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Abstract
This master thesis aimed to study, de-
sign and implement supervised and unsu-
pervised deep digital twin for linear elec-
tromechanical actuator DSZY1. The the-
sis contains a detailed linear electrome-
chanical actuator structure with its most
common failure identification. It pos-
sesses an overview of potential digital twin
approaches resulting with our proposed
solutions. Our supervised implementa-
tion outputs a health indicator with the
possibility of failure classification. More-
over, the unsupervised solution is trained
just on healthy current and voltage op-
erational data with the ability to create
an overall state health indicator, which
makes it easily deployable for heteroge-
neous fleets.

Keywords: deep digital twin, health
indicator, GAN, linear electromechanical
actuator

Supervisor: prof. Ing. Radislav Šmíd,
Ph.D.
Praha, Technická 2, A3-324

Abstrakt
Cieľom tejto diplomovej práce bolo št-
údium, dizajn a implementácia kontrolo-
vaného a nekontrolovaného hlbokého digi-
tálneho dvojčaťa pre lineárny elektrome-
chanický aktuátor DSZY1. Táto práca de-
tailne popisuje štruktúru lineárneho elek-
tromechanického aktuátora s identifiká-
ciou jeho najčastejších závad. Takisto ob-
sahuje prehľad potenciálnych prístupov di-
gitálneho dvojčaťa, končiac s nami navrh-
nutými riešeniami. Naša implementácia
pomocou kontrolovaného učenia generuje
indikátor zdravia s možnosťou identifiká-
cie chyby. Navyše, naše riešenie pomocou
nekontrolovaného učenia je natrénované
iba na zdravých prúdových a napäťových
prevádzkových dátach so schopnosťou ge-
nerovať indikátor celkového zdravia. Toto
robí naše riešenie jednoducho nasaditeľné
pre heterogénne zariadenia.

Kľúčové slová: hlboké digitálne dvojča,
indikátor zdravia, GAN, lineárny
elektromechanický aktuátor

Preklad názvu: Digitálne dvojča s
DNN pre prognostiku a management
stavu elektromechanických aktuátorov
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Chapter 1
Introduction

Over the past decades, the industry has changed rapidly. As the human
labor price is rising in the developing countries with the economic growth,
companies are trying to reduce the number of workers to gain more profit.
In many countries and industries, automation has gone so far, that the only
human intervention to the production is needed by the remote control workers
and the truck drivers bringing the goods for production to the factory. These
fully automated factories reached the stage of minimum possible workers
with current technology. To reduce their costs, they need to search for other
options than cutting the labor work.

And the answer for cutting expenses is predictive maintenance and health
monitoring of the technical equipment. For example, if an assembly line needs
to be stopped for an hour because of stuck bearing in one manipulator. This
problem wouldn’t make a big cost on human resources, but a great loss of
money on the production.

Nowadays, the fully automated factories are collecting gigabytes of data
from the production per day, but in most cases, there are some remote
engineers to notice if there is some unexpected behavior or to stop the line to
prevent crashes.

With the rise of artificial intelligence, more intelligent methods for predictive
maintenance are being developed, that could be easily implemented to the
current technical equipment. The great advantage of these technologies is,
that they cannot only cut the cost of production, but also save plenty of
ecological resources. Giving the right maintenance, not a new component,
saves a significant amount of carbon emissions. And this would be one of the
biggest challenges over the past years.

The idea of predictive maintenance and fault detection doesn’t have to be
related only to mass factory production. It can be applied also for instance
to the airline industry. In this industry is the cost of repairment enormous
and not even talking about a cost of a breakdown.

To increase reliability, reduce aircraft weight and fuel consumption was
developed a new concept called More Electric Aircraft (MEA). Its main idea
is to replace hydraulic, pneumatic and partly mechanical systems with electric
ones.

In our case, we have chosen a linear electromechanical actuator (EMA).
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1. Introduction .....................................
This specific part could be widely used from moving the wing flaps to the
toilet door opener. The aim of this thesis is to develop a deep-digital twin
for prognostics and health management (PHM) from the data measured on
electromechanical actuator DSZY1 produced by Drive-Systems. Develop and
evaluate supervised and unsupervised learning approach on the measured
data and compare these approaches.

1.1 Motivation

My personal motivation is to widen my horizons in the area of signal processing
using neural networks (NN). The NNs used for visual data processing are
widely used nowadays even in the real industry. They are bringing a new
level of efficiency in production. However, I consider visual data processing
area as quite good implemented nowadays in the real factories.

On the other hand, I see a great potential of smart predictive maintenance
and fault detection in the production process. The neural networks for this
area are still novel and need to be developed more to be able to be implemented
in real factories. This thesis can bring me a greater understanding of data
processing, selecting the right features, and the architectures of suitable neural
networks for PHM. All these fields are related to my future career aims.

2



Chapter 2
Linear electromechanical actuator

A linear electromechanical actuator is a device, which is transforming elec-
tricity into motion force in a linear direction. It is used for applications,
where the straight-line movement is needed. There are several types of linear
electromechanical actuators. For non-critical use, it is an active part of a
door opening system or window automation. The critical use would be for
instance in the airplane industry for the wing flaps or in the assembly line
as robot manipulators. For the purpose of our research, we will inspect into
detail the linear EMAs for non-critical applications containing DC motors.
In the next section, we will explain the structure and common parameters of
EMAs.

Figure 2.1: Typical EMA construction - 1 DC motor, 2 gearbox, 3 lead screw, 4
drive nut, 5 cover tube, 6 actuator cover, 7 limit switches [13]

2.1 Construction

The linear EMA consists of two main parts - a motor and an actuator 2.1.
These two parts are connected with the gearbox to convert the rotation
movement of the motor into a linear of an actuator. The gearbox transfers
the power from fast-rotating motor to the slower linear movement of the
actuator. The lead screw is firmly mounted in the actuator cover. By rotating

3



2. Linear electromechanical actuator............................
the lead screw, the cover tube is either sliding out of the actuator cover
or hiding in it. To prevent overextending or overretracting, there are two
limit switches, which are cutting the current to the motor, when the limit
position is reached. The position sensor can be also attached externally to
give feedback to the control system.

Figure 2.2: Block schematic of EMA [24]

In the figure 2.2, we can see the principal block schematic of EMA. An
actuator is usually controlled by the actuator control electronics (ACE). The
external sensor is giving feedback to the control unit and computes the action
for desired rod movement. The actuator control unit then sends the signals to
the power drive electronics (PDE). The right amount and direction of current
are then sent to the motor by the H-bridge.

Figure 2.3: Linear actuator DSZY1 produced by Drive-System [8]
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..................................... 2.2. Parameters

2.2 Parameters

For our closer inspection, we have chosen the DSZY1 linear actuator produced
by Drive-System. The actuator can be seen in figure 2.3. For different types
of applications, different parameters are needed. First, we need to look for the
input voltage to meet the voltage level of the placed environment. Secondly,
we need to know, what is the maximum load/force applied to the actuator
during its runtime. It is also necessary to check if the speed at a certain load
meets our expectations. For our non-critical use, we have chosen a certain
variant of DSZY series with parameters written in the table 2.1.

Parameter DSZY1 Units

motor voltage 24 V
maximum load 150 N
stroke 200 mm
gear ratio 5:1 -
typical current 2.0 A
max speed at 24V 40-45 mm/s
motor speed at 24V 6000 RPM

Table 2.1: Parameters of tested actuator DSZY1 [8]
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Chapter 3
Failures in electromechanical actuators

In the previous chapter, we have explained the basic function and compo-
nents of an electromechanical actuator. In this chapter, we will inspect all
components to analyze the most common failures on EMAs. This would
help us design feature indicators for the DDT further on. The most common
failures can be seen in the figure 3.2.

3.1 Motor

A motor is a fundamental part of EMAs. It gets an electrical input from PDE
and creates a rotation movement. Motors are often operated at high rotation
rates, where the temperature rises quickly. This helps the development of
several failures. Motors are considered as the most problematic part of EMAs
[9]. In our case, a DC motor, that consists of three fundamental parts - stator,
rotor, and commutator.

3.1.1 Stator

A stator of DC motor consists of permanent magnets mounted to the motor
cover and the commutator carbon brushes. Due to its simple structure, stator
doesn’t suffer from many failures.

The failure arises when a magnet is shifted or even released from its stable
position. This moves the neutral stator magnetic field. The efficiency of a
motor is decreased and temperature rises. If the temperature reaches 160◦C
and more, the neodymium magnets start to demagnetize. Unfortunately, this
causes permanent degradation, and cooling down doesn’t bring magnetization
back [15].

3.1.2 Commutator

A commutator is a rotary electrical switch, which periodically reverses the
electrical current direction in the rotor coils. Its segments are mounted at
the end of a rotor and are connected by stator carbon brushes. During motor
operation, friction between commutator and brushes causes gradual wear

7



3. Failures in electromechanical actuators..........................
abrasion. Also, high currents are flowing through the commutator and this
makes it a common source of failures.

Commutators often suffer from grooving, threading, sparking, or bar edge
burning [35]. These failures are usually caused by overloading, uneven contact
surfaces, loose commutator bars, or contamination with dirt. It leads to
vibration gain, motor power decrease, sparkling, or rise of temperature. We
can observe these failures due to the gain of motor resistance [24].

3.1.3 Rotor

A rotor is a moving component of a DC motor. It consists of shaft, windings,
and commutator. Its rotation is caused by the interaction of the windings
magnetic field with the stator permanent magnets. This produces a torque of
DC motor. A rotor is usually operating at high rotation rates. In our case
up to 6000 RPM, which causes high mechanical stress. The most common
rotor failure modes are winding breakdown or coil short circuit.

