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Annotation 
 

The present study is aimed to investigate the flow and agitation of purely viscous non-Newtonian fluids 

in the laminar flow regime. Firstly, rheological parameters of the investigated fluid (bovine collagen) are 

determined through the rectangular channel and concentric annulus for power-law and Herschel–Bulkley 

models. 

 A new method is proposed for the determination of the shear viscosity of the power-law fluids for those 

geometries. The provided method is then validated by experimental and numerical method s. It is found 

that the proposed method is successful for the determination of the shear viscosity. Then, the provided 

method is utilized for the prediction of friction factor of the flow of power-law fluids in non-circular 

channels using the Reynolds number suggested by Metzner and Reed and a simple method is suggested 

for the rapid calculation of the friction factor of power-law fluids in laminar regime particularly for the 

engineering calculations. 

 Finally, the power and flow characteristics of a newly designed in-line rotor-stator mixer are investigated 

experimentally and numerically for the Herschel–Bulkley model. The power draw of the mixer is 

measured experimentally and then obtained power draw values are validated by numerical simulations. 

The power draw and Metzner-Otto coefficients are determined from the experimentally and numerically 

obtained power draw results and a new slope method is suggested based on the Rieger-Novak method 

for mixing of viscoplastic fluids in the laminar regime. The shear and velocity profile in the mixer 

analyzed via numerical methods and the effect of geometrical configuration on velocity, shear, and power 

consumption are discussed.  

 

Keywords: Non-Newtonian fluids, power-law model, laminar flow, in-line rotor-stator mixer, numerical 

computation.  
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Introduction 

Non-Newtonian fluids such as emulsions, dough, polymer melts, food products, slurries can be 

encountered in various fields of the industry. The flow behavior of non-Newtonian fluids is considerably 

complicated than Newtonian fluids since the viscosity of those fluids is not constant and it is the function 

of the rate of deformation. Due to their high viscosities, the flow of non-Newtonian fluids is in the laminar 

flow regime mostly, so the flow of those fluids is dominated by viscous forces. Therefore, the design and 

process parameters of apparatus and systems involving non-Newtonian fluids flow such as friction factor, 

heat transfer coefficient are related to the rheological model of the processed fluid in the system.  

For designing a mixer, the most important design parameter is power consumption. It is required for the 

selection and designing of various components like gear and electric motor.  Especially, in laminar 

mixing, the power requirement of a mixer is strongly dependent on the viscosity of the processed fluid. 

Therefore, the rheological parameters of the processed fluid must be known for proper design and a 

desirable mixing process.   

In this work, the power characteristics of a newly designed rotor-stator mixer will be analyzed which has 

been designed with the aim of mixing the collagen matter and this study requires the knowledge of 

rheological parameters of the agitated fluid. Hence, firstly rheological properties of the utilized fluid will 

be analyzed using capillary annulus and rectangular channels which are rarely used geometries for the 

investigation of the rheological properties of the non-Newtonian fluids. In this section, we will deal with 

alternative methods for the determination of the shear viscosity and this method will be extended to 

provide an alternative approach for the prediction of the friction factor of the power-law fluids in non-

circular ducts. Then, the power characteristics of a rotor-stator mixer will be investigated based on 

determined rheological parameters by experimental and numerical methods in order to determine 

dimensionless parameters such as power draw and Metzner-Otto coefficients. Moreover, velocity and 

shear profile within the mixing region will be studied from the numerically obtained results for the 

investigated fluid and the power-law model. The power number and Reynolds number relationship will 

be considered particularly for viscoplastic fluids and the efficiency of the mixer will be discussed. 
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Chapter 1 -Literature Survey 

1- Basics of non-Newtonian fluids  

Rheology is defined as the science of the deformation and flow of materials (Barners et al., 1989). Any 

material undergoes deformation under the effect of external forces and the relationship between the 

applied external force and the resulting deformation is unique for each material (Darby, 1976). The 

knowledge of rheology is essential for engineering applications, especially systems involving polymeric 

fluids, pastes, and slurries (Vicente, 2012).  

In terms of fluids, the applied external force is characterized by stress which can be defined as internal 

reaction force per unit area, and deformation is specified by strain rate or velocity gradients (Darby R., 

1976). The stress and strain rate are second-order tensors that have nine components (Steffe, 1996). The 

stress tensor (σ⃗⃗ ⃗⃗ ) is expressed by index notation as follows. 

σij = [

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

] 
 (1-1) 

Due to symmetry (σij = σji), there are only six components of the stress tensors that are independent. 

Alternatively,  

σij = −pδij + τij  (1-2) 

Stress tensor (Chhabra and Richardson, 2008) is composed of pressure (isotropic component) and shear 

stress (anisotropic component). In Eq. 1-2 the term  δij is unit tensor (Kronecker delta) which is defined 

as 

δij = [
1 0 0
0 1 0
0 0 1

] 
If    i=j, δ = 1 

       i≠j, δ = 0 

(1-3) 

Pressure causes a change in volume of fluid and shear stress induces a change in shape (Darby, 1976) so 

that the sheared flow of fluid is driven by the action of shear stresses. Namely, only shear stresses are the 

contribution of flow. In the case of incompressible fluids, the trace of the shear stress tensor is (Sestak 

and Rieger, 2005) 
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tr(τij) = τ11 + τ22 + τ33 = 0  (1-4) 

The strain rate tensor is composed of symmetric and antisymmetric parts, such that  

∇u⃗ =
1

2
(∇u⃗ + ∇u⃗ T)+

1

2
(∇u⃗ − ∇u⃗ T) = ∆⃗⃗ ⃗⃗

 
+Ω⃗⃗ 
⃗⃗ 

 
        (1-5) 

On the right-hand side of Eq. 1-5, the first term is the symmetric part of the strain rate tensor, which 

indicates pure deformation and it is called the rate of deformation tensor (∆⃗⃗ ⃗⃗ ). The second term states pure 

rotation, which is termed as vorticity tensor (Ω⃗⃗ ⃗⃗ ). In the case of pure deformation, Eq. 1-5 is given by 

index notations as follows.  

∆ij=
1

2
(
∂ui

∂xj
+

∂uj

∂xi
) 

 (1-6) 

The relationship between τij and ∆ij are given by constitutive equations and (Darby, 1976) the fluids can 

be categorized according to the constitutive equations which are described in the following section. 

1-1 Purely viscous fluids 

The shear stress is the only function of the rate of deformation tensor at a given temperature and pressure 

for purely viscous fluids. The relationship between stress and the rate of deformation tensors is given by 

τij = 2η∆ij  (1-7) 

The ratio between shear stress and the rate of deformation is a material property which is called viscosity. 

Viscosity is a measure of the intensity of energy dissipation which is required to maintain the flow of 

fluid (Ferguson and Kemblowski, 1991). Purely viscous fluids are also called as time-independent fluids 

(Chhabra, R.P and Richardson, 2008).  

Simple Shear Flow  

Constitutive equations and material function of fluid are mostly investigated based on simple shear flow 

since this type of flow enable one-dimensional flow and only one term of the rate of deformation tensor 

(hence stress tensor) is non-zero and that provides great convenience for the determination of the material 

function of the investigated fluid (Darby, 1976; Ferguson and Kemblowski, 1991).  
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Figure 1-1 Description of simple shear flow 

Considering laminar-steady flow between two infinite parallel plates, one is stationary, and the other 

plate is moving with a constant velocity u at a distance H as shown in figure 1-1. Assuming ux = ux(y), 

uy = uz = 0, the continuity equation (see appendix A) reduces to  

∂ux

∂x
= 0 

 (1-8) 

and the rate of deformation tensor (Appendix. A)  is 

∆xy= ∆yx=
∂ux

∂y
 

 (1-9) 

According to the Cauchy equation, the stress tensor for the simple shear flow on the x − y plane is given 

by  

∂τxy

∂y
= 0 

 (1-10) 

Eq. 1-10 implies that the stress distribution within the flow medium is uniform so, according to Eq. 1-7 

the rate of deformation is constant as well. Hence the rate of deformation tensor can be stated as follows 

∂ux

∂y
= C 

 (1-11) 

From Eq. 1-9 and Eq. 1-11, it can be seen that the rate of deformation is constant and independent of 

geometry. Solving Eq. 1-11 for the given boundary conditions, the velocity profile is given as follows 

ux =
u

H
y  (1-12) 

Eq. 1-12 indicates that the velocity profile varies linearly on the y-direction and is independent of the 

rheological model. In the following section, the description of the rheological models will be explained 

based on the simple shear model.   
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1-2 Newtonian fluids 

Newtonian fluids indicate a constant ratio between shear stress and rate of deformation tensors i.e. 

viscosity has a constant value at a given temperature and pressure. In nature, most of the fluids exhibit 

Newtonian behavior. Especially all gases and liquids with a simple molecular structure show Newtonian 

characteristics. The shear stress-rate of deformation relationship is given by  

τij = 2μ∆ij  (1-13) 

Equation 1-13 is known as Newton’s law of viscosity (Ferguson and Kemblowski, 1991). In Eq. 1-13, μ 

is Newtonian viscosity which depends on the structure of fluid, pressure, and temperature.  In general, 

temperature has a strong effect on the viscosity of liquids and gases. The viscosity of Newtonian fluids 

decreases with increasing temperature and the relationship between temperature and viscosity according 

to Arrhenius’s expressed by (Mezger, 2014) 

μ = AeB/T  (1-14) 

Where μ is the viscosity of a Newtonian fluid, T is the temperature (K) and A, B are constants of fluids. 

In terms of gases, the viscosity increases with increasing temperature. According to the power-law 

(White, 1999) 

μ = μ′(
T

T0

)y 
 (1-15) 

where μ′ is the viscosity at absolute temperature, T0 (273 K) and y is the exponent which varies as regards 

the type of gas. 

1-3 Purely viscous non-Newtonian fluids  

There are some certain fluids such as pastes, slurries, and polymeric fluids, the relationship between 

shear stress and shear rate for those fluids cannot be expressed with respect to Eq. 1-13, and such fluids 

are known as non-Newtonian fluids (Ferguson and Kemblowski, 1991). For incompressible, purely 

viscous fluids, the viscosity is not a constant parameter and varies with respect to the rate of deformation 

at a given temperature and pressure. Hence the shear stress and rate of deformation relationship of non-

Newtonian fluids can be expressed using the analogy of Newton’s law of such that  

τij = 2η(∆ij)∆ij  (1-16) 
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Where η(∆ij) is the material function called apparent viscosity, which is the function of three scalar 

invariants of the rate of deformation tensor (Sestak and Rieger, 2005), hence  

η(∆ij)= η(I, II, III)  (1-17) 

The first invariant (I) is the trace of the rate of deformation tensor (the sum of diagonal components) 

which is zero for incompressible fluids. The third invariant (III) is determinant of the rate of deformation 

tensor which is also zero. Hence, only the second invariant (II) is non-zero which is equal to double scalar 

products of the rate of deformation tensors (Osswald and Rudolph, 2015). 

II = ∆⃗⃗ 
⃗⃗ 
: ∆⃗⃗ 
⃗⃗ 

 
 (1-18) 

As a result, the stress-rate of deformation relationship for non-Newtonian fluids is given by  

τij = 2η(II)∆ij  (1-19) 

In the case of simple shear flow, the shear rate can be described as,  

γ̇ = |√2II| = √2∆ij∆ji 
 (1-20) 

Where γ̇ is the shear rate, which is the magnitude of the rate of deformation tensor (Morrinson, 2001). 

Purely viscous non-Newtonian fluids can be classified based on the relationship between shear rate and 

shear stress or the existence of yield stress (Chhabra and Richardson, 2008). which is demonstrated in 

figure 1-2.  

-shear-thinning fluids (pseudoplastic) 

-shear thickening fluids (Dilatant) 

-Viscoplastic fluids 
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Figure 1-1-2 Flow curves of purely viscous fluids (Ferguson and Kemblowski, 1991) 

 

a- Shear-thinning fluids:  

Shear-thinning fluids are the most encountered type of non-Newtonian fluids (Chhabra and Richardson, 

2008). The apparent viscosity of the shear-thinning fluids decreases with increasing shear rate and the 

flow curve passes through the origin (Ferguson and Kemblowski, 1991). Indeed, at low and high shear 

rates, shear-thinning fluids show Newtonian characteristics i.e. constant viscosity. At low shear rates, 

apparent viscosity is considered as zero shear viscosity (μ0) and at a very high shear rate is considered 

as infinite shear viscosity (μ∞) given in figure 1-3. At the intermediate shear rates, viscosity exhibits 

shear-dependent characteristics (Osswald and Rudolph, 2015). 

 

Figure 1-1-3 Viscosity versus shear rate relation of shear-thinning behavior (Nassehi, 2002) 
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b- Shear thickening fluids (Dilatant) 

The apparent viscosity of dilatant fluids increases with increasing shear rate and the flow curve passes 

through origin the same as shear thinning and Newtonian fluids. (Ferguson and Kemblowski, 1991). 

Concentrated suspensions exhibit shear thickening behavior but it is rarely encountered non-Newtonian 

behavior.  

c- Viscoplastic fluids  

Viscoplastic fluids possess yield stress and such fluids flow when the material is subjected to shear 

stresses greater than the yield stress (Chhabra and Richardson, 2008). When applied shear stresses 

smaller than the yield stress, such materials show solid characteristics and deform elastically. The flow 

curve does not pass through the origin. Some viscoplastic fluids can be characterized by a linear flow 

curve which is known as Bingham fluid and the viscosity of Bingham fluids is called plastic viscosity. 

On the other hand, some viscoplastic fluids exhibit shear-thinning characteristics when applied shear 

stress is greater than yield stress and those fluids are called yield shear-thinning fluids.  

1-4 Empirical models for purely viscous non-Newtonian fluids 

Power-law model (Oswald-de Waele) 

The power-law model is the simplest and most frequently used two parameters empirical model 

(Delplace and Leuliet, 1995) to describe the relationship between shear rate and shear stress of shear-

thinning and dilatant fluids. The model is given by  

η = K(|√2II|)n−1  (1-21) 

Where K is consistency, and n is the flow index. For 0 < n < 1 indicates shear thinning behavior and 

n > 1 shows shear thickening behavior. For n = 1, the model reduces to the Newtonian fluid. However, 

it should be noted that the power-law model is unable to predict zero and infinite shear viscosities. Hence 

the model is successful only in a certain range of shear rates.  

Ellis model  

Ellis model is a three parameters model and is suitable at low shear rates since the model involves zero 

shear viscosity. Ellis model is given as follows 

η = (
μo

1 + ⌊τ τ1/2⁄ ⌋
α−1) 

 (1-22) 
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Where τ1/2  indicates the value of shear stress at which η =0.5 μo (Darby R., 1976). At very low shear 

rates (i.e. τ approaches to zero) the model reduces to the Newtonian fluid.  

Cross model  

The Cross model is a four-parameter model that involves zero and infinite shear viscosities and enables 

the prediction of shear rate-shear stress relationship over a wide range of shear rates. The cross model is  

η − μ∞

μo − μ∞

=
1

1 + (θ|√2II|)p
 

 (1-23) 

Where θ is time constant and has the unit of second.  

Carreu model  

The Carreu model is another four-parameter model same as the Cross model which can be used also 

describe non-Newtonian characteristics over a wide range of shear rates.  

η − μ∞

μo − μ∞

= (1 + (θ|√2II|)2)(n−1)/2  (1-24) 

Bingham model  

Bingham model is the simplest model in order to characterize viscoplastic fluids having constant 

viscosity (Bingham fluids). The model has two parameters  

η = τo/(|√2II|)+ μp for                  τ > τo  (1-25) 

γ̇ = 0      τ < τo (1-26) 

Where τo is yield stress and μp is plastic viscosity which is independent of shear rate.  

Besides, fine-grained, highly concentrated suspensions exhibit viscoplastic characteristics and usually, 

the Bingham model is used to describe rheological behavior of such fluids in a certain range of the shear 

rate and a wide range of shear rate, two equations of Bingham model (at low and high shear rate ranges)  

are required.  Rieger and Moravec (Moravec et al., 2009) suggested a model for describing the 

rheological model of such fluids within the wide range of shear rate only by one equation which is given 

as follows 
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τ =
τ01 + μp1|√2II|

[1 + (
τ01 + μp1|√2II|

τ02 + μp2|√2II|
)

b

]

1/b 
 (1-27) 

In Eq. 1-27, index 1 corresponds to rheological parameters of low shear rate and 2 high values of shear 

rate. The parameter b indicates the transition range.  

Herschel-Bulkley model 

The model is frequently used to describe yield shear-thinning (pseudoplastic) fluids and has 3 parameters.   

η = τo/|√2II|+ K(|√2II|)
n−1

 for                  τ > τo  (1-28) 

γ̇ = 0                                  τ < τo (1-29) 

K and n are parameters of the power-law model and τo is yield stress. 

Casson model 

Another two parameters viscoplastic model exhibits shear-thinning characteristics and mainly used 

modeling for blood and bio-fluids which is given as follows  

√τ = √τo  + √m|√2II| 
for                  τ > τo  (1-30) 

1-5 Thixotropy 

The apparent viscosity of certain fluids is the function of shear rate and the processing time of shear and 

those fluids are called time-dependent fluids (Chhabra and Richardson, 2008). Thixotropic fluids exhibit 

a reversible decrease in apparent viscosity in time at a constant shear rate which is resulting from the 

structure of thixotropic fluids. The structure of thixotropic fluids is breaking down due to shear stress 

and building up at the rest (Steffe, 1996). Those breaking down and building down processes are 

reversible and occur isothermal (Ferguson and Kemblowski, 1991). Contrarily, rheopexy (negative 

thixotropy) indicates a reversible increment in apparent viscosity in time at a constant shear rate and the 

process is reversible-isothermal same as thixotropic fluids.  

1-6 Viscoelastic fluids 

Numerous non-Newtonian fluids exhibit both viscous and elastic characteristics which are known as 

viscoelastic fluids. As indicated previously, in purely viscous fluids, created shear stress is the only 

function of the instantaneous shear rate and normal stress differences are zero. There are such fluids that 

show memory effect and elasticity, namely rheological characteristics of the fluid strongly affected by 
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the history of the flow, and those fluids are known as viscoelastic fluids. Moreover, viscoelastic fluids 

show some remarkable phenomena such as the Weissenberg effect, jet swell, reverse circulation which 

can be explained by the existence of non-zero normal shear stress differences such that (Darby, 1976) 

N1 = τxx − τyy   (1-31) 

N2 = τyy − τzz  (1-32) 

Where N1 and N2 are first and second normal stress differences which are the quadratic function of shear 

rate. Hence, the relationship between normal stress difference and shear rate can be expressed as 

(Ferguson and Kemblowski, 1991) 

ψ1 =
N1

(|√2II|)2
 

 (1-33) 

ψ2 =
N2

(|√2II|)2
 

 (1-34) 

Where ψ1 and ψ2 are normal stress coefficients. It should be noted that the normal stress difference 

occurs only in fluids that exhibit viscoelasticity. For highly elastic fluids the first normal stress difference 

may become even larger than the shear stress.  

The simplest model of a viscoelastic fluid is described by the Maxwell model (Barners et al., 1989) which 

is composed of a spring and a dashpot. Spring denotes purely elastic solid and dashpot indicates purely 

viscous fluid.  

The Maxwell model is given by 

τ⃗ ⃗ + λ
∂τ⃗ ⃗ 

∂t
= 2μ∆⃗⃗ ⃗⃗  

 (1-35) 

where λ is relaxation time and it is a material property which is given by 

λ =
μ

G
  (1-36) 

Alternatively, Eq. 1-35 can be described by apparent viscosity η and upper convective time derivative 

(Oldroyd co-deformation tensor) instead of the partial time derivative of stress as follows  



18 
 

τ⃗ ⃗ +
η

G

δτ⃗ ⃗ 

δt
= 2η∆⃗⃗ ⃗⃗

 
 

 (1-37) 

The upper convective term derivation in terms of index notation   

δτij

δt
=

∂τij

∂t
+ uk

∂τij

∂xk

−
∂ui

∂xk

τkj −
∂uj

∂xk

τik 
(1-38) 

The viscoelasticity of a fluid can be indicated by the ratio of the characteristic material relaxation time 

to the characteristic time of observation. This ratio is known as the Deborah number (De) 

De =
λ

te
 

  (1-39) 

where te is the characteristic time of deformation. The value of De ≅ 1 stands for viscoelastic behavior.  

If De is much smaller than one, the fluid exhibits viscous character and if De is greater than one represents 

elastic (solid-like) behavior. The degree of elasticity of a fluid can be determined by the ratio of N1to τ. 

If the ratio of first normal stress to shear stress exceeds 1 the fluid is regarded as highly elastic (Darby, 

1976).  

2- Rheometers and flow in channels 

Rheometry is the subdivision of rheology which deals with rheological measurements. The rheometer is 

a device that is used to determine the material function of the sample (Morrinson, 2001; Malkin and 

Isayev, 2017). Rheometers can be categorized as drag flow rheometers and pressure-driven rheometers 

(Macosko, 1994). In drag flow rheometers, the shear is created by drag flow (Couette flow) i.e. generating 

flow between the moving and fixed planes. The shear rate-stress relationship is determined from the 

measurement of rotational speed and corresponding torque of the rotating plane (Ferguson and 

Kemblowski, 1991). In terms of pressure-driven rheometers, shear is generated by pressure gradients 

(Poiseuille flow), and the shear rate-stress relationship is obtained from the measurement of mean 

velocity (flow rate) of the sample and corresponding pressure drop values within the fully developed 

region of the closed channel.  

In this section, we will mention about most frequently used rheometers and basic equations related to 

flow in channels in the laminar flow case. 
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2-1 Drag flow rheometers  

Various drag flow rheometers are available in practice using different geometrical configurations such 

as concentric cylinders, parallel disks, cone, and plate, sliding plates, and falling ball which can measure 

various material functions (Macosko, 1994). There are two methods to create shear in drag flow 

rheometers which are controlled shear and controlled stress. In controlled shear, the shear rate is applied, 

and the resulting stress is measured. In controlled stress, shear stress is imposed , and the resulting shear 

rate is measured (Schramm 1998). In this section, we will mention the most frequently used three 

rheometers briefly.  

Rotational co-axial cylinder rheometer (Couette rheometer) 

The rotational co-axial cylinder rheometer (Couette rheometer) is a commonly utilized apparatus for 

determining the shear viscosity of the fluids which is suitable for the measurement of fluids at average 

shear rates (Steffe, 1996). The Couette rheometer consists of two concentric cylinders, and the gap 

between cylinders is filled with test fluid. While one is kept stationary, another cylinder is rotating on 

the z-axis (Morry, 2011) shown in figures 1-4 below. 

 

 

A 

 

B 

 

C 

Figure 1-4 Description of drag flow rheometers A- Rotational co-axial cylinder 
rheometer, B- Cone, and plate rheometer, C- Parallel Disk rheometers (Macosko, 1994) 

 

The flow of fluid within the Couette rheometer is assumed as one dimensional i.e. in cylindrical 

coordinates, velocity in θ direction, varies only in r direction (uθ(r) ≠ 0, ur = uz = 0), and flow is 
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assumed in the laminar flow regime. Moreover, the effect of edges at the top and bottom of the rheometer 

is neglected. This can be achieved in practice using adequately long cylinders and keeping a small 

clearance between the cylinders (Morry, 2011). The determination of wall shear stress is independent of 

rheological models of the fluid. Shear stress is the only function of measured torque and geometry of the 

rheometer.  

