa)  

λ  Fanning friction factor (-) 

γ̇  Shear rate (s-1)  

γ̇N  Newtonian wall shear rate (s-1) 

γ̇w  Wall shear rate (s-1) 

η  Apparent viscosity (Pa.s) 

µ0  Zero shear viscosity (Pa.s) 

µ∞  Infinite shear viscosity (Pa.s) 

μa  Apparent viscosity (Pa.s) 

μp  Plastic viscosity (Pa.s) 

ρ  Density (kg.m-3) 

τ  Shear stress (Pa) 

τo  Yield Stress (Pa) 

τw  Wall shear stress (Pa) 

∆  Rate of deformation tensor (1/s) 
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