Winding breakdown

Winding breakdown occurs when one or more coil contacts break and create
an open circuit. The coil is not able to generate the magnetic field after the
disconnection. The motor loses its power and if it stops in this place, it is
not able to start rotation. It is usually caused by mechanical stress, thermal
stress, dirt, or high centrifugal force to coil contacts. It can be detected by
nonuniform current consumption [47].

Coil short circuit

When one or more turns within the winding coil lose the isolation layer and
get shorted together, the coil short circuit failure occurs. The short circuits
within 2 coils are the most critical. If this happens in the low rotation rates,
the breaking effect could be strong enough to stop the motor. The fault phase
current will increase and the resistance of the phase will decrease [47].

3.1.4 Connector cables

Connector cables secure connection between the electronic blocks - a computer
with ACE, ACE with PDE, and PDE with a motor. Cables can be soldered
or mounted by a compatible connector. This simple part suffers from either
disconnection or short circuit failure. These failures occur due to high
temperatures, excessive mechanical stress, or vibrations. If the current
levels rise above the cable limit, the temperature rises, and the isolation or
connection degrade or is even melted. The degraded connection has higher
input resistance, which causes motor power loss [24].

8



.......................................3.2. Gearbox
3.2 Gearbox

A gearbox connects the motor with the actuator body. It transmits the quick
motor rotation in ratio 5:1 to the slower lead screw rotation. It consists of
gears and bearings. Gearboxes in EMAs are theoretically greased for life [13].
However, lubrication loss is not a rare event. This causes fast teeth or bearing
degradation. If the problem is not solved, it can end up with broken teeth or
stuck bearing. We can observe it by the changes in vibration signal.

3.2.1 Gears

DSZY1 gearbox consists of 3 stainless steel gears. Gears’ surface is often
stressed by dirt contamination or lubrication loss and can lead to permanent
deformation. Shock overload above the yield point can cause a tooth break
4.3. These failure modes can be spotted by gearbox acoustic emissions or
vibrations measurement [37]. Cheaper versions of EMAs contain plastic
gears, which are even more vulnerable to the mentioned failures. In some
applications with low actuator load and non-critical use, plastic gears can be
sufficient, however, for our testing purposes the stainless steel was the best
option.

Figure 3.1: Gear broken tooth from our experiment

3.2.2 Bearings

Bearings are located in EMAs, where the rotation movement is needed - DC
motor output, gear axes, and lead screw. In classical electrical motors, which
are in a long-term operation, the majority of failures come from bearings.
According to the article [1] 51% of motor failures are due to bearings. However,
in EMAs, the DC motor has a much lower operational rate, which significantly
decreases the bearing failure rate. Bearing degradation is caused by particle
contamination, misalignment, improper lubrication, or electric arc corrosion.
These errors lead to instability of bearings and cause overheating, excessive
vibrations, or worsening of rotation ability.

9



3. Failures in electromechanical actuators..........................
3.3 Actuator body

The biggest part of an EMA is an actuator body. It is a mechanical part,
which is performing the final straight-line movement. An actuator body
consists of rod housing, lead screw, and drive nut.

When the gasket breakdown occurs, the first failure is lubrication loss. Dry
friction slows down the transmission and requires more electric power. If the
failure is not detected soon, the temperature rises and the drive nut starts
spalling. This would cause the failure called backlash - vulnerability between
the lead screw and drive nut causing a delay in movement [24]. In this case,
the failures can be spotted by measuring the temperature of the components,
monitoring the vibration gain on rod housing, or following the trend of rising
peak currents.

3.4 Voltage source

An ideal voltage source can maintain fixed voltage independent of output
current or load resistance. In our case, it should operate on 24V and be
able to supply inrush current, when an EMA is being turned on. The inrush
current is several times higher than the normal operating current. It is also
necessary to have sufficient protection of motor circuit to prevent the burn of
electronic parts and other failures.

Even if the motor is in optimal operating conditions, these 3 components
tend to degrade quicker - diodes, power MOSFETs, and electrolytic capacitors.

In the voltage sources, there are used quick Shottky diodes for switching.
Due to the high currents, voltages, and temperatures, they degrade quicker.
The side effect is the significant rise of reverse current.

The weakness of electrolytic capacitors is evaporation and drying out the
electrolyte. This leads to the linear decrease of capacity and exponential
serial resistance gain for the constant temperature condition [24].

3.5 Power Drive Electronics

The main component of PDE is H-bridge. It is powered by the voltage source
and controlled by signals from ACE. Its main goal is to switch polarity. In
our case, the VNH7070AS from STMicroelectronics is used. It is a fully
integrated circuit containing thermal fuse, short-circuit, and cross-conduction
protection [44].

Regular overloading leads to a breakdown of one or more power transistors
in the H-bridge. A damaged transistor stays either in a permanently opened
or permanently closed state. This ends up in the loss of controllability. If
the state is permanently opened, and the second transistor in the branch is
opened too, it creates an electrical short circuit. This state is dangerous due
to exposure of high current to the integrated circuit. The failure mode can

10



....................................3.6. Position sensor

be detected by comparing the direction and level of current flowing through
the H-bridge with the control signals.

3.6 Position sensor

A position sensor is a fundamental part of the control unit. It provides
feedback of position and is crucial for appropriate control signals. If the
position information is not correct and the limit switches fail, the damage of
EMA by overextending or overretracting threatens.

Generally, sensors suffer from noise, offset, drift, nonlinearity, hysteresis,
and gain issues. This issue can be solved by dynamic or static redundancy
[9].

11



3. Failures in electromechanical actuators..........................

Figure 3.2: Diagram of most common failure modes
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Chapter 4
Health management approaches

Health management is a wide area that covers everything that maximizes the
machine runtime. Its subclasses are predictive maintenance, fault detection,
or degradation monitoring.

Maintenance can be done by several approaches. The most basic one
is reactive. It means that we provide a maintenance of a machine only if
a failure occurs. This can have great money and time cost so preventive
maintenance was then historically introduced. Prevention is based on time
slots for checking the machine. However, in some cases the hidden failure
can occur right after the maintenance, or the time window is set to be small.
This brought us the third evolved approach - predictive maintenance. This
technique employs the output signal analysis to recognize the changes in
health behavior and schedule the maintenance appropriately for every single
machine.

Figure 4.1: The evolution of maintenance strategies [36]

Fault detection (FD) is a field that classifies the type, locates, and deter-
mines the occurrence time of a fault. This field is divided into two main
subfields - model-based FD and signal processing based FD.

Degradation monitoring tracks the continuous wear of a machine or machine
parts from a health/initial state. For example, a battery capacity is very
useful information provided for the health monitoring unit to decide on a
component repair or change.

Health management can be divided into two fundamental categories. The
first is data-driven and the second one is a model-driven approach. In this
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4. Health management approaches.............................
chapter, we will discuss the advantages and disadvantages of each and look a
bit closer to their subcategories.

4.1 Model-driven health management

The model-driven approach employs a mathematical dynamic model of the
system that is directly tied to the physical processes that drive the health
of the component [6]. It requires a deep understanding of the physics of the
system and the degradation evolution.

The health monitoring is based on a comparison of the model-generated
data with the real-model measurements. In order to achieve high reliability,
the mathematical model needs to describe the model with high accuracy.
However, this is often a difficult task, so in practice are described just parts
of complex systems.

The main advantages of this approach are the high precision, deterministic
approach, system-oriented - propagation of the failure in the whole system,
and possibility of simulations of several failures. On the other hand, the main
drawbacks are the high cost of implementation, the need for a degradation
model, or as mentioned before, the difficulty of applying to complex systems
[33].

According to the knowledge about the system, we can divide them into 3
subcategories 4.2.

Figure 4.2: Categories of models based on knowledge [43]

4.1.1 Mathematical model

White box model

A white box is a theoretical model, where all knowledge about the system is
known. All equations, states, and relations are certainly written. However,
to describe a complex system into detail is not possible, so this concept is
just theoretical.
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............................4.1. Model-driven health management

Black box model

The basics of black box model are that the relations between inputs and
outputs are completely unknown. We cannot describe a system by equations
or principles of physics, so we need other methods for model creation. We
usually just have data of a system and we try to create a similar model based
on inputs and outputs.

Grey box model

The most common case of how to describe a real system is the grey model.
As shown in the figure 4.2, it is a combination of a white box and a black box.
Some subsystems can be certainly described by equations and some have to
be created based on data.

4.1.2 Observers

The observer method relies on that the behavior of the whole system can
be deduced from the measured output signals. It means that the condition
for a system is to be observable. Residuals can be reconstructed using
system unknown intern states and the process output is estimated by an
observer. There are several observer-based methods, that are robust in model
disturbances and uncertainties, but on the other hand more sensitive to a
slow time constant decrease [28].

4.1.3 Parity space

Parity space is based on the transformation of the state-space model of the
plant to obtain the parity relations by observing the system on a finite horizon
[14]. The redundancies between system variables are used for acquiring parity
relations. They are obtained, because they provide equations dependent just
on the known variables or data. Either known variables or inputs and outputs.
It can be used for both, static and dynamic systems.

4.1.4 Parameter estimation

The principle of fault detection via parameter estimation relies on that the
faults of the monitored system with mathematical model states and specific
parameters of the system [46]. Estimation is that we possess the basic model
structure and the process parameters or state variables are obtained based
on input/output knowledge. The parameter estimation is especially effective
for multiplicative faults detection [28].