If it is assumed that the inner cylinder is rotating with a speed of ω, the shear stress on the inner cylinder 

(τi) is (Macosko, 1994) 

τi =
Ti

2πRi
2L

 
  

(1-40) 

where Ti is the torque generated by the inner cylinder, L is the length and R i is the radius of the inner 

cylinder. In the case of Newtonian fluids, the shear rate is  

γ̇ =
2ω

(1 − κ2)
(
Ri

r
)2 

 (1-41) 

Where κ is the ratio of the inner radius to the outer radius (Ri/Ro) and shear rate on the inner radius is  

γ̇i =
2ω

(1 − κ2)
 

 (1-42) 

And using Eq.1-40 and Eq.1-42, using stress-strain relationship, in terms of rotational speed and 

measured torque can be expressed as follows 

Ti =
4πμLωR i

2

(1 − κ2)
 

 (1-43) 

The shear rate for the power-law fluids is given by (Rieger, 2006; Macosko, 1994) 

γ̇ =
2ω

n(1 − κ2/n)
(
R i

r
)2/n 

 (1-44) 

and shear rate on the inner radius  

γ̇i =
2ω

n(1 − κ2/n)
 

 (1-45) 

The shear rate measurement of the power-law fluids by the Couette rheometer is performed based on the 

Newtonian shear rate. The stress-strain relationship of the power law-fluids can be stated concerning 

Newtonian shear rate such that (Rieger 2006) 
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τi = K(
γ̇i

γ̇iN

)nγ̇iN
n = K(

1 − κ2

1 − κ
2
n

)nγ̇iN
n 

 (1-46) 

Where γ̇iN is the Newtonian shear rate for the inner radius given in Eq. 1-42. and flow index n is 

(Macosko, 1994) 

n =
dln(Ti)

dln(ω)
 

 (1-47) 

In general, a decrease in Ro − Ri (a gap between the cylinders) enhance the accuracy of the measurement 

since higher values of κ enable to obtain uniform shear rate-shear stress profile within the shearing zone 

(Barners et al., 1989). Therefore, the co-axial cylinder rheometers with a κ greater than 0.9 are used in 

practical applications (Macosko, 1994). For very narrow gaps between the cylinders (κ >0.99), shear 

rate and shear stress are determined as follows,  

τM =
Ti

2πRM
2L

 
 (1-48) 

where Rm is the mean of the radius ((Ri + Ro)/2) and shear rate is,  

γ̇M =
ωRm

(Ro − R i)
 

 (1-49) 

There is some source of errors that can be encountered during the rheological measurements such as edge 

effects, viscous heating, and secondary flow (Darby, 1976), and those can mislead determination of 

rheological properties. In this study, the source of errors for rotational rheometers are not given however, 

detailed information can be found in the following books (Macosko 1994; Ferguson and Kemblowski 

1991) 

Parallel disk rheometers 

A parallel disk rheometer consists of a rotational disk and a cylindrical cavity. The shear is generated by 

the rotation of the disk on the z-axis. The gap (H) between the disk and bottom plane is adjustable 

depending on the test fluid. For instance, the higher value of H is preferred in the case of measuring 

suspensions of coarse particles, whereas a narrow gap is desired for the measurement of homogeneous 

fluids (Macosko 1994; Ferguson and Kemblowski, 1991). 

In cylindrical coordinates, velocity exist only in the θ direction (ur = uz = 0) and uθ varies both in r 

and z directions. The non-homogeneous shear profile is created in the sheared zone and the shear rate 
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profile varies on the r axis. In the case of Newtonian fluids, the shear rate at the perimeter is given by 

(Steffe 1996; Macosko 1994) 

γ̇ =
ωR

H
 

 (1-50) 

and shear stress is  

τ =
2T

πR3
 

(1-51) 

In the case of power-law fluids, shear stress is  

τ =
T

2πR3
(3 +

dlnT

dlnγ̇
) 

(1-52) 

and flow index (n) is,  

n =
dlnT

dlnγ̇
 

(1-53) 

For the Newtonian flow case, Eq. 1-52 reduces to Eq. 1-51. It should be noted that parallel disk 

rheometers are desirable for the measurement of rheological properties in oscillatory flow (Ferguson and  

Kemblowski 1991). 

Cone and plate rheometers 

A cone and plate rheometer is composed of a plate and inverted cone with an angle (θ) and the apex of 

the cone is located at the center of the plane. In spherical coordinates, the velocity is in φ direction and 

changes in r and θ directions in spherical coordinate systems. Cone and plate configuration ensure 

homogeneous shear rate profile within the sheared region, namely shear rate is independent of directions 

(Macosko 1994) 

The shear rate of the rheometer is determined by (Steffe 1996) 

γ̇ =
ω

R
  (1-54) 

and shear stress is 

τ =
3T

2πR3
 

 (1-55) 

Due to providing a homogeneous shear rate profile and direct measurement of the first normal stress, 

cone and plate configuration is desirable for the measurement of the wide range of fluids, particularly for 

non-Newtonian fluids. A small amount of sample is required for the measurements. Also, a lower value 
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of θ is preferred (θ < 4°), to avoid secondary flow arising from centrifugal forces (Ferguson and 

Kemblowski 1991, Darby R., 1976). 

2-2 Pressure Driven rheometers and flow in a circular channel 

Capillary rheometer 

The capillary rheometer is the oldest and the most frequently utilized instrument for the measurement of 

viscosity due to its simple design and its high accuracy in measurements (Macosko 1994, Chhabra and 

Richardson, 2008).  The capillary rheometer is a straight circular channel which is shown in figure 1-5 

and the determination of viscosity is based upon the measurement of pressure drop and volume flow rate 

along the axial direction within the fully developed region in the channel (Ferguson and Kemblowski, 

1991, Malkin and Isayev 2017).  

The capillary rheometers can be classified as speed controlled and pressure controlled. In speed -

controlled capillary rheometers, the flow rate is applied, and pressure is measured. In pressure controlled 

capillary rheometer, the pressure is imposed, and the shear rate is measured (Syrjala and Aho 2012).  

 

Figure 1-5 Geometrical description of the circular pipe 

The flow field in the tube can be described by the continuity and Cauchy equation for purely viscous 

fluids. Assuming that a fully developed, laminar, incompressible, steady flow of  fluid through a tube of 

length L and radius R under the laminar flow condition for uz = uz(r), ur = uθ = 0 in the cylindrical 

coordinate system, the continuity equation (See appendix-A) reduces to  

∂(uz)

∂z
= 0 

                      (1-56) 

and the Cauchy equation (Appendix A) based on the same assumption can be expressed as follows    
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∂p

∂z
=

1

r

∂(rτrz)

∂r
 

(1-57) 
 

The left-hand side of the Eq. 1-57 is the function of z and the right-hand side varies with respect to r 

only. That is possible if Eq. 1-57 is equal to a constant. Hence, the left-hand side of the equation (pressure 

gradient) can be described as 

∂p

∂z
=

∆p

L
= constant 

 (1-58) 
 

The Eq. 1-58 indicates that the pressure gradient in a fully developed region of the flow should be 

constant. Substituting Eq. 1-58 into Eq. 1-57 and taking derivative with respect to r 

τrz =
∆p

L

r

2
+

C1

r
 

 (1-59) 

For the values of integration constant different than zero (C1 ≠ 0), τrz has an infinite value at r = 0, thus 

C1 must equal to zero. Hence, τrz  is  

τrz = τzr =
∆p

L

r

2
 

 (1-60) 

The Eq. 1-60 is independent of the rheological properties of fluid within the fully developed region of 

the flow and valid for all rheological models.  

For the r − z plane, the rate of strain tensor (See Appendix A) system for uz = uz(r), ur = uθ = 0 is  

∆rz= ∆zr=
1

2
(
∂uz

∂r
) 

 (1-61) 

Substituting, Eq. 1-60 and Eq. 1-61 into Eq.1-13, and integrating with respect to r for uz = 0 at r = R, 

the expression of the velocity, uz is for the Newtonian flow case is given by 

uz =
(−∆p)R

2

4μL
(1 −

r2

R2) 
 (1-62) 

The volume flow rate concerning the velocity field in a circular channel is given by  

V̇ = ∫ 2πuz(r)rdr
R

0
 

 (1-63) 

Substituting, Eq. 1-62 into Eq. 1-63 
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V̇ = ∫ 2π
(−∆p)R2

4μL
(1−

r2

R2)dr
R

0
 

 

 

(1-64) 

Integrating Eq. 1-64 with respect to r, the volume flow rate is found as 

V̇ =
(−∆p)πD

4

128μL
 

 (1-65) 

and mean velocity u̅ is 

u̅  =
V̇

S
=

(−∆p)D2

32μL
 

 (1-66) 

From Eq. 1-66, Eq. 1-62 can be written in terms of mean velocity is  

uz = 2u̅ (1−
r2

R2) 
 (1-67) 

Taking the derivative of Eq. 1-67 with respect to r, the shear rate in terms of mean velocity is 

γ̇ = (−
duz

dr
) =

4u̅r

R2  
 (1-68) 

Eq. 1-68 indicates the relationship between the shear rate and mean velocity, and it is obvious from Eq. 

1-60 and Eq. 1-68 that shear rate and shear stress are non-homogeneous i.e. varies with position. 

Therefore, it is convenient to determine shear stress and shear rate for the wall (Ferguson and 

Kemblowski, 1991). Hence, the shear stress at the wall for r = R (from Eq. 1-60) is 

τw =
(−∆p)

L

R

2
=

(−∆p)

L

D

4
 

 (1-69) 

 and the shear rate at the wall in case of Newtonian fluids is 

γ̇Nw =
8u̅

D
=

4V̇

πR3 
 (1-70) 

Consequently, for Newtonian fluids, the viscosity can be found from the Eq. 1-69 and Eq. 1-70 as 

follows 

μ =
τw

γ̇Nw

  (1-71) 

For the purely viscous non-Newtonian fluids, the Rabinowitsch-Mooney equation is a very convenient 

and simple method in order to find out a relationship between pressure drop and flow rate (mean velocity)  

regardless of the rheological model of the fluid.  
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The volume flow rate in a tube is given in Eq. 1-63 above and integrating Eq. 1-63 by parts,  

V̇ = 2π {[
r2

2
uz]

0

R

+ ∫
r2

2
(−

duz

dr
)dr

R

0
} 

(1-72) 

On the right-hand side of Eq. 1-72, the first term is zero for r = 0 and r = R (no-slip condition), hence 

Eq. 1-72 can reduce to 

V̇ = 2π {∫
r2

2
(−

duz

dr
)dr

R

0

} 
(1-73) 

The ratio of Eq. 1-60 to Eq. 1-69 is  

τrz

τw

=
r

R
  (1-74) 

Taking the derivative of Eq. 1-74 and substituting to Eq. 1-73 

V̇τw
3

πR3 = ∫ τrz
2(−

duz

dr
)dτrz

τw

0
 

(1-75) 

Eq. 1-75 is a suitable tool to describe the relationship between wall shear rate and wall shear stress for 

rheological models of purely viscous fluids. In the case of the flow of a power-law fluid in a circular 

channel, substituting Eq. 1-21 together with Eq. 1-61 into Eq. 1-75 and solving for τw, following 

expression is obtained 

V̇τw
3

πR3
=

nτw

3n+1
n

3n + 1
(
1

K
)
1/n

 

 (1-76) 

After rearranging, the following correlation is obtained,  

4V̇

πR3 =
4n

3n+ 1
(
τw

K
)
1/n

 
 (1-77) 

Consequently, the volume flow rate through the circular channel is 

V̇ =
nπR3

3n + 1
(
(−∆P)R

2KL
)
1/n

 
 (1-78) 

The left-hand side of the Eq. 1-77 is the wall shear rate for the Newtonian flow case (γ̇Nw) given in Eq. 

1-70 and τw is the wall shear stress described in Eq. 1-69. For the power-law fluids, the determination 

of K and n values requires representing the relationship between wall shear rate-wall shear stress as such 



27 
 

in the Newtonian flow case. So, the expression of wall shear rate (γ̇w) can be obtained using γ̇Nw  as 

follows.  

Eq. 1-77 can be written in terms of τw and γ̇Nw  as follows 

τw = K′(γ̇Nw)n  (1-79) 

Where K’ is  

K’ = K(
3n+ 1

4n
)
n

 
 (1-80) 

Taking the logarithm of Eq. 1-79,  

ln (τw) = ln (K′)+ nln(γ̇Nw)  (1-81) 

From the derivative of Eq. 1-81, the flow index n can be found as 

n =
dln(τw)

dln(γ̇Nw)
 

 (1-82) 

 The wall shear rate is in terms of γ̇Nw  is 

γ̇w = (
3n+ 1

4n
)γ̇Nw  (1-83) 

and wall shear stress-wall shear rate relation is  

τw = Kγ̇w
n = K [(0.75+

0.25

n
)γ̇Nw]

n

 
(1-84) 

and if this procedure repeated for the Herschel- Bulkley model by integrating Eq. 1-75 from τ0 to τw, 

the volume flow rate is given by  

V̇ = nπR
3 (

(−∆P)R

2KL
)

1/n

(1 −
τ0

τw

)

1
n
[
(1 −

τ0

τw
)
3

3n + 1
+

(1−
τ0

τw
)(

τ0

τw
)2

n + 1
+

2 (1 −
τ0

τw
)
2

(
τ0

τw
)

2n + 1
] 

(1-85) 

In conclusion, the viscosity of Newtonian fluids can be determined from the measured volume flow rate 

and corresponding pressure drop within the fully developed flow region of the channel. The measured 

flow rate is converted to a wall shear rate using Eq. 1-70 and wall shear stress is determined from the 

measured pressure drop using the Eq. 1-69. The ratio of wall shear stress to wall shear rate gives us the 

viscosity of investigated fluids.  
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Determination of shear viscosity of power-law fluids requires the measurement of volume flow rate and 

corresponding pressure drop values which must be taken for different values of the volume flow rate. 

The methodology of determination of K and n parameters can be described briefly as follows. Firstly, 

from the several measurements of volume flow rate Newtonian wall shear rate is determined using Eq. 

1-70 and from the corresponding pressure drop, wall shear stress is calculated by Eq. 1-69. Then, the 

flow index is determined according to Eq. 1-82 and finally using Eq. 1-84 consistency K is determined.  

 The source of errors  

During the measurement of viscosity, some measurement errors can be encountered. The most frequently 

faced errors and the way of correction methods are given as follows.  

a- End effect  

It was stated in the previous section that viscosity calculation in the capillary rheometer relies on the 

measurement of volume flow rate and corresponding pressure gradient within the fully developed region 

of the capillary. However, in practice at the entrance and exit regions of the tube, the flow is not fully 

developed, especially near the entrance region, the pressure gradient is higher than that in the fully 

developed region (Chhabra and Richardson, 2008). Therefore, the effect of the entrance region on 

pressure gradient calculations must be corrected to obtain reliable rheological data from the 

measurements. The length of the entrance region for a Newtonian fluid is (White 1999)  

Le = 0.06ReD  (1-86) 

The value of Le can be higher especially for the flow of viscoelastic fluids. For purely viscous fluids, in 

order to minimize the effect of entrance effect on pressure gradient, it is recommended to use capillaries 

of L/D greater than 100 (Darby R., 1976). For  L/D < 100, due to the effect of the entrance, calculated 

wall shear rate values must be corrected, and Bagley correction is frequently performed to determine 

actual wall shear rate data.  

The method requires a minimum of three different geometries of the capillary of the same diameter and 

different lengths (Chhabra and Richardson, 2008). The method involves sketching curves of measured 

pressure drop (∆p*) versus L for the constant apparent wall shear rates and extrapolating the curve to 

L=0, additional pressure drop (∆p′) can be found easily. Corrected pressure drop is 

∆p = ∆p* -∆p′  (1-87) 

From Eq. 1-87 above, the wall shear stress is calculated using corrected pressure drop ∆p. 
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In the case of two capillaries (Darby 1976; Ferguson and Kemblowski, 1991), Coutte method can be used 

to correct measured pressure drop values. This method required two capillaries of the same diameter and 

flowing the sample at a constant flow rate.  

The lengths of capillaries are L1′and L2 ′(L2′ > L1′). The measured pressure can be written as the sum of 

pressure drop in a fully developed region and an additional pressure drop due to the entrance effect.  

∆p ∗1 = ∆p 1 + ∆p ′1  (1-88) 

∆p ∗2 = ∆p 2 + ∆p ′2  (1-89) 

Since the flow rate of the samples and diameters of the capillaries are the same, additional pressure drops 

should be the same for both capillaries. 

∆p ′1 = ∆p ′2=∆p′  (1-90) 

The length of capillaries can be expressed as the sum of the length of a fully developed region and the 

length of the entrance region.  

L1
′ = L1 + L1e   

L2
′ = L2 + L2e  (1-91) 

Since additional pressure drops due to the entrance effect are the same for both capillaries, the lengths of 

entrance regions should be equal (L1e = L2e = Le) and pressure gradients in fully developed regions for 

both capillaries 

∆p 1
L1

=
∆p 2
L2

=
∆p

L
= x  (1-92) 

Substituting Eq. 1-92 into Eq. 1-91, L1
′  and L2

′  can be written as follows 

L1
′ = Le +

∆p 1
x

= Le +
∆p ∗1 − ∆p′

x
 

 (1-93) 

L2
′ = Le +

∆p 2
x

= Le +
∆p ∗2 − ∆p′

x
 

 (1-94) 

Finally, L2
′ -L1

′  is  

∆p

L
=

∆p ∗2 − ∆p ∗1
L2
′ − L1

′  
 (1-95) 

The Eq. 1-95 implies that the corrected pressure gradient can be determined from the ratio of difference 

of measured pressure values to the difference of the lengths of both capillaries.  
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b- Wall slip effect 

The wall slip effect is frequently encountered in the case of the flow of heterogeneous mixtures such as 

dispersions, foams, solid-liquid mixtures of high concentration, polymeric fluids, emulsions. The 

particles within the fluid tend to migrate toward the center of the capillary (Ferguson and Kemblowski, 

1991; Macosko, 1994), thereby concentration of particles at the wall should be smaller than average 

concentration of the fluid and that effect result in lower viscosity near the wall of the capillary. The 

existence of the slip layer gives rise to obtain a higher apparent shear rate than its actual value for given 

shear stress (Macosko 1994) and that phenomena can be more significant for capillaries of small 

diameters. During the measurement of non-homogeneous mixtures such as concentrated slurries, 

dispersions, etc. by capillary of different diameters, the wall slip effect may lead to obtaining district 

flow curves instead of one single curve within the same range of shear rates. The wall slip effect is 

represented by the presence of wall slip velocity (us) at the wall of the capillary.  

If Eq. 1-64 is solved for the case of wall slip velocity us, the total volume flow rate is 

V̇ = πusR
2 +

πR3

τw
3
∫ τ2(−γ̇)dτ

τw

0

 
 (1-96) 

On the right-hand side of Eq. 1-96, the first term is the contribution of wall slip velocity to total volume 

flow rate and the second term is the volume flow rate due to shear flow (V̇s).  

If Eq. 1-96 is divided by πR3τw , it can be expressed in terms of the apparent shear rate as follows based 

on Eq. 1-75.  

8u̅

Dτw
=

8us

Dτw
+

32Vṡ

πD3τw
 

 (1-97) 

On the right-hand side of the Eq. 1-96, the second term is constant for a given wall shear stress and the 

slope of 8u/D to 1/D is equal to the wall-slip velocity us. From the Eq. 1-97 corrected wall shear rate 

can be expressed as follows  

γ̇c =
8(u̅ − us)

D
 

 (1-98) 

Where γ̇c is corrected apparent shear rate. Since wall slip velocity is the only function of wall shear 

stress, the correction method necessitates obtaining an empirical correlation between wall slip velocity 

and wall shear stress (Ferguson and Kemblowski, 1991). 

us = us(τw)  (1-99) 
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The most frequently used correction method suggested by Mooney (Mooney, 1931) is described simply 

as follows (Chhabra and Richardson, 2008). The method involves the flow curves from capillaries of 

different diameters which are obtained from the experimentally measured volume flow rate and pressure 

drop values. From the district flow curves, apparent shear rate values and corresponding diameter are 

created for constant values of wall shear stress by interpolation. Then, the apparent shear rate versus 1/D 

is plotted for constant shear stress values. According to Eq. 1-97, the slope of the apparent shear rate 

versus 1/D gives the wall slip velocity for each corresponding wall shear stress, and the empirical 

relationship between wall slip velocity and wall shear stress can be obtained in this way. 

The method described above requires a minimum of three capillaries of different diameters. There is an 

alternative method that involves the use of two capillaries of different diameters. The method is expressed 

as follows (Ferguson and Kemblowski, 1991).  

For capillaries of diameters D1 and D2 Eq. 1-98 can be written as follows 

8u̅′1
D1

=
8u1

D1
−

8us1

D1
 

 (1-100) 

8u̅′2
D2

=
8u2

D2
−

8us1

D1
 

 (1-101) 

Where u̅′ is corrected (non-slip case) mean velocity. It has been stated in the previous section that wall 

slip velocity is a function of wall shear stress. Hence, for a given constant wall shear stress value wall 

slip velocities (us1 = us1 = us)  and apparent shear rates of both capillaries should be the same  

8u̅′1
D1

=
8u̅′2
D2

 
 (1-102) 

Hence using Eq. 1-100 and Eq. 1-101, Eq. 1-102 can be expressed as  

8u1

D1
−

8us

D1
=

8u2

D2
−

8us

D2
  (1-103) 

Finally, wall-slip velocity us is  

us =
1

8

8u1

D1
−

8u2

D2
1
D1

−
1
D2

 

 (1-104) 

Eq. 1-104 provides to determine wall slip velocity values for a given wall shear stress values. By 

performing the interpolation method, the same as in the previous method, empirical correlation is created 

between wall slip velocity and wall shear stress. Then, utilizing that correlation wall slip velocity is 
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determined by wall shear stress values from the measurement, and using Eq. 1-98, the corrected wall slip 

velocity is calculated.   

Slit rheometer and flow between parallel plates 

A slit rheometer is a thin rectangular channel (Macosko, 1994) and the flow in the slit rheometer is 

regarded as flow between parallel plates. This assumption can be achieved in practice using a rectangular 

channel with an aspect ratio (H/W) less than 0.1 (Han, 1971). Thereby, flow is regarded as a one-

dimensional and analytical expression between stress and shear rate is available, particularly for non-

Newtonian fluids for this geometrical configuration. A slit rheometer provides a direct measurement of 

the pressure gradient and does not require end correction (Moon and Lee, 2013). Besides, the slit 

rheometer enables one to determine first normal stress differences (Padmanabhan and Bhattacharya 

1984; Aho and Syrjala, 2011).  

