
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Designer for Interactive Exercises

Martin Hula

Supervisor: Ing. Karel Frajták, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
January 2022

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

364623Osobní číslo:MartinJméno:HůlaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Nástroj pro tvorbu interaktivních cvičení pro podporu výuky dějepisu pro ZŠ a SŠ

Název diplomové práce anglicky:

Designer for interactive exercises

Pokyny pro vypracování:
Cílem projektu bude navržení a implementace nástroje pro návrh, přípravu, a testování interaktivních cvičení. Cvičení jsou
určena pro vzdělávací aplikaci pro práci s historickými prameny, kde s pomocí řady interaktivních nástrojů analyzují žáci
v historické laboratoři krok po kroku dobové dokumenty, historické fotografie či zvukové záznamy. Příklady lze nalézt na
https://historylab.cz/.
Nástroj budou používat didaktičtí pracovníci při přípravě nových cvičení. Cvičení je sekvence stránek s různým obsahem
(text, fotografie, mapa, audio záznam) a úkoly pro žáky. Didaktici budou moci cvičení sestavit z jednotlivých nástrojů,
nahrávat historické prameny (fotografie, mapy, audio/video záznamy) a také si cvičení vyzkoušet než bude uvolněno pro
studenty.
Nástroj musí umět pracovat s již existujícími cvičeními, proto je nutné cvičení analyzovat a na základě této analýzy definovat
nejvhodnější reprezentaci pro jednotlivé nástroje. Do budoucna je nutné počítat s přidáváním dalších nástrojů.
Celý systém by měl být řádně otestován.

Seznam doporučené literatury:
https://historylab.cz/
https://angular.io/resources/?category=development
https://material.angular.io/

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Karel Frajták, Ph.D., laboratoř inteligentního testování systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 25.05.2021

Platnost zadání diplomové práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Karel Frajták, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I want to express my gratitude to my
thesis supervisor Ing. Karel Frajták,
Ph.D, for his guidance and support dur-
ing my work on this thesis. He was al-
ways available to answer my questions and
helped me understand the HistoryLab.cz
project.

I also need to thank my family for their
constant support and understanding, es-
pecially when I could not spend as much
time with them as I would have liked.

Declaration

I hereby declare that I am the sole au-
thor of this thesis. It is my original work.
I have cited all my sources of information,
all in accordance with the methodological
guideline on upholding ethical principles
during the preparation of the final aca-
demic theses.

In Prague on 4. January 2022

v

Abstract

Project HistoryLab.cz provides teach-
ers with a convenient educational plat-
form, which can be used to give inter-
active exercises to students during their
class. However, there is no easy way to
create these exercises at present. Creating
a new exercise involves collaboration be-
tween the didactic staff, which defines the
exercise contents, and HistoryLab’s devel-
opers, who have to code the new exercise.
This thesis aims to create an Exercise De-
signer application that can simplify the
process of exercise creation and give more
power to the didactic staff. With such an
application, didacticians should be able
to create draft exercises on their own, re-
ducing the time needed to communicate
with the developers. The first part of
this thesis describes an analysis of the re-
quirements and the process of deciding
Exercise Designers’ key architectural ele-
ments. The analysis has been done with a
focus on future extensibility and support
for adding more tools in the future. The
second part describes the implementation
of the Exercise Designer as a web appli-
cation. Although it does not yet support
all of HistoryLab’s tools, its extensibility
should make it easy to add these in the
future. User testing has been conducted,
and improvements to the application have
been made based on the test results.

Keywords: exercise, designer,
historylab, json, schema

Supervisor: Ing. Karel Frajták, Ph.D.
FEE CTU, Karlovo náměstí 13, Praha 2

Abstrakt

Projekt HistoryLab.cz dává učitelům
dispozici výukovou platformu, která může
být použita pro zadávání interaktivních
cvičení studentům. V současné době však
neexistuje jednoduchý způsob, jak tato
cvičení vytvářet. Tvorba každého cvičení
vyžaduje spolupráci didaktiků, kteří de-
finují obsah cvičení a vývojářů History-
Labu, kteří obsah převedou do formátu či-
telného aplikací. Cílem této práce je vytvo-
řit aplikaci návrháře cvičení, která zjed-
noduší proces tvorby cvičení. Sami didak-
tici budou schopni vytvořit a vyzkoušet
své vlastní cvičení, a tak se sníží nutnost
jejich komunikace s vývojáři. První část
této práce popisuje analýzu požadavků a
proces rozhodování architektury klíčových
částí aplikace. Analýza bere v úvahu roz-
šiřitelnost aplikace a přidávání nástrojů v
budoucnosti. Druhá část této práce popi-
suje implementaci aplikace návrháře cvi-
čení jako webové aplikace. I když v sou-
časné době tato aplikace ještě nepodpo-
ruje všechny nástroje HistoryLabu, díky
rozšiřitelnosti by nemělo být obtížné je
přidat. Aplikace prošla uživatelským tes-
továním a na základě výsledků byla upra-
vena.

Klíčová slova: cvičení, návrhář,
historylab, json, schema

Překlad názvu: Nástroj pro tvorbu
interaktivních cvičení pro podporu výuky
dějepisu pro ZŠ a SŠ

vi

Contents

1 Introduction 1

1.1 Background 1

1.1.1 HistoryLab 1

1.1.2 HistoryLab Exercise 2

1.2 Actors . 3

1.3 Motivation . 4

1.3.1 Exercise Creation Workflow . . 4

1.3.2 Communication 6

1.3.3 Communication Problem
Statement . 8

1.3.4 Potential Solutions 8

1.4 Thesis Structure 9

2 Fundamentals 11

2.1 Problem Statement 11

2.2 Requirement Analysis 12

2.2.1 Functional Requirements 12

2.2.2 Non-functional Requirements 12

2.3 Technical Requirements 12

3 Task Analysis 15

3.1 Exercise Schema Analysis 15

3.2 First Implementation Ideas 16

3.2.1 Exercise JSON Printer
Prototype . 16

3.2.2 Recursive Form Prototype . . 16

3.3 JSON Forms Analysis 17

3.3.1 Problems of JSON Forms . . . 17

3.3.2 Possible Solutions 19

3.3.3 Conclusion 22

3.4 Schema-driven Form Prototype . 23

3.5 Improvements to the Schema . . . 23

3.6 UI Form Generation 24

3.7 Extensibility Analysis 26

3.7.1 Extensibility with JSON
Schema . 26

3.7.2 Extensibility of the Code 26

vii

4 Design 29

4.1 Application Architecture 29

4.1.1 Front End. 30

4.1.2 Back End 30

4.1.3 Database 31

4.2 Exercise Tools 31

4.3 Design Prototype 32

5 Implementation 35

5.1 Overview . 35

5.1.1 Front End. 35

5.1.2 Back End 37

5.1.3 Database 37

5.1.4 Interactions 37

5.2 Key Technology 38

5.3 Exercise Tools 40

5.4 Implementation Details 40

5.4.1 Schema Conversion 40

5.4.2 Schema Representation 41

6 Testing 43

6.1 Static Analysis 43

6.2 Unit Tests 44

6.3 API Testing 44

6.4 User Testing 44

6.4.1 Methodology 44

6.4.2 Tasks . 45

6.4.3 Results 46

6.4.4 Changes in Response to Users’
Feedback . 48

7 Conclusion 51

Limitations . 51

Summary . 51

Future Improvements 52

Bibliography 53

A DVD 55

B User Testing Results 57

C Images 63

viii

Figures

1.1 HistoryLab Exercise Catalogue
Example . 2

1.2 Example Sequence of Exercise
Slides (see Appendix C) 3

1.3 Exercise JSON File Example 5

1.4 Exercise Creation Flowchart 6

1.5 Trello Task Example 8

3.1 Example Data and Form
Generated by JSON Forms 17

3.2 Example Schemas used by JSON
Forms . 18

4.1 Proposed Database Schema 31

4.2 Exercise Structure Illustration . . 32

4.3 Exercise Designer Visual
Prototype . 33

5.1 Profile Editor 36

5.2 Slide Editor 36

5.3 Sample Interactions 38

C.1 Example Exercise - Slide One . . 63

C.2 Example Exercise - Slide Two . . 64

C.3 Example Exercise - Slide Three 64

C.4 Example Exercise - Slide Four . 65

C.5 Example Exercise - Slide Five . . 65

C.6 Exercise Designer - Profile Editor
(Example Slide) 66

C.7 Slide Editor 67

ix

Tables

x

Chapter 1

Introduction

1.1 Background

1.1.1 HistoryLab

Project HistoryLab.cz has started in 2016 as an initiative to aid teachers
of middle schools and high schools by creating an interactive web applica-
tion, which the students can use during a history class. „HistoryLab is an
educational application that works with historical sources” (“HistoryLab”,
2021), with a particular focus on the historical topics of the 20th century. It
is composed of a set of unique tools for teaching history in an innovative way,
and it provides teachers with a catalogue of exercises that they can use to
teach their students (example shown in Figure 1.1).

