
Master’s Thesis

Data Acquisition and Control Framework
for an Intelligent Vehicle

Bc. Jan Nejtek

Department of Measurement
Supervisor: doc. Ing. Jǐŕı Novák, PhD.

4 January 2022

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466128Personal ID number:Nejtek JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Open InformaticsStudy program:

Computer EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Data acquisition and control framework for intelligent vehicle

Master’s thesis title in Czech:

Framework pro sběr dat a řízení inteligentního vozu

Guidelines:
Design and implement a data broker middleware framework for communication between the hardware (vehicle) dependent
layer providing vehicle status information and independent vehicle control, and model layer providing prediction of vehicle
users behavior.
Middleware should be able to communicate with hardware dependent layer using a dedicated REST API. With it own
REST API it will provide an interface for predictive models.
Analyze the requirements, choose suitable software platform, design and justify the structure of your implementation.
Design a sutable form of communication between middleware and predictive models.
Implement complete system and verify its functionality using a specific use case and respective predictive model (e.g. for
adaptive cruise control/speed limiter functionality).

Bibliography / sources:
Beran, J.: Firmware for Control Module of an Intelligent Vehicle, Diplomová práce ČVUT FEL, 2020

Name and workplace of master’s thesis supervisor:

doc. Ing. Jiří Novák, Ph.D., Department of Measurement, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 04.01.2022Date of master’s thesis assignment: 13.09.2021

Assignment valid until:
by the end of winter semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. Ing. Jiří Novák, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to express my sincere gratitude to my supervisor doc. Ing. Jǐŕı
Novák, PhD. for his continued support, guidance and mentorship. I would
also like to thank Ing. Jan Sobotka, PhD. for his aid in establishing the func-
tionality of the initial prototypes of the devices used in my thesis.
Furthermore, I would like to thank Ing. Jaroslav Beran, whose diploma thesis
called Firmware for Control Module of an Intelligent Vehicle provided an im-
portant component for my framework – the Controller Area Network (CAN)
Activator.
I also want to thank my dear friend Anne Vedel Hansen for her help with
proofreading and correcting the language used in this thesis. Last but not
least, I have to thank my dog Benjamin for providing unconditional support
during my studies and work on this thesis.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

Prague, 4 January 2022 .

vii

Czech Technical University in Prague
Faculty of Electrical Engineering
© 2022 Jan Nejtek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act, and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nejtek, Jan. Data Acquisition and Control Framework for an Intelligent Ve-
hicle. Master’s Thesis. Czech Technical University in Prague, Faculty of
Electrical Engineering, 2022.

viii

Abstrakt

Ćılem této práce je navrhnout systém pro sběr dat z komunikačńıch sběrnic
vozidla a pro následné ovládáńı funkćı tohoto vozidla. Tyto funkce jsou zpř́ı-
stupněny okolńımu světu pomoćı HTTP(S) REST API za účelem propojeńı s
exterńımi modely strojového učeńı / umělé inteligence. Celkový účel této sou-
stavy je pro zajǐstěńı zvýšeńı pohodĺı a bezpečnosti řidiče a pasažér̊u vozidla
pomoćı předv́ıdáńı r̊uzných akćı, jako je nastavováńı klimatizace, vyhř́ıváńı
sedadel nebo adaptivńıho tempomatu, a jejich prováděńı bez nutnosti ztráty
pozornosti řidiče na dobu deľśı než nezbytně nutnou.

Práce je rozdělena do čtyřech hlavńıch část́ı. Prvńı část popisuje architek-
turu systému a diskutuje jeho rozděleńı do jednotlivých komponent. Druhá
část zkoumá požadavky na zmı́něné komponenty a popisuje jejich návrh.
Následně třet́ı část zkoumá spolehlivost a analyzuje možná selháńı těchto kom-
ponent. Čtvrtá část popisuje reálnou vestavbu systému do vozidla a k tomu
potřebnou konfiguraci hardware a software.

Kĺıčová slova sběr dat; REST API; vestavný systém; ovládáńı vozidla;
CAN; ASP.NET Core; Flask; Qt

Překlad názvu Framework pro sběr dat a ř́ızeńı inteligentńıho vozu

ix

Abstract

The goal of this thesis is to design a framework for the acquisition of data
from a vehicle’s systems and for the control of the same vehicle’s functionality.
This functionality is then exposed to the outside world via a HTTP(S) REST
API in order to interface with external machine learning / artificial intelli-
gence models. Together, the purpose of this system is to further the comfort
and safety of the vehicle’s occupants by predicting certain actions, such as
adjusting the air conditioning, seat heating, or adaptive cruise control, and
carrying them out without the need for the driver to lose focus for extended
amounts of time.

This thesis is split into four main parts. In the first part, the architecture
of the whole framework is discussed, with the reasoning behind its separation
into individual components. The second part explains the requirements and
the design of individual components in the framework. Subsequently, the third
part investigates reliability and failure analysis of said components and the
mitigation of errors. The fourth part explains the physical implementation
of the framework in the vehicle, and the necessary hardware and software
configuration.

Keywords data acquisition; REST API; embedded system; vehicle control;
CAN; ASP.NET Core; Flask; Qt

x

Contents

1 Introduction 1
1.1 Touch Screen Interface Complexity Analysis 3
1.2 Implementing External Control in an Existing Production Car 4
1.3 Displaying Custom User Prompts on an Existing Production

Infotainment Screen . 5
1.4 Hardware Platform for In-Car Computing 6
1.5 Conclusion of the Introduction 7

2 Top-level Architecture of the Framework 9
2.1 Comparison to Existing Solutions 9
2.2 Outside-Facing API . 10
2.3 Inside-Facing Functionality . 11
2.4 Selection of Internal Communication Methods 12
2.5 Overall Layout . 14
2.6 Bring-up Behaviour . 15

3 Design of Individual Framework Components 19
3.1 Data Acquisition Module . 19

3.1.1 Porting Legacy C++ code from Windows to Linux . . . 20
3.1.2 Efficient Implementation of Data Processing 22
3.1.3 Extending the Module for Acquisition of Structured Data 24

3.2 Human-Machine Interface Module 25
3.2.1 Designing a GUI Program with Dual Functionality . . . 26
3.2.2 Connecting a Graphical User Interface to a CAN Network 27
3.2.3 Alternative Input Handling in a Qt Application 29
3.2.4 Styling and Other Implementation Particularities 30

3.3 Car-Dependent API . 31
3.3.1 Checking Health of Subprocesses 32

3.4 Data Broker / Middleware API 32

xi

3.4.1 Architecture of Data Input and Persistence 35
3.4.2 JSON Data Polymorphism in ASP.NET Core 35
3.4.3 Management of Individual Driver Profiles 36
3.4.4 Mechanism of Handling AI/ML Model Requests 37
3.4.5 Example AI/ML Model Placeholders 39
3.4.6 Example API Endpoint Requests 40

4 Framework Reliability and Failure Mitigation 43
4.1 Testing of Web Framework-Based Components 44
4.2 Preserving Partial Functionality in Case of Errors 45
4.3 Custom Heartbeat Script . 45

5 Software and Hardware Configuration for Optimal Operation 47
5.1 Operating System Environment 47
5.2 Leveraging the Embedded PC Watchdog Timer 48
5.3 Ensuring Reliable Startup of the System 51

6 Conclusion 53

Glossary 55

Acronyms 57

Bibliography 59

A Contents of the included DVD 63

xii

List of Figures

1.1 Pontiac Firebird (third generation) stylized as a replica of the KITT vehicle. . 2
1.2 Example of an inexperienced driver behind the wheel of a test vehicle. 4
1.3 Component diagram of the approach to display custom prompts on the car’s

infotainment screen. 6
1.4 Advantech ARK-3520P fanless embedded box computer. 7

2.1 Component diagram of the system’s top-level architecture. 14
2.2 State diagram of the overall bring-up behaviour. 15
2.3 State diagram of the Car-Dependent API bring-up behaviour. 16
2.4 State diagram of the Data Broker API bring-up behaviour. 17

3.1 Sequence diagram of the Data Acquisition module’s RPC handling behaviour. 23
3.2 Sequence diagram of the Data Acquisition module’s CAN data handling behaviour. 24
3.3 Sequence diagram of the Data Acquisition module’s BAP data handling behaviour. 25
3.4 Sequence diagram of the Human Machine Interface module’s RPC handling

behaviour. 28
3.5 Sequence diagram of the Human Machine Interface module’s CAN data handling

behaviour. 29
3.6 Screenshot of the HMI module’s output during an AI/ML model action interaction. 31
3.7 Screenshot of the HMI module’s output during a driver selection interaction. . 31
3.8 Sequence diagram of the Data Broker / Middleware API initial driver profile

selection behaviour. 36
3.9 Sequence diagram of the Data Broker / Middleware API model data handling

behaviour. 38

xiii

List of Tables

1.1 Required Touch Interactions for Various Controls of the Car’s Comfort Functions. 3

4.1 Investigated Failure Modes of the System Along With Facilities to Resolve Them. 43

xv

Chapter 1
Introduction

Recent years have seen an interesting phenomenon. As more and more comfort
features have been added to passenger cars, the amount of buttons for the
occupants to push has regressed. That is, of course, easily explained by the
use of modern day touch screen interfaces and similar technology, such as touch
pads or scroll wheels. This, however, raises the matter of safety concerns as
the attention of the driver can be needlessly broken by trivial actions regarding
the control of the car’s comfort functions that used to rely on muscle memory
and touch feedback, which now require one or more interactions with a flat
touch screen.

Even when the driver fully focuses on the road and the interactions with the
car’s comfort system are handled by the front passenger, a potentially unsafe
situation can occur in case of misunderstandings and errors when adjusting the
controls, such as turning the sound system volume way up instead of turning
it down, or the passenger getting angry at (subjectively) nonsensical controls
or suboptimal touch screen sensitivity.1

A solution has been proposed which eliminates this element of failure by
shifting the difficult2 parts of control (which element to control and what
value to set) to an artificial intelligence model and leaving the user with a
simple question (ex. “Would you like to switch the radio sound source to
Bluetooth?”) and a selection between Yes and No.

This setup also has the possibility to make the vehicle more comfortable
and approachable for first-time, or otherwise inexperienced drivers and pas-
sengers (e.g. rental or company-owned cars) and thus increase the overall
satisfaction with it. Even compared to the vehicles of yesteryear which relied
on traditional muscle memory and tactile feedback, there is no learning curve
with the use of a machine learning-aided decision mechanism, and there is
further potential for voice control and text-to-speech integration.

1Author’s personal experience with family members.
2Not meant as “difficult to decide”, but more as “difficult to correctly input”.

1

Such a concept has already been popularized as far back as 1982 by action
crime drama television series Knight Rider, whose protagonist, crime fighter
Michael Knight, is assisted in his adventures by a car named KITT3. This car
shows features discussed in above paragraphs, such as artificial intelligence,
voice control, and an artificial voice of its own. Furthermore it has the ability
to self drive and a high tolerance to damage, features that are not a part of
the topic of this thesis.

Figure 1.1: Pontiac Firebird (third generation) stylized as a replica of the KITT vehicle.
Image used with permission. Photo 176286875 © Dawid Kalisinski | Dreamstime.com

The entertainment franchise started by the original television series has
grown considerably in the following years, adding two more television series
released as recently as 2009, three movies, five video games and numerous toys
and models. [1] [2]

From this we can infer that adding such features to a production car has
the potential to be well received by customers and that further integration
with additional artificial intelligence (ex. voice assistants) is another topic
worth exploring. Possibility for further market promotion of the vehicle, as
well as popularization of science and education (namely computer engineering
and AI/ML engineering) is also to be considered, although care must be taken
not to violate the intellectual property of the original television series.

3Knight Industries Two Thousand

2

1.1 Touch Screen Interface Complexity Analysis

I have carried out a simple analysis of how many touch screen interactions
are required to adjust various comfort settings on our car of interest (2020
model Škoda Kodiaq with MIB 2.5 radio and optional Canton sound system
upgrade). In the below table 1.1 we see various “commands” that a user
(passenger or driver) may want to issue to the car’s comfort controls, and
thus how many interactions can be conserved by the use of an intelligent
control framework, which would then be capable of reducing the number of
interactions down to one.

As some adjustments to the car’s control function require both button
presses and touch screen interactions, I have recorded button presses in the
table separately. Furthermore, the amount of touch screen interactions for a
single action can actually vary depending on the state the comfort controls
have been left in by the previous interaction, and such state may be permanent
(e.g. not time out and change back to a default state). This happens notably
in the case of changing radio stations due to the paging of the radio station
presets, and thus almost completely precludes the use of muscle memory,
forcing the driver to break attention on the road and look at the radio.