 

Figure 1-6 Geometrical description of parallel plates 

The laminar, steady, fully developed fluid is flowing between parallel plates with a length of L, a width 

of W, and the gap of H which is depicted in figure 1-6. The velocity of the fluid is assumed on x-direction 

and varies on the y plane (ux = ux(y) ≠ 0,uy = uz = 0) and the velocity of the fluid is zero at the wall 

(ux = 0 at y = H/2) 

Due to ux = ux(y), uy = uz = 0, the continuity equation (Appendix A) in the cartesian coordinate 

system is reduced to 

∂ux

∂x
= 0 

 (1-105) 

and from the Cauchy equation (Appendix A), the following expression is obtained  

∂p

∂x
=

∂(τxy)

∂y
 

 (1-106) 
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As shown in the previous section, the left-hand side of the Eq. 1-106 can be stated as follows.  

∂p

∂x
=

∆p

L
= constant  

 (1-107) 

Substituting Eq. 1-107 into Eq. 1-106  

∆p

L
=

∂(τxy)

∂y
 

 (1-108) 

The shear stress can be determined by taking the derivative of Eq. 1-108 

τxy =
∆p

L
y + C1   (1-109) 

Since velocity exists only in the x-direction (ux = ux(y)) on the x − y plane, the rate of deformation 

(Appendix A) is equal to 

∆xy= ∆yx=
1

2
(
∂ux

∂y
) 

 (1-110) 

Substituting Eq. 1-109 and Eq. 1-110, into Eq. 1-13,  

∆p

L
y + C = 2μ

1

2
(
∂ux

∂y
) 

 (1-111) 

The expression of velocity can be obtained by integrating Eq. 1-111. Hence, ux is given by 

ux =
1

μ
(
∆p

L

y2

2
+ C1y+ C2) 

(1-112) 

Since, it has been assumed that the velocity of the fluid at the wall is zero (at y = −H/2 and y = H/2,  

ux = 0) the integration constant C1  is equal to zero and C2 is 

0 =
1

μ
(
∆p

L

H2

8
+ C2) 

(1-113) 

From Eq. 1-113, integration constant C2 is  

C2  = −
∆p

L

H2

8
 

(1-114) 

Since C1 = 0, shear stress is given in Eq. 1-109 equals to 

τxy =
∆p

L
y  (1-115) 

and velocity profile as a function of y and ∆p is 
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ux =
1

2μ

∆p

L
(y2 − (

H

2
)
2

) 
(1-116) 

The volume flow rate between the parallel plates is 

V̇ = 2∫ ux(y)Wdy
H/2

0
 

 (1-117) 

Substituting Eq. 1-116 into Eq. 1-117 

V̇ = 2∫
1

2μ

∆p

L
(y2 − (

H

2
)2)Wdy

H/2

0
 

 (1-118) 

Integrating Eq. 1-118 with respect to y, volume flow rate- pressure drop relationship is obtained as 

V̇ =
(−∆p)WH3

12μL
 

 (1-119) 

and mean velocity is  

u̅ =
V̇

S
=

(−∆p)H2

12μL
 

 (1-120) 

where S is the cross-section area of the channel. Substituting Eq. 1-120 into 1-116, the velocity profile 

as a function of mean velocity and y is 

ux =
6u̅

H2
(y2 − (

H

2
)2) (1-121) 

The shear rate is obtained by taking a derivative of 1-121 with respect to y and the shear rate is 

γ̇ = (−
dux

dy
) =

12u̅y

H2  (1-122) 

The viscosity of the Newtonian fluids can be determined by taking the ratio of wall shear stress to the 

wall shear rate as such in capillary rheometers (at y = ±H/2). Hence, the Newtonian wall shear rate for 

slit rheometer from Eq. 1-122 is 

γ̇Nw =
6u̅

H
 

 (1-123) 

and from the Eq. 1-122, wall shear stress τw is  

τw =
(−∆P)

L

H

2
 

 (1-124) 

Finally, viscosity is determined as follows 
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μ =
τw 

γ̇Nw

  (1-125) 

The Rabinowitsch-Mooney equation for parallel plates can be obtained in the same way like in the 

circular duct as shown in the previous section. Integrating Eq 1-117 by parts, 

V̇ = 2W {(uxy)0
H/2

+ ∫ y (−
dux

dy
)dy

H/2

0

} 
 (1-126) 

Due to boundary conditions, the first term in the bracket is equal to zero.  

V̇ = 2W {∫ y (−
dux

dy
) dy

H/2

0

} 
 (1-127) 

In order to obtain an explicit expression, the variable y can be replaced with τxy as follows. The ratio of 

Eq. 1-115 to Eq. 1-124 is 

τxy  

τw  
=

2y

H
 

 (1-128) 

Differentiating Eq. 1-128 and substituting into Eq 1-127, we can obtain the following expression.  

2V̇τw
2

WH2
= ∫ τxy (−

dux

dy
)dτxy

τw 

0

 
 (1-129) 

The stress-shear rate correlation for power-law fluids is obtained by expressing the term of shear rate in 

Eq 1-129 as  τxy. 

2V̇τw
2

WH2
= ∫ τxy (

τxy

K
)
1/n

dτxy

τw 

0

 
 (1-130) 

By integrating Eq. 1-130, the final expression of wall shear rate and shear stress of flow of power-law 

fluids between the parallel plates in terms of Newtonian wall shear rate is given as follows  

τw = K(γ̇w)n = K((
2

3
+

1

3n
) γ̇Nw)

n

 
 (1-131) 

The method of determining K and n values is the same as in the case of a capillary rheometer. The flow 

index can be calculated from Eq. 1-82.  

Integrating Eq. 1-129 from τ0 to τw with respect to the Herschel-Bulkley model, the relationship γ̇Nw  

and τw is given as 
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γ̇Nw =
6V̇

WH2 =
3

τw
2K1/n

(τ0

n

n + 1
(τw − τ0)

n+1
n +

n

2n + 1
(τw − τ0)

2n+1
n ) 

(1-132) 

Some sources of errors can be encountered during the measurements of rheological properties by slit 

rheometer. As stated before, slit rheometers provide a direct measurement of pressure, so the end 

correction is not necessary for slit rheometers. The most frequently encountered source of error is the 

wall-slip effect. For the slit rheometers of two different H of slits, it is possible to obtain a correlation 

from Eq 1-104 as follows 

us =
1

6

6u̅1

H1
−

6u̅2

H2
1
H1

−
1
H2

 

 (1-133) 

The correction method of wall-slip velocity for the slit rheometer is similar to the capillary rheometers. 

For several values of τw, (Ferguson and Kemblowski, 1991) wall slip velocity us is determined and a 

correlation between wall slip velocity and wall shear rate is obtained. From the experimentally 

determined τw values, us can be calculated and correction is achieved by subtracting us from the 

experimentally obtained mean velocity. The wall slip correction can be carried by the Mooney method 

the same as in capillary rheometers. Only the terms D should replace with H and that method requires 

the measurements from three slits of different H (Mazzanti and Mollica, 2015). 

The capillary annulus and rectangular channel rheometer  

A slit rheometer is one of the most frequently used pressure-driven rheometers which is a rectangular 

channel of aspect ratio (H/W) less than 0.1. However, for some cases, the measurement of rheological 

properties by rectangular channels of any aspect ratio may be required since the rectangular channel is 

utilized frequently in the industry. There are so few studies related to the measurement of rheological 

properties of non-Newtonian fluids employing rectangular channels and capillary annulus since there is 

no straightforward analytical correlation to describe stress-strain relationships for non-Newtonian fluids 

same as a slit or capillary rheometers (Chhabra and Richardson, 2008). 

It has been pointed out that, the rectangular channels of aspect ratios (H/W) less than 0.1, the flow can 

be assumed as one dimensional. For the aspect ratios greater than 0.1, a one-dimensional flow assumption 

is not possible (Han, 1971). Especially, it is not possible to express the relationship between shear stress 

and shear rate analytically for the laminar flow of power-law fluids in rectangular channels of H/W >

 0.1 due to the nonlinear partial differential equations (Mitsuishi and Aoyagi, 1969). Therefore, the shear 

stress-shear rate relationship is expressed by approximate-numerical methods (Crespi-Llorens and 



37 
 

Vicente, 2015). The most frequently used method to imply the wall shear stress-shear rate of the power-

law fluids in non-circular channels is a two-parameter model suggested by Kozicki (Kozicki et al. 1966) 

τw = K [(b+
a

n
)
8u̅

Dh

]

n

 
 (1-134) 

From Eq. 1-134, the wall shear rate is  

γ̇w = (b +
a

n
)
8u̅

Dh

 
 (1-135) 

where Dh is the hydraulic diameter for a rectangular channel 

Dh =
2HW

(H + W)
 

 (1-136) 

For a rectangular channel τw is the wall shear stress which is given by 

τw =
(−∆p)

L

Dh

4
 

 (1-137) 

In Eq. 1-134, a and b are geometric parameters that are the function of the cross-section of the channel 

and geometric ratios. Those parameters are obtained from the Rabinowitsch-Mooney equation for the 

Newtonian case (see Eqs. 1-84 and 1-131) and the values of a and b are given in table 1 (Kozicki et al. 

1966). 

It is obvious from Eqs. 1-84 and 1-131 that, a = 0.25 and b = 0.75 stand for circular cross-sections and 

a = 0.5, and b = 1 corresponds to parallel plates and for the Newtonian flow case (n = 1), Eq. 1-134 is 

τw = μ(b + a)
8u̅

Dh
 

 (1-138) 

In Eq. 1-138, the sum of a and b is  

(a + b) =
C

16
 

 (1-139) 

Where C is equal to the product of friction factor and Reynolds number which is frequently used to 

predict the friction factor of the laminar flow of a Newtonian fluid in non-circular ducts. The Newtonian 

shear rate for rectangular channels can be described in terms of C as 

γ̇Nw =
8u̅

Dh

C

16
 

 (1-140) 

For parallel plates (Dh = 2H and C = 24), Eq. 1-140 reduces to Eq. 1-123, and for the circular channel 

(Dh = D and C = 16) to Eq. 1-70.  
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Son (Son, 2006) was pointed out that measurement of shear viscosity of power-law fluids can be carried 

out employing rectangular ducts of any aspect ratios relying on Eq. 1-134 and measurement techniques 

are described briefly as follows. 

 First, wall shear stress and Newtonian shear rate are determined from the experimentally obtained 

pressure drop and flow rate values using Eq. 1-137 and Eq. 1-140 respectively. Then flow index is 

evaluated from Eq. 1-82 by the same way in capillary and slit rheometers. Finally, the consistency K is 

evaluated from Eq. 1-135.  

In addition, the concentric annulus is one of the frequently utilized cross-sectional geometry in the 

industry just like a circular channel, and is used in applications such as polymer molding, food, and heat 

transfer processes. Hence, laminar flow in the concentric annulus is studied by many researchers (Ilicali 

and Engez, 1996) especially for this geometry and the geometry of the concentric annulus is shown in 

figure 1-7 

Table 1-1 a and b values (Kozicki et al., 1966 ; Sestak et al., 1999; Sestak et al., 2001) 

Concentric Annuli Elliptical Duct 

Ri/Ro a b C Y/X a b C 
0 0.25 0.75 16 0 0.3084 0.9253 19.74 

0.01 0.3768 0.8751 20.03 0.1 0.3018 0.9053 19.31 
0.03 0.4056 0.9085 21.03 0.2 0.2907 0.872 18.60 
0.1 0.4455 0.951 22.34 0.3 0.2796 0.8389 17.90 
0.2 0.4693 0.9737 23.09 0.4 0.2702 0.8107 17.29 
0.4 0.489 0.9911 23.68 0.5 0.2629 0.7886 16.82 
0.5 0.4935 0.9946 23.81 0.6 0.2575 0.7725 16.48 
0.6 0.4965 0.9972 23.90 0.7 0.2538 0.7614 16.24 
0.7 0.4983 0.9987 23.95 0.8 0.2515 0.7546 16.10 
0.8 0.4992 0.9994 23.98 0.9 0.2504 0.751 16.02 
1 0.5 1 24 1 0.25 0.75 16 

Rectangular Duct Isosceles Triangle 
H/W a b C θ a b C 

0 0.5 1 24 10 0.1547 0.6278 12.52 
0.25 0.3212 0.8182 18.23 20 0.1693 0.6332 12.84 
0.5 0.244 0.7276 15.55 40 0.184 0.6422 13.22 

0.75 0.2178 0.6866 14.47 60 0.1875 0.6462 13.34 
1 0.2121 0.6776 14.24 90 0.183 0.6395 13.16 

L -shape Square duct with a centered cylindrical core 
A/B a b C D/H a b C 

0.1 0.3713 1.0101 22.10 0.1 0.378 0.8701 19.97 
0.2 0.3299 0.9434 20.37 0.2 0.3987 0.9107 20.95 
0.4 0.2628 0.811 17.18 0.4 0.3996 0.9743 21.98 
0.6 0.2168 0.7024 14.71 0.6 0.3524 1.0163 21.90 
0.8 0.2049 0.6576 13.8 0.8 0.2511 0.9482 19.19 

Eccentric Duct 



39 
 

a e* 0.1 0.3 0.5 0.7 0.9 0.999 

κ              
0.1   0.391 0.316 0.268 0.236 0.216 2.09 
0.3   0.408 0.309 0.246 0.204 0.176 0.165 
0.5   0.412 0.302 0.233 0.187 0.155 0.142 
0.7   0.413 0.298 0.225 0.177 0.144 0.131 
0.9   0.413 0.296 0.223 0.173 0.139 0.126 

b e* 0.1 0.3 0.5 0.7 0.9 0.999 
κ              

0.1   0.992 0.976 0.884 0.772 0.677 0.641 
0.3   1.04 1.009 0.977 0.726 0.595 0.541 
0.5   1.056 1.02 0.872 0.704 0.559 0.499 
0.7   1.062 1.024 0.869 0.695 0.544 0.482 

0.9   1.064 1.026 0.869 0.692 0.539 0.476 
C e* 0.1 0.3 0.5 0.7 0.9 0.999 

κ              
0.1   22.13 20.67 18.43 16.13 14.29 43.70 
0.3   23.17 21.09 19.57 14.88 12.34 11.30 
0.5   8.28 21.15 17.68 14.26 11.42 10.26 
0.7   23.60 21.15 17.50 13.95 11.01 9.81 

        

 

Figure 1-7 Geometrical description of the concentric annulus 

In the case of the laminar flow of Newtonian fluids, the velocity profile is given by (Chhabra and 

Richardson,1999) 

uz =
(−∆P)Ro

2

4μL
(1 − (

r

Ro

)2 +
1 − κ2

ln
1
κ

ln
r

Ro

) 

 (1-141) 

and the volume flow rate is 

V̇ =
(−∆P)πRo

4

8μL
(1 − κ4 −

(1 − κ2)2

ln
1
κ

) 

 (1-142) 

Where κ is the aspect ratio defined as 
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κ =
R i

Ro

 
 (1-143) 

In the case of non-Newtonian fluids, the laminar flow in the concentric annulus with a high value of κ is 

regarded as the same in laminar flow in parallel plates (Macosko, 1994). The flow rate in the annulus 

according to the power-law model can be determined by writing Eq. 1-131 in terms of Roand κ is given 

by (Skocilas et al., 2016) 

V̇ =
πnRo

3  (1− κ)2(1+ κ)

2(2n + 1)
(
(−∆P)Ro(1− κ)

2KL
)
1/n

 
 (1-144) 

In the case of the Hershel-Bulkley model, the equation is 

V̇ = V̇PL (1−
2τ0

(−∆P)Ro(1− κ)
L

)

1/n

(1 +
2nτ0

(n+ 1)(−∆P)Ro(1− κ)
L

) 

 (1-145) 

where V̇PL is the volume flow rate given in Eq. 1-144 for a power-law fluid. Acquiring a straightforward 

expression for the velocity profile is difficult since the constant C in the Eq. 1-59 is not zero for concentric 

annulus so that various methods for the prediction of pressure drop exist in the literature (Ilicali and 

Engez, 1996). One of the most frequently used methods is suggested by Hanks and Larsen (Hanks and 

Larsen, 1979) which is based on determining the position of the zero-shear stress (𝜆0)  and it is given as 

follows 

V̇ =
πnRo

3  

3n + 1
(
(−∆P)Ro

2KL
)
1/n

[((1− κ2)
n+1
n − κ

n−1
n (𝜆0

2
− κ2)

n+1
n )] 

 (1-146) 

The values of 𝜆0 are tabulated in the work of Hanks and Larsen (Hanks and Larsen, 1979).  

2-3 The friction factor of power-law fluids in non-circular channels 

The friction factor is one of the most frequently utilized design parameters in the industry. It is required 

to design systems and processes involving fluid flow, particularly for the flow of non-Newtonian fluids 

since non-Newtonian fluids possess high shear viscosity and the flow of such fluids leads to high-pressure 

gradients. Therefore, the flow of non-Newtonian fluids mostly takes place laminar flow regime. 

(Delplace and Leuliet, 1995; Capobianchi, 2008) 

The friction factor is a dimensionless parameter that is characterized by the Reynolds number. In the case 

of Newtonian fluids, an explicit relationship between the friction factor and Reynolds number is available 

since the exact analytical solution of the flow equations for non-circular ducts is studied by many 
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researchers (Muzychka and Edge, 2008; Šesták, 1999). For the fully developed flow of a non-Newtonian 

fluid in non-circular ducts, there is no explicit, generalized friction factor - Reynolds number relationship, 

due to the existence of non-linear momentum equations which has been mentioned in the previous section 

(Mitsuishi and  Aoyagi, 1969). Explicit correlations for the expression of friction factor-Reynolds 

number relationship are available only for circular cross-section and parallel plates (Chhabra and 

Richardson,1999). Friction factor - Reynolds number analysis for the purely viscous, fully-developed 

flow of power-law fluids in circular ducts under the laminar flow regime was studied by Metzner and 

Reed (Metzner and Reed, 1955), and they suggested a Reynolds number (ReM) for determining the 

friction factor based on Eq. 1-84. The friction factor is defined as the ratio of wall shear stress to the flux 

of inertial forces  

λ =
τw

ρu̅ 2

2

  (1-147) 

Where λ is the Fanning factor and  4λ is defined as Darcy–Weisbach friction factor. Introducing Eq. 1-

71, for a fully developed laminar flow of Newtonian fluid through circular duct λ, is 

λRe = 16  (1-148) 

Where Re is Reynolds number defined for Newtonian fluids given by 

Re =
ρu̅ D

μ
 

 (1-149) 

Similarly, the λRe relationship for laminar flow of Newtonian fluids in non-circular ducts is  

λRe = C  (1-150) 

For the fully developed, laminar flow of power-law fluids in circular ducts, substituting Eq. 1-84 into Eq. 

1-148, friction factor-Reynolds number relationship is  

λReM = 16  (1-151) 

Where ReM is the Reynolds number suggested by Metzner and Reed (Metzner and Reed, 1955)  

ReM =
ρu̅ 2−nDn

8n−1K(0.75 + 0.25/n)n
 

 (1-152) 

Concerning fully developed, laminar flow of power-law fluids in non-circular ducts, Kozicki (Kozicki et 

al. 1966) put forward the following expression for the determination of friction factor based on Eq. 1-

134 factor as follows 
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λReG = 16  (1-153) 

ReG is the generalized Reynolds number for ducts of non-circular cross-sections 

ReG =
ρu̅ 2−nDh

n

8n−1K(b + a/n)n
 

 (1-154) 

As stated before, the geometrical parameters a and b depend on the cross-section of the channel, and 

geometric ratios (κ) are given in table 1-1. The relationship between parameters a, b, and the coefficient 

C is given in Eq. 1-139. Also, Sestak (Sestak, 1974) put forward the following relationship related to 

a and b  

v =
b

a
=

2umax

u̅ 
− 1 

 (1-155) 

Using Eq. 1-139 and Eq. 1-154 the parameters a and b can be written in terms of v and C as  

a =
C

16(v+ 1)
  (1-156) 

b =
Cv

16(v + 1)
  (1-157) 

Substituting Eq. 1-156 and Eq.1-157 into Eq.1-153, the expression suggested by Kozicki can be written 

in terms of v and C such as follows (Delplace and Leuliet, 1995) 

λ
ρu̅ 2−nDh

n

(
C
2)n−1K (

vn + 1
(v + 1)n

)
n = C 

 (1-158) 

The relationship between C and v is 

v =
48

C
 

 (1-159) 

According to the expression given in Eq. 1-158, the generalized Reynolds number is defined as 

ReDL =
ρu̅ 2−nDh

n

(
C
2
)n−1K ( vn + 1

(v+ 1)n
)
n 

 (1-160) 

The proposed method by Delplace and Leuliet (Delplace and Leuliet, 1995) enables the prediction of 

friction factor by one parameter C and they showed that the maximum deviation between their method 
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and Kozicki’s method is less than 3% for rectangular, elliptical, isosceles triangles, concentric annuli 

cross-section. Miller (Miller, 1971) has suggested that the friction factor can be predicted readily from 

Eq. 1-84 by expressing wall shear stress and wall-shear rate using Eqs. 1-137 and 1-140, independently 

of geometric parameters. However, Delplace and Leuliet (Delplace and Leuliet, 1995) showed that 

Miller’s method induces significant errors for flow index greater than 0.7.   

3- Mixing of non-Newtonian fluids  

Mixing is a unit operation that is carried out to reduce non-uniformities and obtaining specified property 

of the final products by the intensification of transport processes. The mixing process can be used for 

applications such as preparation of suspensions, blending miscible fluids, creating liquid-liquid, liquid-

gas dispersions, etc. Liquid mixing operations can be performed by various methods such as mechanical 

mixing using agitators, pipeline mixing by static mixers, hydraulic and pneumatic mixing by using jets 

and pressurized gas. In each method, the aim is to create induced fluid flow within the mixing plane 

(Doran, 2013; McCabe et al., 1993; Paul et al. 2004). In this work, we will mention about mechanical 

mixing of the fluids only under the laminar flow regime.  

The mixing mechanism of the fluids is dependent on the generated flow regime within the mixing 

medium. In the turbulent flow regime, mixing is characterized by turbulent eddies and specific power 

consumption generated by impellers. On the other hand, mixing of non-Newtonian fluids takes place in 

the laminar regime usually due to their high viscosity, thus the flow of fluid is dominated by viscous 

forces, and providing bulk flow within the vessel is a challenging task. Laminar mixing of liquids is 

carried out by decreasing the size of the fluid elements by shear and elongational flow and distributing 

them through the medium. 

 

a- Shear flow 
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b- Elongational flow 

Figure 1-8 Deformation of the fluid element (Chhabra et al., 2008) 

In shear flow (see figure 1-7), the relative motion between the streamlines gives rise to deformation of 

the fluid element, so that the interfacial area of the fluid element increases and gets thinner. The 

elongational flow causes deformation the same as in the shear flow which is developed due to variation 

in flow geometry. In elongational flow, converging streamlines accelerate fluid flow and that leads to a 

decrease in the size of the fluid element which is shown in figure 1-8. Besides, if the fluid element is 

sufficiently small, the molecular diffusion contributes to the mixing process. However, due to small 

values of the diffusion coefficient of the viscous fluids, molecular diffusion does not have a remarkable 

effect on mixing in laminar regime (Harnby et al., 1992; Paul et al. 2004; Chhabra et al., 2008). 