The project has been created thanks to the grant from the Technology
Agency of the Czech Republic1, and the main participants in this project
are the Institute for the Study of Totalitarian Regimes (USTR)2, Faculty of
Electrical Engineering of the Czech Technical University in Prague3, Masaryk
Institute and Archives of the CAS4, Fraus Publishing5, Faculty of Education

1https://www.tacr.cz/en/
2https://www.ustrcr.cz/en/
3https://fel.cvut.cz/en/
4https://www.mua.cas.cz/en
5https://www.fraus.com/

1

https://www.tacr.cz/en/
https://www.ustrcr.cz/en/
https://fel.cvut.cz/en/
https://www.mua.cas.cz/en
https://www.fraus.com/

1. Introduction

Figure 1.1: HistoryLab Exercise Catalogue Example

of Charles University6 and the Institute of Contemporary History (USD)7.
(“Historylab: Using Technology... - cep - ta CR starfos”, 2018) The devel-
opment started in 2016, and in the first two and half years of development,
a prototype of the HistoryLab application was created. Dozens of teachers
tested it while gathering feedback about the educational process. Currently,
HistoryLab offers its own learning management system, where teachers can
assign individual exercises to students and provide feedback. It had become
a pilot program to improve the way history classes have been taught, and it
was a great solution during the period of the Covid-19 pandemic when some
of the lessons were conducted online.

1.1.2 HistoryLab Exercise

Exercise in the HistoryLab application is a sequence of slides of various types,
which are composed of multiple interactive tools. Each tool offers a different
way of interaction with the content. Students can use these tools to analyse

6https://pedf.cuni.cz/PEDFEN-1.html
7https://www.usd.cas.cz/en/

2

https://pedf.cuni.cz/PEDFEN-1.html
https://www.usd.cas.cz/en/

....................................... 1.2. Actors

historical documents, photographs or audio recordings, and other types of
content.

Example

Let us review an existing exercise called „What they expected of the sewing
machine?” (see Figure 1.2). This exercise is composed of five slides. In the
first slide, students are presented with a photo, which they should study
closely. In the second slide, the students are expected to mark essential parts
of the photo and add a short description. The third slide lets the students
select several keywords closely related to the previous photo. The fourth slide
is composed of a gallery of photos on the left side and a paragraph of text.
Students are expected to highlight relevant text parts, using different colours
for different concepts. The last slide has a gallery of photos on the left side
and empty text fields on the right side. Students are expected to provide
their answers to questions in the text fields.

Figure 1.2: Example Sequence of Exercise Slides (see Appendix C)

1.2 Actors

.Didactic staff. These actors are exercise creators. They analyse the
historical sources and are responsible for bringing their exercise design
ideas to life.. Exercise developers. These actors are programmers, coding exercises
into the HistoryLab application’s format and releasing them for public
use.

3

1. Introduction
.Teachers. Teachers use the published exercises in class and assign them

to their students.. Students. Students are the final end-users of the exercises, interacting
with the application and working on the tasks.

1.3 Motivation

1.3.1 Exercise Creation Workflow

1. First Ideas. Didactic staff finds a historical concept that is adaptable to
the format of the HistoryLab exercise.

2. Exercise Script. Didactic staff transforms their idea into a concrete
(presentation) slides flow. In particular, the slides’ size and functions need to
correspond with the capabilities of the HistoryLab application. Didactic staff
is familiar with the application, the available tools and processes.

3. Coding. Exercise developers use the exercise script to create the final
exercise used in the HistoryLab application. Technically, this exercise is
represented mainly as a set of media files and the exercise definition JSON
file (example shown in Figure 1.3).

4. Testing. Didactic staff tests the final exercise in the HistoryLab applica-
tion. This is important in order to see if the exercise is both formally and
substantively correct and if it matches the original expectations.

There are three possible results of this testing stage:..1. The exercise is deemed acceptable and is approved for public release...2. The exercise has some minor flaws which can be corrected. In this case,
didactic staff needs to give feedback to the developer, and the task goes
back to the coding stage, where the exercise is modified as necessary...3. The exercise has some major flaws which cannot be corrected. In par-
ticular, the exercise may not match the didactician’s expectations, or
there are some other significant obstacles why this exercise cannot be

4

..................................... 1.3. Motivation

Figure 1.3: Exercise JSON File Example

corrected. In this case, the didactic staff must completely rework her
script, moving the task back to the second stage. Or she can even decide
to scrap the exercise altogether.

5. Release. Exercise developers release the exercise for public use.

As an example. A didactician will come up with an interesting historical
concept of the introduction of the sewing machine. She will gather some
related photographs, texts and come up with a list of interesting questions
about sewing machines. Then she creates a sequence of slides that should

5

1. Introduction

Figure 1.4: Exercise Creation Flowchart

be compatible with the exercise format and then send it to the developer for
coding. She cannot try it out if this exercise works as expected. At some
later point, the developer creates the exercise. The didactician then tests the
exercise but finds out that some of the texts need to be updated, and also
the order of images would better be changed. She gives her feedback to the
developer, who, at some later point, will incorporate these changes into the
exercise. This cycle continues until the exercise is ready.

1.3.2 Communication

In the exercise creation process, two actors need to participate in communica-
tion in order to create an exercise. Didactic staff needs to work closely with
the exercise developers between stages two to four (from Exercise script to
Testing). In each of these steps, there are various potential reasons for this

6

..................................... 1.3. Motivation

communication need.

Common Communication Patterns

Firstly, between stages 2 and 3, the didactic staff needs to present their
exercise script to the exercise developer. At this point, the developer may
have some technical feedback for the didactician.

Secondly, during stage 3, the developer may have some additional questions
for the didactician if the exercise script was not clear enough or there was
some other technical difficulty during the development.

Thirdly, after testing in stage 4, the didactic staff needs to give her feedback
to the exercise developer. After discussion between the didactician and the
developer, the final testing feedback is decided, falling into one of the three
possible results.

If the result of testing were not satisfactory, the task would go back to
stage two or three, and the communication patterns mentioned above will
occur all over again.

Communication Tool

In the current workflow, the exercise creation process is managed as a Trello
project8. For each new exercise, the didactic staff creates a task on the Trello
board, assigned to the exercise developer (example shown in Figure 1.5).
This task includes the exercise script and all the required audio and visual
media files. All communication between the didactic staff and the developer
is done in the comments attached to this task. As such, this communication
is inherently asynchronous. Both sides have to wait for a non-predetermined
amount of time for the other side’s reply. This makes the communication
very inefficient as it requires a lot of unnecessary mental context switching.
Even simple adjustments to the exercise may take a long time to be resolved.

8https://trello.com/about

7

https://trello.com/about

1. Introduction

Figure 1.5: Trello Task Example

1.3.3 Communication Problem Statement

Communication between the didactic staff and the exercise developers is
inefficient and creates an unnecessary overhead.

1.3.4 Potential Solutions..1. Make the existing communication more efficient. Changing the tools in
use may help streamline the communication. Using real-time chat or
video calls may help resolve many individual issues simultaneously...2. Create an exercise designer tool to allow the didactic staff to create
exercises themselves. Instead of making communication more efficient,
this would reduce the amount of communication. In the current workflow,
the developer’s presence is required in order to make any changes to the
exercise. Creating an exercise designer tool would allow the didactic
staff to create their own exercise prototypes. They could see if their idea

8

................................... 1.4. Thesis Structure

works without the need to communicate with the developers.

1.4 Thesis Structure

Inspired by the list of key circumstantial elements of rhetorics created by
Boethius: „Quis, quid, cur, quomodo, ubi, quando, quibus auxiliis” (Robert-
son, 1946), this thesis is structured to answer the important questions of
„Who, what, why, how, where, when, with what”.

Thesis Assignment. The assignment page introduces "who" is the author of
the thesis, the institution "where" this thesis had been written, as well as the
time "when" this thesis had been written.

1. Introduction. The thesis introduction describes the background of the
project. It introduces the stakeholders "who" are interested in this project
and explains "why" this project exists and its motivation.

2. Fundamentals. This chapter introduces the Exercise Designer project
and describes "what" are the project’s goals and "with what" technologies it
should be created.

3. Task Analysis. This chapter explains "how" key parts of the Exercise
Designer were created and why. It explains the thought process of analysing
the individual requirements and decisions on essential architectural elements.

