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Abstract
The aim of the thesis is scheduling of tour-
naments with several opponents in a single
game. The main focus are tournaments
with three player games and whist tour-
naments. For the scheduling of balanced
tournaments, combinatorial designs from
the field of combinatorial design theory
are used. To schedule more general tour-
naments with arbitrary number of players
and rounds, a constraint programming
approach is proposed.

As part of this thesis, a web application
that enables the construction of designs
and the scheduling of tournaments is de-
signed and implemented.

Keywords: tournament scheduling,
block designs, Latin squares, constraint
programming, pairwise testing

Supervisor: Prof. Dr. Ing. Zdeněk
Hanzálek

Abstrakt
Tato práce se zabývá rozvrhováním tur-
najů s více soupeři v jedné hře. Hlavním
zaměřením jsou turnaje pro tříhráčové hry
a pro čtyřhry. K plánování vyvážených
turnajů jsou využívány kombinatorické
struktury z oblasti kombinatorického de-
signu. K plánování obecnějších turnajů
s libovolným počtem hráčů a kol je na-
vržen přístup využívající programování
s omezujícími podmínkami.

Součástí práce je i návrh a implemen-
tace webové aplikace, která umožňuje kon-
strukci kombinatorických struktur a plá-
nování turnajů.

Klíčová slova: rozvrhování turnajů,
block design, Latinské čtverce,
programování s omezujícími podmínkami,
pairwise testing

Překlad názvu: Rozvrhování turnajů
s více soupeři v jedné hře
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Chapter 1
Introduction

The planning of tournaments is a broad subject. Generally, a tournament
consists of several rounds, each round involving multiple games. The parties
taking part in a game - be it single players or whole teams - may play at
most in one game in each of the rounds. The most common games such as
chess or football only involve two parties playing against each others. The
construction of tournaments for these games has been studied widely[3, 4, 5]
and there are many tools for their scheduling, such as Teamsnap1 or Tournify2.
Furthermore, a round in such tournament might be influenced by the results
of the previous round and constructed dynamically like in a single-elimination
or ladder tournament.

In this thesis, however, we mainly focus on tournaments, where there are
more than two opposing parties playing in a single game and the rounds of
the tournament are planned statically, in advance. The results of the previous
round do not influence the arrangement of games in the next round. An
additional requirement we put on these tournaments is that on the balance.
Ideally, we want every pair of players to play together in the same amount of
games.

Consider the 3 player game Mariasch for example. A completely balanced
Mariasch tournament with 9 players is depicted in table 1.1.

Round # Game 1 Game 2 Game 3
Round 1 1, 2, 3 4, 5, 6 7, 8, 9
Round 2 1, 4, 7 2, 5, 8 3, 6, 9
Round 3 1, 5, 9 2, 6, 7 3, 4, 8
Round 4 1, 6, 8 2, 4, 9 3, 5, 7

Table 1.1: A completely balanced tournament of Mariasch with 9 players.

Each pair of players plays together in exactly one game of the Mariasch
tournament. Such balanced tournaments can not be scheduled for an arbitrary
number of players. To determine the number of players, for which balanced

1Team manager tool including a tournament schedule generator. https://www.teamsnap.
com.

2On-line tournament scheduling tool. https://www.tournifyapp.com.
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1. Introduction .....................................
tournament can be scheduled and for the construction itself, we apply the
findings from the mathematical field of combinatorial design theory. The
main focus of the thesis are three player game tournaments and whist (or
double tennis) tournaments.

Additionally, we develop an application that can be used to schedule
several types of tournaments and to construct combinatorial designs. We
also propose a more general method for the scheduling of tournaments with
arbitrary number of players and rounds.

1.1 Outline

The following two chapter are introducing the basics of design theory and
draw mainly from the books of I. Anderson [1] and C. Lindner [2]. Chapter 2
focuses on block designs and chapter 3 on Latin squares. These structures
are crucial to understand the construction methods described in the latter
chapters.

Chapter 4 deals with the practical part of this thesis and describes the
design and architecture of the developed application.

Chapter 5 focuses on the construction of tournaments for three player
games. Chapter 6 then explores the construction of whist tournaments. In
chapter 7, a more general approach to the construction of tournaments using
constraint programming is proposed.

Chapter 8 showcases, that the combinatorial designs used for the construc-
tion of tournaments can also be utilized in other fields - specifically in the
field of software testing.

In chapter 9, we describe the testing of the developed application and show
several runtime measurements benchmarks of the implemented tournament
scheduling methods.

2



Chapter 2
Design theory: Block designs

When planning a tournament, there are several important parameters that
need to be considered. One of the obvious ones is the number of players, that
will take part in the whole tournament. Another one is the number of players
that can play in a single game of the tournament (whether it is a 2, 3 or
k-player game). The number of games in the whole tournament might also
be given. It is also desirable for the games in the tournament to be scheduled
in a balanced manner. Every pair of players should play in the same number
of games.

Block designs from the field of combinatorial design theory provide a sound
way to describe balanced tournaments. In this chapter, several block design
types are introduced, starting with the simplest and most intensely studied
balanced incomplete block designs.
Definition 2.1 (BIBD). A Balanced Incomplete Block Design or BIBD with
parameters v, k, λ is a collection of k-sized subsets (called blocks) of a v-sized
set S, such that each pair of elements from S occurs together in exactly λ of
the blocks.