The mixing process of the liquid-liquid systems can be classified as distributive and dispersive mixing. 

In distributive mixing, the aim is spreading all components of mixture uniformly through the entire 

volume and dispersive mixing is defined as breaking up of the droplet of the dispersed phase by shear 

and elongational flow, which is carried out by stirred vessels, rotor-stator mixers, static mixers, 

homogenizers, kneaders, etc. For an efficient mixing of immiscible systems, both dispersive and 

distributive components should be provided together (Paul et al., 2004). 

Mixing operations are frequently carried out in the agitated vessel and flow and required shear in the 

vessel are provided by impellers, so in this section, we will mention the most frequently used impellers. 

In the industry, various types of impellers can be used depending on the flow regime and requirements 

of the mixing process.  

As stated before, the flow of fluid in the mixer is provided by impellers which can be classified broadly 

as turbine and close clearance impellers. Turbine impellers (Paul et al., 2004) are mainly used in the 

turbulent flow regime and operate at high rotational velocities. On the other hand, close clearance 
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impellers are used for the agitation of the viscous fluids in the laminar flow regime at low and moderate 

rotational speeds. Turbine impellers further can be categorized as axial flow and radial flow impellers. 

In axial flow impellers, (figure 1-9) such as propeller, pitched blade turbine, and hydrofoil impellers are 

used for blending and preparation of the suspensions. The pumped fluid leaves the impeller in the axial 

direction. In radial flow impellers, such as Rushton turbine or flat blade impellers, discharged fluid leaves 

the impeller in the radial direction. They are frequently used for gas-liquid and liquid-liquid dispersion 

processes.  

  

Axial flow pattern Radial flow pattern 

Figure 1-9 Generated flow patterns by turbine impellers (Holland and  Bragg, 1995) 

Due to their high viscosities, agitation of non-Newtonian fluids is mainly carried out by close clearance 

impellers such as anchor, paddles, screw impeller, helical ribbon and they operate relatively at a lower 

speed than turbine impellers and without the requirement of baffles. The most frequently used close 

clearance impellers are shown in figure 1-10.  

Anchor impellers are used for blending and heat transfer applications of the fluids of viscosity in the 

range of 5 -50 Pa.s. In general, tangential flow is generated by anchor impeller, hence fluid is pumped 

along its radial arms and sometimes to increase the pumping capacity of the system. On the other hand, 

this impeller is very efficient if the tank wall is equipped with a jacket and provides a better heat transfer. 

(Paul et al., 2004; Kuncewicz and Stelmach, 2017). 

 Helical ribbon impeller is frequently used for the mixing of viscous fluids in the laminar regime. This 

impeller provides flow (or shear) in a big portion of the vessel and creates axial and radial flow (top-

bottom fluid circulation, see figure 1-8) which enhances mixing efficiency.  
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Figure 1-10 Close-clearance impellers (Kresta et al., 2016) 

The screw agitator provides agitation of viscous fluids in laminar, transition, and turbulent flow as well. 

Screw agitator is located off-centered in the vessel or used with a draught tube and this impeller provides 

excellent axial-radial flow and pumping capacity in the vessel, so gives rise to efficient mixing 

characteristic. 

The materials such as doughs, pastes, polymer melts, and the mixture of fine solids in a viscous liquid 

possess very high viscosity and mixing of such materials are carried out by kneaders, Baundary mixer, 

single or twin extruder, and roll-mill.  

The kneaders are used for mixing rubbers, dough, and pastes. Kneaders consist of horizontally located 

vessels and blades. Mainly two types of blades are used which are Z-type or sigma blade is shown in 

figure 1-11. Those blades provide shear, elongational, and squeezing flow which enhances mixing 

characteristics at low rotational speed since, during the mixing of very viscous fluids or pastes, 
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elongational flow is more effective than simple shear flow. Mainly one blade is rotating 1.5 times higher 

than the other blade and that leads to additional deformations in the mixing medium. The kneaders are 

mostly used for batch systems. (Chhabra et al., 2008). 

 

Figure 1-11 Sigma blade kneader (Chhabra et al., 2008). 

Single and twin-screw extruders are in-line mixing devices and they are commonly used in the plastic 

industry for melting and mixing polymers. Those mixers can deliver the processed material at high 

pressure at a controlled rate from the extruder. Especially twin-screw extruders provide high shear rates 

in the mixing plane but can lead to excessive heating due to viscous energy dissipation and they are 

suitable for polymer mixing. Single screw extruders can be used for the mixing of heat-sensitive materials 

such as food products and mixing should take place at low rotational speed but that may lead to non-

uniform mixing due to low shear rates generated by screw (Sonbati, 2012).  

 

 

Figure 1-12 Twin screw extruder (Peker and Helvaci, 2008) 



48 
 

 

Figure 1-13 Range of viscosity for various impellers (Chhabra et al., 2008). 

The mixture of liquid and fine solid at high concentrations exhibits non-Newtonian characteristics. 

Therefore, blending or dispersion of the fine solids into viscous liquids in a mixer takes place in the 

laminar flow regime as well and this process is performed in roll-mills. For a proper dispersive mixing 

of fine solids into viscous liquids, it is necessary to the break-up of the particles which are held together 

by inter-particle forces, and those processes are carried out by roll-mills which is shown in figure 1-14. 

The breaking-up of the clusters and dispersion of them into a liquid are carried out in the nip region. The 

value of stresses in the nip region must be exceeded to separate clusters to provide the desired mixing 

process (Harnby et al., 1992; Paul et al. 2004; Chhabra et al., 2008).  

 

Figure 1-14 Roll mill (Harnby et al., 1992) 
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On the other hand, rotor-stator mixers can be used for the continuous and batch mixing processes. They 

are suitable for the processing of fluids of low and high viscosity in laminar and turbulent flow regimes . 

A rotor-stator mixer is composed of a rotating part, rotor and stationary wall called the stator. There is a 

narrow gap between rotor and stator which enables the creation of a high shear region. The rotor-stator 

assembly is called the head or generator. The rotor tip speed can be up to 50 m/s. Rotor-stator mixers 

provide higher shear and higher power consumption than agitated vessels (Utomo 2009; Paul et al., 

2004). 

3-1 Dispersion in liquid-liquid systems  

In agitated vessels, the dispersion process is achieved by shear stresses generated by the impeller. In 

general, for an efficient dispersion process, the impeller should provide sufficient shear to break -up 

drops and pumping capacity in order to obtain homogeneity in the vessel.  

In turbulent flow regime, shear stress is characterized by turbulent eddies and if generated mechanical 

forces by the stirrer are greater than surface forces, a drop can deform to smaller pieces (Paul et al., 2004; 

Ditl and Sulc, 2016). The size of the created drop (dp) depends on Kolmogorov length microscale (λ′) 

which is given by 

λ′ = (
ν

ε∗
)
−1/4

 
 (1-161) 

Where ν is kinematic viscosity and ε∗ is the rate of energy dissipation. If 𝜆′ < dp, drop size is given for 

diluted systems by the following expression 

dp = C1 (
σ

ρc

)
3/5

ε∗−2/5  
 (1-162) 

Where C1is constant and σ is interfacial tension. Alternatively, Eq. 1-162 can be stated in a dimensionless 

form such that  

d32

D
= C2We−3/5  (1-163) 

In Eq. 1-163, d32  is Sauter diameter and We is the Weber number which indicates the ratio of inertial 

forces to surface forces defined as follows 

We =
ρcN

2D3

σ
 

 (1-164) 
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 As seen from the equations, drop size is directly related to the structure of the fluid and the rate of energy 

created by the impeller.  Hence for a given mixing system, a proper mixing process and impellers should 

be selected depending on the required size of the droplet since each agitation system has a different 

characteristic of power consumption, given in figure 1-15. 

 

Figure 1-15 Power draw and drop size variation for various dispersion devices (Paul et al., 2004) 

In the laminar flow regime, viscous forces dominate the flow of fluid, so that providing bulk flow through 

the entire vessel is difficult and deformation of the drop is carried out by stresses arising from shear and 

elongational flows. Therefore, the utilized impeller should occupy a big portion of the cross-section of 

the mixing vessel (Chhabra et al., 2008).  

The dispersion of immiscible fluids by an agitator is characterized by dimensionless Capillary number 

which is the ratio of viscous forces to interfacial forces to surface forces and viscosity ratio of the 

dispersed phase (ηd) to continuous phase (ηc)  such that  

Ca =
ηcγ̇d32

σ
. 

 (1-165) 

where σ is interfacial tension, d32 is the Sauter diameter of the dispersed phase and it should be noted that 

created deformation is proportional to impeller speed. At low values of capillary number, dispersive 

mixing of viscous liquids in the laminar regime is only possible by elongational flow and at higher values 

of capillary number drop deformation occurs by shear and elongational flows (Paul et al., 2004; Thakur 

et al. 2012). 
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3-2 Power characteristic of agitators in laminar flow regime  

Dimensionless numbers are used for the designing and process characterization of a mixer usually. 

Maybe the most frequently used dimensionless number for the mixing calculation is the mixing Reynolds 

number  

Re =
ρND2

μ
 

 (1-166) 

where N is the rotational speed of the impellers and D is the diameter of the impellers. For the mixers, 

flow is laminar if Re < 10 and fully turbulent for Re > 104 . The mixers with close-clearance impellers 

such as anchor and helical-ribbon, mixing is regarded as laminar about  Re < 100 (Doran, 2012). Cooke 

(Cooke et al.,2012) pointed out that laminar flow occurs for Re < 1000 in the case of the Silverson rotor-

stator mixer, and Vial (Vial et al., 2015) stated that flow is laminar for Re < 100 for flat blade rotor-

stator mixers.  

The power consumption of a mixer in dimensionless form is defined by power number which is given as 

follows 

Po =
P

ρN3D5 
 (1-167) 

In the turbulent regime, Po is constant and in the laminar flow regime, the value of Po depends on the 

Reynolds number. For Newtonian fluids, the relationship between Po and Re is given by (Netusil and 

Rieger, 1992) 

PoRe=
P

μN2D3 = C  (1-168) 

where C is the power draw coefficient and is only depends on the geometry of the mixer. Since, non-

Newtonian fluids possess high apparent viscosity, mixing of such fluids takes place in the laminar flow 

regime. However, the determination of Re is problematic since apparent viscosity varies with the shear 

rate. Metzner (Metzner and Otto, 1957) proposed a method for the determination of shear viscosity by 

introducing effective shear rate (γ̇eff) 

γ̇eff = ksN  (1-169) 

In Eq. 1-169, ks is Metzner-Otto coefficient and the value of ks is dependent on the type of the impeller 

and geometrical ratios of the mixer. From Eq. 169, the apparent viscosity (ηa) for the power-law model 

is given by 
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ηa = K(ksN)n−1  (1-170) 

and Reynolds number in terms of Eq. 1-170 can be written as 

ReMO =
ρND2

ηa

=
ρN2−nD2

K(ks)
n−1

 
 (1-171) 

where ReMO is the Reynolds number defined by Metzner and Otto (Metzner and Otto, 1957). The power 

number-Reynolds number relationship according to Eq. 1-171 is 

Po

ρN2−nD2

K(ks)
n−1

= C 
 (1-172) 

Eq. 1-172 were discussed by Rieger and Novak (Rieger and Novak, 1973) and they defined Reynolds 

number for power-law fluids as follows 

ReRN =
ρN2−nD2

K
 

 (1-173) 

where ReRN is the Reynolds number defined by Rieger and Novak and Eq. 1-172 enables to determine 

Reynolds number independently of ks and a very convenient approach for the evaluation of Reynolds 

number if  ks of the investigated mixer is unknown. The Po- ReRN relationship according to Rieger and 

Novak is given as follows.  

Table 1-2 C and 𝑘𝑠 values of some impellers (Kresta et al., 2016) 

Impeller  C 

Pitched blade impeller 60 

Rushton impeller 70 

Anchor 170 

Helical ribbon 200 

Double helical ribbon 300 

Kneaders 400-800 

Impeller  ks 

Turbine 10.00 

Anchor 25 

Maxblend 20-25 

Helical ribbon 30 

 

Poo

ρN2−nD2

K
= Cks

n−1 = C(n) 
 (1-174) 

Taking the logarithm of both sides of Eq. 1-174 
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logC(n) = logC − (1− n)log(ks)  (1-175) 

According to Rieger and Novak (Rieger and Novak, 1973), the curve of log C(n) versus 1– n is a straight  

line and the slope of curve is equal to ks.  

In terms of Bingham plastic, apparent viscosity in terms of effective shear rate can be defined as (Bertrand 

et al.,1996) 

ηa =
τo

ksN
+ μp  (1-176) 

and Po- Re relationship for the Bingham plastic is 

Po
ρND2

τo

ksN
+ μ

p

= C 
 (1-177) 

Bertrand (Bertrand et al.,1996) defined Reynolds number independently of ks same as the approach of 

Rieger and Novak for Bingham plastic as follows 

ReB =
ρND2

μ
p

 
 (1-178) 

and introducing Bingham (Bi) number  

Bi =
τo

Nμp
  (1-179) 

Hence, Po- ReB relationship according to Eq. 1-177 can be written as 

PoReB =
CBi

ks
+ C 

 (1-180) 

The first term on the right side of Eq. 1-111 is the power necessary to exceed yield stress and initiating 

flow, the second term indicates to power for the flow generated by the agitator (Bertrand et al.,1996).  

In terms of yield-shear thinning fluids, Herschel–Bulkley model is frequently used to model apparent 

viscosity of such fluids (see Eq. 1-22) and apparent viscosity can be expressed using the effective shear 

rate as follows 

ηa =
τo

ksN
+ K(ksN)n−1  (1-181) 

Hence, Reynolds number according to Eq. 1-181 is given as follows 

Re =
ρND2

τo

ksN
+ K(ksN)n−1

=
ρN2D2ks

τo + K(ksN)n
 

 (1-182) 
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and PoRe expression from Eq. 1-182 is  

Po
ρN2D2ks

τo + K(ksN)n = C 
 (1-183) 

Another important phenomenon related to the agitation of viscous fluids is the formation of caverns. As 

stated before, the value of the shear rate is maximum near the impeller and it has a minimum value close 

to the wall of the vessel. Especially in the case of agitation of yield stress fluids, a region in the vessel 

may be formed where stress generated by the impeller is greater than yield stress is called cavern (sheared 

zone), and the stagnant region where generated stress by the impeller is less than the yield stress of the 

fluid which is demonstrated in figure 1-16.  

 

Figure 1-16 Developed caverns in viscoplastic fluid and size increment with Reynolds  number (Adams and 
Barigou, 2007) 

Solomon et al. (Solomon et al., 1981) considered the shape of the cavity as spherical and proposed a 

method for estimation of cavern size based on torque balance which is given as follows 

(
Dc

D
)
3

= (
4Po

π3

ρN2D2

τ0

) 
 (1-184) 

where Dc is the diameter of the cavern. Elson et al. (Elson et al., 1986) re-cast the Eq. 1-184 concerning 

the cylindrical shape of cavities  

(
Dc

D
)
3

= (
Po

(π2 hc

Dc
+

1
3
)

ρN2D2

τ0

) 

 (1-185) 

It should be noted that both correlations given above are valid for D ≤ Dc ≤ T.  In some mixing 

applications of yield stress fluids, cavern formation is unavoidable and thus the prediction of cavern size 
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is essential to analyze given mixing process and scale-up. For an ideal mixing process, the value of Dc 

should be close to the diameter of the vessel and cavern volume should occupy a big portion of the vessel.  

3-3 Experimental and numerical studies in literature 

Researches related to the agitation of the non-Newtonian fluids in the laminar flow regime usually deal 

with the determination of power consumption, shear rate, and velocity profile regardless of the type of 

the mixer. Power consumption is one of the uppermost designs and process parameters for the mixers 

and generated shear rate in the mixing tank is considered as one of the most important parameters of the 

efficiency for the agitation of non-Newtonian fluids. (Paul et al., 2004; Chhabra et al., 2008) 

Determination of power consumption of the agitation of non-Newtonian fluids in laminar flow regime is 

based on Metzner-Otto coefficient (ks) and dependency of  ks according to the type  of impeller, the 

geometry of the mixer and rheological model of the agitated fluid have been investigated by various 

researches and the value of ks usually depends only on the type of the impeller and the geometrical 

configuration of the mixer. (Rieger and Novak, 1973) 

 Iranshahi (Iranshahi et al.,2007) investigated power consumption and mixing time of the Maxblend 

impeller using viscous Newtonian fluid in the laminar and transition flow regime and effect of baffles on 

power consumption and shear profile was studied as well. They concluded that the onset of Reynolds 

number from the laminar to transition region has been found as 25 for unbaffled and 35 for the baffled 

configurations. Baffles have a significant effect on the shear profile in the vessel. Also, they pointed out 

that predicted power consumption and mixing time from the CFD and experiments are in good 

agreement. Similar work has been carried by Mozaffari (Mozaffari and Upreti, 2009). They investigated 

the power consumption and velocity profile of the shear-thinning yield stress fluid agitated in a batch 

vessel by the pitched blade, turbine, and marine impellers. They conducted simulation by multiple 

reference frame method. It has been concluded that a good agreement has been found between the 

numerically and experimentally obtained results. The MRF method has the potential for the prediction 

of power consumption in the agitated tank.  

Archard (Archard et al., 2006) examined the flow field and power characteristic of the anchor and double 

helical ribbon impellers for the yield stress fluids numerically. It has been indicated that the flow field 

and pumping capacity of the investigated mixers are affected by Bingham number (Yield stress), namely 

pumping capacity decreases with increasing Bingham number.   
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Cooke (Cooke et al. 2012) studied the power consumption characteristics of an in-line Silverson rotor-

stator mixer experimentally using water, silicon oil, and an aqueous solution of carboxymethyl under the 

laminar and turbulent flow conditions. It has been pointed out that the power number-Reynolds number 

relationship of an in-line rotor-stator agitator in the laminar flow regime can be expressed the same as a 

typical batch mixer.  However, in the turbulent regime, the power of flowing fluid in the system 

influences power numbers whereas this effect is negligible in the laminar flow regime. Effect of slots of 

investigated rotor-stator mixer on Metzner and Otto coefficient was also studied in the laminar flow 

regime and Metzner and Otto coefficient has been found 45.2 with slots and 6.6 without slots.  

Zhang (Zhang et al., 2017) analyzed the power consumption of in-line high shear mixers with ultrafine 

teeth and the effect of tip-to-base clearance and shear gap width on power consumption and flow field 

numerically through multiple reference frame (MRF) technique. They concluded that numerically and 

experimentally obtained power consumption values are in good agreement and it has been found that 

power and Otto-Metzner coefficient decreases with increasing values of clearance and shear gap.  

Vial et al. (Vial et al., 2015) carried out similar work using an in-line, rotor-stator mixer which is 

composed of flat blades. Their study has been carried out for Newtonian and power-law fluid (xanthan 

aqueous solution) under the laminar flow condition for the different flow rates by experimental and 

numerical methods. It has been indicated that power consumption and design parameters such as power 

and Metzner-Otto constants are significantly affected by the geometry of the mixer and it has been proven 

that the CFD technique can be used to designing and scaling-up a new designed in-line mixer.  

From the mentioned researches above, it can be concluded that numerical methods are a useful tool for 

the determination of power consumption, shear and velocity profiles for the mixing of non-Newtonian 

fluids in laminar flow regime and can be utilized for analyzing shear rate, velocity, and power 

consumption of the investigated mixer in this study 

4- Numerical Methods  

An accurate and optimum design of equipment or process lines has considerable importance in terms of 

the quality of the final product, process safety, and cost. However, designing such systems can be 

challenging since transport equations (mass, momentum, and energy) are described by partial differential 

equations and the design of complex systems is carried out by experimental or approximate methods. 

The numerical methods enable us to evaluate partial differential equations using finite element or finite 

volume methods which are commonly used for designing equipment, or process optimization. The 
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commercial software ANSYS FLUENT 15 is used for the numerical studies in this study which provides 

solutions based on the finite volume method. The numerical methods are carried out to achieve the 

following tasks: 

1-  Verification of the suggested method for the rectangular slit rheometer. 

2- Validation of the suggested method for the prediction of friction factor of the power-law fluids in 

non-circular ducts 

3- Validation of experimentally obtained power draw values of newly designed rotor-stator mixer 

and for the determination of design parameters such as power constant and Otto-Metzner 

coefficients as well as, shear rate and velocity profiles. 

Any numerical simulation process consists of three steps; pre-processing, simulation, and post-

processing which are described briefly as follows. 

4-1  Preprocessing 

In this step, the fluid domain (geometry) and grids (meshes) are created. The fluid domain is divided into 

the smaller domain, which is called mesh. In simulations, the flow and energy equations are solved in 

those meshes. The accuracy of the simulations is directly associated with the structure and number of 

generated meshes. In 2-D models, the geometry of meshes can be triangular or quadrilateral and in 3-D 

models, tetrahedron, hexahedron, pyramid, and prism. In addition, grids can be classified as structured 

and unstructured grids. In structured mesh, cells follow a regular pattern, whereas, in unstructured grids, 

mesh cells have an irregular pattern. Structured meshes give rise to get a better solution, however, this 

grid pattern is possible only for regular geometries (ANSYS Fluent, 2013).  

4-2 Simulation  

This section is composed of selection solution set-up, such as type of solver, selection of the materials, 

flow regimes, boundary conditions, and solution methods. In this study, all simulations are carried out in 

the laminar flow regime, using single-phase flow.  

FLUENT (ANSYS Fluent, 2013) provides viscosity functions for the inelastic non-Newtonian fluid 

model. In this study, simulations are conducted for the Newtonian, shear-thinning, and viscoplastic 

fluids. In the case of viscoplastic fluids, for τ < τ0, the shear rate is zero and viscosity has an infinite 

value which results in convergence problems during the simulation. In FLUENT, critical shear rate (γ̇c) 

is introduced (see figure 1-17) to reduce convergence problems arising from infinite shear rate and at 
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yield stress, infinite viscosity is replaced by a large but infinite viscosity. Therefore, the viscosity function 

of the Herschel–Bulkley model in terms of the critical shear rate is: 

If γ̇c > γ̇, the viscosity is  

η =
τ0

γ̇
+ K(

γ̇

γ̇c
)n−1 

 (1-186) 

If γ̇c < γ̇ 

η =
τ0(2−

γ̇
γ̇c

)

γ̇c
+ K [(2− n) + (n − 1)

γ̇

γ̇c

] 

 (1-187) 

 

Figure 1-17 Critical shear rate versus shear stress 

In this study, numerical simulations are carried out for the modeling of the designed rotor-stator mixer, 

hence in this section, we mention the methods for the simulation of agitators briefly. There are two main 

approaches for the modeling of moving fluid domains which are moving reference frame and dynamic 

mesh methods. In moving reference frame, the shape of the fluid domain does not change when it moves, 

whereas in the dynamic mesh the shape of the fluid domain change as it moves (ANSYS Fluent, 2013). 

Moving reference frame approach fits for the modeling of agitation, hence the methodology of this 

approach is addressed here. There are three different approaches to the moving reference frame.  