4.1.5 Bond graph

Bond graph (BG) is a unified graphical description that presents a domain-
independent and energy-based methodology for modeling the dynamic be-
havior of physical systems from different domains (electrical, mechanical,
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hydraulic, thermodynamic ... etc.) [28]. It is composed of bonds representing
an instantaneous flow of energy and single to multi-port elements. BGs are
used for systematic residual generation. They are especially appropriate for
energy exchanges representation.

Figure 4.3: Bond graph of a car shock absorber example [41]

4.2 Data-driven health management

A data-driven approach is suitable in the opposite case - we cannot describe
the system by equations and we possess plenty of data. It uses statistical
methods to inspect the correlation between features and to find outliers and
anomalies. The main advantage is the lower cost. On the other hand, it is
less precise, the experimental data for the degradation needs to be obtained,
it usually has a variability of test results even if the same component is in
the same conditions and this approach is more component-oriented rather
than system-oriented [33].

Within the data-driven approaches, we can distinguish between two basic
categories - supervised and unsupervised learning. The supervised requires
to have the data divided into classes based on historical labels. For example
class for healthy data, a class for failure mode 1, failure mode 2, etc. On the
other hand, the unsupervised methods let the neural network decide for a
final class without any prior class information.

4.2.1 Supervised methods

Bayesian networks

A Bayesian network (BN) represents knowledge in graphical form. It belongs
to the family of probabilistic graphical models and is represented by a directed
acyclic graph [34]. The node represents a random variable probabilistic
distribution and an arcs determines the probabilistic relationship between two
connected variables. BNs are built on the Bayesian decision theory and are
built in 3 steps - dependency among variables is determined, prior probability
distribution estimation and condition probability distribution estimation. Its
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............................ 4.2. Data-driven health management

main advantage is that the node can be updated in any state and it provides
a pictorial view of the entire process [34].

Artificial neural networks

Artificial neural networks (ANN) are inspired by biological neural networks.
They are collections of nodes and connections in between - like neurons and
synapses in our brain. They work especially well in estimating the non-linear
functions which are unknown. The drawback is that they require a vast
amount of data for proper training and reasonable results. There are several
architectures that can be either supervised, unsupervised or semisupervised.
The ANNs for PHM will be further discussed in the following chapter.

4.2.2 Unsupervised methods

Control charts

Control charts or Shewhart charts is an old method proposed by Shewhart
in 1931. It was designed to determine if the manufacturing process is in a
state of control. For a time-series variable, the standard deviation is made
and then the upper control limit (UCL) and lower control limit (LCL) are
computed. UCL is usually 3 times the standard deviation above the average
and LCL is 3 times lower. However, the conditions can be adjusted based on
application. The control charts are effective in detecting large changes. A
drawback is that when a state out of control is detected, it is not obvious to
identify the fault [28].

Principle component analysis

Principle component analysis (PCA) is a multivariate statistical analysis
method. Let’s assume having a lot of features in a feature space. However, the
dimensions are higher than wanted and some features might be dependent. In
this case, we use the PCA for feature reduction, that the essential information
retain and the new data is more readable than the original. It captures the
maximum variance and correlation between the features [28]. This method is
linear but many features from real processes are not linear, so the nonlinear
PCA approach was developed. For example, the Nonlinear PCA is based on
associative neural networks [27] or the Kernel PCA based on nonlinear kernel
functions [30].
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Chapter 5
Artificial neural network health
management methods

As mentioned in the previous chapter there are developed several predictive
and health monitoring methods. We have chosen the data-based direction
and an artificial neural network (ANN) approach. In this chapter, we will
also introduce deep digital twin concept which is closely connected to neural
networks (NN) and discuss a few state-of-the-art PHM approaches.

5.1 Deep digital twin

Deep digital twin (DDT) is a deep neural network model, an up-to-date
representation of a real physical asset in operation [32]. The model is trained
on historical data of a certain asset and is continuously updated by the
actual data. DDT is used to predict future behavior, reflect current health
conditions, refine the control or optimize asset operation. DDT can be a
component, group of components, whole system, or even a group of systems.

In our case, it is the actual health representation of a certain EMA in an
airplane. However, it could be the state of all EMAs in the plane, whole plane,
or a state of a fleet of planes. DDT reflects the properties, age, environment
conditions, degradation, wear, and configuration of a certain asset [23].

DDTs are mostly used for predictive maintenance. They can predict
remaining useful life (RUL), plan the service of an asset, or the component
replacement can be scheduled.

They can be also used for anomaly detection. If the real asset behaves
significantly different from the digital one, the system can notify the executives
to take an action or even stop its operation in order to prevent a catastrophic
scenario.

Series of anomalies can trigger fault isolation and its identification. Then
the system can take appropriate action or send a notice for service [32]. This
use of DDT is called fault isolation.

DDT can be also applied to the operation optimization by running
plenty of different scenario simulations. This can help to set appropriate oper-
ating parameters, mitigate risk, optimize control of system during operation
or reduce operational costs.
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Figure 5.1: Example of digital twin for an airplane engine [11]

In the model approach, a digital twin is given the same inputs as the
real asset and generates the virtual output. The output is then compared
with the real-world asset output and if some deviations are found, they
are further automatically investigated. In theory, the model-based model
during the healthy operation should approach zero deviations from real asset
output. However, for the more sophisticated and complex systems, it is really
challenging to build a model, which so closely approaches reality.

And this is one of the reasons why we decided to implement the statistical
model based on historically measured data, the so-called deep digital twin.
Usually, the time and cost of collecting the right dataset for industrial machines
are expensive. Their operation is planned for several years or even decades
and to gather a representative dataset for not only a healthy state, but also
a series of failures becomes unrealistic. According to the article [2], to make
DDT fast deployable and rapidly reduce time for data collection, its learning
should be based on just healthy data. Compared to the model-based model,
it is not supposed to replicate the output of a real asset, but the NN model
learns the representation of healthy data and its output is the health indicator
(HI). HI represents a metric of deviation from the healthy asset data as the
NN model tends to learn the space of healthy operation. If the data are
further from this space, it decreases the HI, where values close to 1 represent
the healthy operation. As the values decrease down to 0, it indicates the
unusual working condition, fault, or failure.

5.2 Artificial neural network basics

ANNs are sophisticated computational systems used for solving complex
regression, classification, or anomaly detection problems. Like our brains,
they consist of neurons and synapses, so-called nodes and connections in
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between. Each neuron can have several connections which bring information
5.2. The transmitted information represents a real number which is multiplied
by a connection weight. Weights are crucial in the learning process, where
are they continuously changed to inform the importance of the connection.
So for example the connection bringing the information of house color would
have low weight for the house price estimation, but the size will have high
weight. All connections to a neuron are weighted and summed and adjusted
by an activation function. This information flows to another layer of neurons,
where connections exist.

Figure 5.2: Neuron j model in layer k [3]

The input, so-called features, are transmitted to an input layer which
dimensions are identical to the dimensions of the input data. The layers in
between the input and the output layer are called hidden layers. Information
flows through them to an output layer. The output layer can be a binary
number, real number, vector, or multidimensional matrix. Depends on the
desired output of a certain application. An example of architecture can be
seen in figure 5.3.

Figure 5.3: Artificial neural network architecture [3]
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Each layer can contain a different number of neurons and can execute a

different transformation. The architecture of neural networks is a way how
the neurons are connected in between and structured in a layer.

This was just a brief introduction to ANNs. For more information about
ANNs and related information such as activation functions, hyperparameters,
weight initialization, optimizers, and others please refer to the book Deep
Learning [17].

5.3 Convolution neural network

A convolution neural network (CNN) is a deep learning architecture that is
mostly used in computer vision. CNNs were inspired by the visual perception
of living creatures. After a discovery that visual cortex neurons are responsible
for detecting light in receptive fields by Wiesel and Hubel [7], first, several
CNN examples were proposed.

As mentioned, they are well suitable for computer vision and are especially
good performing in object detection and image classification. It implies that
its input is usually an image (not always). For black and white or greyscale
pictures just 2-dimensional and for colored RGB 3-dimensional.

Figure 5.4: Example of CNN for image classification [45]

CNNs are usually constructed with 3 different layer types - convolution,
pooling, and fully connected 5.4. To extract the information from the input,
convolution filters are used. Filter depth fits the depth of input, but width
and height shapes are usually smaller (i.e. 4x4). The filter goes over the
whole image and creates a so-called feature map by computing the convolution
operation. The filter output is a number or vector according to the depth
size.

After each convolution layer usually follows the max or average pooling
layer. The max-pooling filter takes the maximum of its size. It performs
a down-sampling in width and height [45]. By taking the most significant
feature it reduces the network complexity and helps prevent overfitting.

Lastly, the flatten and fully connected layers convert transmitted informa-
tion for the desired output. This, however, depends on the purpose of the
NN.
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Recently, CNNs started to be used for health monitoring due to their ability
to learn time-series features. It is caused by convolution operation, which
compress data information from more features and time steps.

5.4 Long short term memory networks

Long short term memory (LSTM) neural networks are a special type of
recurrent neural network (RNN). The RNNs are designed for learning time-
series and time-dependent data, not only the single data points. They are
applicable to weather prediction or text, speech, and video sequences. In
contrast with the feed-forward architecture, RNNs connections can be cyclic.
That means that the cell output can be connected within the same layer or
even to the previous layers.

The cyclic connections ability creates a kind of long-term memory and
the network is able to preserve older data. A good example would be
weather prediction. Imagine having hourly temperature measurements dataset.
Inputed to the RNN, the network is able to understand the periodicity of
data. Colder in the night and winter, warmer in the day and summer, and
many other relations, which are for people unnoticeable. And according to
these long-term experiences learned, it could forecast the future.