4. Design. This chapter presents the details about "how" the project was
designed based on the requirements and results of the analysis.

5. Implementation. This chapter explains "how" the project was imple-
mented and what are the key architectural elements.

9

1. Introduction
6. Testing. This chapter shows "how" the project was implemented quality-
wise. It describes the process of user testing and improvements made as a
result of this testing.

7. Conclusion. This chapter presents the summary of the project. It
concludes with regards to "what" has been done and suggests possible im-
provements that could be done in the future.

10

Chapter 2

Fundamentals

2.1 Problem Statement

This project focuses on solving the problem described in the motivation. This
project aims to create an interactive application, Exercise Designer, which
will allow the didactic staff to design, prepare, and test new exercises on their
own. They could create draft exercises, confirm their expectations and see
which ideas work well in the exercise format and which do not. In the end,
these draft exercises may or may not be used to produce the final version of
the exercise.

It is necessary to analyse the existing HistoryLab application and its
exercises definition. Each exercise uses a set of tools. Exercise Designer needs
to create the best possible representation for these tools to be able to use
them during the creation of new exercises.

11

2. Fundamentals
2.2 Requirement Analysis

2.2.1 Functional Requirements..1. User should be able to create new exercises and modify the existing ones...2. User should be provided with a variety of tools that can be used to build
an exercise...3. User should be able to upload files representing historical sources...4. User should be able to test the exercise before it is released to students...5. Exercise Designer should be able to read the existing exercises and create
exercises compatible with the HistoryLab application.

2.2.2 Non-functional Requirements..1. Exercise Designer should be extensible. More tools will be added in the
future...2. Exercise Designer should be properly tested...3. Exercise Designer should be easy to use.

2.3 Technical Requirements

Web Application

Exercise Designer should be implemented as a web application written in
Javascript. HistoryLab application is also a web application, and the didactic
staff will use both HistoryLab as well as this new Exercise Designer. Using
the same technology allows for a seamless transition between these two
applications. Another advantage is that web application does not need to be
installed locally on the user’s computer. This gives the flexibility of using the
application from anywhere.

12

................................ 2.3. Technical Requirements

React

Exercise Designer should use the React Framework. React was the most used
front end framework in 2020 (Greif and Benitte, 2021). Other developers
in the HistoryLab team are also familiar with it and can contribute to this
project in the future. Using Javascript allows for smooth interaction with the
JSON (Javascript Object Notation) format of exercises and JSON Schema
validation libraries.

Material Design

Exercise Designer uses Material Design in its views in order to create a con-
sistent user experience without "reinventing the wheel" (custom development
of each visual component is not the purpose of this work). Material UI
library (React implementation of the Material Design)1 provides many of the
essential components and layout capabilities, support for themes, icons and
many other features.

JSON Schema

Exercise Designer needs to understand and support the existing exercises
and create new exercises that are compatible with the exercise application.
Since exercises are written in the JSON format, JSON Schema2 is used for
the purpose of establishing and maintaining the exercise JSON file validity.

JSON Schema specification document is a JSON file describing the schema
of a JSON data file, which allows verifying the structure and data types
within that data file and contains additional metadata about this file.

1https://mui.com/
2https://json-schema.org/

13

https://mui.com/
https://json-schema.org/

2. Fundamentals
JSON Forms

Exercise Designer should use JSON Forms3 library in order to generate form
fields based on the existing JSON Schema. JSON Forms accepts a schema
and the related data as an input and dynamically generates an editable form
(see Figure 3.2). This will allow for a fully extensible representation of the
editor.

3https://jsonforms.io/

14

https://jsonforms.io/

Chapter 3

Task Analysis

3.1 Exercise Schema Analysis

One of the first tasks of this thesis was to analyse the existing exercises in
order to be able to create a generic representation for the individual tools
within the exercises but also to make sure that the existing exercise schema
has no structural problems or inconsistencies, which would make this task
more difficult.

The first step was to manually create a text-based representation of the
existing exercise JSON files. Going through the individual exercise files
manually allowed me to get very familiar with the exercise structure and
gain an insight into any potential structural issues and improvements, which
is something I simply would not have, were I to leverage a fully automated
solution.

The second step was to create a JSON Schema representation of the exercise
JSON files. A representative sample of 8 exercise files was chosen from the
complete set of 150 exercises in order to simplify the schema creation process.
This representative sample contained all of the tools used throughout the
complete set of exercises and, as such, should allow for a creation of a JSON
Schema applicable to the complete set of exercises.

15

3. Task Analysis.....................................
3.2 First Implementation Ideas

Initial ideas on the implementation of the Exercise Designer were based on
the requirement of extensibility and the fact that the exercises are represented
as JSON files. The goal was to base the designer’s behaviour purely on the
exercise JSON data file and its respective JSON Schema file. Thus came the
idea of having a dynamically generated form as the designer’s core. Such a
form would be fully extensible without the need to change the application
source code. Depending purely on the Exercise JSON Schema would mean
that adding more tools in the future would simply mean updating a single
file, and the application’s behaviour would adapt accordingly.

3.2.1 Exercise JSON Printer Prototype

This first simple prototype was used to analyse the difficulties of displaying
the contents of an exercise JSON file. In particular, the focus was on handling
the iteration over different types of slides within the exercise. Every type of
slide contains various tools and as such, correctly identifying the type of slide
is very important.

3.2.2 Recursive Form Prototype

This prototype was used to explore the possibility of dynamically generating a
form based on exercise JSON. Using exercise JSON as an input, this prototype
uses recursion over the tree-like data structure in order to dynamically generate
React form components with different levels of nesting. Each form field is
editable, and changes are reflected in the JSON data.

This prototype proved that generating a form based on exercise data is
viable. But to fully cover the requirements, it was necessary to incorporate
JSON Schema and the related metadata in the form generation.

16

.................................3.3. JSON Forms Analysis

3.3 JSON Forms Analysis

Initial ideas on incorporating JSON Schema-based form generation were based
on using a 3rd party library called JSON Forms1. This library allows for
dynamic generation of a form based on JSON Schema with little additional
development overhead, which would simplify my development. However, two
problems appeared after a thorough investigation of the library’s features
and restrictions.

(a) : JSON Data (b) : Generated Form

Figure 3.1: Example Data and Form Generated by JSON Forms

3.3.1 Problems of JSON Forms

1. JSON Forms library does not support the complete set of attributes
in JSON Schema. As such, it is not possible to use this library with the
previously built representative JSON Schema for exercises.

In particular, these were the restrictions presented by the library:. Limitations to nested schema structure, where nested schemas were not
considered required even when set to be so.. No support for a conditional extension of a schema object on the same
level of nesting (something that was very much present in the current
JSON exercise structure).. No support for const keywords or if-then-else syntax.. No support for extending an object based on an external reference.

1https://jsonforms.io/

17

https://jsonforms.io/

3. Task Analysis.....................................
2. JSON Forms library needs an additional UI Schema file to define the
visual layout of the generated form (see Figure 3.2). This library can produce
only a very basic form layout without this additional schema. Many of the
features that should be supported from the JSON Schema alone are only
supported when this additional file is present.

In particular, without an additional UI Schema:

. There can be undesired or limited behaviour in certain field types. For
example, inputs based on enum values allow empty input even when an
empty value is not in the list. (Hall, 2019).

. It is not possible to generate a form that supports conditional behaviour.
For example, it is not possible to generate different form fields based on
the selected value of an enum field.

(a) : JSON Schema (b) : UI Schema

Figure 3.2: Example Schemas used by JSON Forms

18

.................................3.3. JSON Forms Analysis

3.3.2 Possible Solutions

1. Not to use JSON Forms library, create a static form. Instead of a
dynamically generated form based on JSON Schema, it is possible to create
a static form based on the current knowledge of the Exercise JSON structure.
This would mean not using JSON Schema for the form generation, but it
could still be used for validation. This type of form could still be extensible
by designing the underlying code and component architecture in an extensible
way.

Advantages:. Flexibility in design. Not generating the content would mean that the
individual components can be fully customized to their particular use
case. The developer can directly define business rules directed at the
behaviour and relationships between the components. In other words,
the resulting user experience could be much less of a form and much
closer to the exercise layouts and designs presented by the HistoryLab
application, with which users are already familiar.

Disadvantages:. Reduced extensibility. Using a standardized format like JSON Schema
to generate the form ensures extensibility where a developer is forced to
adhere to this standard. Not depending on JSON Schema could mean
less extensibility. The developer’s interpretation of extensibility may
vary, and the final product may be less extensible as a result.

2. Restructure exercise JSON Schema. Require an additional UI Schema.
Since the JSON Forms library does not support the current set of attributes
needed by the exercise JSON Schema, it should be possible to rewrite the
schema so that only the supported attributes are used.