An uncertain amount of touch screen interactions needed to carry out
adjustments also happens in the case of sound volume adjustment, where a
well-known volume knob has also been superseded by capacitive touch buttons.
I have counted those interactions as touch screen interactions, as the buttons
have the same tactile feeling as a flat touch screen and are located in close
proximity to it.

Action Touch Interactions Physical Button Presses
adjust sound volume 1 to several n/a
set sound source 1 to 4 n/a
adjust steering wheel heating 1 1
adjust seat heating 0 to 1 1 to 3
set independent heating 3 to 5 0 to 1
adjust rear seat temperature 1 to several 0 to 1
set driving mode 1 1
set (adaptive) cruise control n/a 2 to several
set speed limiter n/a 3 to several

Table 1.1: Required Touch Interactions for Various Controls of the Car’s Comfort
Functions.

Measurement taken by the author.

At this point it can be argued that the driver can control the comfort
functions safely using the steering wheel controls, coupled with the modern
multi-function instrument display, instead of focusing on the radio’s touch
controls. While this is possible, not all functions can be controlled in this
manner (namely adaptive cruise control and air conditioning), and the issue

3

with breaking attention (looking away from the road) still persists, mainly in
drivers that are inexperienced with the particular make and model of the car
they are currently driving.

Figure 1.2: Example of an inexperienced driver behind the wheel of a test vehicle.

1.2 Implementing External Control in an Existing
Production Car

Recording and analyzing messages on the CAN is easy, because it is a bus-type
communication. This holds true as long as the definitions of the messages that
come over the bus are known, since the messages themselves hold raw binary
data with no descriptors. On the other hand, reliably introducing external
data into a CAN network of a finished production car without significant
changes, is a difficult task. Save for the vehicle’s diagnostics, no part of
the electronics is intended to accept commands from an external, previously
unknown source.

4

The basic theory of how to accomplish this is as follows: Create a gateway
that will intercept messages on the CAN bus of the vehicle and then modify
their contents according to the desired changes. This is further complicated by
the fact that some vehicles use additional, higher level protocols on top of the
standard CAN bus communications, such as the Bedien und Anzeigeprotokoll
(BAP) protocol in case of cars produced by Volkswagen AG.

This is not a trivial matter and it constitutes a topic for a thesis of its
own. Luckily, this has already been described and solved by Ing. Jaroslav
Beran in his thesis named Firmware for Control Module of an Intelligent
Vehicle. [3] The resulting software and firmware from his thesis will be used
to implement control functionality, together with hardware CAN gateways by
the Department of Measurement. [4]

It needs to be stated that if such functionality is to be integrated in a
future production vehicle straight from the factory, a different approach will
likely be taken. External control functionality could be implemented through
changes in the vehicle’s infotainment or electronic control units.

1.3 Displaying Custom User Prompts on an
Existing Production Infotainment Screen

The most pragmatic approach in adding custom features into a pre-existing
vehicle is to just add a new device on the dashboard, somewhere within easy
and convenient reach of the driver. This has been commonly seen in practice
for as long as vehicles have been modified – examples being taximeters, citizen
band radios, blue light and siren controls in rescue vehicles, or even something
as trivial as smartphone charging mounts. This makes it easy to imagine
that an AI/ML based driver aid could be controlled from a mounted tablet
computer or something similar.

A more elegant solution, however, has been provided to me and my de-
partment by the car’s manufacturer in the form of a custom display source
switch with HDMI input. This is made possible as the infotainment system
in the car in question is split into two parts – the display and the main unit.
Those two parts are connected by an LVDS cable, which allows the inclusion
of a display switch between them. The display switch can then switch the
picture visible on the main infotainment screen for a custom one generated by
my system.

As the touch information is relayed to the main unit via communcations
on the CAN bus, a CAN gateway, [4] same as the ones used in Ing. Jaroslav
Beran’s thesis, can be used to intercept said touch information. This will have
a twofold effect: Disable unwanted input to the vehicle’s infotainment while
the picture is swapped for our own prompts, and allow us to evaluate whether
the user has touched our Yes or No button.

5

Infotainment main unitInfotainment main unit

CAN gatewayCAN gatewayLVDS/HDMI switchLVDS/HDMI switch

Infotainment screenInfotainment screen

ComputerComputer

CAN
LVDS

CAN
LVDS

CAN FD
HDMI

Figure 1.3: Component diagram of the approach to display custom prompts on the car’s
infotainment screen.

Components in light green are original parts of the car, and components in grey have been
provided externally and are not by the author.

This is a good time to mention that the CAN gateway, made by the De-
partment of measurement of my faculty, uses the more modern Controller
Area Network Flexible Data-rate (CAN FD) protocol to communicate with
the computer. That is because in some use-cases foreign to this thesis, there
is a requirement for high bandwidth on the control interface. This changes
little, aside from the need to select an appropriate CAN FD interface for the
computer.

1.4 Hardware Platform for In-Car Computing

My supervisor has assigned me to use the Advantech ARK-3520P fanless em-
bedded box computer, which was already in the Department’s possession. I
had no objections to this, as this kind of device seems to be perfect for such ap-
plication because it has many good capabilities for use as an in-car computer

6

according to its datasheet [5]:

• Fanless design prevents long term dust accumulation.

• Wide operating temperature range (-20°C to +60°C).

• High vibration and shock tolerance (30 G shock, 3 G root-main-square
vibration).

• DC power supply with wide operating voltage range (9 to 36 VDC).

However, as the computer sadly doesn’t provide any CAN FD interfaces
(neither built-in, nor as optional expansion), we needed to add an external
interface. We have decided to use the Kvaser Hybrid Pro 2xCAN/LIN USB
interface due to the Department’s previous experience with it, good support
on the Linux operating system, and a very wide operating temperature range.

Figure 1.4: Advantech ARK-3520P fanless embedded box computer.
Image provided by the manufacturer.

1.5 Conclusion of the Introduction
Simply and shortly put, we are going to build a car that can control
its own comfort functions (such as air conditioning or cruise control)
using an AI/ML system. This is so that the driver can focus on the
road and not be distracted. The idea is for the car to behave as if the
driver always has a passenger with him / her, and for that imaginary
passenger to be in charge of controlling the car’s various comfort func-
tions, reacting to events in and around the car on its own. The driver
is only asked to confirm or refuse the action.

7

Chapter 2
Top-level Architecture of the

Framework

Having spoken repeatedly about artificial intelligence and machine learning, I
turn to my study results report, and with great shock realize that I have not
studied a single subject nor had a single exam on this topic, aside from some
basic statistics. This makes sense, as I am studying Computer Engineering,
a specialisation that does not deal with such matters. Thus it is clear that
the artificial intelligence will need to be separate and also modular from the
framework, in order to be supplied by other parties.

Keeping this in mind, and when we forgo the motivation talks, questions
of popular culture, business marketing, and user convenience, all discussed in
the previous chapter, we are left with the actual engineering task laid before
us:

“Give the car a REST API.”
The basic idea is as follows: The artificial intelligence models will reside

on their own separate server, or even multiple servers. They will communicate
with the car API over the HTTP(S) protocol, following the REST architec-
tural style. Each model will have its own endpoint in the API, and it will
be able to fetch its relevant data (values gathered from the car’s systems) at
its own pace via GET requests. When the model decides that an action is to
be taken, it will issue a POST request with the relevant details in it. This
action request will be further parsed and validated by the server running the
car API.

2.1 Comparison to Existing Solutions

Considering all the specifics I spoke about in the above paragraphs (and in the
introductory chapter), a parallel can be drawn between the outlined system

9

and some readily available message queuing systems (also known as message
brokers). Examples of those include Apache Kafka, RabbitMQ, RocketMQ or
Apache Pulsar. Such systems are used in large scale projects with long-term
operation or for a large amount of data being exchanged.

A message broker enables different applications (or application compo-
nents) to communicate via passed messages, which can be individually col-
lected on-demand or directly streamed. The messages can be separated into
different topics, and can even have multiple publishers (senders) and sub-
scribers (receivers) for a single topic – the capabilities of such systems are
vast. [6]

While a message broker system is capable of accomplishing the task of
collecting data and serving them to AI/ML models, using it to control just
a single vehicle would be excessive. Implementing adapters to reliably pass
data into such a queue, and to extract it back again, would take as much
consideration and careful design as implementing a data broker from scratch.

If such a system for control of an intelligent vehicle is deemed marketable
and effective, a large-scale, horizontally scalable message broker, such as
Apache Kafka, may be implemented for passing messages from an entire fleet
of vehicles.

2.2 Outside-Facing API

The tasks required to be carried out by the outside-facing “data broker” that
the AI/ML models will interface with are as follows:

• Provide an API for each individual registered model.

• Validate actions issued by registered models.

• Allow registration, modification, and deletion of individual model API
endpoints (CRUD configuration capability).

• Keep track of different drivers, allow CRUD configuration capability for
them, and report the current driver to registered models.

• Optionally allow for different data formatting in actions issued by reg-
istered models (as they will be provided by different suppliers).

• Optionally persistently cache collected signals in case of system restart.

As we assume there will be a multitude of various AI/ML models request-
ing their data at various paces (slow to very fast), a robust and effective web
framework for constructing the car-side server must be chosen. I have de-
cided to use the C# programming language due to my previous experience
with it, and the ASP.NET Core framework from Microsoft, as it is presently

10

considered to be one of the fastest web frameworks. For example, it consis-
tently reaches top 10 in the TechEmpower Web Framework Benchmarks in
overall (composite) score over the past years. [7] Other high-ranking frame-
works from this test were considered, but ultimately the choice stayed with
ASP.NET Core, mainly due to the renown and long-standing support of the
ASP platform by its creator Microsoft, and due to ease of development.

I decided to use SQLite as the internal database of the car-side server as
there will be no extensive database functionality required; and the ORM func-
tionalty provided in the ASP.NET Core framework by the Entity Framework
Core component natively supports SQLite as its backend. The purpose of the
database will be twofold: To store the configuration and registration data of
individual models (and thus their API endpoints), and to provide persistent
storage of “last-seen” signal values for fault tolerance. This will be explained
in-depth in the coming chapters.

To enable widely individual processing and validation of data coming
from the various AI/ML models, I took a relatively novel approach, which is
to use the IronPython implementation of the Python programming language.
This enables me to embed scripting functionality directly into the “data bro-
ker” C# server. As such, every registered AI/ML model will have its own
configurable Python script, which will be executed every time data is submit-
ted by said model. Thus it can be used both for validation (to protect against
spurious model behaviour) and to enable it to handle any possible variation
in data formatting between different models.

2.3 Inside-Facing Functionality

With the “data broker” role fulfilled, we have three more sub-tasks at hand:

• Data acquisition from the car’s communication networks (DAQ).

• Communication with the vehicle’s occupants (HMI).

• Commands to the car (Activator). (Solved by Ing. Jaroslav Beran.)

All of the above sub-tasks are, without doubt, hardware dependent, with
the term “hardware” including the car itself. A different model or a different
manufacturer will use different communication networks or have them set up
differently, jeopardizing the compatibility of DAQ and Activator tasks. Most
likely a different vehicle infotainment or “radio” will be used as well, meaning
the HMI task will also be dissimilar. For this reason we can label these three
sub-tasks as car-dependent.

In stark contrast, the REST API (data broker) is, in its conception and
implementation, independent of the car’s specifics, and with sufficiently mod-
ular design, could even be decoupled from the car itself in future updates to
the framework. Thus, we can label it as car-independent.

11

To make a clear separation from an architectural point of view, and to en-
able decoupling the car-dependent and car-independent parts of the system in
the future, a second, very simple REST API is proposed. It will be queried by
the data broker and translate its commands to the DAQ, HMI and Activator
parts of the system. This will also facilitate the “porting” or expansion of this
thesis’ result to other car models and manufacturers.

I have decided to create this unifying car-dependent API in the Python
programming language and the Flask microframework for its ease of use, small
size and simplicity of development. Flask is a minimal framework intended
for the development of websites and APIs made by the Pallets Projects com-
munity. While this combination is considered to be among the slowest of web
frameworks, placing somewhere around the bottom 20 in the TechEmpower
Web Framework Benchmarks [7], this is not significant, as the unifying car-
dependent API will not be handling any data-intensive tasks.

2.4 Selection of Internal Communication Methods

Speaking of data-intensive tasks, the stream of collected data from the DAQ
component will be constant. Although the present solution operates with only
one connected CAN bus interface – meaning that the raw data throughput is
not immense – we have to keep in mind that future versions can add more data
inputs, for instance additional CAN bus interfaces or even different networks
such as Automotive Ethernet (100Base-T1) – with the possibility of very high
data rates.

This makes it clear that the DAQ component is going to need a direct,
continuous, streaming connection to the upper-layer data broker. This con-
nection will be made on-demand when the data broker starts up, and will
skip the “unifying” Python API. In order to maintain the separation of car-
dependent and car-independent parts of the system (to enable the eventual
decoupling of them), a secure connection is needed.