Learning of RNN is not using the basic backpropagation optimization
algorithm, but the backpropagation through time method. During the back-
propagation, RNNs suffer from vanishing and exploding gradient problems.
This ends up with good short-term memory, but poor long-term memory.
Improving long-term memory led to new architecture development such as
LSTM.

Figure 5.5: Example LSTM cell chain [5]

LSTM neural network consists of LSTM cells 5.5. Each cell has its cell
state, which saves long-term information. To control the flow of information
transmitted, there are 3 gates - input, output and forget gate. The forget
gate decides, if the information should be thrown away or kept. Current
input with the previous hidden state is passed through the sigmoid function.
Sigmoid function has output in range (0;1). 0 stands for fully forget and 1
for fully remember. Then the input gate follows. It is responsible for the
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5. Artificial neural network health management methods ...................
information saved in the cell state. Following the output gate, which decides
for the next hidden state [5].

Not only the weather forecasting, but in terms of health monitoring the
remaining useful life (RUL) indicator or anomaly detection applications of
LSTM are useful.

5.5 Variational autoencoders

In order to understand variational autoencoders (VAE), we need to understand
their predecessors - autoencoders. It is a specific neural network architecture,
which is built by two basic parts - encoder and decoder. The connection
between encoder and decoder is called latent vector or bottleneck. The input
vector enters the input layer of an encoder and forces the size reduction to
the shape of the latent layer, which is smaller than the input. This forces to
creation of a compressed representation of the input data [26]. The output
vector of the encoder is then the input for the decoder. Decoder tries to
recreate the original input from the encoded latent vector.

Figure 5.6: Network topology of an autoencoder [42]

Autoencoders are trained by minimizing the reconstruction error. The
main part of this loss function is the difference between the original input
and recreated output vector. Moreover, more parameters can be added to
the loss function.

AEs are mostly used for image compression, anomaly detection, or noise
reduction. The latent space of standard AEs doesn’t follow any specific
distribution. It is a problem for the generative models’ application. In
generative models, the knowledge of latent space distributions is needed.
So then the meaningful output is created out of an artificially adjusted
latent space. This change creates a new subclass of AEs - variational
autoencoders.
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Figure 5.7: Network topology of a variational autoencoder [42]

The significant change in the architecture is in the bottleneck. The latent
vector is not directly passed from the encoder’s output to the decoder’s input.
It is divided into two vectors, which represent mean µ and standard deviation
σ of a normal distribution N (µ, σ2). A latent vector is then created by
sampling this distribution.

The result of this is that the decoder model learns to generate similar output
to input from the latent vector that is generated from a normal distribution.

Moreover, the loss function needs to be adjusted. We need to add Kull-
back–Leibler divergence which expresses the distance between our learned
distribution and normal distribution N (0, 1). During training, we force the
learned distribution as close as possible to normal distribution. Then the loss
function consists of reconstruction loss and the Kullback–Leibler divergence.

(a) : Before (b) : After

Figure 5.8: Applying reparametrization trick [42]

However, it is not able to perform backpropagation and compute gradient
from the normal distribution in the latent space. In order to solve it, so-called
reparametrization trick is used. The fact that every normal distribution can
be expressed by standard normal distribution 5.1is applied [42]. By applying
this rule, the latent vector can be expressed 5.2.

N (µ, σ2) ∼ µ+ σ2N (0, 1) (5.1)

z = µ+ σ2ε, ε←− N (0, 1) (5.2)
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5.6 Generative adversarial network

Generative adversarial network (GAN) is a special type of neural network
architecture that was introduced by Ian Goodfelow in 2014 [16]. It is perform-
ing well in domain adaption, denoising, data augmentation, super-resolution
creation, and others.

It is composed of two fundamental blocks - generator and discriminator.
The generator tries to generate new examples which are supposed to be as
close as possible to the real data. Then the discriminator is classifying whether
the input is real or fake - measured or generated. During the training, they
are playing the zero-sum adversarial game until the generator is generating
the plausible examples that are classified as real ones. This process usually
finishes when the discriminator is tricked in about half cases [4].

Figure 5.9: GAN architecture in block diagram [12]

The input for a generator is a fixed-length random vector and output are
plausible new examples from the problem domain. The vector is a seed for a
new example and is randomly picked from a Gaussian distribution.

The discriminator inputs the generated and real examples and usually
outputs binary classification whether the input was real or fake. When
a discriminator is rewarded for the correct classification, the generator is
penalized, which is forcing the update of generator parameters. In the opposite
situation, the same opposite is performed - the generator is rewarded and the
discriminator penalized. In most common cases after the training process,
the generator is kept for generating new examples from the input domain.

5.6.1 Loss functions

As GANs try to replicate real data probability distribution, their loss func-
tions should reflect the distance of two probability distributions. The closer
distributions of real and generated data are the better GAN performance. The
most common loss functions used in GANs are cross-entropy loss, minimax
loss, and Wasserstein loss.
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Minimax loss

The minimax function 5.3is derived from cross-entropy between the real
and generated distributions, where the discriminator tries to maximize the
function and the generator tries to minimize it [20].

Ex[log(D(x))] + Ez[log(1−D(G(z)))] (5.3)

Where x refers to the real data and z refers to a random latent vector,
from where are fake data generated. Ex and Ez have estimated values for
real and fake inputs.

In the early stages of the GAN training, the job of the discriminator to
distinguish real and fake is easy. To prevent overpowering the generator,
modified minimax loss is used [20], so the generator is not minimizing the
log(1−D(G(z))), but maximizing the log(D(G(z))) with the flipped labels.

5.6.2 Wasserstein loss

Wasserstein loss seems to be the most used loss function, for training the
GANs. It is designed to prevent common GAN problems as vanishing the gra-
dients and mode collapse. It calculates the distance between two probability
distributions using Earth Mover’s distance. It represents the cost of turning
one distribution into another [31]. The generator maximizes the output of
the discriminator on generated data and the discriminator tries to maximize
its output distance between the real and fake data.

5.6.3 GAN evaluation

GANs are mostly used for image data. Usually, they were evaluated in
terms of how well they are doing relative to the opponent - discriminator VS
generator. However, there were no objective metrics on how to evaluate the
quality and diversity of generated output and the human-eye evaluation was
not certain enough. So the inception score and frechet inception distance
were proposed.

Inception score

Inception score is a metric that includes the image/generated output quality
and also diversity. It computes the Kullback-Leibler divergence of two prob-
abilities 5.4 (KL(conditional||marginal) in the equation). Conditional class
probabilities p(y|x) for every generated image with expected low entropy,
which reflects image quality. The marginal probability p(y) is expected to
have high entropy, which means that the model generates varied images [40].

exp(Ex ·KL(p(y|x)||p(y))) (5.4)

The lowest score is 1.0 and the highest is the number of the classes. In our
case it is just 2 - real or fake, however, GANs can be used to learn more than
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binary classes. To conclude, the highest score reached, the better performing
model.

There are also a few limitations of the inception score. There is no measure
for diversity within the class, so if the generator generates just one image for
each class, we can reach the high inception score.

Frechet inception distance

Frechet inception distance (FID) was proposed as an improvement of the
inception score. FID is more robust to noise and has also the opposite slope
as the IS - the lower FID scores the better, where the best value is 0. It
measures the distance between feature vectors of real and generated data [25].
Its big advantage is that FID is sensitive to the GAN mode collapse.

5.6.4 GAN training problems

Training a GAN is not an easy task. They suffer from various failure modes
and are often unstable. Some improving techniques were recently proposed,
but many of them are still in active research.

Vanishing gradients

At the beginning of the training, the task for the discriminator is easy, while
the generator goal to fool the discriminator is very difficult. It can result in
the discriminator not providing enough information for a generator to be able
to progress. This can fail due to generator vanishing gradients. To prevent
this, Wasserstein loss or modified minimax loss functions are used [18].

Mode collapse

If the generator oversimplifies the generated output, it is called the mode
collapse. It is generating just one plausible output, while ignoring the other
important ones from the real data distribution. For example, we can observe
a mode collapse when GAN is generating just one type of dog image, even
though it was taught to generate a variety of breeds of dogs. According to
the [18], unrolled GANs and Wasserstein loss are designed to prevent the
mode collapse.

Fail to converge

GAN training ends, when the discriminator is correct in approximately 50%
cases. However, GAN training is very unstable, and reaching this point is
difficult. it means, that the discrimination decisions start to behave randomly.
During the training, the discriminator feedback gets less informative. As
the generator is learning from the feedback, its quality is decreased. Two
proposed techniques to prevent converge failure are penalizing discriminator
weights and adding noise to discriminator input [18].
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Chapter 6
Feature extraction

For fault detection, degradation and prognostics it is necessary to continuously
monitor the device and collect the operational sensor data. There is a great
variety of sensors and physical quantities, that can be captured - voltage
and current consumption, temperature, acoustic emissions, load, position,
smoke or gas detection, angular or linear velocity, and others. However, in
many applications, it is necessary to extract features from a signal in order
to harvest important information.

All signals are beneficial in certain applications but one of the most used
and most informative is vibration signal and vibration analysis [39]. The great
advantage of vibration signals is that we are able to detect the degradation
or fault in a really early stage. According to the [48] it is detectable months
before the catastrophic failure 6.1.