Advantages:. Form autogeneration. This change would enable the use of the JSON
Forms Library, as initially expected. The form would be autogenerated
based on the JSON Schema file. Having an additional UI Schema would
mean that the layout could be customized as needed.

19

3. Task Analysis.....................................
Disadvantages:. Loss of validation accuracy. Changing JSON Schema only to use a

supported subset of attributes may mean falling back to a more gener-
alized version of the schema. It may not be possible to express all the
requirements on schema validity fully. For example, instead of validating
a subset of the required fields based on some condition, this condition
may need to be removed, and these fields may all need to be set as
optional.. Duplication in JSON Schema. No support for extending an object based
on external reference would mean that it would be necessary to duplicate
the definitions instead of simply referring to another schema.. Loss of generality in the schema definition. By only allowing a subset
of JSON Schema supported by the JSON Forms library to be used in
the exercise schema definition, there is a loss of generality in the schema
definition. The exercise JSON Schema would not be defined based on the
precisely defined set of rules of the JSON Schema standard but instead
by some vaguely defined subset which this library supports.

3. Restructure exercise JSON data files and create a new JSON Schema.
Require an additional UI Schema. The most significant issue with the JSON
Forms library is caused by conditional structuring of the current exercise
JSON files (conditional extensions of schema and sub-schema on the same
level of nesting, which could be refactored by splitting into multiple objects
or encapsulating these changes as children of a new parameter). This issue
can be avoided by restructuring the exercise JSON files to express the same
behaviour more simply.

Advantages:. Cleaner exercise JSON structure. The current same-level conditional
extensions are difficult to understand and unnecessary.. Simpler and easier-to-understand schema. Cleaning the JSON structure
would result in a simpler schema with fewer conditionals.

Disadvantages:. Scope too large. Refactoring the structure of exercise JSON files would
require updating all of the existing exercise JSON files and how the
HistoryLab application uses these files.

20

.................................3.3. JSON Forms Analysis

. Does not solve all problems with JSON Forms. While this may solve the
issue of validation accuracy, other disadvantages from the previous point
are still present.

4. Convert JSON Schema to a schema supported by JSON Forms. Create
a conversion mechanism that would transform a valid exercise JSON Schema
to a different schema, which could be used by JSON Forms. This conversion
could also produce the relevant UI Schema.

Advantages:. Accurate JSON Schema validation. Schema validation can be still be
done on the original JSON Schema.. Form autogeneration. JSON Forms can use the converted schema to
autogenerate the form.. Can generate UI Schema. Schema conversion allows generating another
UI Schema file, which can customize the visual layout of the form.

Disadvantages:. Complex implementation. Converting a JSON Schema into a different
schema would require a code that can read the input schema, understand
the mapping between generic JSON Schema and a subset of attributes
valid in JSON Forms, and convert between these schemas.

5. Not to use JSON Forms library, implement a custom form generation
based on the JSON Schema. If it is too difficult to integrate the JSON
Forms library, another option is to implement the feature from scratch.
Implementing a custom code that can dynamically generate a form based on
the JSON Schema is possible.

Advantages:. Accurate JSON Schema validation. Can use original JSON Schema —
custom implementation is not restricted to any subset of attributes.. Form autogeneration. The form will be autogenerated based on the
JSON Schema..Does not use JSON Forms. There is no need to adapt to specific
requirements of this library, and as such, the code is cleaner and simpler.

21

3. Task Analysis.....................................
Disadvantages:. Complex implementation. Similar to the previous point, it is necessary

to create code that can understand the JSON Schema and generate form
components as a result.

6. Use a different library. JSON Forms is not the only library that can be
used to generate a form based on JSON Schema dynamically.

Advantages:. Can solve problems of JSON Forms

Disadvantages:.May bring different problems, which will require further analysis.. No better alternative. As per my research, JSON Forms is the most
comprehensive library for this purpose. The best possible alternative -
react-jsonschema-form - seems to have an even worse support of JSON
Schema attributes and does not support external references.

3.3.3 Conclusion

While solution one would offer the best flexibility, it would limit the extensi-
bility of using JSON Schema.

Solutions two to four would put a lot of effort to adapt the code to the
requirements of the JSON Forms library, leading to compromises in the
design and potentially a lot of unnecessary structural overhead. Furthermore,
depending on the library may restrict future development.

I have decided that solution five provides the most benefits in the current
situation. While more complex implementation-wise, implementing a custom
form generation will allow for flexibility in adapting the resulting form to
whatever the Exercise Designer requirements may be.

I have also recognized that the current exercise JSON Schema is not optimal
and has some problems that should be addressed. I will create a modified,

22

.............................3.4. Schema-driven Form Prototype

cleaner version of the schema. In order to avoid having to refactor all of the
existing exercise JSON files and the exercise application itself, I will create a
conversion tool capable of bidirectional translation between the current and
the newly created version of the JSON Schema.

3.4 Schema-driven Form Prototype

The problem of the Recursive Form prototype was that it would generate
form purely based on the exercise data JSON file. Optional properties not
present in the data would not be displayed. Furthermore, the form would not
have access to the exercise metadata and would be further limited.

Schema-driven Form builds on the original idea of Recursive Form and
expands it. This prototype uses both exercise data JSON file as well as JSON
Schema representation as an input. As such, it can generate the entire form
based on the JSON Schema, having access to all the form’s metadata, and it
can fill this form with values present in the exercise data JSON file.

3.5 Improvements to the Schema

As a result of the previous analysis, I have concluded that the existing
structure of exercise JSON files is not without problems. Firstly, there
are problems with building a fully functional JSON Schema representation
(there are limits to what can be expressed in JSON Schema, and only a
subset of these expressions is supported by libraries that leverage JSON
Schema). Secondly, there are problems regarding the basic structure and ease
of understanding of these JSON files.

Renamed Properties

The simplest cleaning of the schema was in renaming some of the properties
to better reflect the semantic of their use:. cviceni renamed to profil. duplikovat renamed to reference

23

3. Task Analysis.....................................
. svg renamed to dragAndDrop if used for drag and drop, pretahovani

and soubory renamed to dragItems and dropItems. klicovaSlova.klicovaSlova renamed to klicovaSlova.skupiny

Enforced Data Type Consistency

Some properties in the schema would accept different data types for no
apparent good reason:. class property must be an array of strings. It was either a string or an

array of strings before.. napoveda.text property must be a string. An array of single string was
allowed before.. uzivatelskyText.layout moved to uzivatelskyText.nastaveni.layout,
to be consistent with all the other types of slides.

Other Structural Improvements

. Redundant drop boolean property in dropItems removed.. Class half-slide-previous was dropped and half-slide-active re-
placed by a single boolean property rozpulitSPredchozimSlajdem (split
with the previous slide).. Created a root property media, grouping all media files with their unique
ids. All media references with soubor url changed to ref id references
to media.. profil.casovaOsa.epochy changed from a tuple array of two objects
to a single object.

3.6 UI Form Generation

Schema-driven form prototype proved that it is possible to have a dynamically
generated form based purely on JSON Schema representation of the exercise.
This allows for the highest level of extensibility by simply modifying the

24

..................................3.6. UI Form Generation

schema. However, using this approach to implement the Exercise Designer
has its limitations.

Limitations

. Limited customization. It would be challenging to customize individ-
ual fields based on their semantics or meaning to the user. Semantic
customizations would undermine the generality of the implementation.. Base element would be a form. All basic structural elements of the
Exercise Designer would be generated form fields.. Poor user experience. It would restrict the type of interactions a user
can have with the system, and the overall user experience would be poor.

Potential Solution

Combine statically-defined and dynamically generated parts. If it were
possible to ease the restriction on modifiability only through the JSON Schema,
it would be possible to design the system as a combination of dynamically
generated parts based on the JSON Schema and static parts (still extensible
with code modifications), which could allow for semantic differentiation and
additional ways of interacting with the system, all this leading to better user
experience.

Conclusion

This is simply a problem of trading extensibility for user experience. Would
the improvements in user experience justify the decrease in extensibility?

From my understanding, the goal of this project is to make it easier for
users to create exercises. Having a fully generated form representing the
JSON would not bring a lot of benefit to the end users over editing the
JSON file directly. A combined approach should offer a much better overall
user experience while still keeping a level of extensibility and responding to
changes in the JSON schema.

25

3. Task Analysis.....................................
3.7 Extensibility Analysis

Exercise Designer should be extensible. Because there can be many different
interpretations of extensibility (CWN, 2016), let us define what it should
mean in the context of this application.

The application should be extensible with regards to adding more tools in
the future, and it should, to some extent, react to changes to the associated
JSON Schema representation.