I elected to use JSON streaming over a TCP socket, the latter being
secured with SSL/TLS, for this task. JSON streaming (namely newline-
delimited JSON or NDJSON for short) was used because I am already us-
ing the JSON format extensively in other parts of this thesis (namely in the
REST APIs) and thus it offered easy integration with my existing tools and
libraries. I considered my options between TCP, UDP and SCTP, for the
socket protocol and ultimately ruled out UDP because of its lack of guaran-
tees, and SCTP because of low support, leaving TCP as the clear choice. A
more in-depth analysis of the differences between those protocols was carried
out by Ing. Jaroslav Beran in his thesis.[3]

SSL/TLS is considered to be the de-facto standard for encryption in socket
communicaton, and is widely supported by many free and open-source libraries
for many programming languages. A streaming connection secured in this

12

manner will nicely compliment the use of the secured HTTPS protocol for
transactional operations.

The last part left to decide is the method of communication between the
car-dependent API and the individual modules that will be controlled by it.
As I already had the Activator module provided to me, I took inspiration in its
control method and decided to use the same for the HMI and DAQ modules
to keep it simple.

The control method in question is JSON-RPC, a specification for remote
procedure calls, which uses the JSON data format. [8] It is very simple to
implement and use, especially with JSON being used elsewhere in the project.
Utilizing it in conjunction with a TCP socket allows us to manually control
and troubleshoot the modules using the netcat (or nc for short) command
on Linux.

During the project’s development it proved necessary to acquire more com-
plex control messages from the car. These are encoded with the BAP protocol,
and for decoding them I was supplied a Linux command-line utility from the
car’s manufacturer. Sadly I was not provided with the source code, which
precluded me from importing the utility’s functionality directly into the DAQ
module as a library.

However, the utility can be configured for output of the decoded messages
into the standard output, conveniently also in the NDJSON format. Thus,
I decided to pipe its output into my DAQ module and implement decoding
and re-encoding of the messages coming from said utility. Hence, they will be
mixed on the output of the DAQ module with the messages that the module
itself decodes directly from the CAN bus.

13

2.5 Overall Layout

The below figure 2.1 shows the whole layout of components and communica-
tion protocols that I have described so far. The “outside facing” HTTP(S)
REST API that the Data broker / Middleware part will use to interface with
external AI/ML modules is not pictured.

Data Acquisition and Control Framework

Data broker / Middleware APIData broker / Middleware API

Car-Dependent APICar-Dependent API

Activator moduleActivator module HMI moduleHMI module DAQ moduleDAQ module

BAP utilityBAP utility

HTTPS REST

JSON-RPC

NDJSON over SSL

NDJSON over pipe

Figure 2.1: Component diagram of the system’s top-level architecture.
Components in light gray have been provided externally and are not made by the author.

14

2.6 Bring-up Behaviour

My description of the whole system’s layout and architecture has made one
thing clear: It is far from trivial. The outward-facing data broker API depends
on the functionality of the lower-level systems under it. The DAQ module
needs to establish the SSL connection to the data broker API in order for the
system to function properly.

We can roughly split the system bring-up into three parts:

• Operating system configuration (bring up interfaces, prepare log files).

• Car-Dependent API startup.

• Data Broker API startup.

Operating system configuration will be described in later chapters. After
the operating system starts, the Car-Dependent API can then be started along
with the Data Broker API. The latter API will poll the Car-Dependent API
via a special heartbeat/health check endpoint. If this fails, the bring-up of
the Data Broker is paused and the polling is retried after a few seconds. This
means the bring-up is quite simple from the point of view of the operating
system, as pictured in below figure 2.2.

OS-related bring-upOS-related bring-up

Start Data Broker APIStart Data Broker API

Start Car-Dependent APIStart Car-Dependent API

Figure 2.2: State diagram of the overall bring-up behaviour.

As the Car-Dependent API is going to be run on the same hardware the
actual modules are running on, it can be tasked with bringing them up and
monitoring their health status. This is facilitated by the rich functionality of
the Python programming language’s libraries, namely the subprocess mod-
ule. Figure 2.3 shows this sequence.

15

Start DAQ module subprocessStart DAQ module subprocess

Start HMI module subprocessStart HMI module subprocess

Start Activator module subprocessStart Activator module subprocess

Wait a few secondsWait a few seconds

Check the health of subprocessesCheck the health of subprocesses

Figure 2.3: State diagram of the Car-Dependent API bring-up behaviour.
The “Check the health of subprocesses” state can be considered final, but due to repeated

waiting and re-checking I decided to not label it so.

Only after the Car-Dependent API is established to be working and ready,
will the Data Broker continue starting up and then issue a command to con-
figure the DAQ module connection to itself. Thus, the “circle” visible in figure
2.1 consisting of HTTP(S), JSON-RPC and NDJSON over SSL is completed.

16

The figure 2.4 beneath illustrates this wait-and-retry mechanism and sub-
sequent configuration upload to the Car-Dependent API.

For debugging purposes, I later added a feature that allows us to turn
this behaviour off via a configuration file belonging to the Data Broker API,
so that its bring-up will not be paused. This means the Data Broker API
only serves old signals previously persisted4 to its database, or none at all
if the database is empty, so this functionality should always be preserved in
production use.

Poll Car-Dependent APIPoll Car-Dependent API

Log, wait a few secondsLog, wait a few seconds

Issue API command to configure DAQ moduleIssue API command to configure DAQ module

No response / error
Success

Figure 2.4: State diagram of the Data Broker API bring-up behaviour.

4Data that has been saved to the database during a previous session, together with appro-
priate timestamps.

17

Chapter 3
Design of Individual Framework

Components

All of the framework components will need to leverage asynchronous program-
ming techniques – the exact implementation of them is going to depend on
the used programming language and/or framework. In the case of the DAQ
module, it is required to handle multiple data sources (CAN data coming in
and also piped data from the BAP utility) together with interprocess com-
munication via JSON-RPC. In the case of the HMI module, it will need to
handle drawing the UI, CAN data coming in from the touch screen, as well
as interprocess communication. The Car-Dependent API has to schedule reg-
ular health checks of its child processes. Finally the Data Broker API must
asynchronously accept data collected from the BAP utility, and also schedule
persisting collected signals to its database for reliability.

3.1 Data Acquisition Module

The job of the Data Acquisition (DAQ) module is, as its name suggests, to
acquire raw data from the car’s communication networks, and to decode it so
the Data Broker can make the individual signals and their values available to
the AI/ML models that interface to it.

Originally, the DAQ module was only intended to capture unstructured
communication on the CAN bus, using the so-called DataBase CAN (DBC)
files. Before I explain what the function of the DBC files is, let’s first remind
ourselves how the CAN bus works from a programmer’s perspective. When
the CAN interface is correctly set up and the communication is established, we
start receiving a stream of CAN frames (also called messages). These frames
contain nothing more than an identification number (ID) and one to eight
bytes of binary data. How do we make sense of this?

The DBC files contain descriptions of the various signal values that are

19

transmitted in said CAN frames. Those descriptions include a human-readable
name, a unit of measure (if any), and in which frame the signal is contained
(by frame ID), and which parts of the frame’s data correspond to its value.

These make DBC files a considerable benefit in accomplishing our task.
Nonetheless, we still have to look at it from the programmer’s perspective:
How do we parse and utilize these files? There exist a few free, open-source
libraries for dealing with such files, however, I ran into multiple issues when
using them with DBC files provided to me by my supervisor.

This part of the story actually began one semester before the time of writ-
ing this thesis. The Department of Measurement has its own internal DBC
parsing library, and my supervisor has assigned me to use it. The library
worked flawlessly with any files that I could test it out with, however, it was
Windows-dependent and built with Visual Studio. Because of this depen-
dency, my semestral task back then became the cleaning up of this library
(from this point known as DbcFileC) and porting it to Linux.

3.1.1 Porting Legacy C++ code from Windows to Linux

The original DbcFileC library, as I received it, dated from 2003 and contained
approximately 5000 lines of code. It combined seven C++ classes in one source
code file and one header file. As it was originally built with an old version
of Microsoft Visual Studio, I struggled to compile it on my work computer,
which had a newer version of it. Clearly, there was considerable housekeeping
that had to be done.

My first goal was, obviously, the successful compilation of the entire source
code. As simply transferring the code to a new Visual Studio project resulted
in arcane linker5 errors, I decided to recreate the project as a CMake project.
This had a twofold benefit. First, the CMake toolkit facilitates easy compila-
tion on different platforms (as opposed to Visual Studio projects). Secondly, it
immediately compiled the source code (still Windows-only at this point) with-
out any issues. Since Microsoft Visual Studio itself natively supports CMake
integration from the 2017 version onward[9], there were no further obstacles
for me to work around.

Next, I worked on separating the library’s classes into separate source and
header files, and updated the CMake configuration accordingly. As the library
was using the Boost library for its serialization functions, I updated the used
Boost library version to a more recent one. Because of the pre-existing usage
of said library, I also created unit tests using its Boost.Test component in
order to verify that I had not broken anything while making changes to the
source code.

At the same time, I worked on transferring the information and notes first
found in the many comments located in the source code, into a form supported
5The linker is a program which is a part of the compilation toolchain. It combines individual
compiled object files into a final executable file in the last step of the compilation process.

20

by the Doxygen documentation generator tool. I did individual tests and
consulted my supervisor in order to document the parts of the source code
that weren’t previously clear in their function. This resulted in the ability to
generate an all-inclusive documentation PDF for the newly remade library.

With the order restored in the file structure, documentation available,
and unit tests ready, I commenced porting the library to Linux. The library
exclusively used Safe String Functions6, which were easy to change back to
their standard versions. Also, some odd Win32 functions were used to make
the past programmer’s job easier, and those were also simple to remove. The
largest issue was in the library’s use of wide characters7 and wide strings8.
This was done, no doubt, in order to enable the use of accented and other
non-standard characters in the DBC files, as the files may come from the
German manufacturer and may contain, for example, umlauts (¨) or Eszetts
(ß).

Windows facilitates the use of international characters using the UTF-16
encoding, namely UTF-16LE (Little Endian). [10] [11] Its internal API func-
tions thus accept the aforementioned wide characters (C/C++ type wchar t)
and subsequently wide strings (C++ type wstring). Those two mentioned
types are thus assumed to be 16 bits (2 bytes) long.

Linux (and Apple macOS), however, use the UTF-8 encoding for inter-
national characters. While the previously mentioned UTF-16 encoding uses
more space per character to enable a wider array of possible characters, UTF-8
uses a coding sequence of variable length for each character that ranges from
1 to 4 bytes long. [12] Its encoding table is laid out in such a way that the
most commonly used characters match ASCII at a length of 1 byte, and the
sequence gets longer the rarer the character is. This means that any text,
international or not, is composed of individual parts that are always 8 bits (1
byte) long.9

This signifies that the Linux API functions accept regular-width characters
(C/C++ type char) for both English-only and international texts. The type
wchar t has a different meaning on Linux (and macOS), being 4 bytes (32
bits) in length instead of 2 bytes (16 bits) on Windows. As it’s not used in the
Linux APIs, the occurence of wchar t in programs on this platform is very
low.

To summarize, the wide characters are a requirement on Windows, while
they are almost unused on Linux. Furthermore, source code using them is not
portable, as they produce different data widths, and use of them in standard

6Non-standard extension to standard library functions such as strcat, strcpy or sprintf
by Microsoft.

7Wide characters are characters represented by a wider space in memory (2 bytes or more)
instead of the usual single byte used for normal characters.

8Wide strings are strings composed of wide characters.
9As a consequence, a text with accents and other non-standard characters just takes up
more space, compared to a text with no accents.

21

library functions (namely string formatting) may not be equivalent between
different operating systems or compilers.

Now, how do we solve this? While researching this problem, I came across
a manifesto called UTF-8 Everywhere [13], which calls for the ubiquitous usage
of the UTF-8 encoding and provides many excellent reasons to support this
choice.

At this point, I received another benefit of upgrading the included Boost
library version at the start of this library’s re-development. Boost has re-
cently gained a new component, called Boost.Nowide. This wrapper library
easily and conveniently wraps10 standard library functions on Windows and
makes them UTF-8 compatible, while leaving the original UTF-8 compati-
ble functions on other platforms unchanged. This, as a result, allows me to
convert the whole library from the use of wide characters and wide strings
to regular characters and strings – all while preserving the capability to pro-
cess accented and other non-standard characters. With this, we have finally
gained cross-platform compatibility.

Lastly, since some DBC files arrive from other parties encoded in the
CP1252 encoding, I added a simple component that enables the library to
correctly parse this encoding into UTF-8. As a result, the library now solely
uses the UTF-8 character encoding in its internals.

