Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

The Surprising Effectivity
of Monte Carlo Tree Search

Josef Vonasek

Supervisor: RNDr. Vojtéch Kovarik, PhD
Field of study: Open Informatics
Subfield: Artificial Intelligence

January 2021

ii

Podékovani

I would like to thank everyone that gave
me the support in order to complete the
thesis. I want to especially thank my su-
pervisor Vojtéch Kovarik, as his guidence,
expertise and patience were extremely im-
portant for me and this work. Finally, my
family also deserves many thanks for their
endless support thorough the studies.

iii

Prohlaseni

Prohlasuji, Ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o do-
drzovani etickych principt pri pripraveé
vysokoskolskych zédvéreénych praci.

V Praze, 1. ledna 2022

Abstract

The worst-case performance of the
Monte Carlo tree search (MCTS) algo-
rithm is orders of magnitude worse than
that of naive brute-force methods and not
many domain-specific bounds known for
it. Nonetheless, its practical performance
is outstanding, leading to its widespread
adoption in game solvers. As a result
of this gap in our understanding, state-
of-the-art algorithms such as AlphaZero
generally do not (yet) have meaningful
performance guarantees. To partially ad-
dress this gap, we investigate the practi-
cal performance of MCTS in Tic Tac Toe,
Hex and in additional artificial games, and
demonstrate its fast convergence to opti-
mal policy. Additionally, we show that
when combined with Alpha-Beta pruning,
MCTS outperforms the traditional Alpha-
Beta pruning minimax algorithm even in
offline mode. We show the uniform pol-
icy value to be the major culprit behind
the observed performance, demonstrating
that a) the value estimates are most often
correctly ordered, b) incorrectly ordered
values reduce performance noticeably. We
propose advantage accumulation as the
driving force behind the high quality of
uniform policy estimates. We show in ar-
tificial games that higher advantage accu-
mulation improves the UCT performance
and describe some of the properties found
in Tic Tac Toe and Hex with positive ef-
fect on said accumulation.

Keywords: Game theory, Monte Carlo
tree search, UCT

Supervisor: RNDr. Vojtéch Kovaftik,
PhD

Abstrakt

Efektivita algoritmu prohledavani stromu
Monte Carlo (MCTS) je v nejhorsim pii-
padé radové horsi, nez u naivnich metod
hrubé sily, pricemz je zndmo jen mélo
zarukach pro specifické domény. Presto je
jeho prakticka efektivita vynikajici, coz
vedlo k jeho sSirokému uplatnéni v teorii
her. V dusledku této mezery v nasich
znalostech nemaji (zatim) nejmodernéjsi
algoritmy, jako je AlphaZero, smysluplné
vykonnostni zaruky. Tato prace proto
zkouma praktickou efektivitu tohoto
algoritmu v hrach Tic Tac Toe, Hex a
v dalsich umélych hrach a prokazujeme
jeho rychlou konvergenci k optimalni
strategii. Navic ukazuje, ze UCT v kom-
binaci s Alpha-Beta prekonéva tradiéni
Alpha-Beta algoritmus i v offline rezimu.
Zkoumame toto chovani a zjistujeme, ze
hlavnim vinikem pozorované efektivity
je dobra hodnota uniformni strategie,
pricemz se ukazuje, ze a) odhady hodnot
jsou nejcastéji spravné usporadané, b)
nespravné usporadané hodnoty znatelné
snizuji efektivitu. Zduvodnujeme, proc
tomu tak mize byt, a navrhujeme
akumulaci vyhody jako hnaci silu stojici
za vynikajicimi hodnotami uniformni
strategie. Na umélé hie ukazujeme, ze
vyssi akumulace vyhody zlepsuje vykon
UCT, a popisujeme nékteré vlastnosti
zjisténé v hrach Tic Tac Toe a Hex s
pozitivnim vlivem na tuto akumulaci.

Klicova slova: Teorie her, Monte Carlo
tree search, UCT

Pteklad nazvu: Prekvapiva Efektivita
Metody Monte Carlo Tree Search

Contents
1 Introduction 1
Thesis Overview 2
2 Problem Statement 5
3 Related Work 7

3.1 Multi Armed Bandit Problem And

Its Generalization To Trees 7
3.2 UCT Regret Bounds 8
3.3 Game Pathologies.............. 9

3.4 Application To Traditional Games 9

4 Games 11
4.0.1 Tic Tac Toe 11
402Hex ... 12

5 Technical Background 15

5.1 Extensive Form Games 15

5.2 Minimax algorithm 16

5.3 Multi-Armed Bandit Problem .. 18

5.3.1 Upper Confidence Bounds... 19

5.4 Monte Carlo tree search 20

5.4.1 Final policy selection 21
5.5 Alpha-Beta UCT 22
6 Search Efficiency Analysis 25
6.1 The efficiency metric 25
6.2 Experimental results 26
7 Game Properties 29
7.1 Strong Uniform Policy......... 29

7.1.1 Artificial Games 30

7.1.2 Traditional Games 31
7.2 Advantage Accumulation 32

7.2.1 Artificial Games 33

7.2.2 Experiments............... 34

7.2.3 Traditional Games 35

724 Tic Tac Toe 36

T20Hex ... 36

8 Conclusion 39

8.1 Future Work 40
Source Code 41
Bibliography 43

vi

Figures

2.1 An example of difficult to solve
1-player game tree. The action values
on the path to the optimal reward
decrease linearly with the formula
D[_)". This makes UCT focus its
exploration at the top of the tree
instead of the bottom. Requiring a
composition of D — 1 exponential
function Q(exp(exp(..exp(2)..)))
simulations in order to get to the
optimal reward. 6

4.1 An example of Tic Tac Toe game,
with the second player (circle)
winning by connecting 3 circles
diagonally. 12

4.2 An example of Hex bridge. The
blue player can always connect stones
A and B, no matter what opponent
does. Such setup is called to be safely
connected and serves as the basic
strategic element. 13

4.3 An example of 11x11 Hex game,
with the red player winning by
connecting top and bottom edges of
the game board 13

5.1 The visualization of the 4 phases of
the Monte Carlo tree search
algorithm. 21

6.1 The distribution of the number of
states explored by UCT as a fraction
of the states explored by the
Alpha-Beta algorithm (x-axis). The
top row compares the standard UCT
algorithm with C' = v/2 evaluated
separately (online mode) in each
state with the Alpha-Beta UCT, that
is evaluated only once (offline mode).
The bottom row mimics this setting,
but with the parameter C' set to 0.
This disables exploration and makes
UCT always expand state with the
highest average reward. 28

7.1 The explored states by UCT
(x-axis) when compared to the
optimal move rank (when ordered by
uniformly random policy value)
averaged across all states of each
game (y-axis). Rank 0 is the best,
while 3 is the worst. 31

7.2 The estimated values (x-axis) of
uniform strategy from 1 000
random-sampled games in Tic Tac
Toe and Hex. The color of each bin
refers to the minimax value r* of
each game. 31

7.3 The distribution of the optimal
move ranks (when ordered by
uniformly random policy value)
averaged across all states of each
game (y-axis). Rank 0 is the best,
while 4 is the worst. 32

7.4 The amount of explored by UCT
relative to Alpha-Beta (y-axis) in the
game of Robbers 7.2.1 with varying
Karma parameter (x-axis). The
Karma parameter is inversely
correlated to the amount of
accumulation in given game. Similar
to 6.1, both online and offline mode
of UCT is presented, with the
standard v/2 and zero exploration

parameter C'. 35

viii

Tables

6.1 A median and mean with standard
deviation of explored states by UCT
(online) and Alpha-Beta UCT
(offline) relative to the Alpha-Beta
algorithm on 1 000 randomly sampled
games. The UCT is run with either
default or no exploration when the
parameter C is /2 or 0, respectively. 27

Chapter 1

Introduction

In 1996 the IBM chess computer named Deep Blue became historically the
first artificial player to defeat the world chess champion — Garry Kasparov
— under standard tournament rules [Campbell et al., 2002]. It relied on
extensive domain knowledge, a large Grandmaster game database, and a
massively parallel alpha-beta tree search strategy. It was a big success for
artificial intelligence as chess was historically one of the most popular yet
highly complex board games.

Nevertheless, it took another 20 years of engineering to create an artificial
player that would beat the world champion of another widely popular, ancient
board game — Go [Silver et al., 2017]. One of the reasons was the enormous
state space of Go. While a typical professional chess match counts around 80
moves, a typical Go match can count up to 150 successive moves. Moreover,
the average branching factor (number of legal actions) is much higher in Go —
approximately 250 compared to 35 in chess.