Figure 6.1: Time detectability prior to the failure [48]

All rotational devices (e.g. motor, turbine) or their parts (e.g. gearbox,
shaft, bearing) are creating vibrations. This signal contains a great amount of
information and the health state can be certainly extracted. Rotary devices
are creating vibrations also in the healthy state and the signal tends to
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change continuously along with the runtime. Using suitable signal processing
techniques and analysis, we are able to extract key features for detecting
degradation and faults.

Other highly beneficial signals are current and voltage. They can be used to
detect faults in the electrical part such as winding breakdown by nonuniform
current consumption, coil short circuit by increased fault phase current and
decreased resistance [47], and others. Moreover, current and voltage can be
used to detect also non-electrical failures such as dry friction, by increased
power consumption. For more accurate detection, other physical quantities
(e.g. power) and features need to be derived from them.

Depending on signal characteristics we also need to care about the sampling
rate. For example, in case of a fault, the temperature will change in seconds.
The temperature sampling frequency could be slow, i.e. in order of hertz. On
the other hand, the bearing vibrations are typically around 10kHz (depicted
at 6.2).

The measured signals flow to the AD converters which sampling frequencies
should pass the Nyquist theorem. It means that the sampling frequency must
be at least two times bigger than the maximal frequency of the input signal.

fs � 2fmax (6.1)

Figure 6.2: Typical frequencies for sources of vibrations [48]

6.1 Signal processing techniques

The signal processing techniques can be divided into 3 fundamental categories
- time domain, frequency domain, and time-frequency domain. Usually, before
feature extraction, the signal has to be preprocessed. Mean removal, filtering,
amplification, or time-synchronous averaging is often used to preprocess the
raw signal [29]. A lot of features can be then extracted directly from the
preprocessed signal (time-domain). However, for rotary machinery are usually
more powerful techniques describing the signal in the frequency domain.
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6.1.1 Time-domain techniques

Root Mean Square

It is one of the easiest features which describes the power of vibrations. This
feature is good to track noise levels, but cannot detect the location of the
component. Its disadvantage is that it is not sensitive in the early stages
of a fault. On the other hand, it is performing well in the major faults like
out-of-balance and misalignment [29].

uRMS =

√√√√ 1
N

N∑
i=1

u[i] (6.2)

Crest Factor

This feature tells us more about the impulsivity of the signal. It is computed
by dividing the peak level of a signal by its RMS level. Direct signal or square
signal has the Crest Factor equal to 1. In the motor signals, this factor is
usually in the range 2 to 6 [29]. Detected higher values can show us anomaly
behavior. Gearbox tooth damage or defect on the outer race of a bearing can
be detected using this factor. It is also useful to observe to long-term trend
of the Crest Factor.

CF = |umax|
uRMS

(6.3)

Mean, Variance

Mean 6.4 and variance 6.5 are the first and the second statistical moments.
Statistical moments describe the probability density curve and its deviation
from Gaussian distribution. They might be very useful in fault detection by
neural networks, as they help to describe the distribution of a dataset.

µ = E[X] = 1
N

N∑
i=1

x[i] (6.4)

V AR[X] = σ2 = E[(X − µ)2] (6.5)

Skewness

Skewness is the third of statistical moments. It describes the skew of the
distribution. Skewness is also a good measure when data has outliers. When
the value is negative, the distribution is skewed negatively (left). It is
caused by extreme values in the data, that move the mean on the left of the
distribution and vice versa for the positive skewness values.

SKEW [X] = E

[(
X − µ
σ

)3
]

(6.6)
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Kurtosis Ratio

It is the fourth statistical moment and as power four it cannot reach negative
values. It describes the data distribution in terms of flatness or peakness.
Number 3 indicates a normal distribution of data. This also indicates a
healthy state of gears or bearings. If the value grows higher, it means more
peak values and closer to a failure mode [29].

KR = E

[(
X − µ
σ

)4
]

(6.7)

6.1.2 Frequency domain techniques

Frequency domain techniques provide more complex information, especially
for rotation parts. Rotation machinery or its elements are working periodically,
so when the fault occurs, it is also periodically repeated in the signal and it
is possible to capture the fault in the spectrum. Frequency techniques are
closely connected with Discrete Fourier Transform 6.8 (DFT).

X[k] =
N−1∑
n=0

x[n]e
2πj
N

kn (6.8)

Due to high time complexity of DFT O(n2), Fast Fourier Transform (FFT)
is often used. FFT time complexity is decreased to O(n · log(n)).

Each rotary element and its fault contribute to the signal spectrum. Tech-
niques for fault detection in the frequency domain are based on magnitudes,
phase shifts, or the presence of certain frequencies. They are performing well
in bearing and gearbox defect detection, their misalignment, imbalance, and
looseness [48]. In general, a disadvantage is their higher computational cost
in comparison to the time-domain techniques.

Figure 6.3: Bearing schematic spectrum of vibration signal [10]
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Chapter 7
Dataset and implementation

In this chapter will be presented the process of gathering the dataset, data
description, and later data post-processing to be suitable for the neural
network. Later in this chapter, a brief overview of used software and hardware
is provided.

7.1 Teststand

To ensure stability and repeatability of measurements, an automated testing
system built by Ing. Ondřej Hanuš 7.1 was used.

Figure 7.1: Teststand for EMA measurements

Its skeleton is constructed of lightweight aluminum panels with outer
dimensions of 680x488x560mm. The tested EMA, in our case DSZY1, is
placed in the center and is surrounded by two linear guides, which ensure
stable movement for excessive loads. The range of movement within the
teststand is 480mm.
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7. Dataset and implementation ..............................
Several sensors are placed on EMA itself or on parts of the teststand.

Sensors available on the teststand can be seen in the table 7.1. In our case -
position, force, voltage, current, vibrations, rotation, and temperatures were
measured. To suppress noise, shielded cables are used in the whole system,
and control circuits are placed in shielded metal boxes.

Measurement Sensor Range Sample rate

Force Honeywell Load Cell 151 -500N/+500N 1kHz
Position Honeywell SPS-L225-HALS 225mm 1kHz
Motor current VNH7070AS analog output 15A 200kHz
Motor voltage Resistive voltage divider -32V/32V 200kHz
Motor temp. NB-PTCO-155 -30°C/200°C 5Hz
Gearbox temp. NB-PTCO-155 -30°C/200°C 5Hz
Rod housing temp. NB-PTCO-155 -30°C / 200°C 5Hz
Ambient temp. NB-PTCO-155 -30°C / 200°C 5Hz
Motor vibrations Bruel&Kjaer 4507-B-004 peak 70g, 0.3-6000Hz 51.2kHz
Gearbox vibrations Bruel&Kjaer 4507-B-004 peak 70g, 0.3-6000Hz 51.2kHz
Motor rotation Optical encoder 5421-EP111 200CPR 16kHz

Table 7.1: Sensors used in teststand

Teststand is controlled by a program designed in LabView. It can be
operated in 3 modes - basic motion, position control, and load control.
Motion profiles are controlled by the PID regulator. It provides us 4 motion
profiles - sine, rectangular, triangular, and saw. The option of measuring only
a subset of available signals is also available.

7.2 Dataset gathering

One of our goals was to avoid simulated data and use just data from a
real-world measurement. Another goal was to gather data of EMA DSZY1
in different conditions and for several types of failure modes. Static loads of
30N, 80N, 150N, and 180N were captured for 3 types of motion control - sine,
triangle, and rectangle. Each measurement was captured for 40 seconds.

The 4 most common failures of EMAs were injected. For the mechanical
part, it was a gearbox tooth deformation and a missing tooth. For the
electrical part, a change of the coil resistance in the motor and short of
motor winding was injected. Our assumption was, that some failure modes
can be more visible within different conditions. Raw measurements were
captured and provided to us by Ing. Ondřej Hanuš. For each failure type,
every variation of load and motion control scenarios were measured 7.2. For
the healthy EMA, two same-sized raw datasets were measured.
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Failure Load Motion

no defect 30N sine
motor winding short 80N triangle
motor coil resistance increase 150N rectangle
gearbox tooth deformation 180N
gearbox missing tooth

Table 7.2: Measured scenarios for failures, loads, and motion types

7.3 Raw data measurement

One raw measurement captured in LabView generated 5 files in tdms format
and one text file with measurement setup. The text file contains movement
PID constants and upper and lower movement limits.

File contains Format Sample rate Size

measurement setup .txt - ≈ 95B
motor, rod-housing, gearbox, ambient temp. .tdms 5Hz ≈ 8kB
positions and force .tdms 1kHz ≈ 3MB
increment rotary encoder .tdms 16kHz ≈ 4MB
gearbox and motor vibrations .tdms 51.2kHz ≈ 36MB
motor current and voltage .tdms 200kHz ≈ 280MB

Table 7.3: Raw measurement output for duration 40 seconds

The problem is that every sensor is working on a different sampling rate -
from the slowest temperature sensor operating on 5Hz to the fastest current
sensor working on 200kHz. A drawback of very different sampling rates
is the size of files. While the measurement on temperature sensors could
last for days and would barely reach 10MB, the current and voltage was
reaching 500MB just in one minute of measurement. This encouraged us
to make rather shorter measurements with many distinct scenarios. It was
also supported by the fact, that EMAs are typically working in a few second
intervals during their operation in contrast to classic electric motors which
are running continuously.

7.4 Data preprocessing

Raw data were kept as measured in terms of data cleaning. There was no
outlier removal, filtering, or smoothing to test the ability of NNs to learn
from imperfect real-world data. Our NN model was aiming to operate in
time domain, so the increment rotation encoder data were dropped. Their
information gain would be much higher using the frequency-domain signal
processing methods.