At long last, the library was ready for use on Linux and I created a simple
example program which uses the SocketCAN component of Linux to commu-
nicate with a CAN interface, and which demonstrates the successful parsing
of received CAN frames.

3.1.2 Efficient Implementation of Data Processing

As was mentioned at the very start of this chapter, the DAQ module has to
continuously process the stream of data coming in from the CAN interface. At
the same time, it has to be responsive to configuration requests (JSON-RPC)
incoming via a TCP socket. This implies that we need to use a threaded or
event-driven approach to accomplish this task.

I resolved to use the event-driven approach, mainly for reasons of relia-
bility and simplicity (with no need to be wary of data integrity). Because
of previous knowledge and a wide array of provided functions, I decided to
use the Qt library to build the DAQ module, despite it not being a GUI ap-
plication. The library provides the event loop itself, as well as functionality
for communication over the CAN bus, SSL encryption for TCP sockets, and
JSON parsing functionality.

The basis of the module’s operation is quite simple. After starting up, it
initializes its CAN interface and TCP server for receiving JSON-RPC calls.
10This means to enclose an existing API interface using a minimal layer of new source code

in order to refine it or make it safer to use.

22

In the below figure 3.1 the module’s way of handling said JSON-RPC calls is
described.

Handling an incoming connection (Daq::handleTcpConnection()) and
storing its data (Daq::readTcpData()) are separate procedures, with the sec-
ond one actually also being triggered by an event. This is to handle processing
partially received data – in other words, to not have the requirement for the
JSON data to be received all on one call to QTcpSocket::readAll(). This
may happen due to the processing speed of our computer and also due to the
nature of the TCP communication.

processTcpCommand()

readTcpData()

handleTcpConnection()

Event

Success/Error

Incoming call daq:Daq

Figure 3.1: Sequence diagram of the Data Acquisition module’s RPC handling behaviour.

The main function of the JSON-RPC commands is to configure the DAQ
module as to where to send the parsed data – what the exact port and IP
address of the already running Data Broker component is. If no such data
client is connected, parsing of CAN frames will not occur, as it would be
pointless.

Finally, after all checks are passed and the (Daq::readTcpData()) function
senses the termination of the JSON-RPC command by a NULL character, the
command is processed. As the reference to the original JSON-RPC client is
passed through the call hierarchy, command success or error is reported to the
JSON-RPC client.

The processing of incoming CAN frames is also event driven, thanks to the
seamless implementation of the CAN protocol in the Qt library’s Serial Bus
API. As shown in the below figure 3.2, it is even simpler than the handling

23

processCanFrame()

readCanFrames()

Event
Incoming CAN data daq:Daq

Figure 3.2: Sequence diagram of the Data Acquisition module’s CAN data handling
behaviour.

of JSON-RPC calls described above, as there is no return of data back to the
CAN bus. Decoding via the aforementioned DbcFileC library to a connected
data client is done in the Daq::processCanFrame() call.

3.1.3 Extending the Module for Acquisition of Structured
Data

As mentioned in the introductory chapter, an additional request was raised
later in the development of the system. It was to implement the decoding
of more complex messages being transmitted over the CAN bus. This is
done using the Bedien und Anzeigeprotokoll (BAP). Sadly, the protocol is
proprietary and there is not much information freely available about it. What
I know is that the protocol acts similarly to higher level protocols that we
know and love from computer networks – that is, it uses multiple CAN frames
to transmit a longer message.

Those frames that contain parts of BAP messages are not recognized by
our simpler decoding approach due to having unknown (to us) IDs. I was
provided with a proprietary command-line utility from the manufacturer. No
source code was provided, however, the utility can be configured to output
the data it decoded to the standard output, conveniently in NDJSON format.

I once again leveraged the functionality of the Qt library, this time with the
QProcess class, which allows the programmer to easily start external programs
and to communicate with their standard inputs and outputs in a reliable,
event-driven way. As can be seen in the below figure 3.3, the parsing of the

24

processBapMessage()

readBapData()

Event
Incoming BAP data daq:Daq

Figure 3.3: Sequence diagram of the Data Acquisition module’s BAP data handling
behaviour.

pre-decoded BAP data from the utility is otherwise very similar to the way
the normal CAN bus data (found in single frames) is handled.

3.2 Human-Machine Interface Module

The Human-Machine Interface (HMI) module accomplishes the task of inter-
facing with the user, in our case the driver or the front passenger. Due to
the uncommon hardware architecture of our system, as was first mentioned
in the introductory chapter, the HMI module has an unusual amount of tech-
nologies that it interfaces to. Aside from the expected drawing of Graphical
User Interface (GUI) on-screen, and communication with other components
of our system (via JSON-RPC), it also communicates over the CAN bus and
even uses a serial port. The reasons for this will be explained in detail in the
following sections.

The HMI module uses the same screen as the car’s infotainment system,
which is enabled by the display switch supplied and installed in the car by
the car’s manufacturer. Aside from a regular HDMI display input, the display
switch also requires a single low-voltage signal to select between the original
infotainment picture and said external input.

Here, we run into a slight issue regarding what interface, on the actual
computer, to use in order to drive said signal. All we need is a single pro-
grammable output on the computer, one we could call General Purpose Out-
put (GPO). Although the Advantech computer has a connector called ‘Digital
I/O’, containing 16 pins configurable for both input and output (GPIO), the

25

use of this connector requires the manufacturer’s SUSI 4.0 API, which is not
easily obtainable for Linux. [14] More of my troubles with the manufacturer’s
Linux support will be described in chapter 5.

A quick and simple solution for this was fashioned by my supervisor’s
colleague Ing. Jan Sobotka, PhD., which is to use one of the computer’s
many serial ports. The control signals of an RS-232 port can be fashioned
as simple programmable inputs or outputs, although the particular direction
can not be changed (the RTS and DTR pins are always outputs, CTS and
DSR pins are always inputs). [15] Any differences in voltage levels are easily
resolved with the use optocouplers or similar electrical components.

Referring to the first chapter again, namely section 1.3, the HMI module
also does not receive user input like a normal GUI application would, and
instead communicates over a CAN FD interface with an external gateway.
Said gateway is used to divert CAN data containing touch events that normally
go from the infotainment screen to the infotainment main unit. Now, instead,
the data will be received on the aforementioned CAN FD interface. This
means that the module has to control the CAN gateway, and decode the
touch information from the received CAN frames.

3.2.1 Designing a GUI Program with Dual Functionality

I have once again selected the Qt library to build the module. In this case,
its most obvious function is the creation of a Graphical User Interface (GUI)
for the driver or the passenger to see. However, as was mentioned in the
previous section about the DAQ module, it has many more functions regarding
networking, JSON and the CAN bus, which were all utilized.

As the title of this subsection suggests, the functionality required of the
HMI module is twofold. The first one, most notably, is to show prompts
that offer the vehicle’s occupants an action that a given AI/ML model has
suggested, and allow them to accept or refuse it. (Example: “Would you
like to set the Air Conditioning temperature to 25°C?”) The second one, is to
allow for selection of individual driver profiles when the car is started up. This
is to facilitate the learning process of said AI/ML models, and also enable
individual preferences (e.g. different drivers will probably want to set the
cruise control differently on different occasions, and so on).

Switching between these two modes will be entirely triggered by a JSON-
RPC call, and is not to be affected by the user in any way: The user is
either selecting a driver profile or responding to an AI/ML model action. In
order to accomplish this task, I used the QStackedLayout class from the Qt
library. This class allows me to stack components of the GUI on top of each
other so that only one is visible at a time. The ordering of this “stack” can
then be changed programmatically. As long as this occurs before the car’s
infotainment screen is switched to the computer’s output (and thus before the

26

HMI interface shows), the change between those two functions will be seamless
to the car’s occupants.

3.2.2 Connecting a Graphical User Interface to a CAN
Network

Connecting such dissimilar things as a CAN bus interface and a GUI, seems
like a daunting task. Luckily, using the Qt library’s event system, together
with its previously mentioned native support for the CAN bus, makes this easy
to accomplish. Compared to the previously described DAQ module (which
only received CAN data), the HMI has to send and receive CAN data in
order to tell the CAN gateway to start (and stop) diverting touch data to
it. Two more things must happen: The HMI module has to accept control
commands over JSON-RPC calls, and must also use the RTS pin of a serial
port to switch the infotainment display source. The combination of all these
requirements causes the call sequence of an interaction with the HMI module
to be considerably more complicated.

It should be mentioned that the below figure 3.4 applies only in the case
of an AI/ML model action being presented to the user. Nonetheless, the only
difference in case of the driver selection dialog being displayed is a class named
DriverSelect being called instead of ModelAction.

An interesting point from the diagram to mention is the call to a function
MainWindow::acquireScreen(). As there is only one screen connected to the
HMI module and one interaction can take several seconds, care must be taken
that a new command is not accepted if it arrives too soon after the previous
one. Hence, the module must display a simple mutex11-like functionality in
regards to external access. This will prevent concurrency errors in case of a
mistake or misconfiguration of the system.

Only if the call to the function MainWindow::acquireScreen() succeeds,
will the CAN gateways get configured for diverting touch data to the computer
(function GatewayControl::startCanIntercept()), and the car’s screen is
switched to the computer’s output (function ext hdmi input on()). After
the interaction with the user is finished, the car’s infotainment functionality
is restored by undoing changes that the mentioned functions caused (lowest
three calls in above figure 3.4). For troubleshooting purposes, I also added
a JSON-RPC call that can be used to request whether or not the screen is
occupied, and thus if a new (module action or driver select) interaction can
be initiated.

Last, but certainly not least, I need to mention that the HMI module im-
plements a timeout on both possible interactions with the vehicle’s occupants.
The duration of this timeout is set to 5 seconds in the case of an AI/ML model
action, and 15 seconds in the case of a driver profile selection. This timeout is
11Mutual exclusion, a programming construct used in concurrent programming.

27

handleTcpConnection()

readTcpData()

processCommand()
commandData

acquireScreen()

ext hdmi input on()

startCanIntercept()

startModelAction()

actionFinished()

stopCanIntercept()

ext hdmi input off()

releaseScreen()

Event

Success/Error

Incoming call w:MainWindow dp:DataParser ma:ModelAction

gw:GatewayControl

Figure 3.4: Sequence diagram of the Human Machine Interface module’s RPC handling
behaviour.

visualized to the vehicle’s occupants by a progress bar running down. When
the countdown reaches zero, with no interaction by the user, the result of the
interaction is considered to be a refusal (”No”) in the case of a model action,
and considered as the first, default, driver profile in the case of driver profile
selection. A consequence of this is that the caller of a JSON-RPC request
used to trigger one of mentioned interactions, has to wait for up to 15 seconds
for a result.

28

3.2.3 Alternative Input Handling in a Qt Application

Previously, I mentioned that the HMI module will receive user input through
CAN data that normally goes from the infotainment screen to the infotainment
main unit, which will be diverted by the use of a CAN gateway when the
module is active. This also means that there are no “regular” input devices
(like keyboard, mouse, or touch screen) connected to the computer. As a
result, the regular functions of the Qt library that handle user input have to
be substituted.

Thankfully, the task to accomplish here is not very involved, as the only
type of element (widget) that will need to respond to user interaction is
a button, represented in the Qt library by the QPushButton class. This
class has a property, called ‘checkable’. Setting it to true makes the but-
ton behave similarly to a check box: Once pressed, it stays down. After-
wards the button can be programmatically depressed or released using the
QPushButton::setChecked() function.

Described in figure 3.5 below, is the mechanism used for decoding touch
information from incoming CAN data. Such events occur only during an
active interaction of the user with the HMI module, as mentioned previously.
Once again, this applies to an AI/ML model action being presented to the
user, and, in the case of driver selection dialog, a class named DriverSelect
receives the touch events instead of ModelAction.

readCanFrames()

parseCanFrame()
CanFrame (parsed)

touchEvent()

touchReleaseEvent()

Event

CAN data w:MainWindow dp:DataParser ma:ModelAction

Figure 3.5: Sequence diagram of the Human Machine Interface module’s CAN data
handling behaviour.

As the user interaction data will be handled directly by the HMI module,
we must also remember to offer the user a similar amount of responsiveness

29

that is known from touch-screen interfaces of today – be it in-car infotainment,
or, for example, smartphones and tablets. That is: In order for the interface
to be perceiveably “smooth” to the user, his choice must only be recorded
after he or she releases the finger from the touch screen, not immediately on
finger touch down.

If the choice was recorded immediately after touching the screen, most
users would likely perceive the interface as broken or poorly done. This in-
terface behaviour also allows the user to change or cancel a decision after
touching the screen, by keeping their finger pressed down and dragging it to
a different button, or aside from any buttons, and only then releasing the
touch. The buttons should then react accordingly for a finger being dragged
over them, that is, depress and release, but only stay depressed if a finger is
released on said button.