Single reference frame: In the single reference frame (SRF), the whole fluid domain is considered as 

rotating concerning a determined axis and it is the simplest method for the modeling of the rotational 

bodies. It is important to note that in SRF, the walls are stationary and must be considered as the surface 

of revolution. 
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Multiple reference frame: It is a steady-state model and a frequently used method for modeling mixers 

since this model enables less expensive computations. In the MRF approach, the domain of the fluid is 

divided into moving reference frame and stationary zone by an interface which is the surface of the 

revolution. The interface between the zones can be conformal or non-conformal interfaces. In the 

conformal interface, cell zones are physically connected, and the number of mesh elements is equal on 

both sides of the zones, namely zones are connected by the same nodes. In the non-conformal interface, 

the surface of the interphase composes of two overlapping surfaces and the number of nodes and mesh 

elements on both sides of the surfaces are not the same. The MRF method does not consider the relative 

motions of the zones to each other, so mesh geometry does not change. Therefore, this method is only 

suitable for steady-state cases. In this study, simulations of rotor-stator mixers are carried out by using 

the MRF method. 

Sliding Mesh: The sliding mesh approach is very similar to the MRF method. The domain is divided 

into the rotational and stationary bodies by only creating non-conformal interphase between the two 

bodies. Unlike the MRF method, in the sliding mesh method the relative motion between the rotating 

and stationary zones is considered, namely, grids are moving. Hence, this method provides numerical 

solutions for unsteady flow cases and provides more realistic results than the MRF method, but the sliding 

mesh method is computationally more expensive than the MRF method.  

In all simulations in this work, the pressure-based solver is selected. For the solution method, the 

SIMPLE algorithm was applied for the pressure-velocity coupling which is a widely utilized procedure 

to solve the momentum equation iteratively.   

4-3 Post-Processing 

The final step of numerical simulation is the post-processing step. After getting the numerical solution, 

the desired properties are analyzed as magnitude or vectors which is shown in the result part of the mixing 

section in this study. In FLUENT, the obtained specified property such as velocity, pressure, etc. is 

expressed in the cartesian coordinate system. In this work, acquired data from the simulations are 

converted to the cylindrical coordinate system using MATLAB codes.  

4-4 Grid Convergence Index 

One of the most important procedures of numerical simulation is the estimation of the optimum number 

of grids (meshes) for the numerical simulation. The accuracy of numerical simulation is dependent on 

the size (number) of created grids and the accuracy of the solution is increased by refining the meshes.  
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The result of a simulation reaches an asymptotic (accurate) value for the infinitely large number of mesh 

elements. However, performing a simulation with a very high number of mesh elements is 

computationally expensive and leads to higher computational time. Therefore, the determination of the 

appropriate number of mesh elements is required for the simulations which should be within a certain 

interval of the accurate result. The grid convergence index (GCI) is a frequently used method for 

evaluation of the discretization errors and GCI indicates how far the computed value is away from the 

accurate value (Rorache, 1998; Celik et al. 2008; Elsayed and Lacor, 2013). In this study, an optimum 

number of mesh elements is evaluated by applying the GCI method suggested by Celik et al. (Celik et 

al., 2008) and the method is described as follows.  

The relationship between the result of the numerical solution and the number of mesh element is given 

by the following equation 

ϕ = ϕext + ahp  (1-188) 

where ϕ is the result of the numerical solution for the given number of mesh and ϕext  is the extrapolated 

value of the solution for the infinitely large number of mesh elements. The coefficient a is a fitting 

parameter, p indicates the order of the solution accuracy, and h is given by 

h = (
1

N
)1/D 

 (1-189) 

In Eq. 1-189, N is the number of mesh elements and D is the dimension of the performed numerical 

simulation (2 in 2-D case, and 3 in 3-D). Eq. 1-188, has three unknown parameters (ϕext , p, a), hence the 

solution of the Eq. 1-189 requires the result of the numerical solution for 3 different mesh sizes. Therefore 

Eq. 1-188 is written as follows 

ϕ1 = ϕext + ah1
p   

ϕ2 = ϕext + ah2
p  (1-190) 

ϕ3 = ϕext + ah3
p   

If we assume that h1 < h2 < h3 and r21 = h2/h1, r32 = h3/h2, the term p can be calculated by the 

following equation  

p =
1

lnr21

[
ε32

ε21

+ ln
r21

p − 1

r32
p − 1

] 
 (1-191) 

where  ε21 = ϕ2 − ϕ1,  ε32 = ϕ3 − ϕ2  and the value of p is evaluated numerically. After obtaining the 

value of  p, ϕext  is determined by 



61 
 

ϕext =
ϕ1r21

p − ϕ2

r21
p − 1

 
 (1-192) 

From Eq. 1-192, the accuracy of numerical solution for the finest mesh is expressed in terms of GCI 

(Grid Convergence Index) as 

GCI21 =
1.25 ∗ (ϕext − ϕ1)

ϕ1

=
1.25ea21

r21
p − 1

 
(1-193) 

In Eq. 1-193, 1.25 is the safety factor and ea21  is 

ea21 =
(ϕ1 − ϕ2) ∗ 100

ϕ1

 
(1-194) 

The same expression can be written for the middle size of mesh as well 

GCI32 =
1.25ea32

r32
p − 1

 
(1-195) 

where  ea32  is 

ea32 =
(ϕ2 − ϕ3) ∗ 100

ϕ2

 
(1-196) 

For the 3-D simulations, the ratio between the number of mesh elements should be higher than 2.2 and 

for 2-D simulations, this ratio is 1.7.  
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Chapter 2 -Objectives of the Study 
 

Mixing and transportation of the non-Newtonian fluids are commonly encountered processes in the 

industry. For the transportation of the non-Newtonian fluids, the essential design and process control 

parameter is the pressure drop which is necessary for the sizing of the channels and selection of the 

pumps in the system. Especially, the friction factor-Reynolds number relationship for the fully developed 

laminar flow of power-law fluids through non-circular channels relies on approximate methods. And in 

these methods, Reynolds numbers are the function of the shape of the channel and geometric ratios. 

Moreover, available methods are not practical for the estimation of the pressure drop. 

Regarding the laminar mixing of the non-Newtonian fluids, the essential design and process parameter 

is the power consumption of the mixer, and dimensionless power and Metzner-Otto coefficients are 

necessary for the determination of the power demand of the mixer in the laminar regime. In the case of 

the mixing of viscoplastic fluids, the total energy is dissipated in the mixer to overcome yield stress for 

initiating flow and providing fluid flow, however, there is no explicit correlation to express them 

individually. Furthermore, there is no practical method for the estimation of  the Metzner-Otto coefficient 

for the laminar mixing of viscoplastic shear-thinning fluids. Determination of the rheological parameters 

of the purely viscous fluids is essential for the design of the systems, prediction of the pressure drop or 

power demand of the mixer, and usually capillary or slit rheometers are employed for the determination 

of the rheological parameters.  

In this work, based on the mentioned applications and cases mentioned above, we aim to propose 

practical and alternative methods and correlations for the transportation and mixing of non-Newtonian 

fluids. The objective of this work is listed as follows 

• To show that rectangular channels and concentric annulus can be used for the determination of 

rheological parameters of the power-law fluids as capillary and slit rheometers. An alternative, 

one parameter correlation will be suggested for the estimation of the rheological parameters. 

• To propose a new and very simple correlation for the prediction of the pressure drop for the 

laminar flow power-law fluids through non-circular channels by using geometrically independent 
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Reynolds number and expressing friction factor-Reynolds number relationship by a simple linear 

equation.  

• Analyzing power characteristics and flow profiles of an in-line rotor-stator mixer experimentally 

and numerically using shear-thinning viscoplastic fluid under the laminar regime. And then, 

suggesting expression to specify the effect of yield stress on the power demand of a mixer. 

Finally, proposing a practical method for the determination of the Metzner-Otto coefficient for 

the Herschel–Bulkley fluids.  
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Chapter 3 - Rectangular Channel Rheometer and a Method for 

the Prediction of Friction Factor of Power-Law Fluids   
 

In this section of our study, firstly, a simple and unique method is introduced for the determination of the 

shear viscosity of power-law fluids utilizing rectangular channels and capillary annulus. The suggested 

method is compared with existing methods analytically, experimentally, and by means of numerical 

simulations. Then, on the basis of the suggested method, a very simple equation is introduced for the 

prediction of the friction factor of the power-law fluids in non-circular channels.  

1- Rectangular and capillary annulus Rheometers 

The shear viscosity is one of the most measured rheological properties of the fluid s which is necessary 

for piping, mixing process, heat transfer, and process control, and as stated earlier the measurement of 

shear viscosity is carried by using a slit or capillary rheometers at high shear rates of the fluid. On the 

other hand, it might be necessary to measure shear viscosity using rectangular channels or capillary 

annulus since these geometrical cross-sections are frequently encountered in the industry and there are 

few works in literature for the measurement of shear viscosity by capillary annulus and rectangular 

channels. However, the required equations for the prediction of shear viscosity can be complicated and 

requires more than one parameter. In this section, a simplified method is proposed for the measurement 

of shear viscosity using only one parameter especially for the rectangular and capillary annulus cross-

sections.  

The correlation is given in Eq. 1-134 successfully to characterize the wall shear stress-shear rate 

relationship, but it is not so practical due to the existence of two parameters a and b. A simpler approach 

can be obtained by expressing the wall shear stress -wall shear rate relationship by one parameter C (see 

Eq. 1-139) instead of a and b relying on the method suggested by Ayas (Ayas et al. 2019-a). The 

methodology of simplification is described as follows. If the term (b + a/n)n in Eq. 1-134 is defined as 

α.  

α = (b + a/n)n  (3-1) 

The ratio of α to (0.75 + 0.25/n)n is ε 

ε = (
4(bn + a)

3n+ 1
)
n

 
 (3-2) 
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The curves of the ε versus flow index (n) for rectangular channel and concentric annulus with the aspect 

ratios between zero and one are demonstrated in figure 3-1. Ayas et al. (Ayas et al., 2019-a; Ayas et al., 

2020-a) has suggested that the ε can be assumed as a linear function of flow index for 0 < n < 1 for the 

rectangular channel and concentric annulus. Hence Eq. 3-2 can be expressed as follows 

ε = Mn + N  (3-3) 

As flow index n approaches zero, the limit of ε in Eq. 3-2 equals one which can be seen from the plot in 

figure 3-1.  

lim
n→0

(
4(bn + a)

3n+ 1
)
n

= lim
n→0

(Mn+ N) = 1 
 (3-4) 

 

  

Figure 3-1 Relation between ratio ε and flow index n,  (A) – Rectangular channel (B)- Concentric Annuli (Ayas 
et al., 2019-a;  Ayas et al., 2020-a) 

Therefore, constant N should be equal to one. The coefficient M can be obtained for the Newtonian flow 

case. For n = 1, ε given in Eq. 3-4 reduces to Eq. 1-138 and the coefficient M can be found as 

M = (
C

16
− 1)  (3-5) 

From the obtained correlations given in Eq. 3-4 and  Eq. 3-5, the Eq. 3-1 (α) can be expressed by one 

parameter as follows 

α = (b + a/n)n = (Mn + 1) (
3n+ 1

4n
)

n

 
 (3-6) 

Consequently, Eq. 1-134 can be stated as  
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τw = K((
C

16
− 1)n + 1) [(

3n+ 1

4n
)
8u

Dh

]

n

 
 (3-7) 

and the wall shear rate is  

γ̇w = [(
C

16
− 1)n+ 1]

1/n

(
3n + 1

4n
)
8u

Dh
 

 (3-8) 

As seen from Eq. 3-7 and Eq. 3-8, the wall shear rate-wall shear stress can be expressed only one 

geometrical coefficient C instead of a and b (Ayas et al., 2019-a; Ayas et al., 2020-a). The determination 

procedure of shear viscosity power-law fluids is the same as the method provided by Son (Son, 2006), 

only two parameters can be replaced by one parameter model given in Eq. 3-6. 

A similar correlation can be obtained by using the parameters of parallel plates (a = 0.5 and b = 1) 

instead of the parameters of the circular channel (a = 0.25 and b = 0.75). If the ratio of (1 + 0.5/n)n 

to Eq. 3-1 is defined as ε′ 

ε′ =
(1 +

0.5
n

)n

(b +
a
n)n

= [
2n + 1

2(bn + a)
]
n

 

 (3-9) 

 

  

Figure 3-2 Approximated linear variation of ε' (A)- Rectangular channel, (B) - concentric annulus 

The variation of ε′with respect to flow index in the range of 0 < n < 1 and geometric ratios for the 

investigated cross-sections are given in figure 3-2. From the regression analysis ε′can be assumed as a 

linear function of flow index and geometric ratios the same as Eq. 3-3. Therefore Eq. 3-9 can be written 

for 0 < n < 1 as  
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ε′ = M′n+ N′  (3-10) 

As flow index n approaches zero, the limit of ε′ equals one, hence the constant N′should be equal to one, 

and the term (b + a/n)n can be written as  

α = (b +
a

n
)n =

(1+
0.5
n

)
n

M′n+ 1
 

(3-11) 

The value of M’ can be determined from the Newtonian flow case as 

M′ =
24

C
− 1 

 (3-12) 

and substituting Eq. 3-11 into Eq. 1-134, wall shear stress is given as follows 

τw =
K

M′n+ 1
[(

2n+ 1

2n
)
8u

Dh

]
n

 
 (3-13) 

The suggested method for the determination of K and n values can be described briefly as follows. Firstly, 

wall shear stress and apparent shear rates are determined from the Eqs. 1-137 and 1-140 from the 

measured pressure and volume flow rate values and using Eq. 1-82 flow index n is obtained. Finally 

using Eq. 3-8 or Eq. 3-13, the consistency K is determined.  

In both methods, the way of determination of wall shear stress and flow index are the same and the 

difference is arising from the calculation procedure of consistency (K). For the rectangular channel with 

higher aspect ratios or concentric annulus of lower values of aspect ratios, Eq. 3-7 is recommended for 

the determination of  K and the geometries with narrow gaps, Eq. 3-13 gives better results for the 

prediction of K.  

1-1 Validation and discussion 

The provided method is validated analytically and experimentally.  Ayas et al. (Ayas et al., 2019-a, Ayas 

et al., 2020-a) validated the suggested α functions given in Eq. 3-6 and Eq. 3-11 with Eq. 3.1 analytically 

which is shown in figure 3-3. From the comparison, the maximum deviation between the equations was 

found less than 2.5%.  
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Figure 3-3 Variation of α functions (Ayas et al., 2019-a; Ayas et al., 2020-a) 

The proposed correlation has been verified through experimental data available in the literature (Skocilas 

et al, 2017). Experiments were conducted in a piston-driven extrusion rheometer for the investigation of 

the rheological properties of the water solution of bovine collagen with a mass fraction of 9.5 % and 

density of 1100 kg/m3. The channel used in the experiment has a rectangular cross-sectional geometry 

with a length of 200 mm and a width of 20 mm (see figure 3-4). Three different heights of channels were 

utilized in the experiment with the heights of 1 mm, 2 mm, and 4 mm. The rectangular channels were 

equipped with five pressure transducers which were mounted along the lower surface of the channels and 

locations of transducers are shown in figure 3-4. The flow in the die channels was provided by the 

movement of the piston. The measurement was repeated ten times for each die and extruded materials 

were not reutilized. In this study, experimental data of die with height (H) 2 mm and 4 mm was taken 

into account for the validation of the proposed correlation. Measured pressure values from the transducers 
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with corresponding mean velocities within the fully developed region of the dies for the channels of  2 

mm and 4 mm are demonstrated in figure 3-5.   

 

Figure 3-4 Locations of pressure sensors (Skocilas et al., 2017). 

 

 

Figure 3-5 Experimentally measured pressure vs mean velocity  (A) H= 2 mm, (B) H=4 mm (Skocilas et al., 
2017) 

The channel with a height of 2 mm has an aspect ratio of 0.1 and can be regarded as a slit rheometer 

(Han, 1971). From the experimentally measured pressure and volume flow rate values, the flow curve is 
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obtained from Eq. 1-131 for the power-law model with a coefficient of determination (R2) greater than 

0.99 which is given in figure 3-6-a. The consistency and flow index values were found as K = 1238 

Pa. sn and n = 0.275 respectively. 

 

a- Flow curve of channel H/W=0.1, γ̇w = 470 − 3700 (1/s) 

 

b- Flow curve of channel H/W=0.2   γ̇w = 670 − 5500 (1/s) 

Figure 3-6 Obtained flow curves from the experimental data 

 

The channel with a height of 4 mm has an aspect ratio of 0.2. It is convenient for the investigating validity 

of the suggested correlations. Obtained curves from the Eq. 3-1 and Eq. 3-8 are given in figure 3-6-b. As 
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seen from the curves, obtained flow curves are almost coincident. Determined wall shear rates are 

approximately the same at low shear rates and deviate slightly at high shear rates. The flow index has 

been found as 0.288 for both methods. The consistency K has been evaluated as 1197  Pa. sn from Eq. 3-

1 and as 1213 Pa. sn from Eq. 3-8 respectively which are almost the same. The obtained overall flow 

curve for the dies with H of 2 mm and 4 mm with a coefficient of determination of 0.98 is shown in 

figure 3-7. The flow index has been found as 0.3 and consistency is 1060 Pa. sn.  

 

 

Figure 3-7 Overall flow curve for H = 2 mm and H = 4 mm 

Moreover, the rheological properties of the investigated fluid are determined for Herschel–Bulkley from 

the Eq. 1-132 model using the experimental data from the channel with an aspect ratio of 0.1. The yield 

stress value is determined by the extrapolating flow curve at low shear rates to zero shear rate using a 3-

degree polynomial equation and flow index and consistency are obtained by curve fitting method 

(Nguyen and Boger, 1992). The obtained yield stress value is 5000 Pa, consistency (K), and flow index 

(n) are 124 Pa. sn and 0.52, respectively.  

In the case of the concentric annulus with high aspect ratios, the flow can be regarded as the flow between 

parallel plates as stated earlier. The validity of this assumption can be seen from figure 3-2 based on Eq. 

3-11. As given in figure 3-2, for the aspect ratios greater than 0.1, the deviation between the parallel plate 

assumption and Kozicki’s method is less than 10 % and for the aspect ratios greater than 0.6, this 

deviation is found less than 3 %. 
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 The results reveal that the correlations of slit rheometer can be used for the concentric annuli with aspect 

ratios greater than 0.6. This assumption has been confirmed by Skocilas et al. (Skocilas et al.2016) 

experimentally by using a capillary annulus rheometer with an aspect ratio greater than 0.66. They 

measured rheological parameters of water solution of collagen at different concentrations and rheological 

properties of the collagen were determined for power-law and Herschel–Bulkley models. As seen from 

figure 3-2, parallel plate approximation is quite successful for this geometry and re-calculating 

rheological parameters for this geometry is not necessary and results can be seen in their work (Skocilas 

et al.2016). Moreover, those rheological data are used for the analysis of the rotor-stator mixer section.  

2- A Method for Predicting the Friction Factor of Power-Law Fluids in non-Circular 

Channels 

The friction factor is the one of most commonly investigated design parameters and various method has 

been suggested for the prediction of the friction factor of the laminar flow of power-law fluids through 

non-circular channels and conventionally used methods are shown in the previous chapter. In general, 

available methods are relatively complicated since defined Reynolds numbers are a function of the 

geometrical cross-section of the channels and mostly require more than one geometrical parameter except 

the method suggested by Delaplace (Ayas et al., 2019-a).  

In this section, an alternative, simple method is proposed for the prediction of friction factor for the flow 

of power-law fluids in non-circular channels under the laminar flow regime. The simplification is 

achieved by using the Reynolds number suggested by Metzner and Reed and then a very simple 

correlation is introduced in order to express the relationship between friction factor and Reynolds number 

(ReM) based on the assumption given in Eq. 3-6 in the previous section. Then this assumption is extended 

(Ayas et al., 2020-a) to other non-circular cross-sectional shapes (i.e. elliptical, concentric annuli, 

symmetrical L-shape, isosceles triangle, eccentric annuli, square duct with a central cylindrical core) 

shown in figure 3-8. Furthermore, a second alternative method is introduced for the prediction of friction 

factor of the flow of power-law fluids in non-circular channels with a narrow gap. The suggested method 

is compared with other methods analytically and by numerical methods.  
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Figure 3-8 Investigated cross-sectional geometries 
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2-1 Theory 

The proposed simplified method is based on analyzing the relationship between the Reynolds number 

suggested by Metzner and Reed (ReM) and by Kozicki (ReG) for shear-thinning fluids (Ayas et al., 2019-

a). The Reynolds number defined by Metzner and Reed (ReM) for a rectangular channel can be written 

as 

ReM =
ρu2−nDh

n

8n−1K (
3n+ 1

4n
)
n 

 (3-14) 

The ratio of ReM to ReG is 

ReM  

ReG
= (

4(bn+ a)

3n + 1
)
n

 
 (3-15) 

As seen, the ratio ReM/ReG is equal to the defined function ε given in Eq. 3-2. Using the linear 

approximation for ε given in Eq. 3-3 for the flow indexes in the range of 0 < n < 1, the ratio ReM/ReG 

is equal to 

ReM  

ReG
= Mn+ N 

 (3-16) 

It has been shown that the value of coefficient N is equal to 1 and the coefficient M is given in Eq. 3-5. 

Substituting Eq. 3-16 into Eq. 1-153, the final expression is given as follows 

𝜆ReM = (C − 16)n+ 16  (3-17) 

It can be seen that for the circular channel (C = 16) Eq 3-17 reduces to Eq. 1-151 and for n =

1 (Newtonian flow case) reduces to Eq. 1-150. It has been pointed out by Ayas et al. (Ayas et al. 2020-

a) that obtained linear approximation of ε exists for cross-sectional shapes of elliptical, concentric annuli, 

symmetrical L-shape, eccentric annuli, square duct with a central cylindrical core (Ayas et al.,2020-a) 

which is shown in figure 3-9. Hence, Eq. 3-17 can be used to calculate the friction factor of fully 

developed laminar flow of power-law fluids through investigated geometries except for isosceles triangle 

cross-sections. Since the explicit linear relationship of ε does not exist for this geometrical shape. 

Besides, it has been indicated that the linearity of ε deteriorates for the geometries with narrow passages. 

For instance, the eccentric annuli of κ =0.9, regression analysis indicate that ε has linearity with an R2 

greater than 0.99 for e∗ = 0.1, whereas, for e∗ = 0.9, R2 was found as 0.97.   
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Alternatively, a different correlation can be obtained in terms of the parameters of parallel plates (a =

0.5, b = 1) especially for the channels with a narrow gap. It has been shown that Eq. 3-11 indicates 

approximately a linear relationship for the concentric annulus and rectangular channels and performing 

the same procedure for other non-circular sections, obtained approximate linear relationships are given 

in figure 3-10. It has been found that ε’ indicates better linearity for the channels with narrow gaps. 

Besides, ε’ shows a linear characteristic for the isosceles triangular which is not exist for the Eq. 3-15.  