3.7.1 Extensibility with JSON Schema

As discussed before, Exercise Designer will not be completely extensible using
only JSON Schema. This would be too restrictive. However, the exercise
schema can be split into two essential parts - exercise profile and exercise
slides.

Exercise Profile. It should be the same for all exercises.. It could be autogenerated based on the JSON Schema and fully extensible.

Exercise Slides. These need to have a high level of customizability (having various types
of slides).. Individual tools can leverage the schema for their work in a limited way.

3.7.2 Extensibility of the Code

The most important aspect influencing the maintainability and extensibility
of any code is how it is structured and formatted and its readability level. As
Robert C. Martin says: „The functionality that you create today has a good
chance of changing in the next release, but the readability of your code will
have a profound effect on all the changes that will ever be made. The coding
style and readability set precedents that continue to affect maintainability

26

................................. 3.7. Extensibility Analysis

and extensibility long after the original code has been changed.” (Robert Cecil
Martin, 2009)

In particular, the application code of the Exercise Designer should:.Make it easy to add new tools. Business logic and components specific
to each tool should be clearly decoupled from the other tools and from
the rest of the system. New tools should be able to follow the existing
patterns and plug in the current code.. Offer a clear hierarchical project structure, making it easy to locate key
parts of the system.

27

28

Chapter 4

Design

Design is „a specification of an object, manifested by an agent, intended
to accomplish goals, in a particular environment, using a set of primitive
components, satisfying a set of requirements, subject to constraints” (Ralph
and Wand, 2009). This specification describes the basic architectural parts of
Exercise Designer, how they fulfil the requirements, and presents an initial
design prototype.

4.1 Application Architecture

Exercise Designer application will follow a client-server model, which is very
common in web applications. It will be composed of three parts: front end,
back end, and the database. React application on the front end should satisfy
most of the requirements. However, a back-end server and database are still
needed to offer users a level of persistence - the ability to save and load their
exercises during the editing process. Furthermore, the back end will allow
users to generate a preview of their exercise, delegating to the HistoryLab
application to generate a preview of the exercise.

29

4. Design..
4.1.1 Front End

React application on the front end will be the central part of the Exercise
Designer.

It will allow users to:

. Create a new exercise or load an existing exercise JSON file, modify it,
and save the result while ensuring that the result exercises are compatible
with the existing HistoryLab exercises.. Navigate between different exercise slides and use various tools in order
to build slides of different types. Users will be able to select the type of
slide, and the tools will be available accordingly.. Validate the exercise against the JSON schema. This is to ensure that all
the required data have been filled and the exercise is ready for release.. Upload new media files, which can be added to slides of the appropriate
type.. Store their intermediate progress to a database.. Preview their exercise as if published in the HistoryLab application.

4.1.2 Back End

A back-end server will be necessary for features that the front end cannot
offer directly.

It will:

. Provide REST API endpoints for the front end.. Communicate with the database in order to load or save the exercise.. Leverage HistoryLab application’s system of exercise generation and
generate a preview of an exercise, then provide it to the front end.

30

.................................... 4.2. Exercise Tools

4.1.3 Database

A very simple NoSQL database will be used to store the exercise JSON files.
A document store with support for JSON documents should be the best fit.
Figure 4.1 shows a proposed schema of a single collection to be used for this
purpose. isDraft property can be used to track the state of development of
the exercise.

Figure 4.1: Proposed Database Schema

4.2 Exercise Tools

Each slide in an exercise is composed of one or more exercise tools. These
tools offer various predefined ways of interaction with the exercise and can
be considered basic building blocks of the exercise. Finding the best possible
representation for these tools is one of the requirements.

Exercise Structure

. Each exercise is composed of one or more slides of various types (see
illustration in Figure 4.2).. Each type of slide defines a set of interactive tools and how these are
used within the slide.

HistoryLab application defines which tools can be used together in a
single slide, how they are visually rendered, and how their interaction is
handled. As such, Exercise Designer has to follow these predefined patterns
and should work with the basic abstraction unit of ’slide’ of a particular
type instead of allowing a user to work with each individual tool directly.
These individual tools should still be defined independently on the level of
application components or modules. But these components will be grouped
in a tree-like fashion as part of ’slides’ of various types.

31

4. Design..

Figure 4.2: Exercise Structure Illustration

Exercise Designer should be designed in a modular fashion to guarantee
extensibility:. New slide types should be easy to create and should allow for easy

integration of the existing tools.. New tools should be easy to create and should allow for easy integration
with the existing slide types.. Implementation of individual slide types should be considered a black-box
abstraction. Exercise Designer „should not need to know "how" each tool
works, only that it does” (Abelson, 1996).. This modular system should have conceptual integrity (Brooks, 1975)
and coherent design.

4.3 Design Prototype

Main Content. Represents the part visible to users in the HistoryLab
application.. Design similar to the actual HistoryLab application.. Elements editable using input fields as well as mouse interactions (drag

and drop).. Navigating between slides using Previous and Next arrows in the top
part.

32

...................................4.3. Design Prototype

Figure 4.3: Exercise Designer Visual Prototype

Blue Sidebar. Contains all editor tools.. The top part is a toolbar with add/remove slide buttons and other slide
configuration buttons.. The middle part is a library of slide types, which can be dragged and
dropped over to the main content to select the type of slide.. The bottom part is a media library. It is possible to add media and drag
and drop the media items to the main content.

33

34

Chapter 5

Implementation

5.1 Overview

5.1.1 Front End

Front End application is the core of Exercise Designer, with most of the
functionality implemented here. The application is split into two distinct
parts - the profile editor and the slide editor. This separation mirrors the
basic structure of each exercise - exercise metadata and a list of individual
slides.

Profile Editor

Profile editor (see Figure 5.1) uses the original idea of form generation based
on JSON Schema. This part of the exercise, where the user can fill in the
metadata of the exercise, is the same for all exercises, and there is not much
need for customization. To achieve the best extensibility using purely the
JSON Schema, profile editor is composed of a dynamically generated form.

35

5. Implementation....................................

Figure 5.1: Profile Editor

Slide Editor

Slide Editor (see Figure 5.2) allows users to modify the contents of individual
slides of the exercise. This part of the Exercise Designer uses a combination
of statically and dynamically defined sections and components. Users can edit
the exercise contents by adding, removing or editing the individual exercise
slides. Each slide type defines which tools are available in the slide, and the
media library allows users to upload media files.

Figure 5.2: Slide Editor

36

...................................... 5.1. Overview

5.1.2 Back End

Backend is a simple NodeJs Express application. It is responsible for com-
munication with the database and for generating exercise previews. It also
provides a simple web server that hosts the generated exercise previews.

5.1.3 Database

Mongo DB document store with a single collection ’Exercise’ has been used
to store the exercise data.

Collection Schema:

{
"title": "Exercise",
"properties": {

_id: { type: String, required: true },
name: { type: String, required: true },
value: { type: String, required: true },
isDraft: { type: Boolean, required: true }

}
}

5.1.4 Interactions

Figure 5.3 shows some basic sample interactions between the user and the
individual parts of the system. In particular, it shows that the back-end
server is used both by the front-end application and by the actor directly to
access the generated previews.

37

5. Implementation....................................

Figure 5.3: Sample Interactions

5.2 Key Technology

Typescript

TypeScript is a strongly typed programming language that extends Javascript.
It adds many features of object-oriented languages, making it easier to
structure code, write cleaner and self-explanatory code, and it provides a
level of code quality assurance with its static type checking. (Microsoft, 2015)

Redux

Exercise Designer uses the Redux library for its state management. Redux
enables the application to have a single state accessible throughout the
application. This streamlines the workflows where different application parts
need to interact with different parts of the editor state.

38

................................... 5.2. Key Technology

Redux state is accessible to the components using Selectors from the
Reselect library. Selectors are simply memoized functions that provide access
to a particular part of the Redux state, possibly combining different parts of
the state. Being memoized, these functions return pre-calculated results and
only recalculate when any of the inputs (the application state) change.

One of the challenges of implementing centralized state management using
Redux was to guarantee the extensibility for new tools and the decoupling of
existing tools. This was solved by forcing all tools to define their own Redux
actions, reducers and selectors, which get registered with the global state
management.

For example, React component generating the ’keywords’-type slide dis-
patches Redux actions for all user interactions that change this slide’s contents,
such as adding or removing a keyword or editing a keyword text. Each action
is then handled by a Redux reducer, which decides how the slide’s state
changes as a result of this action. Adding a keyword may simply add a new
item to the keywords data array. After the Redux state has been updated,
React component will get notified by its subscribed selectors and will update
its internal state and view. Keywords selector will return an updated list of
keywords, the view will re-render, and the new keyword will appear on the
screen.