The big advantage of time-domain features is in general less computational
complexity. Units sampled with far distinct sampling rates were merged to a
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7. Dataset and implementation ..............................
sampling rate of 1kHz. It means that the slow signals remain unchanged (force,
position), the fast (current, voltage) and vibration signals were described by
features. 200 time values to 1 feature value for fast signals and 51.2 time
values to 1 feature for vibrations (51 for 4 time windows and 52 for the 5th
one). RMS, crest factor, and 4 statistical moments (mean, variance, skewness,
kurtosis) were computed for almost all downsampled signals 7.4.

40 second measurement is too short for detecting the failures from temper-
ature indicators in this application. It highly depends on the outside heat
and the time is too short for heat propagation to the parts of EMA. However,
it might have information gain in future experiments, so the temperature
values were kept and linearly upsampled from 5Hz to 1kHz.

After we obtained the upsampled temperature data and the features from
fast and vibration signals, we created one unified dataset containing 28
columns. The memory needed for storing one measurement decreased approx-
imately from 320MB to 15MB in h5 format.

Signal RMS Crest Mean Variance Skew Kurt

motor current X X X X X X
motor voltage X X X X X X
gearbox vibrations X X X X
motor vibrations X X X X
position kept original sampling 1kHz
force kept original sampling 1kHz
temperatures linearly upsampled to 1kHz

Table 7.4: Computed features for certain signals

7.5 Data normalization

A good practice is to normalize the data for the neural network. They become
less human-readable, however, it generally helps for faster learning and speeds
up convergence. Each feature was normalized to range <-1;1> between its
minimum and maximum value.

Firstly, the <0;1> normalization was used. But later we observed that
<-1;1> normalized dataset has better learning performance. It is due to
activation functions that are used in the GAN structure. Generally, ReLU
and tanh activation functions are performing better, when also negative
values are provided. The supervised LSTM approach was normalized to range
<0;1>.

7.6 Dataset transformation

Most information in our data is hidden in the time relationships. That is why
we rearranged our dataset to sequence array 7.2 with optimal window size 28.
For example to make a sequence array with step 1 from a classic 2D array of
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size (100, 20) with window size 15 means taking (1-15, 20), (2-16, 20), (3-17,
20), etc. This will create a 3D array containing same-sized, time-shifted 2D
arrays. Then is NN also able to learn time relations between the features.

Figure 7.2: Model input as sequence array [22]

7.7 Data graphs

Our dataset contains 10 physical quantities and 26 features derived from
them. To visualize all of them would take a lot of space and doesn’t bring
much information. Therefore we have chosen the following graphs which can
help us understand changed behavior during the failure modes. Graphs show
us easily human notable signal changes. Signal changes are not visible in
every measured configuration.
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Figure 7.3: Current graph for load 80N and triangle motion profile
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In the figure 7.3 are depicted 3 motor current graphs. All 3 of them were

measured for the same load and motion profile conditions - 80N load, triangle
motion profile. The first one shows us the healthy state. In the second one
we can see the increased current consumption. This belongs to the short of
motor winding, which causes almost doubled current flowing through the
motor. In contrary, the third graph has decreased motor current. In this
case, the increase of motor coil resistance failure was injected, which prevents
flowing higher currents.
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Figure 7.4: Body vibrations graph for load 30N and sine motion profile

The figure 7.4 shows us body vibrations for load 30N and sine motion
profile. Orange color shows the lowest vibrations, which stands for the
healthy operation. The first graph shows us vibrations belonging to the tooth
deformation failure. We can see that every second vibration wave reaches
higher values. This is caused by uneven tooth degradation. If the EMA
is extending, the worse part of the tooth is employed, which causes higher
vibrations. For retracting movement, degradation is lower and vibrations
aren’t so significant. In the case of missing tooth in the second graph, the
vibration signal is reaching slightly higher values and is more even. This
can be explained by the same tooth surface conditions for extending and
retracting movement.

7.8 Software

All software parts used for the thesis were written in Python 3.6. In compar-
ison to MatLab, it is a free, open-source programming language providing
numerous open-source libraries.

For the data preprocessing, mainly NumPy library was used. It implements
various functions to work with matrices and compute linear algebra operations
over them.

For storing and manipulating the dataset, Pandas library was used. It
contains data analysis and database-like functions for data management.

Neural network model structure and training were written using the Ten-
sorFlow library. It is an open-source API for machine learning, developed
mainly by Google Brain Team. It provides a user-friendly high-level API
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called Keras, but also supports a low-level API for custom NN structure
creation.

When a NN is designed by a user, a computation graph is created. During
the execution, the computation graph is filled with data, and training is
performed. For debugging purposes, an eager execution is used, which
evaluates operations immediately without building computation graphs. It
supports graphic or tensor processing unit accelerators for faster computation.
In our case, the TensorFlow version 2.7.0 was used.

7.9 Hardware

For debugging purposes, the code was first written and executed in Google
Colab Jupyter notebooks. The Google Colab platform allows each Google
account user to perform a free cloud execution on CPU, GPU, or TPU
accelerator. We connected to a GPU session with 12GB Nvidia Tesla K80
and 80GB of disc space.

Google Colab was not sufficient for the hyperparameter search, so when was
our model debugged, we switched to the Czech Technical University Cantor
GPU servers. They possess 256GB NVIDIA GTX 1080Ti with 500GB SSD
disc space, which made the computation faster.
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Chapter 8
Unsupervised approach

For the unsupervised DDT approach, we have chosen a GAN architecture.
According to the [2], it is more sensitive and has better performance than
VAE. GANs are using unsupervised learning algorithms that use a supervised
loss (real/fake) as a part of the training. GANs are especially good at learning
the dataset distribution. Our aim was to teach a GAN the healthy dataset
distribution to produce the health indicator in the range <0;1>. For inputed
healthy data sequences the HI should approach number 1 and for the faulty
HI should reach lower numbers down to 0.

8.1 Training dataset

Our training dataset consists of 12 measurement setups for different load
and motion profiles. The duration of each measurement is 40 seconds. In
raw format, it is 7.2GB of data. Dataset was acquisitioned on new healthy
DSZY1 EMA. Gearbox and body vibrations, motor voltage and current, force,
position and motor, gearbox, rod housing and ambient temperature were
measured.

After the data preprocessing, normalization and sequence transformation
were executed. The dataset was shuffled and converted to a batched Tensor-
Flow dataset. Its memory requirements were decreased to 1.5GB. The first
assumption was, that shuffling the dataset will disable learning some time
relations between the data. However it showed up, that shuffling the dataset
is crucial in order to prevent overfitting and increase the model robustness.

8.2 Testing dataset

The testing dataset consists of 4 failure datasets merged with the second
healthy one 7.2. Each dataset is containing 12 measurement setups for
different load and motion profiles.
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8. Unsupervised approach ................................
8.3 Unsuccessful approaches

At the beginning, 3 open-source GAN architectures were tested. The model
structure was taken as a core code and adjusted to our dataset. Different num-
bers and types of layers, activation functions, kernel initializers, optimizers,
and other hyperparameters were tested with no reasonable results.

The most notable is a TF-GAN tutorial [21], which uses the Tensorflow
GAN library proposed by Google. The GAN library implements a convenient
infrastructure for training a GAN as a set of training features, losses, and
evaluation metrics. Its main element is a GANEstimator. The programmer
defines generator and discriminator models, losses, evaluations metrics, and
optimizers as parameters of this object. It provides train and evaluates
functions, which automates the GAN training and makes it convenient. On
the other hand, its big disadvantage is, that it uses Tensorflow 1.x version.
Some functions from Tensorflow 2.x are not available and some are deprecated
in newer Tensorflow versions, which caused us compatibility problems.

In our case, Wasserstein loss function for protecting vanishing gradients
and mode collapse effect was used. As evaluation metrics, inception score
and Frechet inception distance were applied. In spite of these novel GAN
techniques, we were not successful in getting the expected results.

In the other two attempts, the training was also highly unstable. In one
epoch the discriminator was overpowering generator and in the next epoch the
opposite. Metrics were oscillating and the networks didn’t want to converge.
We found out, that in contrast with classical classification or regression NN
losses, the GAN losses are counterintuitive and in some cases, just evaluation
shows the real performance of NN.

To solve these problems, stabilizing techniques [38] were used. GAN
stabilization is more discussed in the following section.

Figure 8.1: Example of stabilized GAN loss
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8.4 Network architecture

The other attempt is based on a deep convolutional GAN for the MNIST
dataset tutorial [19]. Its principal structure with layer types is depicted at
figure 8.2. For input and output dimensions for each layer, please, refer to
B.3 for generator and B.4 for the discriminator.

Figure 8.2: GAN model architecture

Our architecture is based on recommendations for training a stable GAN
[38]. In the discriminator, the convolutional layers with stride replaced max-
pooling layers for decreasing dimensions. Fully-connected layers are used only
for input and output. A batch normalization layer was added after the first
three layers of the generator. The batch normalization layer takes the input
of the previous layer and normalizes it to have unit variance and zero mean,
which stabilize the generator training process. As activation functions, leaky
ReLU were used as they are improving the vanishing gradient problem.

The generally advised optimizer for GANs is Adam. It was used for both
generator and discriminator with the same learning rate 5.10−5. The model
was trained with batch size 256 for 25 epochs. As the loss function, binary
cross-entropy was used. For discriminator, it combines a loss on real and
generated data and quantifies how well discriminator distinguishes them. For
the generator, it quantifies how successful the generator is in tricking the
discriminator for classifying the generated as real ones.