Nevertheless, another reason made the algorithm from Deep Blue unsuitable
for Go. The performance of the Alpha-Beta algorithm relies heavily on a
good evaluation function, which was not available for Go. Then, the idea
to use random play (i.e., Monte Carlo simulation) as an evaluation function
emerged. This technique got later extended into a brand new tree search
technique — Monte Carlo tree search [Ginsberg, 2002|. It quickly became the
basis of the most successful Go algorithms — Crazy Stone, MoGo [Gelly and
Silver, 2008], and, ultimately, AlphaGo Silver et al. [2017]. In the end, it
was shown to work across a wide variety of games (including chess) by the
algorithm AlphaZero [Silver et al., 2018].

1

I Introduction m m m s m s s s m m e E E E B E E E E E EEEESEEESEEEEESEEEBS S

However, there is one issue with the commonly used variant of Monte Carlo
tree search — UCT (upper confidence bound for trees) [Kocsis and Szepesvari,
2006]. Although it converges to optimal play in the limit, the bounds on
its performance are rather weak [Audibert et al., 2009]. Despite that, the
algorithm performs surprisingly well in practice, as shown by the success of
its applications.

Investigating this surprising phenomenon is the primary motivation behind
this thesis. The original idea behind UCT was to use the UCB1 algorithm
[Kocsis and Szepesvéri, 2006] — initially designed for a Multi-Armed Bandit
problem (MAB) — in a Monte Carlo tree search to carefully balance between
exploitation of best-known moves and exploration of the less visited subtrees.
However, Multi-Armed Bandit problem is conceptually much simpler than
a typical game, where the UCB1 algorithm assumptions become violated.
So even though increasing the UCB1 computation budget in classical MAB
settings leads to more precise solution approximation, there is no similar
guarantee when it becomes recursively applied to arbitrary game trees — as is
done in UCT.

In practice, however, the UCT algorithm performs exceptionally well. This
perhaps points to specific characteristics shared among the games humans
seem to enjoy. This thesis aims to explore the existence of such characteristics,
describe them formally, and finally, measure their prevalence in various games
and their effect on the performance of MCTS.

First, we confirm the UCT performance in the games Tic Tac Toe and
Hex, showing that UCT is able to solve the end states of each game under 50
simulations. On top of that, UCT combined with the Alpha-Beta algorithm
is also shown to consistently outperform the default Alpha-Beta algorithm.
Finally, it is shown that turning off the exploration factor does not have
significant effect on the performance, suggesting that the initial state values
(used by the UCT algorithm) obtained by the uniformly random policy are
mostly accurate.

We then show on synthetic benchmarks that the initial estimates indeed
play a huge role in the UCT algorithm performance. Our explanation for this
phenomenon is some form of accumulation of advantage present in each game,
as advantage accumulation would lead to similar rewards between sibling
moves - a property that we suspect to improve the MCTS performance. We
go on to show on synthetic benchmarks that this assumption indeed holds.
Finally, we provide a description of some of the properties common to both
Hex and Tic Tac Toe that would support this conclusion.

R EE s EEEEEEEEEEEEsEEEssssnssnmnnnnannnnnl Introduction

. Thesis Overview

The content of the thesis is following.

® Section 2 presents the MCTS problematic in more detail.

® Section 3 reviews existing work on the performance of Monte Carlo tree
search.

® Section 4 describes the rules of the traditional games used in this thesis.

® Section 5 presents the technical background behind the algorithms used
in this work.

® Section 6 explores the effectivity of the UCT, Alpha-Beta and Alpha-Beta
UCT on traditional games benchmarks.

® Section 7 investigates the properties of traditional and artificial games
that make UCT more effective.

® Section 8 draws the final conclusion and suggests further research direc-
tions.

Chapter 2

Problem Statement

Although the UCT algorithm is guaranteed to eventually find an optimal
policy in any perfect information game, it might take extremely long to
discover it, as the theoretical bounds of the UCT algorithm are very weak
[Coquelin and Munos, 2007]. Consider a simple one-player game with a single
optimal outcome at the maximum depth, where stepping of the optimal path
gives progressively lower rewards the further from the root the player is. In
such a case, the UCT algorithm is going to spend most of its exploration
budget on visiting the nodes with the highest known reward, which are located
at the top of the tree.

An example of such a game tree is presented in Figure 2.1. Here, the
non-optimal actions at a depth d give a reward equal to % where D
is the total depth of the tree. Such game is going to require more than
Q(exp(exp(..exp(2)..))) (where the exp is repeated D — 1 times) simulations
in order to reach the terminal node with highest reward as shown by Coquelin
and Munos [2007]. They also show the bound is improved to Q(exp(exp(D)),
when the usual logarithmic confidence bound gets replaced by a square root.
However, while this bound is accurate for adversarially designed games such
as the one presented in Figure 2.1, it appears to be overly pessimistic on
practically relevant games such as chess or Go as suggested by the success of
AlphaGo [Silver et al., 2017] and AlphaZero [Silver et al., 2018].

One of the main reasons behind this phenomena is most likely the fact that
many real-world games possess, quite a different structure than the worst-case
example we have shown in Figure 2.1. First, the rewards are usually discrete
coming from the set {1,0,—1}, as for most games we only have 3 different

5

2. ProblemStatement " m s s s s e e E E E E E E E E EE EEEEEEEEEEEEEEGES

(roor)=)=~~~ 1]
v v Y

v
((D-l);’D) ({D-z)mj [lfDl [0|

Figure 2.1: An example of difficult to solve 1-player game tree. The action
values on the path to the optimal reward decrease linearly with the formula £2=2.
This makes UCT focus its exploration at the top of the tree instead of the bottom.
Requiring a composition of D — 1 exponential function Q(exp(exp(..exp(2)..)))
simulations in order to get to the optimal reward.

outcomes: victory, loss and a draw. This makes it harder to craft adversarial
games such as the one presented in Figure 2.1, as it relied on fine grained
real-valued rewards. The value of node can still appear to the UCT to have
a non-discrete value, as the real values are approximated by uniform policy.
However, for the value to stay the same for long enough time (i.e., no converge
to the real reward), the tree must be sufficiently deep and/or wide. Second,
the games usually include two players, which could have a positive effect
on the approximation of the true reward of a given move. Finally, in most
games, players try to build up some sort of advantageous position over the
course of the game. This could have a significant effect on the smoothness of
the reward distributions in the tree, which should, in general, improve the
performance of the MCTS algorithm.

Our goal is to explore and measure the prevalence of these phenomena on
some of the popular 2-player, deterministic, perfect information games.

Chapter 3

Related Work

B 3.1 Multi Armed Bandit Problem And Its
Generalization To Trees

Monte Carlo methods were traditionally used in statistics for numerical
approximations of otherwise intractable problems [Metropolis and Ulam, 1949].
The idea is to use cheap, repeated random sampling to build an approximately
correct solution. Monte Carlo tree search is used to approximate the optimal
strategy of games where other methods cannot find an optimal solution in
reasonable amount of time — usually because the game state space is too
large. One of the first application of the Monte Carlo methods to game theory
was done by Abramson [1990] who combined linear regression with random
sampling to build an efficient and model-independent expected outcome
estimator. Additionally, the world’s strongest, at that time, artificial players
of Scrabble and Bridge (games of imperfect information) also combined game
tree search strategy with a Monte Carlo uniform action selection mechanism
[Ginsberg, 2002].

Kocsis and Szepesvari [2006] introduced a significant improvement to
the vanilla Monte Carlo planning algorithm, which up to that point either
sampled actions uniformly or used a domain-specific heuristic with little to
no convergence guarantees. They correctly assessed that to improve the
performance of Monte Carlo, the estimation error of state-values must decay
fast. Therefore, an efficient algorithm must balance its search budget optimally
between the best-looking actions and their seemingly suboptimal alternatives.

7

3 Related Workem m m s E S S S SESEEEEE SN B §

This is a well-studied problem of the trade-off between exploration and
exploitation, and its simplest form shows up in the multi-armed bandit
problem (MAB). Their idea was to apply the UCB1 (Upper Confidence
Bounds) algorithm from MAB to tree search. They named the algorithm
UCT (Upper Confidence Bounds for Trees) and showed that the probability
of selecting the optimal action converges to 100% as the number of samples
approaches infinity.

B 32 uct Regret Bounds

However, Audibert et al. [2009] showed that the convergence guarantees that
hold for MAB do not straightforwardly generalize to problems with several
nested sequences of bandits. They studied an abstract class of UCB-type
algorithms that use variance estimates during action selection. It has been
shown by Auer et al. [2002] that the expected regret of UCB1 decreases
logarithmically in N, where N is the number of samples. Audibert et al. [2009]
confirmed and generalized this result. However, they also demonstrated that
the cumulative expected regret (which appears in anytime tree algorithms
based on MAB) could decrease at most polynomially in N. Finally, they
also constructed a variant of UCB for a given finite time horizon N, named
PAC-UCB. Since the time horizon is known in advance, the algorithm achieves
a logarithmic bound on the cumulative expected regret and is, therefore, more
efficient than a traditional anytime UCB variant.