Redux Saga

Redux Saga1 is a side effect manager for Redux. It implements the Saga
pattern to handle complex or asynchronous actions. Its advantage is us-
ing Javascript’s generator functions, which allow for high readability and
testability.

1https://redux-saga.js.org/

39

https://redux-saga.js.org/

5. Implementation....................................
5.3 Exercise Tools

Each tool

. Is represented by a React component or a tree of components.. Defines its own set of interactions with the exercise data structure.

Extensibility..1. Add the new slide type or tool to the JSON schema...2. Create its respective React component and Redux integrations (reducers,
actions, selectors).

5.4 Implementation Details

5.4.1 Schema Conversion

Exercise Designer works with a modified version of the exercise JSON Schema.
To ensure interoperability with the HistoryLab application, conversion be-
tween the original and this new version of exercise JSON is necessary. Ex-
ercise Designer integrates a custom Schema Data Converter, which handles
bi-directional conversion of exercises between these two versions of JSON
schema.

The conversion is implemented using a Production Rule System. „The
Production Rule System computational model implements the notion of a
set of rules, where each rule has a condition and a consequential action. The
system runs the rules on the data it has through a series of cycles, each cycle
identifying the rules whose conditions match, then executes the rules’ actions.”
(Fowler, 2021).

40

................................ 5.4. Implementation Details

Transformation Rule

Transformation Rule is simply „a rule in a Production Rule System. Such
a rule has two parts: a Boolean condition and an action” (Fowler and
Parsons, 2011). This action specifies how the data is transformed when the
condition is true. Its subclasses define specific rules for transformation (eg.
RenameObjectKeyRule, DropObjectKeyRule). Rules can be either stateless or
stateful, where stateful rules leverage an additional action that gets triggered
when leaving the node (after the entire subgraph has been traversed). Rules
can be further parametrised to reduce the number of subclasses (it is possible
to define a very general rule that expects a parameter or a very specific rule
that does not need one).

Ruleset

Ruleset represent a collection of rules with the purpose of transitioning
from one state to another. Its subclasses specify concrete collections of
transformation rules that are used for the conversion (e.g. OldToNewRuleset,
NewToOldRuleset). This collection implements the Iterator design pattern
(Freeman and Robson, 2014) to allow iterating over the individual rules.

SchemaDataConverter

SchemaDataConverter is responsible for the conversion of the data. It receives
a concrete transformation ruleset along with the input JSON data. It iterates
over the Ruleset, and using depth-first search, it recursively traverses over the
input data structure and tries to apply the transformation rule. The result is
the transformed JSON data.

5.4.2 Schema Representation

JSON Schema representation is simply a JSON object, and as such, it may
be difficult to get the required information from such a data structure. It is
important to be able to work with the schema in an effective way not only to
generate the dynamic form but also to be able to access other key schema

41

5. Implementation....................................
information in parts of the system that are not purely generated (e.g. enum
values for select fields), which increases extensibility.

Internally, JSON Schema is represented by a tree-like hierarchy of Schema
objects with internal nodes representing arrays and objects and leaf nodes
representing primitive data types. This allows for the use of design patterns
such as Composite and Visitor (Gamma, Helm, Johnson, and Vlissides, 1994)
to work with the structure effectively.

Schema

Schema objects are the object-oriented representation of the JSON Schema.
Its concrete subclasses define the behaviour of individual data types, such
as ArraySchema, ObjectSchema, TextSchema, etc. Schema implements the
Visitor design pattern to separate the representation of Schema classes from
the way they are actually used (see FormGeneratorVisitor below). It also
exposes generic public methods which may use the Composite design pattern
to get information from the underlying structure.

SchemaBuilder

SchemaBuilder implements a simple Builder design pattern to „separate the
construction of a complex Schema object from its representation” (Gamma
et al., 1994). It is responsible for creating the tree structure of Schema objects
from the original JSON Schema.

FormGeneratorVisitor

FormGeneratorVisitor is the key part of the SchemaDrivenForm prototype.
For each Schema object, it defines its associated React component. Then it
uses the Visitor design pattern to iterate through the Schema objects and
recursively generates React form based on this structure.

42

Chapter 6

Testing

In the development cycle of any application, testing is one of the key aspects
that need to be present. Testing makes sure that the application is being
developed with a level of quality in mind and gives some confidence to
developers who know that their code works as expected.

6.1 Static Analysis

„Static analysis is analysis of the structure and text of a program without
executing it” (Boulanger and Boulanger, 2011). It is the first line of defence
that notifies the programmer if there is any problem with the code. In
particular, static analysis helps find issues with the syntax, code that does
not follow the preset coding standards of the project, and can even discover
some fundamental semantic problems with the code.

Exercise Designer uses two static analysis tools:..1. TypeScript. TypeScript itself provides a simple static analysis...2. ESLint. ESLint is an open-source linting tool. It is highly customizable,
supports different languages and different coding rules configurations.

43

6. Testing
6.2 Unit Tests

Unit tests are tests on the lowest abstraction level of development. They test
’units’ of code, which are usually individual functions or groups of functions
doing a single thing.

Exercise Designer has only a few sets of unit tests. In particular, these
tests test the schema conversion and validation.

6.3 API Testing

API tests are tests executed against an API to ensure that it accepts requests
as expected and returns the expected results.

Exercise Designer back-end server provides a simple REST API. This API
is tested using the Postman platform.

6.4 User Testing

6.4.1 Methodology

„For user testing, the finding of a usability problem depends on two factors:
First, the subject has to experience the problem, and second, the experimenter
has to realize that the user experienced the problem.” (Nielsen and Landauer,
1993)

Firstly, in order for testers to experience the potential problems, I have
created a list of tasks to be performed in order on the system under test.
These tasks would have the testers proceed through all key parts of the
system.

Secondly, to be able to get feedback, testers were instructed to comment

44

.....................................6.4. User Testing

on how easy or difficult it was to perform each of these tasks, as well as any
other thoughts or opinions they had while performing these tasks.

As for the number of testers, a research study by Nielsen and Landauer
(Nielsen and Landauer, 1993) found that the maximum cost/benefit ratio
is reached with only four to five testers. Six people tested the application,
including developers, didacticians and one QA specialist.

6.4.2 Tasks

Modify the pre-loaded exercise "What they expected of the sewing ma-
chine?" as follows:..1. Add years 1917 and 1924 to the timeline...2. Insert slide of type Sources & Descriptions as a 3rd slide in order.

Fill in the main and extended task description, add an image from the
gallery along with a description...3. Rename the exercise to „What the sewing machine brought to us?”..4. Add yourself as an author and change the exercise difficulty to hard...5. On the second slide, replace an image with another image from the
gallery, modify the description accordingly...6. On the keywords slide type, remove keywords poverty and work, add a
keyword education...7. In the text editor, add the option to highlight in blue parts of the text
which describe the purpose of a sewing machine. Modify the description
accordingly.

Create a new exercise as follows:..8. Fill in all the mandatory parts of the exercise profile...9. Add three slides of the following types in the same order: Sources &
Descriptions, Keywords, User Text....10. In each of these slides, fill in the main and extended task description
and add at least a single element to the slide content....11. Upload your own image to the media gallery. Add it to the content of
slide type Sources & Descriptions....12. Split slide of type Keywords so that the left part of the content will show
a preview of the previous slide.

45

6. Testing ..13. Add slide of type Text Editor to the end of the exercise. Add an image,
text and keywords to highlight....14. Delete slide of type Keywords.

Create a new exercise as follows:...15. Create your own exercise with at least 3 different types of slides. Fill
the exercise with data.

6.4.3 Results

Tester feedback to provided functionality was generally positive. Most testers
were able to perform most if not all of their tasks. I have created a list of
all issues and split them by their perceived priority (based mainly on the
severity and the number of times the subject had appeared in the feedback).

High Priority.. Schema validation. When schema is invalid, the reason is not communi-
cated to the user.. Number field behaviour. Zero digit (0) in number fields cannot be
deleted.. Buttons need visual improvements. Buttons to add slides are easy to
confuse with the navigational buttons. The button to split the current
slide is hard to find and needs a label.. Slide type information. It is hard to tell the type of current slide or
slides in the split layout.

Medium Priority.. Unpolished field labels. Some field labels have array-like numeric indexes,
and some contain object-like dots.. No focus on the added field. This field should automatically focus when
adding a new field in the profile.. Color picker is not needed.. Some profile fields should offer a selection from a list. Keywords and
epoch fields should be restricted to a selection of pre-approved words to
pick from.