Care must also be taken that all buttons are reset after an interaction
is finished, so if the same kind of interaction occurs later, the user is not
presented with a button that has already been pressed down.

3.2.4 Styling and Other Implementation Particularities

When the HDMI/LVDS switch is triggered, the computer’s display output gets
displayed on the car’s infotainment screen whole. That means the picture will
include any desktop environment elements, such as task bar, dock, or system
notifications. While this matter surely will be intriguing to any occupants of
the car who might have an interest in embedded computing or information
technology in general, it would not be acceptable in production use.

Fortunately, the Qt library resolves this issue once again, because of its
native support for use in embedded Linux environments. This allows us to
completely forgo the desktop environment and even the windowing system of
the Linux operating system, by configuring our program (the HMI module)
to write directly to the computer’s framebuffer via the linuxfb plugin of the
Qt library.

Leveraging said plugin actually requires zero extra effort as it can be
enabled on regular Qt programs simply by adding -platform linuxfb to the
program’s command line arguments, and making sure the program is launched
with permissions to access the computer’s framebuffer. This, however, raises
a slight issue, in that the program running in such an environment has very
plain visual styling compared to the same program running inside a desktop
environment.

As seen below, I mitigated this by styling (decorating) the HMI module’s
GUI myself, using the Qt library’s stylesheet functionality. I selected colors
similar to the car’s actual infotainment, so that it’s not jarring to the vehicle’s
occupants when the HMI module prompt pops up. I also added a logo of my
university, together with the name of our department, and a less visible text

30

on the lower right corner to remind the system’s users that the decisions are
powered by artificial intelligence.

Figure 3.6: Screenshot of the HMI module’s output during an AI/ML model action
interaction.

Figure 3.7: Screenshot of the HMI module’s output during a driver selection interaction.

3.3 Car-Dependent API

The job of the Car-Dependent API is, simply put, to translate the JSON-
RPC calls used to communicate with the lower-levels of our framework, into
an easy to use HTTP(S) REST API, so that the upper-level Data Broker API
does not need to support JSON-RPC by itself. The motivation for this is to
make the Data Broker API easy to decouple from the rest of the framework,
meaning it can be moved to a cloud server in the future.

31

Additionally, the Car-Dependent API is also tasked with starting the hard-
ware dependent modules and monitoring their health, as well as with managing
their logging facilities.

The API itself is written in the Python programming language and uti-
lizes the subprocess module that belongs to the Python Standard Library.
Additionally, it uses the APScheduler library for scheduling health checks on
the subprocesses, and the Flask microframework to create its HTTP(S) REST
API.

3.3.1 Checking Health of Subprocesses

All of the low-level modules, including Ing. Jaroslav Beran’s Activator, sup-
port a heartbeat12 JSON-RPC command. Thus, the Car-Dependent API is
scheduled to issue this command by itself, every few seconds, to each of the
underlying modules, with a short timeout period. If the heartbeat command
times out and does not return a valid result, the module, being run as a
subprocess of the API, is terminated and restarted.

The only issue with this approach is the DAQ module, which needs to be
configured by the upper-level Data Broker API in order to stream collected
data to it. This is resolved by the Car-Dependent API recording the val-
ues when the initial configuration command from the upper-level API passes
through it, and replaying it to the DAQ module in case it is restarted.

Other than that, the API is very simple, being just under 300 lines of
Python code in length, there is little to describe.

3.4 Data Broker / Middleware API

After we have spoken about every single underlying part of the whole system
that this thesis describes, now is the time to finally talk about the top-level
data broker / middleware API. Arguably, it can be considered the most im-
portant part of the whole system, as it is the part that the external AI/ML
models will talk to from the outside. Not to forget, it is also the main talking
point of the guidelines in this thesis’ formal assignment.

As the Data Broker API is going to be the sole component storing a con-
siderable amount of information (such as cached signal values, AI/ML model
registration data and driver registration data) a more performant foundation
to build it on is required. As mentioned in the previous chapter, I chose to
use the ASP.NET Core framework, based on the C# programming language.

In order to facilitate testing of individual classes and components inside
this API, I used the Dependency Injection (DI) technique when creating the
Data Broker API. This technique, native to the .NET framework, replaces
12A heartbeat is a type of command that causes no activity in target system, other than a

simple response to confirm that it is operational.

32

any required services an object may depend on (like logging, configuration or
similar facilities) with an interface13. Then, the interface’s requirements are
fulfilled by a service externally provided to the object by the framework, when
the object is created. [16]

This means that the object no longer directly depends on said service, and
it can be replaced by a different service for testing or any other purpose. Fur-
thermore, it bypasses the usual requirement for the object to have to configure
the service on creation.

The ASP.NET Core framework allows for creation of services of several
types, which differ by their lifetime and functionality. Normally, the docu-
mentation speaks about transient, scoped and singleton. [16] Those types
of services differ between each other by their lifetime. Transitional services
are created each time they are requested by any particular object. Scoped
services are created for every HTTP(S) request that the API serves, so they
retain information if they’re needed multiple times for a single client. Single-
ton services are created once per lifetime of the whole application, and can
thus retain a particular state throughout.

A fourth, lesser known type, is a hosted service. Such services run in their
separate thread and can thus carry out continuous background tasks. Al-
though they are slightly more difficult to implement, for instance they have to
correctly handle their task being started and stopped, they are indispensable
to solve problems like those we face in the design of this system. [17]

Below is a list of custom services in the Data Broker API that I imple-
mented in order to accomplish all functionality requirements assigned to me
in this thesis.

• SignalCache – Holds the most recent signal values in a thread-safe
key-value store. (Singleton)

• Replay – Manages the recording of incoming signals into a replay file.
(Singleton)

• DriverProfileManager – Keeps track of the currently selected car
driver. (Singleton)

• ActivatorCommandHelper – Stores and resolves the CAN Activator
module commands. (Singleton)

• ActivatorAction – Used to issue commands to the CAN Activator
module. (Scoped)

• HmiAction – Used to issue commands to the HMI module. (Scoped)
13An interface is a construct in the C# programming language. It defines properties and

methods, that any class which implements said interface must have. It can be considered
as a template for classes.

33

• ValidationScript – Evaluates actions triggered by AI/ML models via
IronPython. (Scoped)

• MiddlewareContext – Dependency Injection (DI) wrapper for SQLite
database context. (Scoped)

• SignalPersist – Periodically saves signal values from SignalCache to
the database. (Hosted)

• DriverProfileSelection – Used to trigger the driver selection screen
after the car’s engine is started. (Hosted)

• DaqSslSocket – Secured TCP listener for CAN data coming in from
the DAQ module. (Hosted)

• DaqSocket – Unsecured TCP listener for CAN data coming in from the
DAQ module. (Hosted) (Not used in the final design.)

The above list of services does not include standard services provided by
the ASP.NET Core framework, such as logging, file provider, HTTP(S) client,
and others. Compared to the amount of custom services, the Data Broker /
Middleware API has quite a low amount of controllers14. Those are as follows:

• UseCaseController – Provides the endpoints for registered AI/ML
models to connect to.

• HeartbeatController – Provides simple heartbeat functionality.

• UseCaseConfigController – Provides CRUD functionality for man-
agement of known AI/ML models.

• DriverConfigController – Provides CRUD functionality for manage-
ment of known drivers.

• ReplayConfigController – Provides control of the Replay service men-
tioned above.

• SignalsController – Provides information about stored signals. Used for
debug purposes only. (Not used in the final design.)

In order to describe how all the services and controllers fit together, we
must start with the most important part of the Data Broker API, which is
the part that stores the parsed signals.
14Controllers are the objects in a REST API that actually define endpoints which can be

connected to by external applications.

34

3.4.1 Architecture of Data Input and Persistence

The most recent version of a signal is always stored in the SignalCache ser-
vice. This service internally uses the ConcurrentDictionary container, which
comes from the standard namespace System.Collections.Concurrent of the
.NET Core framework. I have chosen this container as it will be accessed by
multiple background threads, and this means that it needs to be thread-safe.15

The SignalCache service needs to be instantiated as a singleton in the
framework in order to ensure that the same collection of signals will be avail-
able to every object that accesses it. Signals are stored in the dictionary
using their names (strings) as dictionary keys, which leaves some room for
further optimization, however, it was currently not found to be a detriment
to performance.

Data is stored in the SignalCache by the DaqSslSocket hosted service (and
historically DaqSocket). SslDataInlet maintains a TCP listening server, and
accepts a continuous, SSL/TLS encrypted stream of NDJSON data from the
DAQ utility, as was described in the previous chapters. After the data is
decoded from the individual JSON strings, it is stored in the concurrent dic-
tionary.

At the same time, a second hosted service, called SignalPersist is running
in the background. Its only task is to save signals from memory cache to
the persistent SQLite database every second. Furthermore, it restores signals
saved from the database into the memory storage in SignalCache when the
Data Broker API starts up for the first time. This ensures that, in the case
where the whole API is restarted, at least some signal values are immediately
available, until the connection with DAQ is re-established.

3.4.2 JSON Data Polymorphism in ASP.NET Core

As the signals coming in from the DAQ utility can either have numeric values
(decoded from individual CAN messages using a DBC file) or string values
(decoded from the BAP protocol messages using the special utility), the Data
Broker API needs to handle JSON data containing slightly different contents.
This is known as a variant of data polymorphism.

Polymorphism, by itself, is a very important concept in object-oriented
programming. It extends on the concept of inheritance by adding two addi-
tional aspects: The objects of a derived class can be treated as objects of the
base class, and the derived class can override methods from the base class, if
they are declared as overridable. [18]

This practice can be used to implement the logic that we have a base class
that represents a given signal (called Signal), and classes that are derived from
it for signals with a numeric value (SignalNumeric) and signals with a string
15Thread safety means that no unintended side effects or errors will be created if the con-

tainer is accessed from two or more threads at the same time.

35

value (SignalString). However, we run into a problem when we want to parse
JSON data into both said classes at the same time.

Unfortunately, at the time of the writing of this thesis, the library provided
for parsing of JSON data by Microsoft in the .NET Core framework does
not support polymorphic deserialization, which means it needs to be handled
by creating a custom JSON converter class. A change in the .NET Core
framework to add this feature has been proposed. [19]

After implementing said custom JSON converter, the other components of
the ASP.NET Core framework integrate flawlessly with polymorphic classes
and everything functions correctly. I have used this approach twice: First for
having representation for different kinds of signals (base class Signal, inherited
by SignalNumeric and SignalString, as was mentioned above), and second for
having representation for different command parameters when constructing
commands for the CAN Activator (base class ActivatorCommandParameter,
with many inheritants), which will be described in later sections.

3.4.3 Management of Individual Driver Profiles

As was suggested in the section that described the HMI module, it is beneficial
for the training of the AI/ML models to differ between individual car drivers.
This is quite obvious, as the habits and preferences greatly vary between
different individuals.

Short Delay

GetDrivers()
Driver Names

ShowDriverSelection()
Selected Profile

SetActiveDriver()

Polling with delay
Engine On DriverProfileSelection HmiActionDriverProfileManager

Figure 3.8: Sequence diagram of the Data Broker / Middleware API initial driver profile
selection behaviour.

I created a special background service, that is an internal part of the Data
Broker / Middleware API, despite behaving in a similar manner to an external

36

AI/ML model. It periodically checks for the car’s engine being started, and it
causes the driver selection screen to be shown on the car’s infotainment screen
shortly after it happens.

The result of this HMI module interaction is then saved to a virtual signal
offered by the Data Broker / Middleware API to the individual AI/ML models,
named MIDDLEWARE Active Driver Profile.

3.4.4 Mechanism of Handling AI/ML Model Requests

The Data Broker / Middleware API uses IronPython to enable scripting ca-
pability for its AI/ML model controller. The Python script can be customized
for every registered AI/ML model, and has two uses. First, it’s used to parse
data submitted by said model, which enables variability in the submitted data
formatting – simply put, the data submitted by an AI/ML model when it trig-
gers an action can be in any form the model (or rather, its creator) desires.
Second, it’s used to validate said submitted data, in case of the AI/ML model
creating nonsensical output (such as setting the air conditioning to 0°C or
cruise control to -10 km/h).

This is accomplished by the ValidationScript service, which is instanti-
ated as a singleton, and injected into the UseCaseController, as mentioned
previously. When the AI/ML model submits data to execute an action, the
controller hands the data over to the ValidationScript service, along with in-
formation about which exact model submitted the data.

The ValidationScript service creates a new IronPython script scope16 and
adds the submitted data into the scope as a variable called CAR model data as
it came. Also, it adds all the car signals normally available to the aforemen-
tioned model as variables called CAR signal xyz, where xyz is the original
name of the signal.

The script is then executed, and the Data Broker API expects it to create
several new variables, which are then read out. The variables are as follows:

• CAR result – represents the general decision of the validation script in
whether or not to carry out the action.