The work of Coquelin and Munos [2007] introduces an improvement on the
worst-case regret bounds of UCT. They show that the bounds are e¢” in an
unbalanced tree with decreasing rewards where the maximum reward happens
to be at maximum depth D. However, a modified UCT with knowledge of
the depth of the tree can improve on the bounds significantly — they designed
an algorithm with regret bounds of 2”/v/N where N was the number of
samples. In order to take a local smoothness into account (reward similarity
between neighboring states), they inspected the performance of flat-UCB
that used UCB only in tree leaves and found its regret to be very similar to
the modified UCB. This allowed them to create the BAST (bandit algorithm
for smooth trees) algorithm that is able exploit smooth reward distributions.

8

" B B B EEEEEE S EEEEEEEEESEEESEEESEEEEEEESR 3.3.GamePatho/ogies

B 33 Game Pathologies

A game pathology occurs when a deeper search in the game tree results in a less
accurate prediction of the value of a given state [Nau et al., 2010]. Although
it is possible to design a pathological game artificially, it has been of great
interest how this problem will manifest in real human games. Nau et al. [2010]
suggests that it is more common than thought. He found that the African game
of Kalah with sufficient branching factor contains pathologies at almost every
granularity. However, even other, mostly non-pathological games exhibited
some pathologies. For example, in the 8-puzzle, approximately 20% board
configurations happened to be pathological, while in the chess championship
matches, pathologies accounted for up to 10% board configurations. Wilson
et al. [2009] showed that a majority of interesting zero-sum game contain local
pathologies. They then designed a more robust minimax variant named EMM
(error minimizing minimax) by tracking the error associated with the heuristic
at each level. They experimentally demonstrated that EMM outperforms
minimax in most situations.

Long et al. [2010] measured the effect of elementary game properties in
imperfect information games on the performance of Perfect Information Monte
Carlo (PIMC) tree search methods. The use of Monte Carlo methods has
been criticized by Frank and Basin [1998] who showed that it is prone to two
types of errors — strategy fusion and non-locality. Both errors come from
assumptions that hold in perfect information but not in imperfect information
settings. However, there was no straightforward way to quantify these errors.
They, therefore, crafted three types of game properties — leaf correlation,
bias, and disambiguation factor. They then showed how to measure these
properties and experimentally confirmed that they were a good indicator of
the game difficulty.

B 34 Application To Traditional Games

Gelly and Silver [2008] attempted to improve the standard UCT algorithm
by combining it with additional value functions. First, they used a linear
combination of binary features as a simple state-value heuristic learned by
self-play, each weight corresponding to the influence of the feature on the
expected value. This heuristic was used as the default policy in each new
state. Second, they used a rapid action-value estimation to reduce the high
variance for a few samples. This was done by using any sequence containing
a given action to approximate the action value. Finally, they used prior

9

3 Related Workem m m s E S S S SESEEEEE SN B §

knowledge to initialize node values in the UCT tree. They combined all of
these techniques in the (at the time) world strongest 9x9 Go program MoGo,
significantly improving its strength.

Recently, a new approach appeared in the literature that combined deep
neural networks with the Monte Carlo algorithm. The main idea was to get
a better approximation of good moves by using a neural network to evaluate
board positions and improve action selection. Silver et al. [2017] demonstrated
that such approach is capable of super-human play in the game of 19x19
Go despite its enormous branching factor and game length — 250 and 150,
respectively.

Their program AlphaGo used recorded human professional games combined
with self-play to train deep convolutional networks as a heuristic function
(called policy and value networks), obtaining estimates on par with state-
of-the-art Monte Carlo tree search algorithms. In combination with MCTS,
they managed to defeat the human European Go champion Fan Hui and the
Korean champion Lee Seldol. Their follow-up work improved upon the idea
by not depending on any domain knowledge, mastering the game entirely by
reinforcement learning from self-play. The algorithm has also been simplified.
Firstly, by using a single neural network instead of two separate policy and
value networks. Secondly, by replacing the Monte Carlo rollouts with the
value estimates obtained by the above-mentioned deep neural network. The
final program named AlphaGoZero defeated AlphaGo 100 to 0 and required
significantly less time to train.

10

Chapter 4

Games

This section describes the setup of traditional zero-sum, deterministic games
used in this work — Tic Tac Toe and Hex. We use them to study the practical
UCT performance. These games are provided in the collection of games of
Deepmind’s open-source library Openspiel Lanctot et al. [2019].

Next, we will describe the rules and setup of the chosen board games. Each
one has a relatively simple set of rules and a useful property that makes the
number of moves decrease by one after each turn. This is important as it
makes the computational analysis of end games much more efficient. Despite
this similarity, the games have wildly different levels of complexity. Tic Tac
Toe is the simplest as it allows for no more than 9! unique move sequences.
On the other hand, a typical Hex match on an 11x11 board is much more
complex, as the upper bound on possible unique play-throughs reaches 121!.
As a consequence, it is computationally intractable to run Monte Carlo tree
search on the whole game tree, which limits us to either reducing the size of
the board or carrying out the analysis only on a subset of end games. The
rules of each game will be described in more detail in the following sections.

B 4.0.1 Tic Tac Toe

Tic Ta Toe, or Noughts and Crosses, is a zero-sum paper-and-pen game
played on a 3x3 grid. Each player takes turns, marking one of the fields with
X or O, respectively. The first player that makes 3 of their symbols align
horizontally, vertically or diagonally, wins the game. The game contains only

11

4.GameSllllllllll-lllllllll-llll-llllllllllllll

765 unique positions after accounting for rotation and reflection. Due to its
simplicity, it is mostly used for teaching purposes. However, the game can
be generalized to any grid size and even dimensionality, which increases the
difficulty considerably.

We will stick with the original definition. In such a case, it is known that
the game will always end up in a draw if played perfectly . However, the legal
outcomes consist of 91, 44, and 3 distinct winning positions for the X, O, and
neither player, respectively, assuming that X is the starting player and that a
draw counts as a win for no player. Such imbalance is of our interest, as it
affects the quality of the common random-rollout MCTS heuristic.

X O
X O
OIX|X

Figure 4.1: An example of Tic Tac Toe game, with the second player (circle)
winning by connecting 3 circles diagonally.

B 4.0.2 Hex

Hex is a positional, perfect information board game invented in the 20th
century by the mathematician Piet Hein. It is typically played on 11x11,
13x13, and 19x19 hexagonal boards. Each player takes a turn, placing stones
of his color on empty spaces, trying to connect opposing sides of the board.
The first one to do so wins. In order to win, players focus on building short,
safely connected chains of stones where two unconnected chains are said to
be safely connected, if and only if the opposing player cannot prevent their
connection by any sequence of moves.

Hex itself has several notable properties. First, it has been shown that
the beginning player can never lose (similar to Tic Tac Toe). The proof
relies on the standard strategy-stealing argument discovered by John Nash.
In short, if there would be a winning strategy for the second player for any
board setup, the first player could place his first stone randomly and then
use the opponent strategy against him. As both players have the same set of
moves and because extra stone of player’s color is never a disadvantage, this
will inevitably lead to a contradiction, as both players should win. This is,
of course, impossible, and therefore such a second-player winning strategy

12

Illllllllllllllllllllllllllllllllllllll4.Gam€5

Figure 4.2: An example of Hex bridge. The blue player can always connect
stones A and B, no matter what opponent does. Such setup is called to be safely
connected and serves as the basic strategic element.

cannot exist.

The second property, called the Hex theorem, states that a draw is impos-
sible. This too was discovered by John Nash in the 1950s, and it has been
shown to be equivalent to the Brouwer fixed-point theorem. As a consequence,
the first player will always win if playing perfectly. Despite that, a perfect
strategy has never been shown or computed for boards larger than 9x9, and
it is generally very difficult to compute such strategy for boards of arbitrary
size, as the problem has been shown to be PSPACE-complete.

Figure 4.3: An example of 11x11 Hex game, with the red player winning by
connecting top and bottom edges of the game board

13

14

Chapter 5

Technical Background

In this chapter, we provide a formal description of the types of games we are
going to study and the search techniques being used to solve them. We focus
on deterministic, perfect information games as they are conceptually simple
yet give rise to complex games (like chess, Go or Hex) challenging to both
human and artificial players.

. 5.1 Extensive Form Games

Deterministic, perfect information, zero-sum, extensive-form games (EFGs)
can be informally described as trees with actions representing edges, inner
nodes representing game states where one of the players takes action, and
leaf nodes representing terminal states with a payoff for every player.