  
Eccentric annuli for κ = 0.7 Eccentric annuli for κ = 0.9 

Figure 3-9 The linear relation of ε and flow index (Ayas et al., 2020-a) 
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Finally, substituting Eq. 3-11 into Eq. 1-153 with Eq. 3-12, the alternative correlation for the friction 

factor Reynolds relationship is  

𝜆Re′M =
16C

(24 − C)n + C
  (3-18) 

where Re′M is  

Re′M =
ρu̅ 2−nDh

n

8n−1K (1+
1
2n

)
n 

 (3-19) 

For the Newtonian flow case, Eq. 3-18 reduces to Eq. 1-150 and for C = 16, Eq. 3-18 equal to Eq. 1-

151. The critical value of Reynolds number (ReM) for the onset of the turbulent region has been 

considered as 2100 and the effect of the shape of cross-section on critical Reynolds number is neglected 

in this study.  

2-1 Validation and discussion 

The correlation proposed in Eq. 3-17 relies on the simplified α function in Eq. 3-6. Hence α function 

defined by Kozicki in Eq. 3-1 and the simplified α function in Eq. 3-6  is compared analytically for 

studied non-circular cross-sectional shapes for 0 < n < 1 (Ayas et al., 2020-a). Although non-existence 

of a linear characteristic of ε for isosceles triangular cross-section, the Eq. 3-6 was compared with Eq. 3-

1 for isosceles triangles and the maximum deviation has been found less than 3.5 %.  From the 

comparison, it follows that Eq. 3-17 can be used for isosceles triangular cross-sections.  

  
Eccentric annuli for κ = 0.7 Eccentric annuli for κ = 0.9 

Figure 3-10 The linear relation of ε’ and flow index 
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The results of the comparison indicate that the deviation between the Eq. 3-1 and Eq. 3-6 are minimum 

for symmetrical L-shape and elliptical cross-sections and maximum deviation has been found less than 

1 % for those geometries. The maximum deviation has been found less than 2 % for the concentric 

annulus and 2.5 % for the square duct with central cylindrical core and rectangular cross-sections.  

In the case of the eccentric annulus, the difference between 3-1 and Eq. 3-6 is significantly affected by 

geometric ratios. The minimum deviation has been found for κ = 0.1 as less than 1 % and the deviation 

increases with increasing values of κ, so the maximum deviation has been found less than 4% for κ =

0.9.  In general, the maximum deviations have been found for the flow indexes between 0.3 ≤ n ≤ 0.5 for 

all geometries cross-sections.  

The one-parameter model introduced by Delplace and Leuliet (Delplace and Leuliet, 1995) was derived 

from Kozicki’s two-parameter model same as Eq. 3-17 with the aim of reducing two parameters to one 

parameter. Therefore, the comparison between the Eq. 3-17 and Delplace’s method (Eq. 1-158) has been 

carried out analytically by comparing relative deviations of friction factors obtained by Eq. 3-17 and 

Delplace’s method with Kozicki’s method. In other words, Kozicki’s method has been taken as a 

reference value. The relative deviation is defined as  

Deviation =
(λG − λi)

λG

∗ 100 
 (3-20) 

In Eq. 3-20, λG indicates the friction factor obtained from Kozicki’s method  (Eq.1-153) and λi represents 

the friction factors for one-parameter models from Eq. 3-17 and Eq. 1-158 (my suggested method in Eq. 

3-17 and Deplace’s methods). The results of comparisons for the eccentric channel of κ = 0.9, square 

duct with a centered cylindrical core, and symmetrical L-shape are depicted in figure 3-12. As seen in 

figure 3-12, the deviations between Kozicki’s method (λG) and proposed method in Eq. 3-17 (λM) 

increase with the increasing values of e* and maximum deviation has been found less than 4 % for 

e*=0.9. As seen from the figure, the variation between friction factor values from Kozicki’s (λG)  and 

Delplace’s (λD) methods are found less than 4 % as well for the eccentric channel. Regarding the square 

duct with a centered cylindrical core and symmetrical L-shape suggested method in Eq. 3-17 provides 

1% better results than Delplace’s method.  
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Eccentric annulus κ = 0.7 a- Eccentric annulus κ = 0.9 

Figure 3-11 Comparison of α functions between Eq. 3-1 and Eq. 3-6 
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Figure 3-12 Relative deviations of  λM and λG with respect to Kozicki's method 

 

 
 

A- Eccentric channel of κ = 0.9 

 

 
B- The square duct with a centered cylindrical core 

  
C- Symmetrical L-shape 
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From the results of comparisons, one can be concluded that Eq. 3-17 and Delplace’s method leads to 

predict friction factors with similar accuracy. It should be indicated that even though Delplace’s method 

and Eq. 3-17 are one-parameter models, there is a significant difference between the two methods. Firstly, 

the Reynolds number (ReDL) suggested by Deplace is a strong function of geometrical parameter C, 

whereas in the provided method ReM is independent of geometrical parameter C. Secondly, Delplace’s 

method is valid only in the laminar flow case, but λ-ReM relationship exists for turbulent flow of power-

law fluids in non-circular cross-sections. Since our study is restricted by laminar flow, λ-ReM relationship 

is not described for the turbulent regime in this study and more information can be found in the studies 

of Kozicki et al. (Kozicki et al., 1966) and Kostic and Hartnett (Kostic and Hartnett, 1984). 

A further comparison is carried out by comparing the α in Eq. 3-1 and provided alternative α function 

given in Eq. 3-11 which are demonstrated in figure 3-13 for the isosceles triangle, elliptical channel, and 

eccentric annulus cross-sections. The alternative method gives better results for the channels with narrow 

gaps. The maximum deviation between Eq. 3-1 and Eq. 3-11 is found approximately 1% for isosceles 

triangles and concentric annulus and eccentric annulus of κ = 0.9 maximum deviation is less than 2.7 

%. For the other geometries, Eq. 3-6 gives better results than Eq. 3-11. From the comparison, it can be 

deduced that the alternative approach given in Eq. 3-18 is more suitable for the prediction of friction 

factor of isosceles triangular cross-section and channels with narrow gaps. 

Suggested correlation in Eq. 3-17 was also validated (Ayas et al., 2019-a) by experimental data in the 

literature (Hartnett et al., 1986). They carried out experiments using viscous shear-thinning fluid 

(aqueous solutions of polyacrylic acid, Carbopol 934 and 960) and viscoelastic fluid (aqueous solutions 

of polyacrylamide, Separan AP-273) through a square duct with a width (W) of 10 mm and with the 

length of 2500 mm and measurements were taken within the fully developed region of the channel. Only 

the results of Carbopol 960, n = 0.64-0.65 have been investigated from the experimental data. The 

comparison of experimental data and determined friction factor values using Eq. 3-18 are given in figure 

3-14. Friction factor values obtained from the experimental data and Eq. 3-18 are in good agreement and 

the maximum deviation was found less than 4%.  
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Figure 3-13 Comparison of α functions between Eq. 3-1 and Eq. 3-11 

 

Figure 3-14 A comparison between Eq. 3-17 and experimental data (Hartnett et al., 1986) 

  
a- Elliptical duct b- Isosceles triangles 

 
c- Eccentric annulus κ = 0.9 
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Another experimental verification (Ayas et al., 2019-a) was carried out using experimental data obtained 

by Hartnett (Hartnett and Kostic, 1985). Experiments were conducted in a rectangular duct with a width 

(W) of 18 mm and a length of 6400 mm using an aqueous polyacrylamide solution. Results of 

experimental data o and calculated friction factor values according to Eq. 1-153 and Eq. 3-17 are shown 

in table 3-1. The maximum deviation has been found less than 9 % and calculated friction factor values 

from Eq. 1-153 and Eq. 3-17 are very close. 

Table 3-1 Result of validation Eq. 3-17 and experimental data (Hartnett and Kostic,1985). 

n ReM ReG λexp λ (Eq. 1-153) λ (Eq. 3-17) 

0.542 297 292.5 0.04951 0.0539 0.0538 

0.563 616 606.3 0.02414 0.0260 0.0260 

0.577 749 736.9 0.02177 0.0214 0.0214 

0.59 1291 1269.7 0.01161 0.0124 0.0124 

0.601 1715 1686.2 0.00875 0.0093 0.0093 

0.616 2170 2132.6 0.00735 0.0074 0.0074 

 

The other comparison has been carried out by performing numerical methods using ANSYS FLUENT 

15 for, isosceles triangles, eccentric and concentric annulus, elliptical, symmetric L-shape, and a square 

duct with central cylindrical core cross-sections (Ayas et al., 2019-a; Ayas et al., 2020-a). The length of 

the created geometries was greater than 100Dh for each cross-section and 150000-200000 hexahedral 

mesh elements were used according to grid convergence index analysis (Celik et al., 2008). The grid 

convergence index analysis MATLAB codes are given for the eccentric channel of κ=0.7 by creating 

40000, 120000 and 292000 mesh elements in appendix B. Simulations were carried out for isosceles 

triangle of 90o and eccentric channel of κ=0.7, e ∗=0.9 for the flow indexes (n) of 0.4, 0.5, 0.6, 0.7, 0.8 

and concentric annulus, elliptical, symmetric L-shape and a square duct with central cylindrical core 

cross-sections for n = 0.5 and various aspect ratios. The consistency (K) was chosen as 0.5 Pa.sn and the 

mean velocity was taken as 1.5 m/s for all simulations. For the boundary conditions, the inlet was chosen 

as velocity inlet, the outlet was selected as pressure outlet and the walls were taken stationary wall. For 

the solution method, the simple scheme was specified for pressure-velocity coupling and second-order 

pressure and momentum were selected for spatial discretization. The convergence criteria was taken for 

the continuity residual below 10-6.  
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Numerically evaluated λReM values were compared with suggested methods and as well as 

conventionally used methods (Kozicki’s and Delplace’s methods), namely the results of simulations were 

taken as reference values. The results of the comparison are illustrated in figure 3-15.  

For concentric annulus, Eq. 3-17 yields better results than Kozicki et al. and Delplace and Leuliet’s 

methods, and maximum deviation remain less than 5% for those three methods. For elliptical and L-

shape channels predicted λReMvalues by Kozicki et al.’s method and Eq. 3-17 are very close and Deplace 

and Leuliet’s method yields less accurate results than the other two methods. For those two geometries, 

Eq. 3-17 ensures to predict friction factor less than 4% deviation. 

 For Square duct with a centered cylindrical core, Koziki’s method gives better results than Eq. 3-17 and 

Delplace’s method especially for the higher values of D/W. The difference between determined λReM 

values have been examined for D/W = 0.8 and different values of flow indexes. It was found that Eq. 3-

17 gives better results than Delplace’s method and the maximum deviation remains less than 5 % for the 

three methods. 

The difference between evaluated λReM is checked for the eccentric channel of  κ = 0.7 and 0.3 ≤ e ∗≤

0.9. It was found that investigated three methods provide a successful result for 0.3 ≤ e ∗≤ 0.5, with a 

deviation of less than 4 % but for e*> 0.5, deviation increases as eccentricity increases for the three 

methods. Especially Eq. 3-17 yields unsatisfactory results with a deviation of 15 % for e*=0.9. Indeed, 

that is an expected result since as stated before, in terms of the isosceles triangle and eccentric annulus 

of high aspect ratios, Eq. 3-2 does not provide a good linear characteristic and Eq. 3-19 has been 

suggested for the prediction of the friction factor for those geometries based upon the parameters of the 

parallel plates. 
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a- Concentric annulus, n=0.5 (-) b- Elliptical channel, n=0.5 (-) 

  
c- Symmetrical L-shape, n=0.5 (-) d- Square duct with a centered cylindrical core, n=0.5 (-) 

  

e- Square duct with a centered cylindrical core, D/W=0.8 f- Eccentric channel  κ=0.7 
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Conclusion 

In this section, rectangular channels of aspect ratios greater than 0.1 and concentric annulus were 

investigated for the measurement of shear viscosity of power-law fluids which is the most frequently 

used rheological model in the industry. An approximate one-parameter model was suggested for the 

determination of the wall shear rate for the power-law model. The provided correlation was validated 

using experimental data and compared with conventionally used methods. From the comparisons, it was 

deduced that provided correlation enables to determine shear viscosity of power-law fluids and it was 

proven that parallel plate approximation is quite successful and correlations of the slit rheometer can be 

used for the concentric annulus with high aspect ratios.   

Then, the relationship between the friction factor and the Reynolds number was studied to obtain a 

practical, generalized method for laminar, fully developed power-law fluids in non-circular ducts using 

the Reynolds number suggested by Metzner–Reed, which can be calculated without regard to parameters 

dependent on aspect ratios. Then a very simple correlation was suggested to express λReM for fully 

developed, laminar flow of shear-thinning fluids for rapid engineering calculations. It was indicated that 

λReM depends on the flow index and the geometrical constant C, and the term λReM can be expressed by 

a very simple linear equation for shear-thinning fluids. The applicability of obtained correlation was 

examined with experimental data in the literature, analytically by comparison with the most widely used 

conventional method, and by numerical computations for the rectangular, concentric annulus, elliptical, 

symmetrical L-shape, square duct with a central cylindrical core, eccentric annulus, and isosceles 

  

g- Eccentric channel  κ=0.7, e*=0.9 h- Isosceles triangle , θ=90o 

Figure 3-15 The comparison between approximate models and results of simulations 
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triangles cross-sectional geometries. It was found that the suggested correlation can be used successfully 

for the cross-sectional geometries of the rectangular, concentric annulus, symmetrical L-shape, square 

duct with a central cylindrical core, eccentric annulus with low aspect ratios, elliptical cross-sectional 

geometries for 0 < n < 1 with a deviation of less than 5% and the model ensures slightly better results 

than other one parameter Delplace and Leuliet’s method for those geometries. It should be noted that 

provided method in Eq. 3-17 is not as successful as other methods for the prediction of friction factor 

values for isosceles triangles and eccentric annulus of high aspect ratio. The alternative correlation based 

on Reynolds number Re′M specified in Eq. 3-19 is giving better results for the prediction of friction factor 

for the geometries with narrow clearances and isosceles triangles, hence it is recommended to use infinite 

plate parameters for the channels with narrow gaps.  
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Chapter 4 -Agitation of viscoplastic fluid in in-line rotor-stator 

mixer 
 

Mixing is one of the most frequently used unit operations in the industry which is carried out to reduce 

gradients of specified properties such as concentration, temperature, etc. Mixing of liquids is generally 

achieved in mechanically agitated vessels. Mixing of non-Newtonian fluids commonly employed in the 

polymer, food, and pharmaceutical industries for the preparation of dispersions, homogenization, etc. 

and agitation of non-Newtonian fluids mostly carried out under the laminar flow regime due to their high 

viscosities (Paul et al., 2004; Doran, 2012). 

The mixing performance in the laminar flow regime is considered poor since fluid flow in the mixing 

environment is dominated by viscous forces and agitation of such fluids results in high power 

consumption (Paul et al., 2004). Especially, agitation of viscoplastic fluids gives rise to the formation of 

the well-mixed region (cavern) in the vicinity of the impeller, and dead zones are generated next to the 

wall of the mixing vessel and which leads to poor mixing. In order to obtain efficient mixing, bulk flow 

(shear rate) should be provided within the large part of the mixing vessel since the distribution of shear 

rate is regarded as one of the key parameters for the mixing efficiency (Archard et al., 2006). Hence, 

close clearance impellers are preferred for the mixing of non-Newtonian fluids to obtain efficient mixing.  

However, it should be noted that agitated vessels stirred with close clearance impellers may not provide 

an effective mixing performance for the viscoplastic fluids possessing high yield stress and can lead to a 

decrease in the mixing quality. In such cases, a more efficient mixing operation can be achieved by 

agitation viscoplastic fluids in rotor-stator mixers. Those mixers provide a shorter processing time than 

conventionally used stirred vessels with close clearance impellers which is more desirable for industrial 

purposes. 
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Figure 4-1 Description of the in-line rotor-stator (Flow direction is indicated by red lines) 
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1- Description of designed in-line rotor-stator mixer 

The design of the studied mixer (see figure 4-1) was created by the research and development team of 

the Process engineering department by Dr. Jan Skocilas Ing. Dr. Jiri Moravec Ing., Dr. Lukas Kratky, 

and Prof. Dr. Tomas Jirout Ing and detailed design of the mixer is given in Appendix E.  The newly 

designed in-line rotor-stator mixer consists of two serial mixing heads which are installed in a cylindrical 

barrel and two impellers were mounted on the same shaft. Stators have a cylindrical shape and the lateral 

surface of the stator is the wall of the barrel. For the designed mixer, the radial clearance (cr) between 

the rotor and stator is 3 mm constant. The flat surfaces of the cylindrical stator are composed of three 

partitioning discs and those discs are movable, hence the axial clearances (ca) between rotor and stator 

can be adjusted according to requirements of the process. The agitation of the mixer is provided by 45o 

four-pitch blade impellers with a diameter (D) of 194 mm and the diameter of the stator (Z) is 200 mm. 

The inlet and outlet of the mixer are hollow disks and the shaft of the mixer is located at the center of the 

disk. The passage of fluid from one mixing head to the other one is enabled by four slots which are 

located at the edge of the disk. (Ayas et al., 2019-c). Hence, in the designed mixer, it was aimed to 

generate flow is mainly between the rotor and stator in the axial direction. In this chapter energy 

consumption, flow, and shear rate profile of designed in-line rotor-stator mixers are investigated 

experimentally and numerically. Power consumption of the rotor-stator mixer is measured using yield 

shear-thinning fluid experimentally and obtained power consumption values are validated using 

numerical methods by ANSYS FLUENT. Then, power consumption, flow field, velocity profile, and 

shear profile will be studied using numerical methods for Newtonian, power-law, and Herschel–Bulkley 

model. Mixing Reynolds number-power number relationship and scale-up criteria are discussed.  

2- Theory 

In terms of in-line rotor-stator mixers, the generated power is the sum of power created by impellers  

(rotor) and power of flowing fluid from the inlet and to the outlet of the mixer (Kowalski, 2009). 

Ptotal = PR + Pf   (4-1) 

In Eq. 4-1, The power generated by the rotor (PR) and the power of flowing fluid is given as (Vial et al. 

2015) 

Pf = ΔpV̇  (4-2) 

Dividing each term Eq. 4-1 by ρN3D5, Eq. 4-1 is stated in the dimensionless form as (Cooke et al., 2012). 
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Ptotal

ρN3D5
=

PR

ρN3D5
+

ΔpV̇

ρN3D5
 

 (4-3) 

Hence, the total power number for an in-line rotor-stator mixer is 

Po = PoR + kNQ  (4-4) 

Where k is power flow constant and NQ is the flow number 

NQ =
V̇

ND3 
 (4-5) 

According to Eq. 4-4, the total power of an in-line rotor-stator mixer is the sum of the power number of 

rotor and power number arising from the fluid flow between inlet and outlet sections of the mixer(Cooke 

et al., 2012) and it was suggested that the effect of fluid flow on the power consumption of a rotor-stator 

mixer in a laminar flow regime is neglected. Namely, in the laminar mixing of an in-line mixer, Po =

PoR. Power number analysis can be extended for viscoplastic fluids to obtain a simplified correlation. In 

the case of Bingham fluids, Hedstrom number for the mixing case is given as follows (Bertrand et 

al.,1996) 

He =
ρτ0D

2

μ2
 

 (4-6) 

Introducing effective shear rate, Eq. 4-6 can be stated as 

He =
ρτ0D

2

(K(ksN)n−1)2
 

 (4-7) 

and using Reynolds number (ReMO) suggested by Metzner and Otto, Bingham number is described as 

Bi =
He

ReMO

=
τ0

K(ks)
n−1(N)n

 
 (4-8) 

Using Bi and ReMO, Eq. 1-183 can be stated alternatively as follows. 

PoReMO =
C

ks
Bi + C  (4-9) 

Dividing both sides of Eq. 4-9 by (ks)
n−1, the Eq. 4-9 is expressed by ReRN such that 

PoReRN =
C

ks
Bi∗ + C(ks)

n−1
  (4-10) 

where Bi∗ is (Archard et al., 2006) 

Bi∗ =
τ0

K(N)n 
 (4-11) 
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The suggested expression Eq. 4-10 is quite convenient for the evaluation of ks. The left-hand side of Eq. 

4-10 is independent of geometrical parameters and on the right-hand side Bi∗ is the function of rheological 

parameters and rotational speed. According to Eq. 4-10, the plot of PoReRN versus Bi∗ for the same fluid 

at different velocities should be linear and the slope of that curve is equal to C/ks. Hence, ks the value 

of the mixer can be calculated from the slope of the linear curve easily if the C value is known.  

On the other hand, power number according to Eq. 4-10 can be expressed as follows (Ayas et al., 2020-

b) 

PoR = PoY + PoS  (4-12) 

where PoY indicates the power number for overcome yield stress and PoS represents the power number 

of the sheared flow and can be defined by the following equation.  

PoY =
CBi∗

ReRNks
 

 (4-13) 

PoS =
C(ks)

n−1

ReRN
 

 (4-14) 

Hence, substituting Eq. 4-12 to Eq. 4-1, the power number can be rewritten for yield stress fluids as 

follows 

Po = PoY + PoS + kNQ  (4-15) 

For an efficient  mixing process of yield-shear thinning fluid, PoS should be high enough since mixing 

efficiency is proportional to the created shear in the mixer in the laminar flow regime (Ayas et al., 2020-

b). Hence, mixing process efficiency in the laminar regime can be defined as  

X =
PoS

PoY + PoS

=
PoS

Po
 

 (4-16) 

From Eq.4-16, it is obvious that the efficiency increases with rotor speed and Metzner-Otto coefficient 

and decreases by yield stress.  

3- Experiment 

The investigated in-line rotor-stator mixer has been designed with the aim of preparation of homogeneous 

dispersion of dye in collagen matter which is an extremely viscous material. Several experiments were 

conducted to investigate the concentration distribution of the dye in collagen,  mixing efficiency, and 

determination of optimum operating conditions for the mixer. Moreover,  the pressure drop of the fluid 

between the inlet and outlet sections and temperature increase due to viscous heat dissipation, and the 
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power consumption of the investigated mixer was measured. All measurements were taken for the axial 

clearances of 1 mm, 2 mm, and 3 mm and rotor speeds of 150 RPM, 300 RPM, and 500 RPM. The water 

solution of the bovine collagen with a mass fraction of 7.7 % was used as a test material. The rheological 

properties of the test fluid were examined by a capillary rheometer. It was found that the fluid exhibits a 

yield shear-thinning characteristic and obtained rheological properties are τ0 = 4600 Pa, K=420 Pa.sn , 

n=0.34 (Skočilas et al., 2016).  