• CAR result action name – represents the name of the action which will
be passed to the CAN Activator module.

• CAR result action params – represents the parameters of the action
which will be passed to the CAN Activator module, which are expected
to be encoded in the JSON format.

• CAR result action question – represents the question which will be
displayed on the car’s infotainment screen via the HMI module.

16A scope in IronPython can be explained as an environment for the script to execute in.

37

The CAR result variable is expected to be a boolean value (yes / no), the
rest of the variables are expected to be strings. Only if the script produces all
of these variables and the aforementioned boolean result evaluates to true is
the action considered to be “confirmed” by its validation script.

Subsequently, the action parameters are validated. This is accomplished
using the ActivatorCommandHelper singleton service. How exactly does this
service validate the commands for the CAN Activator? At this point we need
to speak about one thing regarding Ing. Jaroslav Beran’s module. That is,
that the module uses a JSON command schema file in order to configure itself.
This file can be found in the source code of the CAN Activator in the config
directory. I copied it to the Data Broker API’s source code as well.

When the Data Broker API starts up, the ActivatorCommandHelper ser-
vice parses this file, and stores in itself the definitions of possible commands
and their parameters. Referring to the previous section, the CAN Activator
uses JSON polymorphism in its schema quite extensively, and thus another
custom converter is required to parse this file.

Read request body

ValidateAction()
Action Variables

ValidateJsonParametersForCommand()
Valid / Invalid

ShowModelAction()
Yes / No / Ignored

TriggerAction()
Success / Failure

POST

Success / Failure

AI/ML model UseCaseController ValidationScript ActivatorCommandHelper

HmiAction ActivatorAction

Figure 3.9: Sequence diagram of the Data Broker / Middleware API model data
handling behaviour.

After we have validated that the action is indeed correct and all the used
mechanisms have presented us with valid data, we can ask the car’s driver
and / or passengers if they would like to have the action carried out. This is

38

accomplished by a simple scoped service called HmiAction, which conveniently
wraps the communication with the HMI module through the Car-Dependent
API using a HTTP(S) request.

If the HMI module is not busy with a previously submitted AI/ML model
action, and if the action is indeed allowed by the car’s occupants, that is, by
tapping on the ‘Yes’ button presented to them on the infotainment display
inside the car, only then, the validated action name and action parameters
are handed over to the CAN Activator module. This is fulfilled by the Acti-
vatorAction scoped service.

The result of this chain of events is communicated back to the AI/ML
module as a response to its original HTTP(S) POST request to the UseCaseC-
ontroller. This means that action success or any kind of failure (validation
script refusal, user refusal, infotainment screen being busy) can be used to fur-
ther train said AI/ML model, as long as it is capable of waiting some seconds
for its HTTP(S) request to complete.

Below is a diagram describing the call hierarchy used to handle an action
submitted by an AI/ML model. Please note that the AI/ML models are called
‘UseCases’ internally in the source code of the Data Broker / Middleware API.

3.4.5 Example AI/ML Model Placeholders

As the AI/ML models were not available yet at the time of the writing of this
thesis, I developed my own placeholder programs with basic functionality.
They act as surrogates for the real AI/ML models in order to test out the
functionality of the whole system. I wrote them as Python scripts, once again
because of its ease of development, namely due to the Python standard library
containing functions for HTTP(S) requests and JSON data parsing.

The first model that I developed is intended for demonstration with the
vehicle being stationary. It periodically checks only two signals – the engine
being on, and the front passenger seatbelt being fastened. When this situation
occurs, an action is triggered that offers to increase the temperature of the
front passenger’s air conditioning zone.

The second model demonstrates control of a non-touch screen function,
namely the adaptive cruise control. It periodically checks the signals indicating
whether the engine is on, the GPS17 coordinates, and movement speed. When
the vehicle is reasonably close to an entry to the Prague ring motorway, and
driving at a speed that indicates it might indeed be entering said motorway,
an action is triggered that offers to set the adaptive cruise control speed to
110 kilometers per hour.

The third model is quite similar, as it demonstrates control of the speed
limiter. It once again checks the GPS coordinates, engine status and move-

17Global Positioning System

39

ment speed. When the car seems to be in an average speed check zone near
our university’s campus, it offers to set the speed limiter to avoid traffic fines.

Despite the popularity of the Python programming language in AI/ML and
data science usage, the above models do not contain any such functionality
and only rely on imperative programming. Despite this, they create sufficient
proof of the whole system’s functionality. This shows the system’s flexibility
and also is an interesting point to ponder. Will AI/ML be truly required in
future production use, or is there a possibility that even purely imperative
(meaning non-AI/ML) models still positively influence the vehicle’s comfort
and safety?

3.4.6 Example API Endpoint Requests

Below are some HTTP requests that are used to interact with the Data Broker
/ Middleware API. Configuration endpoints are used, for instance, in order to
create an API endpoint for a new AI/ML model or to configure the names of
individual driver profiles.

First, here is how a new AI/ML model is registered:

POST /api/config/usecase
Request body:
{

"name": "aircondition_sample_model",
"signalNames": [

"X_Kl_15",
"Y_Seatbelt_Pass"

],
"limitationScript": "

CAR_result = True;
CAR_result_action_name = ’air_temperature’;
CAR_result_action_params = ’{\"value\": 25, \"zone\": 1}’;
CAR_result_action_question = ’Do you want to set passenger
air temperature to 25?’

"
}

We can see that a whole short Python script is submitted inside the
limitationScript variable in the POST request. Model registrations can
also be updated by issuing PUT requests, read by issuing GET requests and
deleted by using DELETE requests, all on the same /api/config/usecase
endpoint.

The registered AI/ML model can then access its respective signal values
that it is subscribed to on the /api/usecase/[name] endpoint. By issuing
GET requests, the model receives the values of its signals, and by issuing
POST requests, the model can issue its respective action to happen.

40

GET /api/usecase/aircondition_sample_model
Response body:
[

{
"name": "X_Kl_15",
"type": "Numeric",
"time": 1641316253945,
"value": 1,
"unit": ""

},
{

"name": "Y_Seatbelt_Pass",
"type": "Numeric",
"time": 1641316253919,
"value": 0,
"unit": ""

}
]

The contents of the limitationScript variable in the POST request
found on the previous page suggest another interesting point to think about.
While the AI/ML model is free to send any data it desires with its own POST
request to the /api/usecase/[name] endpoint, it can also send no data at
all, and rely on its validation script alone to communicate the desired action
to the Data Broker / Middleware API. This is essentially helpful in the case
of simple models (like the presented sample ones), as the issued action can
simply be hard-coded, and will always be the same.

The Data Broker / Middleware API also has endpoints that allow config-
uration of driver profiles. A new name can be set for each of the five possible
driver profiles by issuing PUT requests on the /api/config/driver/[id]
endpoint. Please note that the IDs do not belong to abstract entities, they
range from 1 to 5, corresponding to the possible buttons on the driver profile
selection screen (as seen in the HMI module).

PUT /api/config/driver/1
Request body:
"Jan"

The list of current driver names can be retrieved with a GET request on
the /api/config/driver/all endpoint, and also the currently active driver
profile can be set and retrieved by issuing POST and GET requests respec-
tivelly on the /api/config/driver/active endpoint, as shown on the next
page.

41

GET /api/config/driver/all
Response body:
[

{
"id": 1,
"name": "Jan"

},
{

"id": 2,
"name": "Jiřı́"

},
{

"id": 3,
"name": "Lukáš"

},
{

"id": 4,
"name": "Anne"

},
{

"id": 5,
"name": "Benji"

}
]

As all the components of the whole system described in this thesis natively
support and use the UTF-8 encoding, diacritics and other special characters
function flawlessly throughout.

GET /api/config/driver/active
Response body:
{

"id": 1,
"name": "Jan"

}

Another possible way to configure the Data Broker / Middleware API is to
use a database editing tool. This is simple, as it utilizes an SQLite database,
which is entirely stored in a single file, which means that such database files
can be freely copied, externally modified with easily obtainable software, or
even exchanged between vehicles.

42

Chapter 4
Framework Reliability and

Failure Mitigation

Because the system is going to be embedded inside a vehicle and it’s not going
to have a form that regular users are acquainted with (such as a keyboard, a
mouse, or a screen, like a regular computer), manually restarting it in case of
failure or strange behaviour is out of the question. For this reason, I carefully
studied possible failure points and established how to restore operation if such
a failure arises.

Failure Resolved By
Complete OS freeze or crash Hardware watchdog timer

Data Broker API crash Init system
Data Broker API freeze Custom heartbeat script

Car-Dependent API crash Init system
Car-Dependent API freeze Custom heartbeat script

Activator module crash or freeze Car-Dependent API scheduler
HMI module crash or freeze Car-Dependent API scheduler
DAQ module crash or freeze Car-Dependent API scheduler
BAP utility crash or freeze DAQ module

Table 4.1: Investigated Failure Modes of the System Along With Facilities to Resolve
Them.

The above table 4.1 mentioned several new terms in the right column that
I will now describe in greater detail. The hardware watchdog timer is a feature
that some computer motherboards have (including our Advantech industrial
PC), and its job is to autonomously trigger a reboot in case the OS becomes
dysfunctional. More attention will be dedicated to it in the next chapter.

43

The init18 system (short for initialization) is a core component of the
Linux operating system. Its task is to start and maintain system services.
[20] As the Data Broker API and Car-Dependent API are, in the current
implementation, running on the same machine, both need to be started by
init when the computer boots up. This also means that in case they crash or
exit unexpectedly, the init system will ensure they are restarted.

However, in case the aforementioned Data Broker or Car-Dependent API
freeze without exiting or crashing, there is no way for the init system to detect
this situation. For this reason, I implemented a heartbeat endpoint in both of
their HTTP(S) REST APIs, and added a simple Python script, also running
as a system service, that periodically polls these heartbeats with a certain,
sufficently high timeout. If the polling fails, the script notifies the init system
that the respective API needs to be restarted.

As was mentioned in previous chapters, the HMI, DAQ and Activator
modules all are launched as subprocesses of the Car-Dependent API, and as
such are monitored for crashes or freezes by it. The BAP utility is a subprocess
of the DAQ module, and therefore is under its control.

4.1 Testing of Web Framework-Based Components

Looking back behind us we find an amusing situation. Despite this whole the-
sis being about embedded or semi-embedded software, its two most important
parts have been made using frameworks normally intended for creating web-
sites. Evaluating the requirements laid out at the assignment of this thesis,
this is, fortunately, far from preposterous in my case.

Because the reliability and safety requirements are, in our case, fairly high,
additional care should be taken regarding testing and analysis specific to web
frameworks and REST APIs. As rigorous testing is not, unfortunately, a part
of my specialization, I focused my attention to static testing techniques, such
as informal review [21] and reporting to and consulting with my supervisor
about modes of operation and reasoning behind my API design. Requirements
regarding outside-facing APIs were also discussed with the car manufacturer’s
employees.

Static analysis and evaluation against best practices of API development,
both regarding the C# with the ASP.NET Core framework, as well as the
Python language with the Flask microframework, was carried out to the best
of my capabilities, however, as this thesis and the system is presently developed
solely by me, there is definite room for consultation and improvement.

Further, more formal, testing is intended to be carried out later in the
lifetime of this project, when there will be more people working on it. This
will enable effective use of dynamic analysis and testing techniques, such as
unit testing or acceptance testing. This has been taken into account in the
18The name is not supposed to be capitalized.

44

development of all major parts of our system – correct use of object-oriented
programming prepares us for easy integration with dynamic tests.

Reliability will be further investigated in the following chapter, as the OS
environment as well as the computer configuration are inseparable parts of
reliability analysis.

4.2 Preserving Partial Functionality in Case of
Errors

As was mentioned in the previous chapters, the Data Broker API persistently
saves signal values every second to its SQLite database. This is so that at
least some data is available if there is an error on the CAN interface, or
during initial startup when the communication with the DAQ module may
not be established yet.

Addtionally, it is easy to imagine that some basic AI/ML models may
live on the embedded computer inside the car itself, so that some operation
of the system is preserved if connection to the internet is lost. Otherwise,
due to the HTTP(S) REST methods of communication between higher-level
components of the system (including the external AI/ML models), temporary
loss of connectivity to the outside world doesn’t pose any major problems.

However, if the Data Broker / Middleware API is to be decoupled from
the car, care needs to be taken so that the streaming NDJSON over SSL
connection from the DAQ module is restored. This can be accomplished
by implementing functionality to resend a DAQ configuration request to the
Car-Dependent API in case of no data being received by the aforementioned
DaqSslSocket service in a certain time period.

4.3 Custom Heartbeat Script

As was mentioned in table 4.1 and surrounding paragraph, a new facility is
required to guard the Data Broker API and the Car-Dependent API in case
of any possible freezes. While a crash would be resolved by the operating
system’s init system,19 a freeze needs to be proactively checked for.