Formally, they are defined as a tuple (P,P, A, A, H, Z, hr, p,) where

m P ={P, Py} is a set of players
® A is a finite, non-empty set of actions
® H is a finite, non-empty set of choice nodes

® hp € H is the root node

15

5.Technica/BaCkgrOundl-lllllllllllll-llllllllllllll-ll

® 7 is a finite, non-empty set of terminal nodes

® P : H — P defines which player gets to act at given node

m A: H — 24 defines available function at given node

mp:(he H)x A(h) - HUZ is a successor function where
m p(h,a)=pW,d) = h=h&a=4d

® r: Z — R? is the reward function where

® the rewards sum to zero: r(h); = —r(h)2

Additionally, for the analysis we carry out in this work, we need to be able
to describe arbitrary player strategies, expected utilities and optimal policies.
These are formally defined as:

m u(7m,m) € R? is the expected utility of players policies
m7:(he H)xAh) — O(A(h)) is a player’s policy function where

m O(X) is the set of all probability distributions over X

We say that a policy 7 is a Nash equilibrium if neither of the players can
improve their utility by unilaterally deviating from 7, that is, if the following
holds for both i € {1,2} (where —i denotes the opponent of 7):

vl (mg, o) > ug(mh, o). (5.1)

(2

We typically denote Nash equilibria as 7*.

The goal of each player is to find his Nash equilibrium policy 7}. We will
therefore call it an optimal policy. When such policy is known for each player,
the game is said to be solved. The traditional technique to find the optimal
policy in zero-sum games is the Minimax algorithm and its extensions.

B 52 Minimax algorithm

The minimax algorithm is a recursive algorithm that finds the set of Nash
equilibrium policies in a given deterministic, two-player, zero-sum game. It

16

llllllllllll--llllllllllll-llllll5.2.Minimaxa/gorithm

does so by recursively searching for the actions that give each player the
maximum utility value across all actions available in a given game state
assuming the opponent policy is chosen such that it minimizes the value of
this maximum utility. The pseudocode of the algorithm for two player game
is shown in the Algorithm 1.

However, obtaining the optimal policy by the Minimax algorithm is not
computationally feasible for many relevant games. Therefore, the search is
usually limited to a certain depth, and the utility values are replaced by a
positional evaluation function, specifically designed for each game in advance.
This function computes a heuristic value for choice nodes. Its value can
represent an approximation of the theoretically optimal utility or an estimate
of the probability to win.

Algorithm 1 The minimax algorithm

function minimax (node, depth)
if depth == 0 or node is a terminal node
return the heuristic value of node
if isMaximizingPlayer (node)

value = -infinity
for each child of node
value = max(value, minimax(child, depth - 1))

return value
else # minimizing player

value = +infinity
for each child of node
value = min(value, minimax(child, depth - 1))

return value

A common extension to the Minimax algorithm is the Alpha-Beta algorithm,
which significantly speeds up its runtime. The minimax does so by skipping
an evaluation of any node once its utility is guaranteed to be worse than its
alternative. The a and [represent the minimum and maximum bounds on
the utilities. The pseudocode of the algorithm for two player game is given
in the Algorithm 2.

However, even with these additional extensions, the algorithm did not work
very well in games like Go, where no good positional evaluation was available.
The Monte Carlo tree search appeared as an excellent alternative, as it does
not suffer from the same problem. Its most prominent variant called UCT
finds its origins in the multi-armed bandit problem, which we now describe.

17

5.Technica/BaCkgrOundl-lllllllllllll-llllllllllllll-ll

Algorithm 2 The Alpha-Beta Algorithm

function alphabeta(node, depth, a, b)
if depth == 0 or node is a terminal node
return the heuristic value of node
if isMaximizingPlayer (node)
value = -infinity
for each child of node
value = max(value, alphabeta(child, depth-1, a, b))
if value >= Db
break # beta cutoff
a = max(a, value)
return value
else
value = +infinity
for each child of node
value = min(value, alphabeta(child, depth-1, a, b))
if value <= a
break # alpha cutoff
b = min(b, value)
return value

B 5.3 Multi-Armed Bandit Problem

The stochastic multi-armed bandit problem (MAB), sometimes called the
N-armed bandit problem, is a classic reinforcement learning problem in which
a fixed limited set of resources must be allocated between competing choices
in a way that maximizes their expected gain. The stochastic outcome of each
choice is not known upfront but may become better understood as time goes
on.

Formally, the multi-armed bandit is defined as a tuple (A, T,r), where:

m A is a fine, non-empty set of actions
® 7 € N is the number of turns
® ;A — O is the utility function where

® O is a set of real valued probability distributions
The game is played in the following way:

® On turn ¢ € {1,..,T} the player chooses action a; € A

18

s s s ssssnssnssnnnnnnnnnnnnanannn 53 Multi-Armed Bandit Problem

® The player receives a reward r; independently sampled from pu(a;)
8 The player may update their assumption on the reward distributions.

® The game moves on to the turn ¢ + 1.

The goal of the player is to maximize the reward accumulated over T' turns:
Z?:o r¢. The problem the player faces is how to effectively balance between
playing the node with maximum known reward (exploitation) and playing
other nodes to account for early bad luck caused by the stochastic nature
of rewards (exploration). This problem is called the exploration-exploitation
dilemma. The common techniques to deal for dealing with it are:

8 c-greedy strategy
8 Thompson sampling

® Upper confidence bounds (UCB)

However, we will be interested only in UCB, as it is used in the UCT
variant of the Monte Carlo tree search that we are about to study.

Bl 5.3.1 Upper Confidence Bounds

The upper confidence bounds algorithm solution to the exploration-exploitation
dilemma, is to estimate the error of each action’s estimated expected reward.
The next action is then selected based on the estimated reward and its possi-
ble error (upper confidence bound). Formally, the action a; at the time ¢ is
selected so that:

a; = argmax, (Q¢(a) + Ui(a)). (5.2)
Where

® (); : A — R is the average of sampled rewards
¢
m Qia) =1 Do T
dim

@ U;: A — Ris the upper confidence bound

® Defined in the Equation 5.3

19

5.Technica/BaCkgrOundl-lllllllllllll-llllllllllllll-ll

A common way to estimate the upper confidence bound is by using Ho-
effding’s inequality Hoeffding [1994] - a theorem applicable to any bounded
distribution. This variant of the algorithm is called UCB1. Let Cy : A — Z
be the amount of times the action a was selected up to the time . The bound

then becomes equal to
2logt
U, =4/ . 5.3
t(a) Ct (a) ()

. 5.4 Monte Carlo tree search

Monte Carlo tree search is a stochastic heuristic for efficiently exploring the
agent’s space of possible actions. Compared to algorithms like minimax,
MCTS trades off optimality for speed and a possibility to stop the search at
any time.

The focus of MCTS is on the analysis of the most promising moves, ex-
panding the search tree based on a random sampling of the search space. The
application of Monte Carlo tree search in games is based on playouts, also
called rollouts. In each playout, the game is played out to the very end by
selecting moves at random. The final game result of each playout is then
used to weigh the nodes in the game tree so that better nodes are more likely
to be chosen in future playouts.

Each round of Monte Carlo tree search consists of four steps as depicted in
the Figure 5.1:

® Selection: From the root node, a selection strategy is applied recursively
until a position is reached that is not a part of the tree yet. The selection
strategy controls the balance between exploitation and exploration. The
variant of MCTS that uses UCB1 as the selection strategy is called UCT
(Upper confidence bounds for trees).

® Expansion: The expansion step happens when a new node n is visited
for the first time at the end of selection. Expanding this node refers to
storing it inside a list of expanded nodes for future use.

® Simulation: Simulation (also called playout or rollout) is the step that
selects moves in self-play until the end of the game, starting at node n.
This task usually consists of playing uniform random moves or pseudo-
random moves until terminal node is reached. The reward given by the
terminal node is taken is if it was given by the starting node n.

20

s s s s ssssssssssnnsnnnnnnnnnnannnnbd4 Monte Carlo tree search

Repeated X times
TR T

The selection strategy is

applied recursively until an One node is added

Ome simulated The result of this game is
1o the tree

il game i5 played backpropagated in the tree
unknown position 15 reached - e PR

Figure 5.1: The visualization of the 4 phases of the Monte Carlo tree search
algorithm.

® Backpropagation: Backpropagation is the step that propagates the result
of a simulated game backward from a leaf node to the nodes it had to
traverse in order to reach that leaf node by updating the accumulated
reward in each node.

The pseudocode of the algorithm is given in the Algorithm 3.

Bl 5.4.1 Final policy selection

At the end of the simulation, the actual move played by the algorithm is the
action with the highest score available at the root node. The most common
possibilities to determine the score are:

® The score is how many times the action was used.