 

A-Experimental set-up 

 

B- Description of the investigated mixer 
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Figure 4-2 (A) Experimental set-up, Measured quantities: N-rotational speed, p-pressure, T-temperature, P-
power; (B) Description of the mixer 

The experimental set-up is depicted in figure 4-2-A. Due to the high yield stress value of the collagen, a 

positive displacement pump (P-111) was used to discharge the material from the reservoir B-110 and 

feed the mixer. The dye was added to collaged at the inlet of the barrel by pump P-211 from reservoir B-

210. In order to obtain a uniform concentration distribution of dye in collagen, processed fluids have 

passed through the mixer three times. The dye was added to collagen in the first pass and then the mixture 

re-cycled 2 times more without adding dye. The collagen is a biomaterial and sensitive to temperature 

and the structure of the material can be deformed due to viscous heat dissipation arising from the rotation 

of the rotor. Therefore, the temperature increase of the mixed materials was measured at the inlet and 

outlet of the barrels (streams 3 and 4), and keeping the temperature of the materials in a certain range, 

mixing heads were covered by the cooling jacket. Iced water was used as a coolant. The pressure of fluid 

was measured by a diaphragm manometer with a maximum capacity of 40 bar which is located at the 

inlet of the barrel and at the outlet of the barrel the pressure of the fluid was considered as zero-gauge 

pressure. Rotation of impellers was provided by an electric motor with a maximum power output of 5.5 

kW and a maximum speed of  1000 RPM. 

The optimum flow rate of the collagen was determined by measuring temperature increment due to 

viscous heat dissipation for the mass flow rates of 2 kg/min, 4 kg/min, and 6 kg/min, and the results are 

shown in figure 4-3. As seen from the figures, the lowest temperature variation collagen was acquired 

for the flow rate of 6 kg/min and this value is more suitable in terms of the economical aspect. 

Consequently, experiments of the investigated rotor-stator mixer were carried out for the mass flow rate 

of 6 kg/min (0.1 kg/s). The results of temperature growth are discussed in the following section in detail.  
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Figure 4-3 Deviation of temperature due to viscous energy dissipation for (A) ca=1 mm and ca=3 mm 

It should be noted that in this work, the result of the concentration distribution of dye in the collagen was 

not considered due to missing parameters of the investigated materials such as interfacial tension. 

Therefore, the results of experimental results and further calculations are carried out for the collagen 

only, and the result of temperature variation, pressure drop, and power consumption are discussed in the 

following sections. The result of the concentration distribution of die in collagen is not given in this 

study.   
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4- Simulation  

Three-dimensional numerical simulations (Ayas et al., 2020-b) were carried out in order to verify 

experimental data, for the determination of the power draw coefficient C and analyzing velocity and shear 

profile within the mixing heads. In this section, created fluid domain, mesh structure, mesh sensitivity 

analysis, and simulation strategies are discussed.  

The fluid domain of the investigated mixer has been created in the Ansys design modeler tool which is 

shown in figure 4-4. In order to apply specific mesh strategies, mixing heads have been sliced from the 

entire domain to generate a convenient mesh structure, and to avoid interfaces, the sliced volume has 

been combined. Also, the geometrical domain of the moving reference frame is created in this section. 

 

Figure 4-4 Fluid domain of the numerical simulation 

 

After creating the fluid domain, the next step is the generation of grids (meshes) in the ANSYS 

workbench. The geometry of the heads is not uniform, thus unstructured meshes were created. 

Especially, to capture velocity and shear profile successfully, fine tetrahedral mesh elements were 

created at the vicinity of the impeller, and clearance between rotor and stator and coarse meshes have 

been preferred for the barrel sections.  
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Figure 4-5 Created grids for the simulations (A)- overall view (B)- Cross-sectional view 

The different number of mesh elements have been created based on altering mesh size between rotor and 

stator depending upon the axial clearance of the investigated geometries. The Created mesh structures 

for ca = 1 mm is shown in figure 4-5.  

The simulation of investigated in-line rotor-stator mixer is carried out for the steady-state flow case, 

under the laminar flow regime and isothermal flow case. Fluent provides the viscosity functions of non-

Newtonian fluids, hence simulations have been performed for the Herschel–Bulkley, power-law models, 

and as well as Newtonian flow case. Simulations were carried out for the Herschel–Bulkley model with 

the rotor speed of 150, 300, and 500 RPM for ca = 1 and ca = 3 mm and 500 RPM for ca = 2 mm. For 

the Newtonian case simulations, the viscosity of the fluid was chosen as 10 Pa.s, and simulations were 

A 

B 
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performed for the rotor speed ranged from 30 RPM to 150 RPM. For the power-law fluids, simulation is 

conducted for the rotor speed of 60 RPM and using power-law fluids with flow indexes between 0.2 and 

0.6 (Ayas et al., 2020-b). 

The rotation of the rotor (impeller) has been modeled using the multiple reference frame (MRF) method. 

In the MRF approach, the domain of the fluid is divided into the moving reference frame and stationary 

zones shown in figure 4-6. Two cylindrical rotating frames have been created within the mixing heads 

and the radius of the rotating zones has been considered as the mean value of the radius of the impellers 

and stator. The clearance between the flat surface of the wall and the rotating zone has been taken as 

ca/2 and conformal interphases have been created between the moving reference frame and stationary 

zones. 

 

Figure 4-6 Created rotary and stationary bodies for the MRF method 

Regarding boundary conditions, the inlet of the barrel is assigned as a mass flow inlet, and the outlet of 

the barrel is pressure outlet. Shaft and impellers are selected as moving wall. It has been assumed that 

the effect of wall-slip is negligible. The SIMPLE scheme was applied for the pressure-velocity coupling 

and, second-order pressure and second-order upwind velocity schemes were utilized as stated before. 

Convergence criteria for the continuity is below the 10-9 for the Herschel–Bulkley model, 10-6 for the 

power-law model, and Newtonian case. In each simulation, standard initialization has been applied with 

absolute reference frame.  

The rotor-stator mixer with an axial clearance of 1 mm should have a greater number of mesh elements 

than the other investigated two geometrical configurations. Therefore, a grid sensitivity test has been 
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carried out concerning this geometrical configuration and so 1.1, 2.6 and 11 million mesh elements have 

been created. Simulations have been implemented for N= 500 rpm and according to investigated fluid in 

the experiment (Herschel–Bulkley model). Numerically calculated values power and the corresponding 

number of mesh are given in figure 4-7.  

 

Figure 4-7 Number of grids vs numerical results 

The extrapolated value of power consumption has been determined through MATLAB codes (see 

Appendix B). Extrapolated power consumption value has been found as 5032 W for the infinite number 

of mesh elements and the GCI  index has been determined 0.9 % for the finest number of mesh elements 

and 3.5 % for middle size mesh elements. Therefore, 2.8 million number of mesh element is considered 

for the numerical calculation of power consumption.  

5- Result and Discussions 

In this section, firstly the result of experimental data is assessed, and the results of experimental data are 

discussed. Then, the experimentally and numerically determined power values are compared  and the 

required design parameters (power-draw constant, Metzner-Otto coefficient) are acquired. Finally, the 

effect of impeller speed and geometrical ratios on power consumption and flow profile in the mixer are 

discussed.  

5-1 Results of experiment and simulations 

The experimental data were analyzed to choose optimum operation conditions for the mixing process for 

the given material and the determination of the design parameters of the investigated rotor-stator mixer. 

From the results of measured temperature increments due to dissipative heating (viscous heating) given 

in figure 4-3, one can be concluded that the flow rate of the fluid and rotational speed of the rotor has a 
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significant effect on temperature growth. The experimentally obtained temperature gradient is inversely 

proportional to the flow rate as expected from the enthalpy balance and temperature growth of the fluid 

is predominantly influenced by the rotational speed of the impellers. Axial clearance does not have a 

significant effect on the temperature rise. 

The results of measured power consumption values are given in figure 4-8. As seen from the figure, the 

power consumption of the mixer varies almost linearly with the rotational speed of the rotor due to the 

effect of the high yield stress value of the fluid and ca does not have a significant effect on the power 

draw.  

 

Figure 4-8 Experimentally measured power values 

The measured pressure drop between inlet and outlet sections of the barrel and corresponding flow power 

(Pflow) values from the Eq. 4-2 is given in table 4-1 

Table 4-1 Result of experimentally obtained pressure drop and 𝑃𝑓 values 

ca Mass flow rate Impeller Speed  Δp (Pin-Pout) Pf 

mm Kg/min RPM kPa W 

3 6 150 510 46.4 

3 6 300 503 45.7 

3 6 500 500 45.5 

2 6 500 500 45.5 

1 6 150 500 45.5 

1 6 300 500 45.5 

1 6 500 500 45.5 
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As seen from table 4-1, the power arising from fluid flow (Pf) is much less than the power of the rotor, 

so the power of fluid flow on the power consumption of the mixer is negligible. From the experimentally 

measured power consumption values, determined Po and Reynolds number (ReRN) values are given in 

table 4-2.  

Table 4-2 Experimentally determined Po and Re values 

ca Impeller Speed  Po ReRN 

mm RPM (-) (-) 

3 150 266.4 0.451 

3 300 70.7 1.425 

3 500 26.67 3.33 
2 500 26.61 3.33 

1 150 266.8 0.451 

1 300 71.46 1.425 

1 500 27.33 3.33 

As seen from table 4-2, the power number decreases with increasing values of the rotor speed and 

Reynolds numbers, which confirms that the experiments were carried out in the laminar flow regime. 

Indeed, the negligible effect of fluid flow on the power draw of the mixer is another evidence of laminar 

flow as stated by Cooke et al. (Cooke et al.-, 2012).  

 The results of numerically evaluated power consumption values of the investigated mixer and a 

comparison with experimental data are depicted in figure 4-9. The difference between numerically and 

experimentally obtained values is less than 5% which is in an acceptable range. 

 

Figure 4-9 Comparison of experimentally and numerically obtained power draw values 
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The power constant C values have been determined for ca of 1 mm, 2 mm, and 3 mm by simulations for 

the Newtonian case. Simulations have been carried out under the laminar regime for the Re between 2 

and 50. From the result of simulations, the acquired Po versus the Re curves and evaluated C values are 

given in figure 4-10. As seen from the log-log curve, a linear relationship exists between the Po and Re 

with a slope of -1 which agrees with Eq. 1-168.  

 

Figure 4-10 Numerically obtained Po-Re curve for the Newtonian case (Ayas et al., 2020-b) 

The values of the Metzner-Otto coefficient ks for the investigated in-line mixer have been evaluated from 

the experimentally and numerically obtained power consumption values and results are compared. Using 

Eq. 4-10 and numerically determined C values,  determined ksvalues are given in table 4-3. Calculated 

ks values from the experimental data slightly change with impeller speed, and on the other hand, obtained 

ks values from the simulations are almost constant and from the table 4-3, one can conclude that ks can 

be considered as a  function of geometry.  

Table 4-3 Experimentally and numerically determined ks values (Ayas et al., 2020-b) 

N ca=1 mm ca=2 mm ca=3 mm 

RPM 
ks 

(Exp.) 
ks 

(CFD) 
ks 

(Exp.) 
ks 

(CFD) 
ks 

(Exp.) 
ks 

(CFD) 

150 82.5 84.0 * * 57.5 61.6 

300 84.4 84.5 * * 59.2 62.5 

500 86.2 83.7 72.5 70.2 60.8 61.3 

Average 84.4 84.1 72.5 70.2 59.2 61.8 

As stated before, in the case of Herschel–Bulkley fluids, the Metzner-Otto coefficient (ks) can be 

determined alternatively from the slope of PoReRN versus Bi* curves according to Eq. 4-10. From the 
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experimentally and numerically obtained power consumption values and using C values in figure 4-10, 

created PoReRN versus Bi* curves are illustrated in figure 4-11.  

 

 

Figure 4-11 𝑃𝑜𝑅𝑒𝑅𝑁 versus Bi* curves (A)-Experiment, (B)- CFD 

As seen from the figures, PoReRN versus Bi* curves show a linear characteristic with a coefficient of 

determination (R2) greater than 0.99. From the curves of CFD results, ks values are found as 84.4 and 

61.8 for axial clearances (ca) of 1 mm and 3 mm respectively which are identical to obtained results of 

the direct method given in table 4-3. On the other hand, from the experimental obtained ks values were 

found as 73 and 53.4 for the axial clearances of 1 mm and 3 mm which shows a reasonable agreement, 

namely there is a 9 % deviation for ca = 3 mm and 13 % deviation for ca = 1 mm and the reason 

deviation may arise from the measurement errors, however, results are still in the acceptable range. In 

order to examine the impact of the rheological model on ks, another set of simulations has been 

performed using the power-law model for flow indexes ranged from 0.2 to 0.7. Using the method 
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suggested by Rieger and Novak (see Eq. 1-175), obtained C(n) versus (1 − n) plot is shown in figure 4-

12.  

 

Figure 4-12 Numerically determined ks values for the power-law case 

Results of simulations indicate that numerically evaluated ks values for the Herschel–Bulkley, and 

power-law model are approximately the same. As a result, experimental and numerical data reveal that  

ks can be regarded as the only function of the geometry of the mixer and can be taken as independently 

of the rheological model of the agitated fluid in the laminar flow regime. In addition, the relationship 

between the axial clearance (ca) and non-dimensional design parameters (C, ks) have been investigated 

and a linear relationship found between them for 1 ≤ ca ≤ 3 mm,  which is given in figures 4-13.  
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Figure 4-13 Dependence of axial clearance on 𝐶 and 𝑘𝑠 

Another studied parameter associated with the power draw of the mixer is the efficiency (X) given in Eq. 

4-16. As stated before, in the case of agitation of the viscoplastic fluids, the total power number can be 

written as a sum of Poy  and PoS  given in Eq. 4-12 and the terms have been introduced based on Poy  and 

PoS . The evaluated Poy , PoS  and X values from the results experimental and numerical data are given in 

table 4-4.  

Table 4-4 𝑃𝑜𝑦, 𝑃𝑜𝑆 and efficiency values 

ca 
(mm) 

N 
(RPM) 

Po 
(Exp.) 

Poy 

(Exp.) 
PoS 

(Exp.) 
X 

(Exp.) 
Po 

(CFD) 

Poy 

(CFD) 
PoS 

(CFD) 
X 

(CFD) 

3 150 266 178.3 88.2 0.33 250.8 166.5 84.3 0.34 

3 300 70.4 43.3 27.4 0.39 67.5 41.1 26.4 0.39 

3 500 26.7 15.2 11.5 0.43 26.5 15.1 11.5 0.43 

2 500 26.9 14.9 12.0 0.45 27.6 14.9 12.0 0.43 

1 150 266.78 171.1 95.6 0.36 262.6 168.1 94.5 0.36 

1 300 71.5 41.7 30.5 0.41 71.6 41.8 29.8 0.42 

1 500 27.3 14.7 12.5 0.46 28.0 15.2 12.8 0.46 

As seen from table 4-4, the efficiency X increases with the increasing speed of the rotor and decreases 

with descending values of the axial clearance. However, it is clear from the table that the clearance has 

a weak effect on efficiency X and significantly varies with impeller speed.  

5-2 Dependence of axial clearance on velocity and shear rate profiles 

As stated before, in the case of mixing of a viscous fluid in the laminar regime,  the fully sheared flow 

should be provided in the big portion of the mixer, and dead zones must be eliminated to achieve an 

efficient mixing process. Therefore, the velocity and shear rate profiles within the mixing heads are 

studied by numerical simulations and the effect of geometry on the shear and velocity profile is analyzed 

  

y = -108.23ca + 898.58

R² = 0.9964

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4

C

ca

y = 10.5ca+ 52.167

R² = 0.997

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4

k
s

ca



106 
 

for the ca values of 1 mm, 2 mm, and 3 mm. The shear rate distribution is investigated in midplanes 

between rotor and stator only. In addition, velocity profiles have been investigated in midplanes between 

rotor and stator and as well as in the mid-section of the mixing heads. Hence, several cut-planes have 

been created and velocity and shear profiles analyzed on those cut planes. The locations of the created 

cut planes are shown in figure 4-14. In general,  the maximum velocity is found in the middle section of 

the mixing heads, close to the impeller tips, and the maximum shear rate is generated in the gaps between 

the rotor and stator.  

0  

 

Figure 4-14 Demonstration of cut planes 

The obtained dimensionless averaged mean velocities (averaging process carried out by MATLAB 

codes, see Appendix C) from the examined contours are shown in figure 4-15. The numerically obtained 

velocity profiles in head 1 and head 2 are symmetric and  the results are almost identical, so only the 

results for the A1, A2, and A3 planes are demonstrated here. It should be noted that 0 < 2r/D < 0.2 
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corresponds to the shaft and 0.2 < 2r/D < 0.4 is inlet and outlet section of the mixer. There is a jump in 

velocities in the A1 plane for 0.2 < 2r/D < 0.4 and maximum speed is observed at 2r/D = 0.9. It is also 

clear that velocities in the gaps between the rotor and stator are less than the middle section of the mixer.  

 

 

 

Figure 4-15 Averaged mean velocities for the investigated cut planes, (A)- ca=3 mm, (B-ca=1 mm 

From the acquired velocity profiles, it can be deduced that the dimensionless velocity profile is strongly 

dependent on the position for the investigated planes and axial clearance has no significant effect on the 

velocity profile. The components of the directions of generated velocities within the mixer are analyzed 

and obtained values of axial, radial, and tangential velocity profiles are given here only for ca of 1 mm 

and 3 mm are shown in figure 4-15. From the curves, it is obvious that generated flow is dominated by 

tangential velocity mostly, regardless of the value of axial clearances.  
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ca=3 mm, N=500 RPM ca=3 mm, N=500 RPM 

  

ca=3 mm, N=500 RPM ca=1 mm, N=500 RPM 

  

ca=1 mm, N=500 RPM ca=1 mm, N=500 RPM 

Figure 4-16 Axial, radial, and tangential components of velocity profiles 
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Regarding the shear rate analysis, from the results of simulations attained contours of shear rate profile 

for the ca values of 1 mm, 2 mm, and 3 mm and rotor speeds of 150, 300, and 500 RPM examined in 

detail. Since the generated shear rate by the rotor is inversely proportional to axial clearance and it is 

highly possible to detect low shear and dead zones for ca = 3 mm for the investigated in-line mixer 

which is shown in figure 4-17 (see appendix D for the result of other axial clearances). From the figures, 

fully sheared flow is attained in the A1 and A3 planes and there are no dead zones except at the vicinity 

of the stator wall. The magnitude of the generated shear rate in plane A1 is higher than plane A3 at the 

vicinity of the impeller tip, but a more uniform shear profile is found for plane A3. It shows the effect of 

inlet and outlet sections on created shear rate. In general, the generated shear rate increases as increasing 

values of rotor speed as expected, and high values of shear rates are generated between the rotors and at 

the vicinity of the rotor tip.  

 

 
 

ca=3 mm, 150 RPM, plane A1 (0-150, 1/s) ca=3 mm, 150 RPM, plane A1 (150-2000, 1/s) 
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ca=3 mm, 150 RPM, plane A3 (0-150, 1/s) ca=3 mm, 150 RPM, plane A3 (150-2000, 1/s) 

  
ca=3 mm, 300 RPM, plane A1 (0-150, 1/s) ca=3 mm, 300 RPM, plane A1 (150-3000, 1/s) 

  

ca=3 mm, 300 RPM, plane A3 (0-150, 1/s) ca=3 mm, 300 RPM, plane A3 (150-3000, 1/s) 
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ca=3 mm, 500 RPM, plane A1 (0-300, 1/s) ca=3 mm, 500 RPM, plane A1 (300-3000, 1/s) 

  
ca=3 mm, 500 RPM, plane A3 (0-300, 1/s) ca=3 mm, 500 RPM, plane A3 (300-3000, 1/s) 

 

Figure 4-17 Contours of shear rate (1/s) for ca= 3mm 

 

From the shear rate contours, evaluated non-dimensional shear rate (γ∗ = γ̇/N) distribution curves for 

the  ca values of 1 mm and 3 mm are given in figure 4-19.   
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Figure 4-18 Dimensionless shear rate profile (A)- ca=3 mm (B)-ca=1 mm 

From the figures, it can be concluded that the evaluated dimensionless shear profile is independent of 

rotor speed and significantly hinge upon the geometry. The curves indicate that fully sheared flow is 

provided in the investigated planes and there are no dead zones. The generated shear in planes A1 is 

higher than planes A3 at the vicinity of the impellers, whereas at 0.2 < r/R < 0.4, generated shear rate 

in planes A3 is almost two times more than planes of A1 due to the inlet flow effect. The highest values 

of the shear are created about 2r/D=0.8 for all planes. Variation of dimensionless shear rate concerning 

axial clearances of 1 mm, 2mm, and 3 mm for N= 500 RPM is given in figure 4-20. The plots indicate 

that lower values of axial clearance result in higher shear profile and that provides a better mixing.  
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From figure 4-20, it can be deduced that the shear profile can be improved by changing the geometry 

between rotor and stator in the axial direction or modifying the geometry of the inlet and outlet section. 

Especially inlet and outlet sections lead to a decrease in shear rates and a better shear profile can be 

acquired by changing the cross-sectional area of the inlet and outlet region. It should be indicated that, 

although higher values of axial clearances result in lower values of shear rate, that provides to agitate 

more volume of the liquid per unit time. Namely, the economical aspects of the mixing process should 

be concerned during the designing of the mixers according to the requirements of the process. 

 

 

 

Figure 4-19 Effect of axial clearance on the dimensionless shear rate for N=500 RPM (A)- plane A1 (B)-Plane 
A2 

The final numerical investigation has been performed for the power-law fluids in order to investigate the 

effect of a different rheological model on non-dimensional shear rate profile and obtained results are 
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compared with the results of Herschel–Bulkley model. Firstly, the effect of flow indexes on the 

dimensionless shear rate profile has been examined for ca= 3 mm and the rotor speed of 60 RPM which 

is given in figure 4-21. It is a known fact that the Metzner-Otto coefficient is a weak function of flow 

indexes and the effect of flow indexes on power consumption has been shown in the previous section. A 

similar effect has been found for the dimensionless shear rates. As seen from the curves, the variation of 

dimensionless shear rate with respect to flow indexes is almost negligible. The effect of flow indexes on 

the dimensionless shear rate in the investigated planes is found as a weak function of flow indexes the 

same as the case of the Metzner-Otto coefficient.  

 

Figure 4-20 Effect of flow index on the dimensionless shear rate (A)- Plane A1 (B)- Plane A3 
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The effect of axial clearance on the dimensionless shear rate has been examined for n = 0.5 and N =

500 RPM with axial clearances of ca= 1 mm, 2 mm, and 3 mm, and the result is shown in figure 4-20.  

 

 

Figure 4-21 Effect of axial clearance on the dimensionless shear rate for n=0.5 (A)- Plane A1 (B)- Plane A3 

The curves indicate that generated shear rates in the gaps between rotor and stator vary significantly with 

the axial clearance the same as in the case of the Herschel–Bulkley model. In addition, obtained 

dimensionless shear rate profiles from the power-law and Herschel–Bulkley models are quite similar but 

the magnitude of dimensionless shear rate in the investigated planes affected by the axial rheological 

model of the fluid. Obtained dimensionless shear rates from the power-law model are slightly lower than 

the Herschel–Bulkley model for ca= 3 mm, however for ca= 1 mm, the calculated dimensionless shear 
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rates from Herschel–Bulkley model are significantly higher than obtained dimensionless shear rates for 

the power-law model. 

Regardless of the rheological model of the fluid, it is obvious from the curves that obtained dimensionless 

shear rate from the ca= 1 mm is approximately two times higher than that obtained from ca= 3 mm, thus 

it is strongly recommended that possible minimum clearance should be maintained to provide high shear 

rates. Also, as seen from the curves the inlet, passage section, and outlet have a decreasing effect on shear 

rates. In order to obtain a more efficient mixing, the sizes of those sections should be minimized as much 

as possible.  