Both the APIs have a heartbeat endpoint, which simply returns a HTTP
OK status when a GET request is issued. A simple Python script, which itself
is also going to be run as a system service, periodically polls these endpoints.
In case a request times out (signalizing a freeze has occurred), the script issues
a command to the init system to restart the offending API.

19Because the Data Broker API and Car-Dependent API are going to be run as system
services.

45

Chapter 5
Software and Hardware

Configuration for Optimal
Operation

The system was developed, for the most part, on the embedded computer,
which is running the Ubuntu 20.04.3 LTS distribution of the Linux operating
system. This was done to ease development efforts, as the computer was in-
teracted with in many different ways, including physical access to the desktop
enviroment via a temporarily connected mouse, keyboard and screen, but also
using remote access, both via VNC and SSH20.

For future use, it is easy to imagine a more streamlined operating sys-
tem being used instead. Options include the Ubuntu Server distribution, or
a completely custom build of embedded Linux. Ways to accomplish building
a custom version of embedded Linux include the Buildroot and Yocto frame-
works. As such a task was not assigned as a part of this thesis, I haven’t
dedicated much time to investigating it further. Nevertheless, it is clear from
an engineering perspective that this point will need to be investigated further
in the lifetime of this project.

5.1 Operating System Environment

The operating system running on the embedded computer must support run-
ning all the parts of the system / framework described in this thesis. This
includes the following runtimes, frameworks and libraries:

• ASP.NET Core Runtime version 5.0 or higher.

• Python version 3.7 or higher.
20VNC is a protocol used for remote desktop access, while SSH is a protocol used for remote

command line access.

47

• Flask microframework version 2.0 or higher, including the Flask-RESTful
extension (installed through Pip package manager).

• APScheduler version 3.0 or higher (installed through Pip package man-
ager).

• Qt library version 5.15 or higher, including the Serial Bus and Network
components.

• libssl1.0.0 library (exact version required for the BAP utility).

The last mentioned point in the above table is quite curious, and displays
the downsides of closed-source software. The libssl1.0.0 library is no longer a
part of the repositories on the Ubuntu distribution in the version 20.04 LTS
and above. This means that the package either needs to be installed from a
custom repository, or manually imported. If there was a possibility to easily
recompile the BAP utility from source, a newer version of the libssl library
could be used.

5.2 Leveraging the Embedded PC Watchdog
Timer

During the testing and troubleshooting of the system running physically in-
side the vehicle, a new issue was uncovered. Despite the arguably quite robust
DC/DC converter used to power the computer, changes in the supply voltage
caused by the operation of the vehicle (ex. engine cranking) can have impact
on the function of the computer, even leading to lock-ups in rare cases. In-
dustrial computers provide hardware functionality that is perfectly suited to
mitigate this problem – the watchdog timer.

The watchdog timer functions as follows: When activated, it runs a count-
down for a set amount of time (ranging from seconds to minutes). When
this countdown is over, the watchdog timer generates a reset signal. This
countdown is periodically reset back to start by the software of the industrial
computer. Thus, if the software (or operating system) crashes or freezes, it
stops resetting the timer, the timer runs out and the whole computer restarts,
allowing for autonomous recovery. Coupled with fast boot-up times enabled
by optimized operating system and solid-state storage, this makes for a sig-
nificant boost in the computer’s robustness.

Sadly, the watchdog timer contained in modern Advantech computers
seems to be non-standard and unsupported by the usual facilities of the Linux
kernel (namely watchdog(8) and its device file /dev/watchdog). Although
the manufacturer provides raw assembly code in its user manual that shows
how to control the timer through the I/O ports of the x86 platform, very little
else is explained on how it actually works, or even through which chip the
functionality is implemented. [14]

48

Additional research on this topic is further complicated by the fact that
the Advantech ARK-3520P computer actually contains several components
which are capable of providing the watchdog functionality. Those are the
computer’s two different (!) Super I/O chips, the Intel Management Engine
(IME) found on the computer’s chipset, and/or possibly a different component,
called Embedded Controller21 by the manufacturer.

The first three of these components all have some degree of support for
the watchdog functionality in the Linux kernel. Those are:

• The first Super I/O chip (IT8768E), partially22 supported in the kernel
by the it87 wdt module.

• The second Super I/O chip (NCT6106D), fully supported in the kernel
by the w83627hf wdt module.

• The Intel IME/AMT OS Health Watchdog, fully supported in the kernel
by the mei wdt module. [22]

Unfortunately, none of those modules seem to be functional on our partic-
ular computer. While the first two modules seem to enable the watchdog(8)
daemon,23 manually causing a deliberate reboot by issuing the command:24

cat >> /dev/watchdog

sadly did not work. Loading the mei wdt module did not even seem to enable
the daemon. These findings suggest that none of the first three watchdog timer
variants are utilized in our particular computer. Furthermore, neither of the
three kernel modules in the list above use I/O port adresses that correspond
with what was described in the computer’s manual.

Further researching the user manual for the Advantech ARK-3520P com-
puter, I came across mentions of Advantech’s management software called
iManager together with a library/API called SUSI 4.0. Their website does
indeed offer a download link for the SUSI 4.0 product together with example
programs, however, the included library is only for the Windows operating
system. Moreover, the datasheet of the computer states that Linux support
is “By Project Support”. [5]

All that is certain is that software for this computer targeted at the Linux
operating system is nowhere to be found on the manufacturer’s website. I
21This component will be mentioned several times in this section. It seems to be referred to

as ‘Embedded Controller’, ‘EC’, and possibly ‘AHC1EC0’ by the manufacturer, although
the author has no concrete confirmation if these terms are equivalent to eachother or not.

22The driver in its current form doesn’t recognize the chip ID, however, support would be
trivial to implement according to existing driver functionality and available datasheets.

23A daemon is a term for background processes in Unix-like environments.
24This command precludes resetting the watchdog timer countdown on systems that have

the watchdog(8) daemon running and functional.

49

would like to reinforce the point that I would prefer to have an actual watch-
dog timer driver that conforms to the methods that Linux uses to manage
the timer’s functionality – e.g. a driver/module that behaves like the three
modules mentioned in the paragraphs above. That is, enable the use of
watchdog(8) daemon and the /dev/watchdog device file. The reason for
my preference is cleanliness of implementation, maintainability and an overall
wish to keep things standard.

Since the raw assembly sample code is mentioned under the name “EC
Watchdog” in the computer’s manual, and because the computer’s BIOS setup
has the options to configure the watchdog timer under a page called “Embed-
ded Controller Configuration”, I researched keywords such as “Advantech”,
“EC”, “watchdog”, “WDT” and “Linux” on the internet. This led me to a
website containing the patch tracking system of the Linux HWMON (Hard-
ware Monitoring) subproject.

On this website, there is a proposed change to add the support for a chip
or a device called Advantech AHC1EC0. This seems to be what we are
looking for! Further investigation of the source code additions contained in
this proposal reveals a watchdog timer driver along with further hardware
monitoring functionalities. [23]

Unfortunately, there seem to be disagreements on the particularities of the
methods that Advantech’s hardware uses to interface with the Linux kernel
(namely the usage of ACPI, versus device-tree), and the changes have been
rejected for now. Further revisions that will rectify these disagreements appear
to be in development by Advantech or their employees, however, at the time
of the writing of this thesis they were not finished.

Thus, we arrive at a choice between two options: Program our own sim-
ple utility using the information provided in the Advantech ARK-3520P user
manual, or attempt to extract the source code for the AHC1EC0 watchdog
timer kernel module (ahc1ec0-wdt.c) out of the proposed patch and attempt
to build it out-of-tree for our own kernel.

For the sake of simplicity, I elected to explore the simpler option first,
as replicating one short page of assembly code from the computer’s manual
seemed an easier way to accomplish the task, notwithstanding the reasoning
in the above paragraphs. I ported the source code found in the appendix A of
the user manual [14] to the C programming language and compiled it on my
Linux system. I executed the resulting program and... nothing happened.

At this point we must remember that the option to enable the watchdog
timer itself is found in the BIOS setup! However, here I uncovered two new
fun complications. An option to configure the watchdog timer can be found
in the setup page called “AMT Configuration” (for the Intel Management
Engine (IME) technology), but also several setup pages later, on a page
called “Embedded Controller Configuration”.

I have previously experimented with the watchdog timer contained in the
Intel Management Engine part of the computer’s chipset and established it to

50

not be functional, in spite of it being enabled in the BIOS. So, we turn our
attention to the “Embedded Controller Configuration” page. This seems to
correspond with the name given to the watchdog in the computer’s manual
(“EC Watchdog”).

After enabling this option, two more configuration options show up, which
are not documented in the user manual! Those are to set the watchdog
timer’s duration and a selection between minutes and seconds for said dura-
tion. From this I inferred that the watchdog timer gets started by the BIOS
upon power on and starts ticking immediately. A quick reboot and a short
wait for the computer’s automatic restart caused by the watchdog timeout
confirmed my suspicion.

Hastily running my utility after the operating system booted up did indeed
save the computer from restarting. However, further experimentation showed
that the timeout duration stayed the same as was set in the BIOS setup. This
is in spite of the reference source code supplied by the manufacturer supposedly
having the capability of setting its own timeout. The only function of said
code that was shown to reliably work was the function to (re)start the timer
and prevent a reboot caused by a timeout. Amusingly, this is accomplished by
the three last assembly code instructions alone; all the other instructions from
the manufacturer’s manual were not used in the final version of my utility.

At long last, the computer’s watchdog timer is working. I fashioned my
utility to restart the watchdog timer at configurable intervals and to be run as
a systemd25 service. I configured it to start at the sysinit.target part of the
operating system start-up procedure (thus, quite early). With the watchdog
timer timeout set in the BIOS to 60 seconds, and with my utility configured
for timer restarts at 55 second intervals, the operating system has plenty of
time to boot up, and I have finally achieved a more robust system.

5.3 Ensuring Reliable Startup of the System

We have previously established in this thesis, that the two (independent)
components that need to be started up by the operating system are the Car-
Dependent API and the Data Broker / Middleware. Same as the EC watchdog
control utility described in the above section, these two components will need
to be launched as services, by the computer’s init system.

This adds an additional reliability benefit in that the init system moni-
tors the health of those two main processes, and restarts them if necessary.
As we can consider the Data Broker / Middleware and the Car-Dependent
API components of the computer’s high-level functionality, I configured them
to start at the end of the computer’s start-up procedure, namely at the
multi-user.target part.
25systemd is a popular init system (service manager) for the Linux operating system. Its

name is not supposed to be capitalized.

51

Another particularity of the Linux operating system and its SocketCAN
component is that the CAN interfaces are, by default, not brought up and
configured when the computer starts, and need to be configured manually.
I once again leveraged the systemd init system to configure the two CAN
interfaces to start autonomously and thus enable the correct function of the
whole system.

I created two configuration files (one for each respective CAN interface) in
the /etc/systemd/network/ directory. The files are called 80-can0.network
and 81-can1.network. These files contain information on how to configure
the two CAN interfaces and how long to wait before restarting the interfaces
in the case of an error. [24] Now, as long as the systemd-networkd service is
enabled, the aforementioned directory will be processed and the configuration
from the files contained in it will be applied, in the order of the numbers
contained at the start of their filenames (80 and 81 in our case).

In case the whole system is to be recreated using a more embedded Linux
distribution,26 which may not use the systemd init system, these configura-
tion files will need to be translated to the new init system of choice (such as
SysVinit or Busybox init). As no systemd-specific features are leveraged by
my software, this would be trivial.

26Such as those created by aforementioned Busybox or Yocto frameworks.

52

Chapter 6
Conclusion

Finally, the whole system is complete. As was assigned for me to do, the
framework acts as a middleware between the hardware layer and the AI/ML
model layer. The models communicate using the HTTP(S) protocol, adhering
to the REST API methodology.

The system is reasonably tolerant to faults, utilizing both hardware and
software mitigations for errors, and caching in cases of communication loss.
It has also been designed to be modular, with the possibility of moving some
parts of it from the vehicle to the cloud. There is also a possibility of doing
the opposite, and moving simpler models to the vehicle itself for enhanced
reliablity.

Functionality has been evaluated and proven using non-AI/ML scripts in
place of a model, establishing the functionality of outside-facing API but also
showing that simple predictions can be made without the use of artificial
intelligence, with imperative programming (if-this-then-that) being sufficient
in simpler use-cases.

Implementing and connecting together such a diverse system with several
different components was an immense learning experience, and in my opinion,
makes a good example of my specialization (Computer Engineering), especially
for other people with an IT or EE background.

53

Glossary

BAP Bedien und Anzeigeprotokoll, high-level protocol for automotive net-
works such as CAN, LIN or FlexRay.

Boost Boost, is a free, portable and peer-reviewed library of functions for
the C++ programming language with an extremely wide range of uses.