46

.....................................6.4. User Testing

. Some profile fields should not be editable. global and content version
should not be editable.. Text profile fields should adapt their length to their content. Annotation
field does not show the full text on the screen.. Some fields should be autogenerated. Profile id field should autogenerate
with a unique value. Functions could be autogenerated based on the
slide types..Minor technical issues. Help tooltip is showing
 tag character. Help
tooltip is incorrect for text editor slide type.. How to reorder gallery images. This should be communicated better to
the user.. Text editor command field improvement. It should not support dia-
critics in its input. The value should be autogenerated if possible.

Low Priority.. Responsiveness. Exercise Designer is too wide and not responsive.. Back button function. It is not possible to revert the last change.. Ability to change the type of slide.. Split-layout visual improvements. Emphasize which slide is currently
active.. User text slide-type improvements. There should be a parameter called
instruction. Zadani... should be a placeholder for the field, not the
contents. The user should be able to set the minimum and ideal length
of the text answer.. Keywords slide-type improvements. It should be possible to reorder the
tags. The plus button has a strange visual placement.. Drag & drop slide-type improvements. There is a strange background
colour issue.

Out of Scope.. Add different media types to the gallery. (Currently, none of the imple-
mented tools use media types other than image. These will be added in
the future.). Limit the number of keywords that the student can select. (This is not
implemented in the HistoryLab application.)

47

6. Testing
6.4.4 Changes in Response to Users’ Feedback

Functional Improvements

. Number fields updated. Zero digit (0) value can now be deleted as
expected.. Type of the current slide is now displayed as a label at the top of the
slide.. In text editor slide type, help icon’s tooltip text was updated.. Keywords fields values are now selectable from values predefined in the
schema.. Epoch schema definition was updated, and field values are now selectable
from values predefined in the schema.. In the profile, version fields and id fields are now read-only. Id value
is randomly generated for new exercises.. In the profile, the newly added field is now focused automatically.. Schema validation section now has a tooltip listing all the current vali-
dation errors.. Color picker was removed from the profile.. In the slide of type user text, the text field was renamed to instruction
to avoid confusion. Zadani... text was moved into a placeholder. Three
fields were added in order to set the minimum, optimal and maximum
length of the answer.. In the slide of type text editor, the command field is now autogenerated
from the name field and does not support diacritics input.

Visual Improvements

. Improved responsiveness. Labels in the top bar will now resize on smaller
screens. Exercise title will now not overflow its container. However, at
least 1000px screen width (desktop) is still highly recommended.. Cleaned up field labels. Numeric indexes have been removed, and
diacritics have been added as needed.. All text fields in the profile will now adapt their length to the content
and print the content in multiple lines if needed.

48

.....................................6.4. User Testing

. Improved buttons. Split button now has a text label and a button-like
shape. Add-slide buttons now have a plus-sign icon, rather than an arrow
icon, to avoid confusion with the navigational buttons. Navigational
buttons’ design was updated to be more button-like and easier to notice
for the users.. Split slide’s preview part is now partially transparent with a watermark
to emphasize that this is the previous slide.. Placement of the keywords-slide plus button has been updated to fit
better the layout..Gallery image styles updated to fix background colour transition issue
and make reordering images easier to understand.

49

50

Chapter 7

Conclusion

Limitations

Exercise Designer needs to be backwards compatible with the existing exercises.
Currently, there are over 150 existing exercises; each is composed of several
slides, and each slide is composed of a number of tools. How these tools
are organised and interact with each other depends on the type of each
slide. Implementation of these tools in the HistoryLab application is complex,
featuring various options and nuances. As such, this project’s scope could
not cover all of the functionality and had to be reduced. Only 6 out of the
existing 12 tools have been implemented, some with only partial functionality.
However, the current Exercise Designer can be considered a base platform,
with the potential to be easily extended in the future to include all of the
tools.

Summary

Exercise Designer application has been created based on analysis of the
requirements and research of the existing situation. HistoryLab exercises were
analysed in order to create the best possible representation for the individual
tools. Based on this analysis, appropriate software architecture and tools
were chosen in order to implement the application. Exercise Designer has
been created as an interactive web application.

51

7. Conclusion......................................
Users of Exercise Designer can use a variety of tools to build a new exercise

or modify an existing one. They can create draft exercises and quickly test
if such exercises match their expectations. This should help reduce the
communication overhead described in the motivation section.

Future Improvements

Due to the limited time and resources available for this project, the scope
of the work had to be restricted to fundamentals in order to meet all the
relevant due dates.

Support More Tools. Exercise Designer should be extended to support all
the tools available in the HistoryLab application. This includes the ability to
upload different media types to the media library.

’Go Back’ Feature. Users should be able to revert their most recent changes.

Cache Generated Previews. The application should ’remember’ which
previews were already generated, and these should be available quickly.

Add More Tests. More automated tests should be added to „guarantee
developer productivity and quality of code” (Osherove, 2006).

Other Minor Improvements..Make it possible to rearrange the tags in keywords type of slide.. Add the ability to change the type of slide.

52

Bibliography

Abelson, H. (1996). Structure and interpretation of computer programs, second
edition. The MIT Press.

About Trello. (n.d.). Retrieved from https://trello.com/about
Boulanger, J., & Boulanger, J. (2011). Static analysis of software : The

abstract interpretation. John Wiley & Sons, Incorporated. Retrieved
from http://ebookcentral.proquest.com/lib/cityuseattle/detail.action?
docID=1124674

Brooks, F. (1975). The mythical man-month (1975). doi:10.7551/mitpress/
12274.003.0042

CWN. (2016). Computer Weekly News, (2183), 2183. Retrieved from https:
//link.gale.com/apps/doc/A450431907/GIC?u=cityu_main&sid=
summon&xid=e0472c8b

Fowler, M. (2021). Production rule system. Retrieved from https://martinfowler.
com/dslCatalog/productionRule.html

Fowler, M., & Parsons, R. (2011). Domain-specific languages. Addison-Wesley.
Freeman, E., & Robson, E. (2014). Head first design patterns : A brain-friendly

guide. O’reilly, Edition: 10Th Anniversary Ed.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns:

Elements of reusable object-oriented software. Pearson Education. Re-
trieved from https://books.google.cz/books?id=6oHuKQe3TjQC

Greif, S., & Benitte, R. (2021). State of js 2020. Retrieved from https :
//2020.stateofjs.com/en-US/technologies/front-end-frameworks/

Hall, H. (2019). Enhance enum support (defaults and unsetting) · issue
#1501 · eclipsesource/jsonforms. Retrieved from https://github.com/
eclipsesource/jsonforms/issues/1501

HistoryLab. (2021). Retrieved from https://historylab.cz/en/

53

https://trello.com/about
http://ebookcentral.proquest.com/lib/cityuseattle/detail.action?docID=1124674
http://ebookcentral.proquest.com/lib/cityuseattle/detail.action?docID=1124674
https://doi.org/10.7551/mitpress/12274.003.0042
https://doi.org/10.7551/mitpress/12274.003.0042
https://link.gale.com/apps/doc/A450431907/GIC?u=cityu_main&sid=summon&xid=e0472c8b
https://link.gale.com/apps/doc/A450431907/GIC?u=cityu_main&sid=summon&xid=e0472c8b
https://link.gale.com/apps/doc/A450431907/GIC?u=cityu_main&sid=summon&xid=e0472c8b
https://martinfowler.com/dslCatalog/productionRule.html
https://martinfowler.com/dslCatalog/productionRule.html
https://books.google.cz/books?id=6oHuKQe3TjQC
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://github.com/eclipsesource/jsonforms/issues/1501
https://github.com/eclipsesource/jsonforms/issues/1501
https://historylab.cz/en/

7. Conclusion......................................
Historylab: Using Technology... - cep - ta CR starfos. (2018). Technology

Agency of the Czech Republic. Retrieved from https://starfos.tacr.cz/
en/project/TL01000046

JSON Schema. (n.d.). Retrieved from https://json-schema.org/
Martin, R. C. [Robert C]. (2018). Clean architecture : A craftsman’s guide to

software structure and design. Prentice Hall.
Martin, R. C. [Robert Cecil]. (2009). Clean code: A handbook of agile software

craftsmanship. Prentice Hall.
Mcconnell, S. (2004). Code complete. Microsoft Press.
Microsoft. (2015). Typescript - javascript that scales. Retrieved from https:

//www.typescriptlang.org/
MUI - The React UI library. (2021). Retrieved from https://mui.com/
Nielsen, J., & Landauer, T. K. (1993). A mathematical model of the finding

of usability problems. Proceedings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing Systems.