8.5 Evaluation

Training just on healthy data brings a big advantage of easiness and low cost
of data collection. This approach can be also fast deployable on heterogeneous
assets just using their operational data. On the other hand, there is not
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8. Unsupervised approach ................................
yet a clear line which failure is more serious. The HI can be lower for
tooth deformation than for the missing tooth in the gearbox. Intuitively,
humans would say, that a missing tooth is a more serious failure. However,
the vibration signals for tooth deformation could be higher. Then its data
distribution is more distant from the healthy data than the missing tooth
distribution is. For these reasons, we needed to clearly draw unique evaluation
metrics for both generator and discriminator.

8.5.1 Discriminator evaluation

The discriminator output or so-called health indicator is in range <0;1>. Our
goal was to distinguish all 4 faulty datasets from the healthy one. In other
words, the HI for healthy is in higher ranges and has the least overlap with
ranges of faulty datasets.

During the training, both models were saved for every epoch. Then we
collected 768 decisions for each failure type in different conditions. One
measure for choosing the best discriminator model was the maximum of sums
of average failure decision distance from the average health decision distance.
In other words, the further was the healthy decision from the failure ones,
the better. The second metric was the sum of their variances. It means, that
the decisions for the same failure type don’t oscillate too much.

Datasets Trained model Collapsed model

no defect 0.587885 0.614583
gearbox tooth deformation 0.19399 0.375257
gearbox missing tooth 0.25219 0.369388
motor winding short 0.201465 0.47252
motor coil resistance increase 0.240406 0.440298

Table 8.1: Average health indicator

The collapsed model evaluation results are depicted at B.1 and B.2. The
well-trained model decisions are depicted at 8.3 and 8.4. For both models,
the average healthy value is approximately 0.6. In the case of a well-trained
model, we can see an area around a value of 0.2 with low variance which
belongs to the failure datasets. This area can be clearly distinguished from
the healthy state range. In the case of the collapsed model, we see the big
overlap and oscillation of decisions. Also, the average HI values are closer to
the no defect state 8.1.

In the well-trained discriminator there are also a few decisions that overlap
- HI of no defect is lower than HI of defect state. In the real application,
more decisions would be taken and averaged to reach higher accuracy. One
decision belongs to the 28 time steps of 28 features. In the time domain, it
represents a 28ms.

Another solution to improve would be the increase of time steps of the
input data. However, this would lead to adding model layers and increasing
the training and computation time. It also should be short enough, that the
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signal doesn’t possess a motion profile trend. In our case, we can reach higher
accuracy with lower computational cost by the decisions averaging.
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Figure 8.3: Decisions (HI) of trained discriminator
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Figure 8.4: Boxplot of trained discriminator

8.5.2 Generator evaluation

The evaluation of the generator is more straightforward. Its main goal is to
replicate the healthy data, which also means to learn the probability distribu-
tions of all features. The generator evaluation metric was chosen Wasserstein
distance. It represents a distance between two probability distributions by
computing the minimal cost of turning one distribution into another. The
Wasserstein distance was computed between the healthy dataset and the
same-sized generated dataset. It was executed for every saved generator
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model. Based on this metric the best generator could be picked. In our case,
the best metrics results were reached for the generator and discriminator duo
saved in the same epoch.
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Figure 8.5: Histogram of measured and generated force values

A histogram of measured healthy force data compared with a histogram
of generated force data can be seen in the figure 8.5. We can see that the
generator was able to learn the data distribution of the force data.

Moreover, some features in the dataset have more difficult data distributions.
For this case, we depicted the voltage mean feature histogram 8.6. This proves,
that the generator is able to identify main peaks and learn to generalize its
distribution.
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Figure 8.6: Histogram of measured and generated voltage mean feature values
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To compare, the collapsed model was not able to learn even easier distribu-

tions. Depicted at force histogram 8.7
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Figure 8.7: Histogram of measured and generated force values by collapsed model
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Chapter 9
Supervised approach

For the supervised approach, we have chosen an LSTM architecture. It is
a special type of recurrent neural network, which is designed for learning
from time-series data. In this case, a health indicator isn’t just a single float
number, but a vector containing 4 float indicators. Each indicator stands for
one measured failure mode and is in range <0;1>. The state of no defect is
indicated by vector (1, 1, 1, 1). If a value is decreased, it signalizes a specific
failure 9.1. In our case, we expected just one value to decrease as we measured
only datasets containing 1 failure. The state of gearbox missing tooth and
motor winding short are the most fatal, so we assigned the value 0. The
motor coil resistance increase and gearbox tooth deformation are also serious
failures, but less crucial, so we set the indicator to 0.2 and 0.5 respectively.
This is also for demonstrating, that our network is able to learn different
ranges of degradation.

Meaning of indicator

healthy/no defect 1 1 1 1
gearbox tooth deformation 0.5 1 1 1
gearbox missing tooth 1 0 1 1
motor winding short 1 1 0 1
motor coil resistance increase 1 1 1 0.2

Table 9.1: Health indicator / labels vector meaning with examples

9.1 Dataset

Our dataset is formed from 5 merged datasets for each failure type. Each
failure dataset contains 12 measurements of duration 40 seconds for different
load and motion profiles. Data were normalized into range <0;1> and labels
were added. Then the dataset was split proportionally from each failure
dataset. Major part - 60% for the training, 20% validation, and 20% for
testing purposes. Data were also transformed to a sequence array with size
28 features times 28 time steps.
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9.2 Network architecture

The core of our supervised architecture 9.1 were 2 LSTM layers followed by
a fully-connected output layer with a size of HI (4x1 vector). To prevent
overfitting, after both LSTM layers were added a dropout layer. The dropout
ratio was set to 20%.

lstm_input InputLayer
input:

output:

[(None, 32, 28)]

[(None, 32, 28)]

lstm LSTM
input:

output:

(None, 32, 28)

(None, 32, 128)

dropout Dropout
input:

output:

(None, 32, 128)

(None, 32, 128)

lstm_1 LSTM
input:

output:

(None, 32, 128)

(None, 64)

dropout_1 Dropout
input:

output:

(None, 64)

(None, 64)

dense Dense
input:

output:

(None, 64)

(None, 4)

Figure 9.1: LSTM model (None stands for arbitrary batch size)

At first, we tried several learning configurations to find approximate hyper-
parameters for a well-trained model. In order to find an optimal model, a
grid search was used. All tuned parameters are in the table 9.2 totaling 108
combinations of model setups. The mean square error (MSE) was computed
as a model loss. All of them were trained with Adam optimizer for 10 epochs
using callback function saving the best performing model according to the
minimal validation loss. The sequence length was fixed to 32.
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Hyperparameter values

batch size 32, 64, 128, 256
learning rate 0.0001, 0.00005, 0.00001
LSTM cells in layer 1 32, 64, 128
LSTM cells in layer 2 32, 64, 128

Table 9.2: Set of tuned parameters

In the table 9.3, we can see the top 5 configurations according to the
training loss. The lowest loss was on a neural network with 128 LSTM cells in
the first layer, 64 in the second one, learning rate 0.00005, and batch size 32.
We can notice, that the lower batch sizes had better performance in general.

No. batch size learning rate L1 cells L2 cells MSE loss

1 32 0.00005 128 64 3.1776 · 10−4

2 32 0.0001 64 64 3.2322 · 10−4

3 64 0.0001 128 128 3.3786 · 10−4

4 64 0.0001 32 128 3.5314 · 10−4

5 32 0.00005 128 32 3.5874 · 10−4

Table 9.3: Top 5 configurations based on grid search

Afterward, the second grid search was performed. The LSTM cells numbers
were set according to the best results (L1 - 128, L2 - 64). Learning rate
and batch sizes options were kept. The main reason to compute the second
grid search was to find an ideal sequence length within options {32, 64, 128,
256, 512}. In this case, the results showed that bigger sequence lengths are
performing worse in general. This can be explained by the motion profiles. A
sequence length of 512 is having a data of 0.512 seconds of EMA operation. In
this data, part of the motion profile can be seen. However, that is an undesired
situation, as the motion profile doesn’t possess degradation information. To
conclude, we selected the best configuration according to the 9.3, where the
sequence length was fixed to the lowest value 32.

In the figure 9.2, we can see the decrease of loss along with epochs. The
validation loss is expected to be higher than the training loss, which applies
to our best model loss. However, in some configurations, the first 2 epochs
had the validation loss slightly lower. This can be explained by the dropout
layers. During validation, the dropout layers are not enabled, which could
lead to lower validation loss at the early stage of training.
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Figure 9.2: LSTM model loss

9.3 Evaluation

To evaluate and visualize, the trained model predicted labels for the testing
dataset. Then they were compared with the true labels and plotted for the
same graph 9.3. Label0 to label3 are creating final health indicator with size
1x4.
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Figure 9.3: Evaluation of real and predicted health indicator
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The testing dataset was merged in the same order as the order of rows in

table 9.1. For example, the first part of the dataset is the healthy data. So
the first fifth of all 4 indicators is expected to be 1. The last fifth of data
stands for motor coil resistance increase. In this case, the 3 indicators are
expected to be 1 and the fourth one to be 0.2. If the model was 100% correct,
we would see just one line in each graph, as they would be identical. Now
the red line stands for an improper value of the health indicator.

To compare, the supervised approach is more accurate and decisions oscillate
less than the unsupervised one. Its health indicator conveniently shows us,
which part of EMA is defected. On the other hand, it is necessary to collect
measurements of failure modes, which increases the time and money cost.
The supervised approach also doesn’t cover all possible failures and some
crucial ones may remain undetected.
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Chapter 10
Reduced unsupervised approach

The unsupervised approach brought us fairy good results. However, its
implementation in some environments would be difficult due to excessive
external vibrations. In our case, if the EMA would be deployed to an aircraft
with a mounted 3-axis accelerometer, it might work on the ground, but will
not work in the air. Unexpected external vibrations caused by inconsistent
air turbulence would bury vibration signals in the noise. The measurement of
temperatures would be also challenging due to enormous external temperature
changes caused by elevation gain.