@ The score is the lower confidence bound on the action’s reward.

However, it can happen that two actions with completely different outcomes
will both get a very high score. This is not going to get properly reflected
in the above policy. This might become an issue when a lot of randomness

21

5.Technica/BaCkgrOundl-lllllllllllll-llllllllllllll-ll

Algorithm 3 The MCTS algorithm

function mcts(rootNode, simulations)
expandedNodes = {}
for s in {1,2..,simulations?’}
node = rootNode

selection
while node in expandedNodes
node = select(node)

expansion
expandedNodes . insert (node)

simulation
reward = simulateGame (node)

backpropagation

while hasParent (node)
node.reward += reward
node.visits += 1
node = node.parent

return rootNode action to node with maximum visits

is involved, for example when using the random rollout estimation with low
number of rollouts. In order to limit the variance of the final policy under
these circumstances, the final action can be played stochastically.

Again, there are different ways to compute the probabilities for each move
according to its score, each with its own trade-off. We want our policy to
quickly converge to the optimal move and therefore we will ignore all moves
with score bellow 90% the maximum achieved score at given state. To get a
smooth probability distribution we will rescale the remaining values with the
Softmax transformation:

T

— 5 (5.4)
i

(X1, ey Tp)i

B 55 Alpha-Beta UCT

The original UCT algorithm has two shortcomings:

22

llllllllllllllllllllllllll-lllllll5.5.Alpha—BetaUCT

® [t requires an undefined amount of exploration.

® It needlessly revisits states like the terminal nodes.

This is because the algorithm is only guaranteed to find the optimal strategy
in a limit, and therefore the actual state rewards r* are unknown during the
run. Both of these problems can be addressed by combining the propagation
of the minimum and maximum reward bounds from the Alpha-Beta algorithm
with the action selection and reward approximation from the UCT algorithm.
The result is an algorithm that explores the game tree in a similar manner
to UCT but prunes parts of the search space as the Alpha-Beta algorithm.
This allows us to more effectively measure the impact of the key component
of Monte Carlo tree search (that is, the action selection phase) on the overall
algorithm performance.

We are going to refer to this modification as the offline Alpha-Beta UCT
algorithm. All benchmarks in this thesis that show the performance of
the offline UCT are going to use this variant unless stated otherwise. Its
pseudocode is shown in the Algorithm 4.

23

5.Technica/BaCkgrOundl--lllllllllll..llllllllllllll..l

Algorithm 4 The Alpha-Beta UCT Algorithm

function AlphaBetaUCT (rootNode)
expandedNodes = {}
while not(rootNode.solved)
node = rootNode
selection
while node in expandedNodes
node = selectUnsolved(node)
expansion
expand (node, expandedNodes)
simulation

rewvard = simulateGame (node)
backpropagation
while hasParent (node)
node.reward += reward
parent = node.parent
alpha beta bounds propagation
if parent.player == maximizingPlayer
if all children of node are node are solved
node.solved = True
parent.value = min(parent.value, node.value)
if node.value > parent.beta
node.solved = True # cut-off
node.beta = min(node.value, node.beta, parent.beta)
else
if all children of node are node are solved

node.solved = True
parent.value = max(parent.value, node.value)
if node.value <= parent.alpha
node.solved = True # cut-off
node.alpha = max(node.value, node.alpha, parent.alpha)
node = parent

return rootNode action with maximum value

24

Chapter 6

Search Efficiency Analysis

In this chapter, we explore the efficiency of Monte Carlo tree search in tradi-
tional games. Particularly, we investigate the number of explored positions
required to find a winning strategy in Tic Tac Toe and Hex. Our goal is to
confirm the assumption that the MCTS algorithm is effective at this task.
We use the UCT algorithm with default and zero exploration along with the
Alpha-Beta UCT and Alpha-Beta algorithms to get a better insight into which
part of UCT is the most responsible for its performance. The experimental
results are presented and discussed in Section 6.2.

B 61 The efficiency metric

To estimate how effective is an algorithm at utilizing new information (i.e.,
information that is obtained from expanding nodes in the game tree) we need
to define an efficiency metric. A straightforward way to measure this is by
using the size of the sub-tree explored by the algorithm, i.e., the number of
simulations passed to the UCT algorithm 3. The UCT policy is calculated
based to number of times V}, each action a € A was used at given choice
node h € H as discussed in Section 5.4.1:

exp(Vy,)
w(h,a) = 7261 eXp(hV,:a)

25

(6.1)

6.SearCthfiCienCyAna/ySiSlllllllllllll-llllllllllllll-ll

Where V,{a treats low number of visits as zero:

(6.2)

Vi — 0 if Ve < 0.9 % maxa/(Vha)
ha Ve otherwise.

However, since it is not known how many simulations are needed to find the
optimal policy pi*, we are going to run the UCT algorithm with increasing
number of simulations until 7* is found. In the case of Alpha-Beta and Alpha-
Beta UCT, the calculation is simpler, as the number of explored states simply
corresponds to the number of recursive calls of the Alpha-Beta function 2 and
the final size of the exploredStates variable in the Alpha-Beta UCT algorithm
4, respectively.

B 62 Experimental results

In this section, we qualitatively measure the number of explored positions
required to find a winning strategy with the MCTS and Alpha-Beta algorithm
in Tic Tac Toe and Hex. The primary goal is to confirm the assumption
that MCTS method is very effective at finding optimal policies in traditional
games. However, due to the enormously large state space of each game, we
will limit our analysis to only a subset of end-games. The procedure we use
is the following. First, we randomly sample 1 000 subtrees in both games
after 3 and 100 random moves, respectively. Furthermore, games solved by
Alpha-Beta under 50 expansions are ignored, as we consider their game trees
too small to be useful for our analysis. Finally, we measure the number of
explored states of the online UCT algorithm 3 and the offline Alpha-Beta
UCT algorithm 4. These numbers are then compared to the Alpha-Beta as a
percentage 100% where Eyy and Ejs are the numbers of states explored by
UCT (or Alpha-Beta UCT) and Alpha-Beta, respectively.

We measure the UCT performance in two settings. First, with the ex-
ploration constant C' set to the standard value C' = v/2. Second, with the
same constant set to C' = 0, making the action selection is greedy. This
allows us to highlight the role of exploration in the benchmarked games.
Additionally, we use the average of 3 random rollouts as the heuristic function
(a higher amount did not seem to have a significant effect on the performance).
Furthermore, as computing the expected reward of a UCT based policy is
costly (it amounts to running UCT search in every state reachable by the
policy), we only do it when the number of simulations reaches a predefined
number from the set {25, 50, 100, 150, 200, 300, 400, 500}.

The results are presented in Table 6.1 as a median along with mean and

26

5 B EEESEEESSEESSEEESEEESEEES 6.2.Experimenta/results

Game ‘ MCTS ‘ C ‘ median (eff. %) ‘ mean (eff. %)
TicTacToe | online | v2 | 19% 23% +15%
TicTacToe | online | 0 | 19% 23% +16%
TicTacToe | offline | v2 | 59% 69% +44%
TicTacToe | offline | 0 | 51% 58% +30%
Hex online | v2 | 3% 6% +5%

Hex online 0 | 7% 8% +4%

Hex offline | v2 | 25% 29% +21%
Hex offline | 0 | 14% 20% +20%

Table 6.1: A median and mean with standard deviation of explored states by
UCT (online) and Alpha-Beta UCT (offline) relative to the Alpha-Beta algorithm
on 1 000 randomly sampled games. The UCT is run with either default or no
exploration when the parameter C is v/2 or 0, respectively.

standard deviation. Figure 6.1 then depicts the distributions in the game
of Tic Tac Toe. As the game is rather small, we were able to sample all
subgames after 3 moves. The results in Table 6.1 show that the UCT algorithm
dominates Alpha-Beta in both offline and online settings, performing only
about 20% and 50% explorations done by Alpha-Beta, respectively. In Hex,
the UCT is even more effective than in Tic Tac Toe. This is most likely
caused by the shallow depth of the Tic Tac Toe game tree. Furthermore, the
data also shows that limiting exploration in the algorithm (i.e., setting the
constant C' to 0) does not have a significant impact on its efficiency. On the
contrary, in the offline mode, the efficiency is even improved! In other words,
the reward estimates themselves must be largely responsible for the success
of the Monte Carlo method. However, it is unclear why the estimates should
be correct in the first place.

The experiment results confirm that UCT is, on average, more efficient
than Alpha-Beta. This also holds for the offline Alpha-Beta UCT algorithm,
which suggests that the algorithm efficiency cannot be attributed only to a
complex heuristic function (i.e., trained neural network in the case of AlphaGo
[Silver et al., 2017]) or its ability to work in an online manner. Furthermore,
turning off the exploration by using setting C' = 0 did not have significant
effect on the number of explored states. This suggest the structure of the
explored games must have some favorable properties that make the search
more efficient.