CAN Controller Area Network, robust communication network most com-
monly used in automotive and industrial applications.

CAN FD Controller Area Network Flexible Data-rate, an extension to the
CAN protocol allowing faster data rates to be used and larger message
sizes to be transmitted.

CMake CMake, is a cross-platform free and open-source software for the au-
tomation of compilation, testing, packaging and installation of computer
software by compiler-independent methods. By itself it is not a build
system, rather it generates files for a pre-existing build system of the
user’s choice, such as Make, Qt Creator, Ninja, Xcode and others. [25]

CP1252 Code Page 1252, is a character encoding used in some older ver-
sions of Microsoft Windows to encode English and some other western
european languages, such as German, Spanish or French.

IronPython IronPython, is an open-source implementation of the Python
programming language built within the .NET framework. It allows ac-
cessing .NET functions and API from Python scripts, but more impor-
tantly, also the execution of Python scripts within a .NET application.

JSON-RPC JavaScript Object Notation - Remote Procedure Call, is a light-
weight protocol for the exchange of remote procedure calls, that is, in-
voking methods in a remote program (peer) and the exchange of method
parameters and results.

55

NDJSON Newline-delimited JavaScript Object Notation, is a format for
transfering separate objects or messages via a JSON stream. It sim-
ply consists of individual JSON objects separated by newline characters
(ASCII code 0x0A), or in some cases by record separator characters
(ASCII code 0x1E).

Pip Pip Installs Packages, is a package management system for installing ad-
ditional packages for the Python programming language. Most Python
installations now include Pip by default.

RS-232 Recommended Standard 232, is a standard that defines serial trans-
mission of data between two pieces of equipment. Briefly put, it is the
serial port (COM) we know and love from our computers, however, the
standard was originally introduced as far back as the 1960s. [15]

SocketCAN SocketCAN, is a low level interface for communication on the
CAN bus on the Linux platform. It enables CAN interfaces to be con-
figured and interacted with in a similar matter to Ethernet interfaces,
via standard socket APIs.

56

Acronyms

ACPI Advanced Configuration and Power Interface

AI/ML Artificial Intelligence / Machine Learning

AMT Active Management Technology

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BIOS Basic Input Output System

CRUD Create, Read, Update, Delete

CTS Clear To Send

CTU in Prague Czech Technical University in Prague

DAQ Data Acquisition

DBC DataBase CAN

DI Dependency Injection

DSR Data Set Ready

DTR Data Terminal Ready

FEE Faculty of Electrical Engineering

GPIO General Purpose Input/Output

GPO General Purpose Output

57

GUI Graphical User Interface

HDMI High Definition Media Interface

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

HTTP(S) Hypertext Transfer Protocol (Secure)

ID Identifier / Identification Number

IME Intel Management Engine

IP Internet Protocol

JSON JavaScript Object Notation

LTS Long-Term Support

LVDS Low-Voltage Differential Signaling

ORM Object-Relational Mapping

OS Operating System

PDF Portable Document Format

PS PostScript

REST Representational State Transfer

RTS Ready To Send

SCTP Stream Control Transmission Protocol

SSH Secure Shell

SSL Secure Socket Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UI User Interface

UTF Unicode Transformation Format

VNC Virtual Network Computing

58

Bibliography

[1] N. Nugent, The Knight Rider Companion. El Segundo, CA: Will Garris
Publishing, 2008.

[2] J. Huth, Knight Rider Legacy: The Unofficial Guide to the Knight Rider.
Bloomington, IN: iUniverse, Writers Club Press, 2004.

[3] J. Beran, “Firmware for Control Module of an Intelligent Vehicle,” Mas-
ter’s Thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, 2020.

[4] Department of Measurement, CTU FEE in Prague, Dokumentace Modulu
CAN FD Gateway. Czech Technical University in Prague, Faculty of
Electrical Engineering, 2018.

[5] Advantech Co., Ltd., Fanless Box PC ARK-3520P Datasheet, De-
cember 2020. https://advdownload.advantech.com/productfile/PIS/
ARK-3520P/file/ARK-3520P_DS(121420)20201214160852.pdf.

[6] G. Fu, Y. Zhang, and G. Yu, “A Fair Comparison of Message Queue-
ing Systems,” IEEE Access, vol. 9, pp. 421–432, 2021. https://
ieeexplore.ieee.org/document/9303425.

[7] “TechEmpower Framework Benchmarks.” https://
www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=
composite, August 2021. Accessed: 2021-11-30.

[8] JSON-RPC group, JSON-RPC 1.0 Specification, 2005. https://
www.jsonrpc.org/specification_v1.

[9] M. Luparu, “CMake support in Visual Studio.” https:
//devblogs.microsoft.com/cppblog/cmake-support-in-visual-
studio/, October 2016. Accessed: 2021-12-16.

59

https://advdownload.advantech.com/productfile/PIS/ARK-3520P/file/ARK-3520P_DS(121420)20201214160852.pdf
https://advdownload.advantech.com/productfile/PIS/ARK-3520P/file/ARK-3520P_DS(121420)20201214160852.pdf
https://ieeexplore.ieee.org/document/9303425
https://ieeexplore.ieee.org/document/9303425
https://www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=composite
https://www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=composite
https://www.techempower.com/benchmarks/#section=data-r20&hw=ph&test=composite
https://www.jsonrpc.org/specification_v1
https://www.jsonrpc.org/specification_v1
https://devblogs.microsoft.com/cppblog/cmake-support-in-visual-studio/
https://devblogs.microsoft.com/cppblog/cmake-support-in-visual-studio/
https://devblogs.microsoft.com/cppblog/cmake-support-in-visual-studio/

[10] K. Bridge, K. Sharkey, J. Kirsch, and M. Satran, “Unicode.” https:
//docs.microsoft.com/en-us/windows/win32/intl/unicode, January
2021. Accessed: 2021-12-16.

[11] P. Hoffman and F. Yergeau, “UTF-16, an encoding of ISO 10646,”
RFC 2781, Internet Requests for Comments, February 2000. https:
//datatracker.ietf.org/doc/html/rfc2781.

[12] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” RFC
3629, Internet Requests for Comments, November 2003. https://
datatracker.ietf.org/doc/html/rfc3629.

[13] P. Radzivilovsky, Y. Galka, and S. Novgorodov, “UTF-8 Everywhere.”
http://utf8everywhere.org, 2012. Accessed: 2021-12-16.

[14] Advantech Co., Ltd., ARK-3520P User Manual, April 2017.
https://advdownload.advantech.com/productfile/Downloadfile3/
1-1DJVBD8/ARK-3520P_User_Manual_Ed.2-final.pdf.

[15] “EIA/TIA-232-F:1997 (R2012),” Standard, Electronic Industries Associ-
ation, 2012.

[16] D. Pine, G. Warren, G. Chan, and R. Anderson, “Dependency in-
jection in .NET.” https://docs.microsoft.com/en-us/dotnet/core/
extensions/dependency-injection, December 2021. Accessed: 2021-
12-21.

[17] R. Anderson, R. Larkin, J. Lomholdt, and T. Dykstra, “Background tasks
with hosted services in ASP.NET Core.” https://docs.microsoft.com/
en-us/aspnet/core/fundamentals/host/hosted-services?view=
aspnetcore-6.0, December 2021. Accessed: 2021-12-21.

[18] B. Wagner and P. Kulikov, “Polymorphism.” https://
docs.microsoft.com/en-us/dotnet/csharp/fundamentals/object-
oriented/polymorphism, June 2021. Accessed: 2021-12-21.

[19] E. Tsarpalis, “JsonSerializer polymorphic serialization and dese-
rialization support.” https://github.com/dotnet/runtime/issues/
30083#issuecomment-861524767, June 2021. Accessed: 2021-12-21.

[20] B. Ward, How Linux Works: What Every Superuser Should Know. San
Francisco, CA: No Starch Press, 3 ed., 2021.

[21] Y. Boronenko, “Software Testing in Agile Development Methodologies,”
Bachelor’s Thesis, Czech Technical University in Prague, Faculty of In-
formation Technology, 2019.

60

https://docs.microsoft.com/en-us/windows/win32/intl/unicode
https://docs.microsoft.com/en-us/windows/win32/intl/unicode
https://datatracker.ietf.org/doc/html/rfc2781
https://datatracker.ietf.org/doc/html/rfc2781
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
http://utf8everywhere.org
https://advdownload.advantech.com/productfile/Downloadfile3/1-1DJVBD8/ARK-3520P_User_Manual_Ed.2-final.pdf
https://advdownload.advantech.com/productfile/Downloadfile3/1-1DJVBD8/ARK-3520P_User_Manual_Ed.2-final.pdf
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://docs.microsoft.com/en-us/dotnet/core/extensions/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-6.0
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/polymorphism
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/object-oriented/polymorphism
https://github.com/dotnet/runtime/issues/30083#issuecomment-861524767
https://github.com/dotnet/runtime/issues/30083#issuecomment-861524767

[22] “Intel(R) Active Management Technology (Intel AMT) – The Linux
Kernel documentation.” https://www.kernel.org/doc/html/latest/
driver-api/mei/iamt.html, 2019. Accessed: 2021-12-16.

[23] “Add Advantech AHC1EC0 embedded controller entry – Linux HWMON
Patchwork.” https://patchwork.kernel.org/project/linux-hwmon/
patch/20210506081619.2443-1-campion.kang@advantech.com.tw/,
May 2021. Accessed: 2021-12-15.

[24] F. Voorburg, “Automatically bring up a SocketCAN interface
on boot.” https://www.pragmaticlinux.com/2021/07/automatically-
bring-up-a-socketcan-interface-on-boot/, July 2021. Accessed:
2021-12-29.

[25] “About CMake.” https://cmake.org/overview, 2019. Accessed: 2021-
12-16.

61

https://www.kernel.org/doc/html/latest/driver-api/mei/iamt.html
https://www.kernel.org/doc/html/latest/driver-api/mei/iamt.html
https://patchwork.kernel.org/project/linux-hwmon/patch/20210506081619.2443-1-campion.kang@advantech.com.tw/
https://patchwork.kernel.org/project/linux-hwmon/patch/20210506081619.2443-1-campion.kang@advantech.com.tw/
https://www.pragmaticlinux.com/2021/07/automatically-bring-up-a-socketcan-interface-on-boot/
https://www.pragmaticlinux.com/2021/07/automatically-bring-up-a-socketcan-interface-on-boot/
https://cmake.org/overview

Appendix A
Contents of the included DVD

/
readme.txt...Brief description of DVD contents in plain text format
readme.pdf........Brief description of DVD contents in PDF format
sources

daq Source code of the DAQ module
hmi..............................Source code of the HMI module
activator Reference to the Activator module
middleware.........Source code of the Data Broker / Middleware
car rest api.............Source code of the Car-Dependent API
watchdog.........Source code of the EC Watchdog control utility
dbc..............................Source code of the DBC library
api heartbeat...........Source code of the API heartbeat script
sample models Source code of sample Python AI/ML models
thesis................................LATEX source of this thesis

config
systemd...................systemd configuration and service files

thesis.pdf..............................Thesis text in PDF format
thesis.ps.................................Thesis text in PS format

63

	Introduction
	Touch Screen Interface Complexity Analysis
	Implementing External Control in an Existing Production Car
	Displaying Custom User Prompts on an Existing Production Infotainment Screen
	Hardware Platform for In-Car Computing
	Conclusion of the Introduction

	Top-level Architecture of the Framework
	Comparison to Existing Solutions
	Outside-Facing api
	Inside-Facing Functionality
	Selection of Internal Communication Methods
	Overall Layout
	Bring-up Behaviour

	Design of Individual Framework Components
	Data Acquisition Module
	Porting Legacy C++ code from Windows to Linux
	Efficient Implementation of Data Processing
	Extending the Module for Acquisition of Structured Data

	Human-Machine Interface Module
	Designing a gui Program with Dual Functionality
	Connecting a Graphical User Interface to a can Network
	Alternative Input Handling in a Qt Application
	Styling and Other Implementation Particularities

	Car-Dependent api
	Checking Health of Subprocesses

	Data Broker / Middleware api
	Architecture of Data Input and Persistence
	json Data Polymorphism in ASP.NET Core
	Management of Individual Driver Profiles
	Mechanism of Handling aiml Model Requests
	Example aiml Model Placeholders
	Example api Endpoint Requests

	Framework Reliability and Failure Mitigation
	Testing of Web Framework-Based Components
	Preserving Partial Functionality in Case of Errors
	Custom Heartbeat Script

	Software and Hardware Configuration for Optimal Operation
	Operating System Environment
	Leveraging the Embedded PC Watchdog Timer
	Ensuring Reliable Startup of the System

	Conclusion
	Glossary
	Acronyms
	Bibliography
	Contents of the included DVD