This led us to think of measuring just electrical values - voltage and current
consumption of EMA. These electrical units shouldn’t be affected in such
difficult conditions.

Again our goal was to build a GAN producing a health indicator in range
<0;1>. Healthy conditions should be indicated by values close to 1. Worsening
of EMA’s health should result in lower values down to 0.

10.1 Training dataset

The same training dataset as in the unsupervised approach was used except
for features. The raw voltage and current signal were sampled at 200kHz.
To decrease dataset size, voltage and current were described by 6 features
each ending up with a frequency of 1kHz. RMS, crest factor, mean, variance
skewness, and kurtosis were computed for every 200 windows of the original
signal. Other units (force, motion, vibrations, and temperatures), were
dropped out of the dataset. Then the final dataset ended up having just 12
features. The dataset consists of 12 measurements for different load conditions
and motion profiles. Each measurement duration is 40 seconds.

10.2 Testing dataset

The testing dataset also consists of 12 current and voltage features. It was
merged from 5 scenarios - no defect, gearbox tooth defect, gearbox missing
tooth, motor winding short, and motor coil resistance increase. Training and
testing datasets were normalized to range <-1;1> and randomly shuffled.
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10.3 Network architecture

The unsupervised GAN architecture needed to be adjusted. Due to a different
number of features, each layer’s dimensions were changed. The generator
is generating an output of 28 time steps for 12 features. The discriminator
inputs the generated output and creates a single float value health indicator.
The number and types of layers remained unchanged. Detailed discriminator
B.6 and generator B.5 NN architecture is depicted in the appendix.

The network was trained in different conditions with batch size 256 and
binary cross-entropy loss. In this case, it was harder to reach convergence, so
we didn’t use identical learning rates for both networks. The generator was
overpowering discriminator. To solve this problem, we increased the learning
rate of the discriminator to 0.0001 and decreased the learning rate of the
generator to 0.00009. This setup showed to work better. The training loss is
depicted in figure 10.1. The best performing solution was in epoch 4, where
the losses reached similar values.

Figure 10.1: Example of RGAN loss

10.4 Evaluation

To be able to compare the GAN with the reduced GAN approach, we kept
the evaluation metrics identical for both. In the case of reduced GAN, we
expected better performance in electric failures. On the other hand, we were
skeptical, if the network would be able to learn also non-electric failures and
if yes, to which extent.
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..................................... 10.4. Evaluation

10.4.1 Generator evaluation

The performance of generators was measured by using Wasserstein distance.
This distance represents the distance of two probability distributions and
shows how well was generator able to learn the distribution of the EMA
healthy operation.

Histograms for each feature were plotted to compare the distribution of
measured and generated data. For illustration, two histograms of the best
generator are attached - 10.2, 10.3. The current crest factor histogram 10.2
shows us a well-learned distribution. The distribution of the current mean
feature 10.3, is sufficient enough to distinguish higher values from a healthy
operation, but simplified. We can see, that the healthy operation values in
range <-0.75;-0.50> are not covered. Unlike the GAN generator, reduced
GAN generator output was more distant from the measured healthy data
distribution.
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Figure 10.2: Histogram of measured and generated values for current crest factor
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Figure 10.3: Histogram of measured and generated values for current mean
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10.4.2 Discriminator evaluation

The health indicator is the direct output of the discriminator and is in range
<0;1>. Higher values represent a better machinery health state. To evaluate
we picked 768 decisions for each dataset in different conditions. The evaluation
metric took into account the distance of failure data decisions from the no
defect one and the variance of each mode decision. The best model was
chosen based on the lowest sum of variances and the highest distance.

The average health indicator for each dataset is stored in the table 10.1.
We can see a gap between no defect and failure data and as expected, the
lowest values have the electrical failure datasets.

Dataset Trained model

no defect 0.612726
gearbox tooth deformation 0.2377
gearbox missing tooth 0.2045
motor winding short 0.1211
motor coil resistance increase 0.1629

Table 10.1: Average health indicator

To compare with the GAN approach, the health indicator for no defect
data has here much higher variance 10.4. Even though the average healthy
data decision is 0.61, its values range from 0.38 to 0.91. The reduced GAN is
less confident about the healthy state and to increase the accuracy, we should
average more decisions.
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Figure 10.4: Decisions (HI) of trained reduced GAN discriminator
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..................................... 10.4. Evaluation

The motor short dataset has the lowest HI 10.5, which can be explained
by the visualization of the data itself. Plotting measured data in various
conditions showed us, that the motor short data has significant distinct
current values in every measurement, which explains the lowest HI value.

The second-lowest average values were unsurprisingly reached by the motor
coil resistance increase dataset. The changes in this data cannot be seen in
every measurement setup, but in most of them are significant enough.

healthy tooth_deformation missing_tooth short resistance
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0.4

0.6

0.8

Figure 10.5: Boxplot of trained reduced GAN discriminator

The tooth deformation and missing tooth HI results surprised us. We
assumed, that the reduced GAN without vibration data wouldn’t be able to
distinguish them so well. But as we can see in figure 10.5, their HI values are
comparable with the electric failure ones. To understand this problem better,
we visualized all 5 datasets for different load and motion profile conditions.
Afterward, we realized, that the non-electric failures are also reflected in the
electrical signals, which explains the well-performing HI for tooth deformation
and missing tooth cases.

The figure 10.6 shows us the current graph for 5 failure modes in the same
conditions - triangle motion profile and 150N load. As mentioned before, we
can see the significant change of current signal for the motor winding short.
On the other hand, the motor coil resistance increase is not so significant under
these conditions. The main reason for choosing this case is to demonstrate
the enormous change in the current signal for missing tooth in one direction
of movement. And after a closer look, we can also see the signal change in
the case of tooth defect. In contrast to healthy operation, current peaks are
higher and last longer.

Each failure is more visible within different conditions. In this case, the
missing tooth dataset current is enormously increased in one direction. Within
another condition, it can be barely noticed by the human eye, which can also
explain the variance of decisions - more significant signal change under some
conditions, more confident HI classification, and vise versa.
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Figure 10.6: Current graph for load 150N and triangle motion profile
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Chapter 11
Conclusion

The aim of the master thesis and prior master thesis project was to study deep
digital twins and implement supervised and unsupervised deep digital twins
for linear electromechanical actuator DSZY1 based on a measured dataset.

In the beginning, linear electromechanical actuators and their vulnerabili-
ties were studied. Later an overview of possible digital twin approaches was
introduced, focusing on part of data-drive approaches, especially artificial
neural networks solutions. The raw measured dataset was preprocessed. To de-
crease the size and increase information gain, the sampling rate was decreased
and descriptive features were extracted. As a part of the implementation,
supervised LSTM-based, unsupervised GAN-based, and reduced unsupervised
GAN-based solutions were proposed. In the unsupervised approaches, own
customized evaluation metrics were introduced and all 3 solutions were tested.
The advantage of the supervised approach is the ability of fault classification.
It is not possible by unsupervised approaches, but they are trained just on
healthy operational data, which brings a huge advantage on data acquisition.
The reduced unsupervised approach is trained and tested just on motor
voltage and current data, which solves the problem of difficult measuring
conditions for vibrations and temperatures in an aircraft.

There still exists plenty of ways for improvement and deeper research. For
example, in terms of unsupervised approach, finding a way of component-
related fault classification would be an interesting topic for further investiga-
tion. Now, we possess only the overall health indicator, but a health indicator
having the information of component degradation would have a great industry
potential as the unsupervised approach can be trained just on operational
data of assets.

We believe, that with our reduced unsupervised GAN approach, we con-
tributed to a developing movement of AI fault diagnosis. To emphasize, our
neural network is creating a health indicator trained just on healthy operation
current and voltage data and creates a health indicator of overall state. This
proves a high potential in this approach for further research and later industry
deployment.
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Appendix A
List of acronyms and symbols

Acronym/symbol Meaning
ACE Actuator Control Electronics
AI Artificial Intelligence
ANN Artificial Neural Network
BG Bond Graph
CNN Convolution Neural Network
DDT Deep Digital Twin
DFT Discrete Fourier Transform
EMA Electro-Mechanical Actuator
FFT Fast Fourier Transform
FD Fault Detection
FID Frechet Inception Distance
GAN Generative Adversarial Network
HI Health Indicator
LSTM Long Short Term Memory
LCL Lower Control Limit
MEA More Electric Aircraft
MSE Mean Square Error
NN Neural Network
PDE Power Drive Electronics
PCA Principle Component Analysis
PHM Prognostics and Health Management
RNN Recurrent Neural Network
RUL Remaining Useful Life
UCL Upper Control Limit
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Appendix B
Figures

0 100 200 300 400 500 600 700 800
Decision number [-]

0.0

0.2

0.4

0.6

0.8

1.0

He
al

th
 in

di
ca

to
r [

-]

healthy tooth_deformation missing_tooth short resistance

Figure B.1: Decisions (HI) of collapsed discriminator
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Figure B.2: Boxplot of collapsed discriminator
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Figure B.3: Generator model (None stands for arbitrary batch size)
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Figure B.4: Discriminator model (None stands for arbitrary batch size)
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Figure B.5: Reduced generator model (None stands for arbitrary batch size)
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Figure B.6: Reduced discriminator model (None stands for arbitrary batch size)
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