27

6.SearCthfiCienCyAna/ySiS-l-ll-l-ll---llll---ll---llllnl

Tic Tac Toe [C=+v2, Online] Tic Tac Toe [C=+v2, Offline]
400 1 400
350 A 350
300 - 300
250 1 250
w v
[t} [\
£ 200 | £ 200
1+ [1+]
]]
150 ¢ 150
100 4 100
50 50
0- u T T T il 0
0 50 100 150 200 250 300 50 100 150 200 250 300
Explored States (%) Explored States (%)
Tic Tac Toe [C=0, Online] Tic Tac Toe [C=0, Offline]
400 1 400
350 A 350
300 300
| |
250 4 1 250 1
[} (%)
w ')
£ 200 | £ 200
1+ [1+]
]]
150 ¢ 150
100 4 100
\
\
50 1 H 50
h
1
04 ¢ T T T ! 0
0 50 100 150 200 250 300 50 100 150 200 250 300
Explored States (%) Explored States (%)

Figure 6.1: The distribution of the number of states explored by UCT as a
fraction of the states explored by the Alpha-Beta algorithm (x-axis). The top
row compares the standard UCT algorithm with C' = /2 evaluated separately
(online mode) in each state with the Alpha-Beta UCT, that is evaluated only
once (offline mode). The bottom row mimics this setting, but with the parameter
C set to 0. This disables exploration and makes UCT always expand state with
the highest average reward.

28

Chapter 7

Game Properties

In this chapter, we explore several properties that we believe play significant
role in MCTS performance. As highlighted in the Chapter 6, the standard
UCT algorithm rarely requires more than 50 simulations to find the optimal
policy and the offline Alpha-Beta UCT consistently outperforms the Alpha-
Beta algorithm in both Hex and Tic Tac Toe. Moreover, removal of the
exploration factor did not seem to have a significant effect on the algorithm
performance 6.1. This can be only explained by the fact that such games
possess favorable properties aligned with the inherent bias of the Monte Carlo
tree search. It is unclear, however, what they are and why they exist. Here,
we try to answer both of these questions. In the following text, we are going
to propose several such properties, examine their effect on UCT, and attempt
to explain their presence in each game.

. A Strong Uniform Policy

We believe that correct action reward estimates by the uniform policy is
one of the key ingredients behind the success of Monte Carlo tree search.
The uniform policy shows up in the MCTS algorithm precisely twice. First,
as the heuristic function, i.e., the random rollout evaluation. This is not a
uniform policy per se, but rather its approximation through random sampling.
Second, in the UCT algorithm inside the UCB1 formula as the value estimate.
Technically, this is true only in the early stages of the search, as the algorithm
gradually selects optimal actions more and more often. However, this could
be understood as a specific form of the weighted uniform policy, where the

29

7.GamePrOpeI’t'ieSlll-llll-lllllllllllll-llllll-ll-ll

weights are initially set to % where N is the number of moves, and later on,
gradually increased for actions with better outcomes.

We have explained why we believe that uniform policy is the key ingredient
in the UCT value estimates. Therefore, it should be the first property to be
investigated since the effectivity of UCT is directly related to the accuracy
of its value estimates. Specifically, it is very likely, that games where UCT
performs well are also games where a uniform random policy gives good
reward estimates. Imagine an extreme situation where the estimates become
identical to true rewards. Evidently, in such a case, the algorithm will arrive
at the optimal strategy immediately. In the general case, the more accurate
the random estimates are, the fewer states should the UCT need to explore.

However, an accurate value estimate should not be strictly needed for good
performance, as moving or multiplying all estimates by a positive constant
does not change their maximum. Such transformation with a sufficiently small
constant should have no effect on the selection process. As a consequence,
we will be more interested in the correct ordering of moves than their exact
estimates. Specifically, we want the expected value of a uniformly random
strategy to be highest for the action that also achieves the highest reward
with the optimal policy 7*.

B 7.1.1 Artificial Games

Artificial games allow us to precisely measure the role of the initial uniform
policy value on the amount of explored states by the UCT algorithm, as they
give us fine control over all parameters of the game tree.

We are going to use randomly generated, balanced-tree games with fixed
branching factor and depth — 3 and 6, respectively. The terminal values are
chosen from the set {—1,1} for both players. However, the vast majority
of such games would be trivial for UCT to solve, i.e., require less than 50
simulations. In order to increase the portion of challenging games, we are
going to choose only such games which contain precisely one unique sequence
of moves guaranteeing a victory for the starting player. Therefore, we are
going to refer to these games as the 1-Path Games.

The results are presented in Figure 7.1. It shows that games which on
average, contain correctly ranked actions (when ordered by uniform policy
value), also require a smaller amount of exploration done both by the UCT
and Alpha-Beta UCT algorithms.

30

" E B B E N EEEE NS EESEEE SN S EE SN ESEEESEEES 7.1.5trongUniformPoIicy

1-Path Game [Online, C=v2] 1-Path Game [Offline, C=v2]

0.25
o v 0.28
> >
s s
3 o = 0.26
E E
B 0.231 2
o O 0.24
b b
[e] [e]
o | o
£ 022 € 022
3 3
& &
& 021 & 0.20
g g
z z

0.201 0.18

200 400 500 800 100 150 200 250
Explored States Explored States

Figure 7.1: The explored states by UCT (x-axis) when compared to the optimal
move rank (when ordered by uniformly random policy value) averaged across all
states of each game (y-axis). Rank 0 is the best, while 3 is the worst.

Mean Distribution: TicTacToe Mean Distribution: Hex
700
60
N 600
50 M
500
@ © value o 400 value
£ —/ -1.0 £ 1.0
g 30 . 0.0 G 300 — 10
= 1.0 .
20 200
10 100
0 { y T 0
-0.5 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0
Mean Mean

Figure 7.2: The estimated values (x-axis) of uniform strategy from 1 000 random-
sampled games in Tic Tac Toe and Hex. The color of each bin refers to the
minimax value r* of each game.

B 7.1.2 Traditional Games

In this section, we investigate the role of uniform policy value in the game of
Tic Tac Toe and Hex 11x11. We randomly sample 1 000 and 10 000 games at
a depth of 3 and 110, respectively. Then we compute the value of optimal
and uniform strategy (approximated by 30 random samples) in each of those
games. The estimated value distributions are presented in Figure 7.2.

The charts show that uniform policy is not a very good estimate of the
exact true values. However, the values can be used effectively for move
ordering, as each distribution has a distinct mean. This is most visible in Hex,
where the distributions also have almost no overlapping regions. In Tic Tac
Toe, the overlap is more significant, mainly for draw-scoring moves. However,

31

7.GamePrOpeI’t'ieSllll-lll--lllll---lll--lllll-llllnl

TicTacToe
700

600
500

o 400

[1+]

O 300
200
100 I

0 I | ——
0 1 2 3 4

Best Move Order By Random Rollout

Figure 7.3: The distribution of the optimal move ranks (when ordered by
uniformly random policy value) averaged across all states of each game (y-axis).
Rank 0 is the best, while 4 is the worst.

this still makes the estimates relevant for differentiating between winning
and losing actions. Most importantly, the distributions are also correctly
arranged - the losing and winning moves have the lowest and highest mean,
respectively. An opposite order would most likely have a negative effect on
MCTS performance, as it would increase the probability of receiving uniform
policy value estimates that do not reflect the true value of each move.

Most importantly, the best actions in Tic Tac Toe also have the highest
uniform strategy value in approximately 70% states as depicted in Figure 7.3.
This means the UCT will have a 70% chance to explore the correct (optimal)
move right away. The last 10 moves of Hex are even more favorable, as the
percentage of optimal moves with the highest uniform strategy value reaches
a staggering 95%.

- I Advantage Accumulation

The term “advantage” is often used when talking about the strength of a
particular game position, even though it has no standardized definition in
game theory. One could call positions with a guaranteed win as advantageous.
Yet, that would not align with its informal description, as some positions are
described to be more advantageous than others.

Informally, possessing an advantage should guarantee better odds of winning

32

" B B B B EEEEEEEEEEEEEEESEEEEEEEEESR 7.2.AdvantageAccumulation

a game. The traditional strategy common to most games is then to accumulate
such an advantage in order to improve on those odds, for example, by capturing
additional enemy pieces in chess. Moreover, it is also usually the case that
such accumulation favors the player with the most advantage - capturing an
additional piece in chess is way easier when the opponent has fewer pieces to
start with.