Osherove, R. (2006). Unit testing: Writing maintainable unit tests save time
and tears. Retrieved from https://docs.microsoft.com/en-us/archive/
msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-
tests-save-time-and-tears

Ralph, P., & Wand, Y. (2009). A proposal for a formal definition of the design
concept. (Vol. 14, pp. 103–136). doi:10.1007/978-3-540-92966-6_6

Redux-Saga, An intuitive Redux side effect manager. (n.d.). Retrieved from
https://redux-saga.js.org/

Richardson, L., & Amundsen, M. (2015). Restful web apis. O’reilly, -05-22.
Robertson, D. W. (1946). A note on the classical origin of "circumstances" in

the medieval confessional. Studies in Philology, 43 (1), 6–14. Retrieved
from http://www.jstor.org/stable/4172741

Sajdl, V. (2021). Git based markdown online editor (Master’s thesis, Czech
Technical University in Prague, Faculty of Electrical Engineering De-
partment of Computer Science).

54

https://starfos.tacr.cz/en/project/TL01000046
https://starfos.tacr.cz/en/project/TL01000046
https://json-schema.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://mui.com/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-tests-save-time-and-tears
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-tests-save-time-and-tears
https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/january/unit-testing-writing-maintainable-unit-tests-save-time-and-tears
https://doi.org/10.1007/978-3-540-92966-6_6
https://redux-saga.js.org/
http://www.jstor.org/stable/4172741

Appendix A

DVD

Attached DVD contains the following:. This document in the PDF format.. Spreadsheet with the original test results.. The application source code.

Application source Code

/source-code folder contains the source code for the Exercise Designer.. /scripts — scripts for conversion of exercise JSON to a different schema. /server — back end source code. /src — front end source code. README.md file describes how to run the project.. package.json file contains the NPM project manifest.

55

56

Appendix B

User Testing Results

The test assignment was given to 9 independent testers (labeled A to I).
However, testers D,E and H did not participate in the testing and their
results were not included.

Feedback from the testers was split into two categories:. Visual issues. Functional issues

Tester A

Functional Issues:. In the profile editor, I do not like that the 0 value is the default for
number fields and that it cannot be erased..Global version should not be editable. It is based on the version of the
application.. Content version should probably not be editable either — every publica-
tion of exercise should automatically increase the value by 1.. Keywords and epoch obdobi values should be selected from a predefined
list.. I would expect autofocus on the newly added input field.

57

B. User Testing Results
. Functions could be added automatically, based on the exercise slides.. Exercise ID should generate automatically, and it must be unique.. In the text editor slide type, I do not know what the purpose of the

command field is.. In the text editor slide type, it should be possible to set the minimum
and ideal length of the answer.. In the svg slide type, it should be possible to select the function - drawing,
creating dots or adding comments. In the gallery slide type, it should be possible to add previous work
results (SVGs), texts, audio or video files.. The application says that the schema is not valid, but it doesn’t say why.
It would be nice to have a list of errors.

Visual Issues:. Annotations are long texts, and the text fields should be bigger to
accommodate this.. I would remove all array-like numeric indexes in labels.. To add a new slide, I would replace the current arrow icons with a plus
symbol. Arrows are associated with moving, and I would expect them
to be used for navigation.. The split button needs a visible label, and the toolbar design should
be improved.. In the keywords slide type, plus button to add a tag has a strange visual
placement.

Tester B

Functional Issues:. I can not remove value 0 in the year and duration fields in the profile
editor.. It is not good to remove images from the media gallery after being used.
Teachers may want to use the same image on the same slide again.. In the profile editor, it would be nice to have it automatically be in focus
after adding a field.

58

.................................. B. User Testing Results

. There is no need for a colour picker. The main colour will be generated
based on the introductory picture.. In the user text slide type, there is no parameter called instruction
which is used as a placeholder for the text field. Also, it is not necessary
to type ’Zadani...’ as a text in the field. It can just be a placeholder.

Visual Issues:. Buttons to add a new slide and navigate to a different slide are easy to
confuse. The button to navigate to a different slide inside the preview is
getting lost in the UX..Why the colour picker has buttons OK and cancel that don’t do anything?
It is not clear if the colour is stored automatically or after clicking OK.. Button to split slides could have a description or a highlight to make it
clear it is a button. It takes a long to find how to split the slides..When deleting a split slide, the user may think that the previous slide
will get deleted as well. It may help to emphasize which slide is currently
active.. In the prameny and svg slide types, it is not clear what is the purpose
of boxes labelled Gallery. It isn’t very clear. After some time, I realize
that the purpose is to reorder the images.

Tester C

Functional Issues:. It is not possible to delete 0 in the profile editor.. I cannot tell what type are the split screens.. text editor slide type has an incorrect help icon tooltip.. In the text editor slide type, command field should not support input
with diacritics.

Visual Issues:. For a popisek field, maybe popisek[0] label is not the best.. In the text editor slide type, placeholder texty[x] in the HTML
version of the editor is confusing.

59

B. User Testing Results
. In the profile editor, oftentimes the placeholder is [0] or [1]. It would

be better to remove this, or replace with something better.. Help field tooltip shows
 tag characters.. drag and drop slide type has a strange background color transition
(accompanied by an image).

Tester F

Functional Issues:. It is not clear what is the purpose of colour selection.. It would be nice to see the type of current slide somewhere. The help
icon is not enough.. It would be nice to be able to change the type of current slide.. It would be nice to have a ’go back’ function to prevent accidental changes
(including slide deletions).. I cannot change the order of tags in keywords slide type.. In the profile editor, keywords and epochs should be limited to a selection
of pre-approved words.. In the keywords slide type, is it possible to limit the number of keywords,
which the student can select?

Visual Issues:. For the split-screen slides, it may be less confusing just to show the icon,
not the previous slide itself.. In the profile editor, it was hard to understand what is what. Can the
visuals be improved?. In the profile editor, the annotation labels should be "Ucitelske" and
"Zakovske", not "Verejne".. It is unclear how to add a caption to a gallery image.. It is not possible to change the order of images.

60

.................................. B. User Testing Results

Tester G

Functional Issues:. In the profile editor, roky(year) field validation allows for negative values
or numbers that start with 0.. Editor says invalid schema, and it is not clear why..When saving to the database, there is no error message when the saving
procedure fails. It is not clear what kind of exercise can be saved.

Tester I

Functional Issues:. It is not clear how the schema gets validated. What is and is not valid?. I cannot remove value 0. The field has to have a number in it.. It would be nice to have a ’back’ button to revert the last changes.. It would be nice to be able to change or remove the type of slide.Why is the slide type selection drag & drop? Clicking would be easier.

Visual Issues:. The designer is too wide. On small screens, long exercise names break
the top bar layout.. The profile editor seems not organized. There are too many windows.
Window layout changes during editing..Why are item labels numbered? ([0], [1], ...). Buttons to add a new slide before/after are easily confused with previ-
ous/next slide navigation buttons.. The labels zadani.hlavni and zadani.rozsirujici are strange.. I cannot find the type of current slide.

61

62

Appendix C

Images

These are high-resolution slides of the exercise "What they expected of the
sewing machine?" and the Exercise Designer’s user interface.

Figure C.1: Example Exercise - Slide One

63

C. Images

Figure C.2: Example Exercise - Slide Two

Figure C.3: Example Exercise - Slide Three

64

.. C. Images

Figure C.4: Example Exercise - Slide Four

Figure C.5: Example Exercise - Slide Five

65

C. Images

Figure C.6: Exercise Designer - Profile Editor (Example Slide)

66

.. C. Images

Figure C.7: Slide Editor

67

	Introduction
	Background
	HistoryLab
	HistoryLab Exercise

	Actors
	Motivation
	Exercise Creation Workflow
	Communication
	Communication Problem Statement
	Potential Solutions

	Thesis Structure

	Fundamentals
	Problem Statement
	Requirement Analysis
	Functional Requirements
	Non-functional Requirements

	Technical Requirements

	Task Analysis
	Exercise Schema Analysis
	First Implementation Ideas
	Exercise JSON Printer Prototype
	Recursive Form Prototype

	JSON Forms Analysis
	Problems of JSON Forms
	Possible Solutions
	Conclusion

	Schema-driven Form Prototype
	Improvements to the Schema
	UI Form Generation
	Extensibility Analysis
	Extensibility with JSON Schema
	Extensibility of the Code

	Design
	Application Architecture
	Front End
	Back End
	Database

	Exercise Tools
	Design Prototype

	Implementation
	Overview
	Front End
	Back End
	Database
	Interactions

	Key Technology
	Exercise Tools
	Implementation Details
	Schema Conversion
	Schema Representation

	Testing
	Static Analysis
	Unit Tests
	API Testing
	User Testing
	Methodology
	Tasks
	Results
	Changes in Response to Users' Feedback

	Conclusion
	Limitations
	Summary
	Future Improvements

	Bibliography
	DVD
	User Testing Results
	Images