6- Conclusion 

In this chapter, the power characteristics of a newly designed in-line rotor-stator mixer have been 

investigated experimentally and numerically. The experiments were carried out for the three rotational 

speeds of the rotor and three axial clearances between rotor and stator using viscoplastic shear-thinning 

fluid.  

The power demand of the mixer, temperature growth of the agitated fluid , and the pressure gradient 

between inlet and outlet sections of the mixer were measured by experiments. From the results of 

experiments, it was found that the contribution of the power demand of flowing fluid has a negligible 

effect on the total power input of the mixer, and the temperature rise in the agitated fluid is only affected 

by rotor speed.  

The experimentally obtained power consumption values of the mixer were verified by numerical 

simulations. It was shown that experimentally and numerically acquired power consumption values were 

in good agreement with a 6 % maximum deviation. The dimensionless power constant of the investigated 

mixer was determined numerically for each geometrical configuration. From the experimentally and 

numerically obtained power consumption values, Metzner-Otto coefficients of the investigated mixer 

were determined based on numerically evaluated power draw coefficients. It was shown that evaluated 

Metzner-Otto coefficients from the experimental and numerical data are very close.  

Then, the effect of the rheological model on the Metzner-Otto coefficient was investigated numerically 

using the power-law model and the same values of Metzner-Otto coefficients were acquired. It was 

confirmed that the value of the Metzner-Otto coefficient varies with the geometry and is independent of 

rheological properties for inelastic fluids and numerical simulations can be used to successfully 

determine power draw and Metzner-Otto coefficients. 
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A new correlation was proposed to express the power characteristics of a mixer for the Herschel–Bulkley 

model based on the Reynolds number introduced by Rieger and Novak given in Eq. 4-10. According to 

Eq. 4-10, the total power consumption of a mixer can be written as the sum of the power necessary to 

overcome yield stress, and the required power shear flow and corresponding power numbers (Poy, Pos) 

were defined. By using defined Poy and Pos the new term efficiency (X) was introduced to analyze the 

shear efficiency of the agitation of yield stress fluids. One was concluded that even though the higher 

speed of the impeller results in higher power draw, it provides more efficient mixing in terms of generated 

shear in the mixer.  

Moreover, the shear rate profile in the middle sections between the rotor and stator was examined by 

numerical simulations. It was shown that fully sheared flow was provided within the mixing heads for 

the tested rotational speed of the rotor. It was indicated that higher shear rates can be acquired by reducing 

axial clearance and the power draw of the mixer is significantly varies with the rotor speed.  

The most important parameter of the mixing process in the laminar regime is the homogeneity of the 

product which is proportional to generated flow in the mixer. It depends on the dissipated energy within 

the process and geometry of the mixer. Hence, providing a better flow profile in the mixing plane and 

decreasing clearance between the rotor and stator is a better way to avoid high power draw. 
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Chapter 5 -Conclusion 

This work deals with the measurement of rheological properties of the purely viscous non-Newtonian 

fluid, prediction of friction factor, and power and flow characteristics of an in-line rotor-stator mixer. 

The design and process parameters of any equipment and apparatus involving non-Newtonian fluid flow 

are strongly dependent on rheological parameters and models of the processed fluids.  

Firstly, a method is suggested for the evaluation of the rheological parameters for the power-law fluids 

using the rectangular channel and concentric annuli. According to the method, the relationship between 

wall shear rate and wall shear stress can be represented by one geometrical parameter for any aspect 

ratios. Then, the suggested method was validated by using experimental data in the literature for bovine 

collagen. The rheological parameters of the collagen for power-law fluids from the suggested method 

and Herschel–Bulkley model using conventional methods. It has been shown that rectangular channels 

and concentric annulus can be used for the determination of rheological parameters the same as slit and 

capillary rheometers for the power-law fluids. In addition, evaluated rheological parameters for the 

power-law model from the experimental data were validated using simulations and good agreement was 

found between them.  

 Moreover, the obtained simplified correlation has been used to re-cast friction factor-Reynolds number 

relationship for the flow of power-law fluids in the laminar flow regime by introducing the modified 

Reynolds number suggested by Metzner and Reed for the rapid engineering calculations. The provided 

method is validated by comparing the most frequently used methods and through numerical simulations  

and it was found that the suggested method can predict friction factor accurately. According to the 

suggested method, the Reynolds number is determined independently of shape and geometrical ratios of 

the channel, and the friction factor- Reynolds number equation can be expressed by a simple linear 

equation.  

Finally, the power characteristics and flow field of a newly designed in-line rotor-stator mixer have been 

analyzed experimentally and numerically according to the determined rheological parameters in the 

previous section. Firstly, the power draw of the mixer has been measured experimentally for the three 

rotational speeds of the impeller and three different axial clearances of the mixer, and then obtained 

power draw results have been validated by numerical simulation, and a good agreement was found 
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between the numerically and experimentally obtained power values. The Newtonian power draw 

coefficient has been calculated by numerical simulations and then, Metzner-Otto constants have been 

determined from the experimentally and numerically obtained power draw results. It was found that 

determined Metzner-Otto coefficients from the experimental and numerical methods are in good 

agreement. It is shown that numerical methods are a useful tool for the determination of the power 

characteristics of the mixers in the laminar regime. Besides, the methodology for the determination of 

Metzner-Otto constant for power-law fluids suggested by Rieger and Novak is extended to the Herschel–

Bulkley model, and it was shown that in case of mixing of yield shear-thinning fluids, the total power 

consumption is equal to the power of shearing flow and the power exceeding yield stress and the term 

efficiency is introduced. A slope method was proposed for the determination of the Metzner-Otto 

coefficient for the Herschel–Bulkley model and it was shown that the introduced method is successful 

for the prediction of the Metzner-Otto coefficient. In the final step, the effect of axial clearance on 

velocity and shear profile is discussed and it was found that axial clearance has a remarkable effect on 

flow profile on the agitated fluid in the mixer.  
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Nomenclature 

a  Parameter of Eq. 1-188 

A, B  Parameter of Eq. 1-14 (Pa.s) 

a, b   Geometrical parameters of Eq. 1-133 (-) 

A, B  Dimensions of the symmetrical L-shape duct (m) 

Bi  Bingham number (-) 

Bi∗  Bingham number for Herschel-Bulkley model (-) 

C  Geometric parameter of the Newtonian fluid for channels (-) 

C  Integration constant (-) 

C  Newtonian power constant (-) 

Ca  Capillary number (-) 

GCI  Grid convergence index (-) 

d, D  Diameter (m) 

Dh  Hydraulic diameter (m) 

Dc  The diameter of the cavern (m) 

d32  Sauter diameter (m) 

De  Deborah number (-) 

e∗  Dimensionless eccentricity (-) 

e  Length of eccentricity (m) 

G  Shear modulus (Pa) 

h  Height of impeller blade (m) 

hC  Height of cavern (m) 

H  Height of the rectangular duct (m) 

h  Parameter defined in Eq. 1-189 

He  Hedstrom number (-) 

K  Fluid consistency for power-law and Herschel-Bulkley models (Pa.sn) 

ks  Metzner-Otto coefficient (-) 

L  Length (m) 
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Le  Length of the entrance region (m) 

m  Consistency for Casson model (Pa.sn) 

M  Number of mesh elements (-) 

M, N  Parameters of Eq. 3-3 (-) 

M’, N’  Parameters of Eq. 3-10 (-) 

n  Flow behavior index (-) 

N  Rotational velocity (RPM) 

N1 , N2  First and second normal stress difference (Pa) 

p  Pressure (Pa) 

p  Parameter of Cross model (-)  

P  Power (W) 

p  Parameter of Eq. 1-188 

Po  Power number (-) 

R  Radius (m) 

RM  Mean radius (m) 

Ri  Inner radius (m) 

Ri  Inner radius (m) 

Ro  Outer radius (m) 

Re  Reynolds number for Newtonian fluids (-) 

ReD  Generalized Reynolds number defined by Delplace and Leuliet (-) 

ReG  Generalized Reynolds number by Kozicki (-) 

ReM  Reynolds number, as defined by Metzner and Reed (-) 

ReM′  Reynolds number, as defined in Eq 3-19 (-) 

ReMO  Reynolds number defined by Metzner and Otto (-) 

ReRN  Reynolds number defined by Rieger and Novak (-) 

t  Time (s) 

T  Tank diameter (m) 

T  Temperature (K)  

T  Torque (N.m) 

Ti  Torque at the inner radius (N.m) 



122 
 

te  Characteristic time of deformation (s) 

u  Velocity (m/s) 

u̅  Mean velocity (m/s) 

umax  The maximum velocity in the cross-section of the duct (m) 

us  Wall sleep velocity (m/s) 

u’  Corrected wall sleep (m/s) 

V  Volume  

V̇  Volume flow rate (m3/s) 

W  Width of the rectangular duct (m) 

We   Weber number (-) 

X,Y  Major and minor axes of an elliptical duct (m) 

Greek letters 

α  Function given in Eq. 3-1 

ε  Rate of energy dissipation (W/kg) 

ε  Ratio of ReM to ReG (-) 

ε′  Parameter given in Eq. 3-9 (-) 

θ  Apex angle of an isoscale triangle (°) 

θ  Parameter of Carreu model  

κ  Aspect ratio  

λ  Kolmogorov length microscale (m) 

λ  Relaxation time (s) 

λ  Fanning friction factor (-) 

μ′  Viscosity of the gas at T0 (Pa.s) 

ν  Kinematic viscosity (m2/s) 

σ  Interfacial tension (Pa/m) 

σ  Total stress (Pa) 

ψ  Normal stress coefficents  (Pa.s2) 

ω  Angular velocity (rad/s) 

ϕ  Result of numerical simulation (-) 
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γ̇  Shear rate (s-1)  

γ̇N  Newtonian wall shear rate (s-1) 

γ̇c  Critical shear rate (s-1)  

γ̇w  Wall shear rate (s-1) 

η  Apparent viscosity (Pa.s) 

µ  Viscosity of Newtnonian fluids (Pa.s) 

µ0  Zero shear viscosity (Pa.s) 

µ∞  Infinite shear viscosity (Pa.s) 

μa  Apparent viscosity (Pa.s) 

μc  The viscosity of continuous phase (Pa.s) 

μd  The viscosity of dispersed phase (Pa.s) 

μp  Plastic viscosity (Pa.s) 

ρ  Density (kg.m-3) 

ρc  Density of continuous phase (kg.m-3) 

ρd  The density of dispersed phase (kg.m-3) 

τ  Shear stress (Pa) 

τi  Shear stress at the inner radius (Pa) 

τo  Yield Stress (Pa) 

τw  Wall shear stress (Pa) 

ϕext   Result of numerical simulation for the infinite number of the grid (-) 

∆  Rate of deformation tensor (1/s) 

v  Geometrical constants in Eq. 1-155 (-) 

δ  Clearance between rotor and stator (m) 

δij  Unit tensor (-) 
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Appendix A- Constitutive Equations 

 

1- Continuity Equation  

The general expression of the continuity equation is  

∂ρ

∂t
+ ∇. (ρu⃗ ) = 0 

 

 

For steady-incompressible fluid flow  

∇. u⃗ = 0 
 

 

I- Steady-incompressible fluid flow in cartesian coordinate  

∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0 

 

II- Steady-incompressible fluid flow in cylindrical coordinates  

1

r

∂

∂r
(rur)+

1

r

∂(uθ)

∂θ
+

∂(uz)

∂z
= 0 

 

III- Steady-incompressible fluid flow in spherical coordinates  

1

r

∂

∂r
(r2ur)+

1

rsinθ

∂(uθsinθ)

∂θ
+

1

rsinθ

∂(uφ)

∂φ
= 0 

 

 

2- Cauchy’s Equations  

The general expression  

 
ρ(

∂u⃗ 

∂t
+ u.⃗⃗  ∇u⃗ ) = −∇p+ ∇. τ⃗ ⃗ + ρg⃗  

 

 

I- Cartesian coordinates (x, y, z directions ) 

ρ(
∂(ux)

∂t
+ ux

∂(ux)

∂x
+ uy

∂(ux)

∂y
+ uz

∂(ux)

∂z
= −

∂p

∂x
+

∂(τxx)

∂x
+

∂(τyx)

∂y
+

∂(τzx)

∂z
+ ρgx 

ρ(
∂(uy)

∂t
+ ux

∂(uy)

∂x
+ uy

∂(uy)

∂y
+ uz

∂(uy)

∂z
= −

∂p

∂y
+

∂(τyx)

∂x
+

∂(τyy)

∂y
+

∂(τyz)

∂z
+ ρgy 
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ρ(
∂(uz)

∂t
+ ux

∂(uz)

∂x
+ uy

∂(uz)

∂y
+ uz

∂(uz)

∂z
= −

∂p

∂z
+

∂(τzx)

∂x
+

∂(τzy)

∂y
+

∂(τzz)

∂z
+ ρgz 

 

II- Cylindrical coordinates (r, θ, z directions) 
 

ρ(
∂(ur)

∂t
+ ur

∂(ur)

∂r
+

uθ

r

∂(ur)

∂θ
+ uz

∂(ur)

∂z
−

uθ
2

r
= −

∂p

∂r
+

1

r

∂(rτrr)

∂r
+

1

r

∂(τθr)

∂θ
+

∂(τzz)

∂z
−

τθθ

r
+ ρgr 

ρ(
∂(uθ)

∂t
+ ur

∂(uθ)

∂r
+

uθ

r

∂(uθ)

∂θ
+ uz

∂(uθ)

∂z
−

uθur

r
= −

∂p

r∂r
+

1

r2

∂(r2τθr)

∂r
+

1

r

∂(τθθ)

∂θ
+

∂(τzz)

∂z
−

τθθ

r
+ ρgr 

ρ(
∂(uz)

∂t
+ ur

∂(uz)

∂r
+

uθ

r

∂(uz)

∂θ
+ uz

∂(uz)

∂z
= −

∂p

∂z
+

1

r

∂(rτrz)

∂r
+

1

r

∂(τθz)

∂θ
+

∂(τzz)

∂z
+ ρgz 

 

III- Spherical coordinates (r, ∅, θ directions) 

 

ρ(
∂(ur)

∂t
+ ur

∂(ur)

∂r
+

u∅

r

∂(ur)

∂∅
+

uθ

rsin∅

∂(ur)

∂θ
−

u∅
2 + uθ

2

r
= −

∂p

∂r
+

1

r2

∂(r2τrr)

∂r
+

1

rsinθ

∂τrθ

∂θ
−

τ∅∅ + τrθ

r
+ ρgr 

 
 

ρ(
∂(u∅)

∂t
+ ur

∂(u∅)

∂r
+

u∅

r

∂(u∅)

∂∅
+

uθ

rsin∅

∂(u∅)

∂θ
+

uru∅

r
−

uθ
2cotg∅

r

= −
∂p

r ∂∅
+

1

r2

∂(r2τr∅)

∂r
+

1

rsin∅

∂τ∅θ

∂θ
−

τr∅

r
−

cotg∅τ∅∅

r
+ ρg∅ 

 
 
∂(uθ)

∂t
+ ur

uθ

r
+

u∅

r

∂(uθ)

∂∅
+

uθ

rsin∅

∂(uθ)

∂θ
+

uruθ

r
+

u∅uθcotg∅

r

= −
∂p

rsin∅ ∂∅
+

1

r2

∂(r2τrθ)

∂r
+

1

r

∂τ∅θ

∂∅
+

1

rsin∅

∂τθθ

∂θ
+

τrθ

r
+

2cotg∅τ∅θ

r
+ ρgθ 

 

C- Rate of deformation tensor  

The general expression of the rate of deformation tensor  

∆ij=
1

2
(
∂ui

∂xj
+

∂uj

∂xi
) 

I- Cartesian coordinates (x, y, z directions ) 
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∆xx=
∂ux

∂x
 

 

∆yy=
∂uy

∂y
 ∆zz=

∂uz

∂z
 

∆xy= ∆yx=
1

2
(
∂ux

∂y
+

∂uy

∂x
) ∆xz= ∆zx=

1

2
(
∂ux

∂z
+

∂uz

∂x
) ∆yz= ∆zy=

1

2
(
∂uz

∂y
+

∂uy

∂z
) 

 

II- Cylindrical coordinates (r, θ, z directions) 

∆rr=
∂ur

∂r
 

 

∆θθ=
1

r

∂uθ

∂θ
+

ur

r
 ∆zz=

∂uz

∂z
 

 

∆rz= ∆zr=
1

2
(
∂ur

∂z
+

∂uz

∂r
) ∆θz= ∆zθ=

1

2
(
∂uθ

∂z
+

1

r

∂uz

∂θ
) 

 

∆rθ= ∆θr=
1

2
(r

∂

∂r
(
uθ

r
) +

1

r

∂ur

∂θ
) 

 

III- Spherical coordinates (r, ∅, θ directions) 

∆rr=
∂ur

∂r
 

 

∆θθ=
1

r

∂uθ

∂θ
+

ur

r
 ∆φφ=

1

rsinθ

∂u∅

∂∅
+

ur

r
+

uθcotθ

r
 

 

∆rθ= ∆θr=
1

2
(r

∂

∂r
(
uθ

r
) +

1

r

∂ur

∂θ
) ∆∅r= ∆r∅=

1

2
(

1

rsinθ

∂ur

∂∅
+ r

∂

∂r
(
uφ

r
) 

∆∅θ= ∆θ∅=
1

2
(
sinθ

r

∂

∂∅
(

u∅

sinθ
)+

1

rsinθ

∂uθ

∂∅
) 
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Appendix B- Grid Convergence Index 

1- Eccentric annulus  

 
N = [ 40000 120000 292000 ];   

Phi = [ 0.0216, 0.0223, 0.024]; 

  

plot(N,Phi); 

  

[N, i] = sort(N,'descend');   

Phi = Phi(i); 

  

D=3;  

r21 = (N(1)/N(2))^(1/D)  

r32 = (N(2)/N(3))^(1/D)  

if ( r21 < 1.3 || r32 < 1.3 ) 

  disp('refinement factors r21 and r32 should be greater than 1.3'); 

end 

  

eps32 = Phi(3)-Phi(2) 

eps21 = Phi(2)-Phi(1) 

R = eps21/eps32 

s = sign(eps32/eps21) 

  

fq = @(p) log((r21.^p-s)./(r32.^p-s)); 

fp = @(p) p - 1/log(r21)*abs(log(abs(eps32/eps21))+fq(p)); 

p = fsolve(fp,1) 

  

Phi21ext = (r21^p*Phi(1)-Phi(2))/(r21^p-1) 

GCI33 = 1.25*abs(Phi21ext-Phi(3))/Phi(3)*100 

  

e32a = abs((Phi(2)-Phi(3))/Phi(2))*100 

GCI32 = 1.25*e32a/(r32^p-1) 

  

e21a = abs((Phi(1)-Phi(2))/Phi(1))*100 

e21ext = abs((Phi21ext-Phi(1))/Phi21ext)*100 

GCI21 = 1.25*e21a/(r21^p-1) 

 

Results 

 

P=4.755 

GCI32=2.94 

GCI21=0.7761 
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2- In-line mixer 

N = [ 1100000 2600000 11000000 ];   
Phi = [ 4.78 4.925 5 ]; 

  
[N, i] = sort(N,'descend');   
Phi = Phi(i); 

  

figure(1); 
plot(N,Phi,'r*', N,Phi,'b'); 
grid on; 

  

D = 3;   

  
r21 = (N(1)/N(2))^(1/D)  
r32 = (N(2)/N(3))^(1/D)  
if ( r21 < 1.3 || r32 < 1.3 ) 
  disp('refinement factors r21 and r32 should be greater than 1.3'); 
end 

  

eps32 = Phi(3)-Phi(2) 
eps21 = Phi(2)-Phi(1) 

R = eps21/eps32 
s = sign(eps32/eps21) 

  
fq = @(p) log((r21.^p-s)./(r32.^p-s)); 
fp = @(p) p - 1/log(r21)*abs(log(abs(eps32/eps21))+fq(p)); 

 
p = fsolve(fp,1) 

  
Phi21ext = (r21^p*Phi(1)-Phi(2))/(r21^p-1) 

e21a = abs((Phi(1)-Phi(2))/Phi(1))*100 
GCI21 = 1.25*e21a/(r21^p-1) 

  
e32a = abs((Phi(2)-Phi(3))/Phi(2))*100 
GCI32 = 1.25*e32a/(r32^p-1) 

  

GCI33 = 1.25*abs(Phi21ext-Phi(3))/Phi(3)*100 
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Appendix C- MATLAB codes for velocity and shear rate processing 

clear all; 
load velnode.txt 
x=velnode(:,2); 
y=velnode(:,3); 
r=sqrt(x.^2+y.^2); 
v=velnode(:,5); 
rmax=0.097; 
rmin=0.000; 
dr=0.001; 
n=(rmax-rmin)/dr; 
rxn=length(r); 
for i=1:n+1; 
    rd=(i-1)*dr; 
    rup=rd+0.003; 
    sum=0; 
    div=0; 
    rm(i)=(rd+rup)/2; 
    for j=1:rxn 
        if r(j)<rup && r(j)>rd; 
            sum = sum + v(j); 
            div=div+1; 
        end 
    end 
    vm(i)=sum/max(1,div); 

     

end 

             

 plot(rm,(vm)); 
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Appendix-D Shear rate profiles 

 

ca=2 mm, 500 RPM, A1 

 

ca=2 mm, 500 RPM A3 
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ca=1 mm, 500 RPM, A1 

 

ca=1 mm, 500 RPM, A3 
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ca=1 mm, 150 RPM, A1 

 

ca=1 mm, 150 RPM, A3 
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Detail P1 

− velihost mezery W maximálne 3 mm 

 

Detail P2 Detail P3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
POŽADAVVY NA IEªPADLO 
− minimální prntoh suroviny 70 hg/h, optimální dosáhnout prntohu provozního 
− tlahová spád jednothy 0,G WPa (stanovena piibližným VÝPOETEM( 

 

 
 

 
 

− vymenitelnost dishu 
− rnzné tloušthy dishu TPU v závislosti na dosažení 

požadované velihosti mezery W (W ‹ 3 mm( 
− pii zmene geometrie dishu nutnost ZAEHOVÁNÍ 
ahtuálního PRNTOENÉHO prniezu (Ø00/Ø30( 

− minimálne možný prnmer náboje 
− ZAEHOVAT ostré hrany MÍEHADEL ve smeru tohu 

materiálu 
− HOTOUEE P2.U a P2.2 vzájemne POOTOEENY o LG° 

 

− vymenitelnost dishu 
− PRNTOENÁ PLOEHA drážhami = PRNTOENÝ prniez Ø00/Ø30,                                                                                                            
pii jahéholiv GEOMETRIEHÉ MODIFIHAEI drážeh nutnost jejího ZAEHOVÁNÍ 

 
 

A B C 

A B C 

TP1 

ostrá hrana 

 
 

 
 

  
 

 
 

   
        

  
 

      

        

        

 

      

 

  

  

 
 

  

 