This suggests that traditional games have a very specific structure. They
are, in essence, positional. That is, strong positions lead to positions of
similar strength; the winning positions are in a close neighborhood (in terms
of actions) to other winning positions. In other words, the change in position
strength by a single move should be, on average, very small. Furthermore, it
is reasonable to assume that the strength should, in some sense, refer to the
total number of winning states accessible from a given position, as humans
rarely play perfectly.

Combining these two facts together could explain the surprising strength
of uniform policy. First, if the optimal winning move is guaranteed to be in
close proximity of other winning moves, then the best chance finding such a
move is in the region of highest winning-move density. Second, if adjacent
positions have similar strength, then the initial value of a state should be
assumed to be of its neighbor. Both of these assertions favor the uniform
policy, as it averages the heuristic value (strength) of neighboring states and
directly corresponds to winning-move density in the case of {1, —1} terminal
rewards.

B 7.2.1 Artificial Games

In this section, we explore the impact of positional structure on MCTS
efficiency in synthetic benchmarks. Using synthetic trees has two advantages.
First, we know precisely the amount of advantage accumulation that happens
in a given game. Second, we can generate games with different accumulation
rates and measure their influence on MCTS performance. In order to achieve
that, we design a simple resource-stealing game, where both players try to
steal money from each other. The one with a positive balance wins. This is
meant to imitate the exchange of pieces in games like Chess or Go. We give
it the name “Robbers”.

The game is defined by a tuple (D, B, R, S, K) where

33

7.GamePrOpeI’t'ieSlll-llll-lllllllllllll-llllll-ll-ll

m D € 7 is a the depth of the game tree (i.e. the number of turns).
® B € Z is the branching factor (i.e. the number of ations).

m ReRP ¥ are the rewards for each action.

S € R? is the sum of money both players posses (their balance).

K € R is an advantage accumulation parameter.

The game is played in turns d € 0,1, .., D:

Player ¢ € 0,1 chooses one of 0,1, .., B actions.

This action steals R;p — K - S; from the opponent balance.

m Now new turn begins, second player (1 — i) gets to act.

This repeats for D steps. Then, the player ¢ with highest balance S;
wins.

The rewards R are known by the players ahead of time and don’t change
during the game. The “Karma” parameter is a simple tool to control the
amount of advantage accumulation in the game. It makes it either easy or
hard to accumulate additional money when K < 0 or K > 0 respectively.

B 7.2.2 Experiments

Here, we measure the effect of advantage accumulation on MCTS performance
in the game of “Robbers” as defined in 7.2.1. We use a fixed depth and
branching factor D = 10, B = 4. The “Karma” factor and action rewards
Ry are randomly uniformly sampled from the interval [—1, 1]. In total, we
generate 10 000 games with this setup.

As can be seen from Figure 7.4, games with higher advantage accumulation
(low Karma) tend to require an increased amount of exploration. The only
exception to this is the UCT algorithm in offline mode with parameter
C = /2. This is because high advantage accumulation makes sibling states
very likely to have an identical expected reward - both for an optimal and
random uniform policy. As a consequence, the estimated rewards by UCT
will also be almost identical, making MCTS behave like a breadth-first-search

34

" B B B B EEEEEEEEEEEEEEESEEEEEEEEESR 7.2.AdvantageAccumulation

Robbers [Online, C=v2] Robbers [Offline, C=v2]

60
120
55
£ 50 £ 110
" e
a5 3
© Il
] = 100
- 40 n
g 3
5 g
‘_135 % QO
et >
80
25
20— T T T T . : : : :
-1.0 -0.5 0.0 0.5 1.0 -1.0 —0.5 0.0 0.5 1.0
Karma Karma
Robbers [Online, C=01 Robbers [Offline, C=0]
70
14 65
£
fn _. 60
] &
Ew w55
= 3z
- 1]
50
g ° o
= B a5
g 6 5
£ =
W
% &40
2 35
& 2
30
0 :
~100-075-0.50-025 0.00 025 050 075 100 -1.0 —0.5 0.0 0.5 10
Karma Karma

Figure 7.4: The amount of explored by UCT relative to Alpha-Beta (y-axis)
in the game of Robbers 7.2.1 with varying Karma parameter (x-axis). The
Karma parameter is inversely correlated to the amount of accumulation in given
game. Similar to 6.1, both online and offline mode of UCT is presented, with
the standard v/2 and zero exploration parameter C.

algorithm. Therefore, the algorithm will explore many more states than if it
simply greedily searched the first state it came across, as depth-first-search
algorithms (like Minimax) do. However, as visible in the graph, this issue
disappears once the algorithm is made greedier, for example, by turning off
exploration (setting C' = 0).

B 7.2.3 Traditional Games

Both Tic Tac Toe and Hex are subject to advantage accumulation, as we will
show in this section. Informally, in Tic Tac Toe, each move is guaranteed to
have only a slight impact on the total amount of winning positions in the game.
In Hex, not taking an important action does not remove a significant amount

35

7.GamePrOpeI’t'ieSlll-llll-lllllllllllll-llllll-ll-ll

of winning position from the game. The formal description are explained in
more detail in the following subsections.

B 7.2.4 Tic Tac Toe

The rules of Tic Tac Toe declare the player who connects N symbols of the
same type in the line as the winner. This means that a space on the board
can show up only in limited win-giving configurations. The space can be at
{1,2,.., N} positions of a left diagonal, right diagonal, vertical, and horizontal
line. Thus, the total amount of winning positions s that include a given space
must be:

s < 4N. (7.1)

This bound suggests that a single move should not significantly alter the
value of the uniform policy unless there are only a few additional moves left.
In such case, the proportion of game-winning configurations should remain
fairly stable across states sharing common predecessor, as expected by our
advantage accumulation formulation.

B 7.25 Hex

In Hex, on the other hand, the bound (7.1) does not hold. Consider a
placement of stones that guarantees a win for one of the players, i.e., connects
the opposite sides of the board. Such sequence can consists of up to half of
all available spaces on the board. However, since this sequence must connect
opposing sides of the board, it isn’t ever possible for both players to have a
winning path at the same time in a single board configuration. This allows us
to calculate the probability (in a simple manner) of obtaining a sequence of
stones when playing by the uniform policy, as we can treat each space to be
filled with with a stone of one of the players. This is because placing stones
after one of the players won is not going to change the outcome of the game.

The rules of Hex however have other interesting favourable properties.
Consider a game-winning move a* available in a game state h. The probability
of playing such a move is equal to % where D € N is the number of available
actions. Without prior knowledge of the game rules, the probability of victory
w(h) with a uniformly random policy would be w(h) > %. However, in Hex
the bound is stronger and does not depend on D: w(h) > % This is because

36

" B B B B EEEEEEEEEEEEEEESEEEEEEEEESR 7.2.AdvantageAccumulation

the uniform policy gives both players the same probability to place their
stone on a given space (both choose from the same amount of spaces). As a
consequence, in a completely filled hex board, the starting player will have at
least 50% probability to control the game-winning space.

We can generalize this bound for more than a single action. Imagine a Hex
board configuration h where the current player can win by placing m € N < D
stones at 2D € N available spaces. For simplicity assume that 2D is even.
Then the chance to win for the current player following the uniformly random
policy w(h) is bounded according to the Equation 7.2, and can be further
generalized for multiple independent game-winning stone placements.

(2D — m)!D!

“) = @)D mt

(7.2)

Because Hex has only two rewards {1, —1}, the value of uniform policy
u(h) is uniquely determined by u(h) = 2w(h) — 1. As a consequence, the
bound 7.2 guarantees the uniform policy value will give (in states with many
available actions) significantly more accurate prediction of the optimal move
sequence than one could see in adversarially designed games similar to the
example given by the Figure 2.1.

Another property that seems to have positive effect on the UCT performance
as shown on the synthethic benchmarks in the Figure 7.4 is a small relative
change in the uniform policy value between neighbor states. We will show
how the value of uniform policy depends for a given state depends on the
uniform policy value of some of its neighbors.

Consider a board configuration h with the player with stone symbol O at
turn. The second player uses the stone symbol X. Let w(h) be the probability
of victory with uniformly random policy and hY be a board configuration
same as h with the addition of stone y € {O, X} being placed at space s;.
Similarly, let hf]y be the board configuration h with the additional stones z,y
placed at the positions i, j, respectively. Finally, let ¢(h) denote the total
number of board configurations available from h by any sequence of actions,

OX
€12

and let ¢ = % —q = Ok Then it must hold that

w(h) = 2w(h) — w(h{) = 2w(h) — 2¢" - w(h{Y?) — 2¢ - w(hiy*) (7.3)

w(hy) = 2w(h) — w(hg) = 2w(h) — 24 - w(h$Y) — 2q - w(h$Y) (7.4)
wh¥) = ~(w(h) — ¢ - wh{’) — ¢ whs") — ¢ - w(hi?)) (7.5)

Q| =

37

7.GamePrOpeI’t'ieS-ll-llll-llllllllllllllllllll-ll-ll

By substituting the first two equations into the third, we also get:

w(hG) = (~w(h) =) - Fud) + q-wti) (76)

This gives us an insight how are winning and losing configuration accumu-
lated across subsequent moves. Clearly, the change in uniform policy value
of after performing an action depends on the uniform policy value of the
other locally available actions. In other words, the advantage accumulation
condition seems to hold, i.e., strong moves with high uniform policy value
are indeed in close proximity of other strong moves.

38

Chapter 8

Conclusion

We have described the origin of the Monte Carlo tree search and its popular
variant UCT that adapts the UCB1 algorithm from the Multi-Armed Bandit
Problem to MCTS. We examined the theoretical bounds of this algorithm
and pointed out their shortcoming when applied to traditional board games
like Go or chess. Next, we evaluated the performance of the vanilla UCT
algorithm on the two popular games, Tic Tac Toe and Hex, and showed the
bounds to be overly pessimistic. We have also introduced a UCT modification
that is guaranteed to arrive at optimal strategy after expanding all nodes in
the game tree by combining the state pruning from Alpha-Beta algorithm with
the MCTS node selection and backpropagation phase. We showed that this
variant in offline mode significantly outperforms the traditional Alpha-Beta
algorithm, exploring on average at least 50% states less in the games of Tic
Tac Toe and Hex.

We have discussed why this might be the case and noted that the initial
value estimates done by random rollouts are surprisingly accurate in both
of these games. We have shown on synthetic benchmarks that the initial
estimates indeed play a huge role in the UCT algorithm performance: The
closer the random rollout values of the optimal moves were to their true value
(when compared to non-optimal moves), the fewer states required UCT to
explore.

Our explanation for this phenomenon was an accumulation of advantage
during the course of each game, as accumulation advantage would lead to
similar rewards between sibling moves - a property that we suspected to
improve the MCTS performance. We have shown on synthetic benchmarks

39

8.C0nC/uSi0nlll-llll-lllllllll-lllllllllllll-lllll

that this assumption indeed holds: A decrease in our accumulation parameter
leads to a decrease in value similarity and an increase in explored states.
Finally, we have shown that the special structure of both Hex and Tic Tac
Toe gives rise to a specific type of advantage accumulation, as it limits the
amount by which a sibling move’s random rollout value can differ.

. 8.1 Future Work

This thesis explored the performance of the UCT algorithm on Hex and Tic
Tac Toe. However, both of these games share a similar structure - i.e., the
board is filled with pieces that cannot be removed, each player shares the
same set of moves and wins by making a connected pattern of symbols or
stones. However, games like Go or chess that do not share some of these
properties. This makes both of these games much harder to study. It also
means some of the insights we presented might not apply to these games. The
next logical step would therefore be to check whether how these properties
manifest in different games, or come up with other explanation for the success
of the Monte Carlo tree search method in those domains.

40

Source Code

The source code is available with this thesis. It contains the definition of the
algorithms used in this work, the artificial games used in synthetic benchmarks
and also the some useful tooling and statistics to make their exploration
easier. Most of the experiments and visualizations are shown in a Python3
notebook file. In order to run the experiments, you will need the OpenSpiel
library [Lanctot et al., 2019] installed (follow the instructions on their github
page). To run the experiments, using the jupyter notebook is recommended.

The project structure is the following;:

® /graphics.ipynb contains the visualizations and benchmarks
® mcts2.py contains the UCT definition

® mcts.py contains some useful UCT utilities

® minimazx.py contains the minimax algorithm

B stats.py contains statistics definitions

B game.py contains game statistics aggregators

8 games.py contains the artificial games

8 rollout.py contains random rollout simulation logic

41

42

Bibliography

Bruce Abramson. Expected-outcome: A general model of static evaluation.
IEEE transactions on pattern analysis and machine intelligence, 12(2):
182-193, 1990.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. Exploration—
exploitation tradeoff using variance estimates in multi-armed bandits. The-
oretical Computer Science, 410(19):1876-1902, 2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine learning, 47(2):235-256, 2002.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue.
Artificial intelligence, 134(1-2):57-83, 2002.

Pierre-Arnaud Coquelin and Rémi Munos. Bandit algorithms for tree search.
arXiv preprint ¢s/0703062, 2007.

Ian Frank and David Basin. Search in games with incomplete information: A
case study using bridge card play. Artificial Intelligence, 100(1-2):87-123,
1998.

Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 computer
go. In AAAIL volume 8, pages 1537-1540, 2008.

Matthew L Ginsberg. Gib: Imperfect information in a computationally
challenging game. Journal of Artificial Intelligence Research, 14:313—-368,
2002.

Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. In The collected works of Wassily Hoeffding, pages 409-426.
Springer, 1994.

43

8.C0nC/uSi0nlll-llll-lllllllll-llll-llllllll-lllll

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282-293. Springer, 2006.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi,
Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl
Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller,
Timo Ewalds, Ryan Faulkner, Janos Kraméar, Bart De Vylder, Brennan
Saeta, James Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai,
Julian Schrittwieser, Thomas Anthony, Edward Hughes, Ivo Danihelka,
and Jonah Ryan-Davis. OpenSpiel: A framework for reinforcement learning
in games. CoRR, abs/1908.09453, 2019. URL http://arxiv.org/abs/
1908.09453.

Jeffrey Richard Long, Nathan R Sturtevant, Michael Buro, and Timothy
Furtak. Understanding the success of perfect information monte carlo

sampling in game tree search. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal
of the American statistical association, 44(247):335-341, 1949.

Dana S Nau, Mitja Lustrek, Austin Parker, Ivan Bratko, and Matjaz Gams.
When is it better not to look ahead? Artificial Intelligence, 174(16-17):
1323-1338, 2010.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354-359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):
1140-1144, 2018.

Brandon Wilson, Austin Parker, and DS Nau. Error minimizing minimax:
Avoiding search pathology in game trees. In International Symposium on
Combinatorial Search (SoCS-09), 2009.

44

http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1908.09453

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNIi A STUDIJNi UDAJE
4 ™
PFijmeni: Vonasek Jméno: Josef Osobni &islo: 456932

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Specializace: Uméla inteligence
. J
Il. UDAJE K DIPLOMOVE PRACI
~
Nazev diplomové prace:
Prekvapiva u€innost algoritmu Monte Carlo tree search
Nazev diplomové prace anglicky:
The Surprising Effectivity of Monte Carlo Tree Search
Pokyny pro vypracovani:
Seznam doporucené literatury:
[1] Long, Jeffrey Richard, et al. "Understanding the success of perfect information monte carlo sampling in game tree
search." Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010.
[2] Brown, Noam, and Tuomas Sandholm. "Simultaneous abstraction and equilibrium finding in games." Twenty-Fourth
International Joint Conference on Artificial Intelligence. 2015.
[3] Moravcik, Matej, et al. "Deepstack: Expert-level artificial intelligence in heads-up no-limit poker." Science 356.6337
(2017): 508-513.
[4] Gelly, Sylvain, and David Silver. "Combining online and offline knowledge in UCT." Proceedings of the 24th international
conference on Machine learning. ACM, 2007.
[5] Rosin, Christopher D. "Multi-armed bandits with episode context." Annals of Mathematics and Artificial Intelligence 61.3
(2011): 203-230.
[6] Wilson, Brandon, et al. "Improving Local Decisions in Adversarial Search." ECAI. 2012.
Jméno a pracovisté vedouci(ho) diplomové prace:
RNDr. Vojtéch Kovarik, Ph.D., centrum umélé inteligence FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 11.02.2020 Termin odevzdani diplomové prace: 04.01.2022
Platnost zadani diplomové prace: 30.09.2021
RNDr. Vojtéch Kovafik, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
L podpis vedouci(ho) prace podpis dékana(ky))

Ill. PREVZETIi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych prament a jmen konzultantu je tfeba uvést v diplomové praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

	Introduction
	Thesis Overview

	Problem Statement
	Related Work
	Multi Armed Bandit Problem And Its Generalization To Trees
	UCT Regret Bounds
	Game Pathologies
	Application To Traditional Games

	Games
	Tic Tac Toe
	Hex

	Technical Background
	Extensive Form Games
	Minimax algorithm
	Multi-Armed Bandit Problem
	Upper Confidence Bounds

	Monte Carlo tree search
	Final policy selection

	Alpha-Beta UCT

	Search Efficiency Analysis
	The efficiency metric
	Experimental results

	Game Properties
	Strong Uniform Policy
	Artificial Games
	Traditional Games

	Advantage Accumulation
	Artificial Games
	Experiments
	Traditional Games
	Tic Tac Toe
	Hex

	Conclusion
	Future Work

	Source Code
	Bibliography