Even though the parameters v, k and λ are sufficient for the definition of
BIBD, additional parameters b and r are often used. BIBD(v, k, λ) can then
be described as BIBD(v, b, r, k, λ). b denotes the number of blocks in the
design and r gives the number of blocks an element can be in. Both b and r
can be uniquely determined from the previous parameters:

r = λ(v − 1)
k − 1 (2.1)

b = vr

k
= λ(v2 − v)

k2 − k
(2.2)

Example 2.1. The following blocks form a BIBD(7, 7, 3, 3, 1).

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 5, 6}, {2, 4, 7}, {3, 4, 6}, {3, 5, 7}.

In the context of tournament planning, the parameters of BIBD(v, b, r, k, λ)
can be interpreted in the following way:

3



2. Design theory: Block designs..............................
. v is the number of players (or teams) in the tournament.. b is the total number of games played in the tournament.. r is the number of games each single player takes part in.. k is the cardinality of the game - the number of players that can play in

a single game.. λ denotes the number of games each pair of players has played together.

It is important to note that for the given parameters v, b, r, k, λ, there
might exist multiple non-isomorphic (without one-to-one mapping) BIBDs.

2.1 Necessary conditions for the existence of BIBD

The choice of the parameters of the BIBD can not be completely arbitrary.
Obviously, all of the parameters have to be positive integers - including the
parameters b and r in equations 2.1, 2.2. The other necessary conditions can
be summarized with the following inequalities.

k < v (2.3)

r > λ (2.4)

b ≥ v (2.5)

Sufficient conditions for the existence of general BIBD are not known so
far. Fortunately, for most of the subtypes of BIBD we use in this work, the
sufficient conditions are known.

2.2 Resolvability

A general BIBD structure is not that useful when it comes to tournament
scheduling. There is no guarantee that the games can be grouped into rounds
of the tournament. As in example 2.1, all of the blocks have at least one
element in common so that no games of the design can be played in parallel.
The property ensuring that the blocks of the design can be split into parallel
classes of the same sizes is called resolvability.

Definition 2.2 (Resolvability). A BIBD is resolvable, if its blocks can be
arranged into r classes so that the blocks of each class are disjoint and the
union of blocks in a class contains each element exactly once. These classes
are called parallel or resolution classes.

Clearly, each parallel class should contain b
r = v

k blocks.

Example 2.2. The blocks and parallel classes of a resolvabe BIBD(9, 3, 1)
are depicted in the table bellow:

4



....................................2.3. BIBD subtypes

Parallel class Blocks
Parallel class π1 {1, 2, 3}, {4, 5, 6}, {7, 8, 9}
Parallel class π2 {1, 4, 7}, {2, 5, 8}, {3, 6, 9}
Parallel class π3 {1, 5, 9}, {2, 6, 7}, {3, 4, 8}
Parallel class π4 {1, 6, 8}, {2, 4, 9}, {3, 5, 7}

Parallel classes are usually denoted with the symbol π. The resolvable
BIBD in example 2.2 is actually equivalent to the Mariasch tournament
schedule depicted in table 1.1. The parallel classes can clearly be interpreted
as rounds of a tournament.

2.3 BIBD subtypes

2.3.1 Steiner triple systems

Definition 2.3. A Steiner triple system of order v or STS(v) is a BIBD(v, k =
3, λ = 1).

STS is just a subtype of BIBD, in which the block sizes are 3. Unlike the
general BIBDs, the sufficient conditions for the existence os STSs are known.
Theorem 2.1. STS of order v exists if and only if v = 6n+ 1 or v = 6n+ 3,
n ∈ N.

Regarding the tournaments, a much more important design is the Kirkman
triple system.

2.3.2 Kirkman triple systems

Definition 2.4. A Kirkman triple system of order v or KTS(v) is a STS(v)
with the additional property of being resolvable.

The resolvable BIBD in the example 2.2 was in fact a KTS(9).
A Kirkman Triple System was first proposed by Thomas Kirkman in disguise
as a problem in 1850 in the recreational mathematics magazine The Lady’s
and Gentleman’s Diary. The problem states:

“Fifteen young ladies in a school walk out three abreast for seven days
in succession: it is required to arrange them daily so that no two shall walk
twice abreast.”

The solution of the problem is clearly a KTS(15). Later, the problem
became known as the Kirkman’s schoolgirl problem and is often referenced in
literature and scientific papers concerning design theory.

It took more than 100 years (Chaudhuri & Wilson [6]) to discover general
construction methods for KTSs and prove the following sufficient conditions
for their existence.
Theorem 2.2. A KTS(v) exists if and only if v = 6n+ 3, n ∈ N.

5



2. Design theory: Block designs..............................
Row 1 Row 2 Row 3 Row 4 Row 5

Day 1 {1, 2, 3} {4, 8, 12} {5, 10, 14} {6, 11, 13} {7, 9, 15}
Day 2 {1, 4, 5 } {2, 8, 10 } {3, 13, 15} {6, 9, 14} { 7, 11, 12}
Day 3 {1, 6, 7} {2, 9, 11} {3, 12, 14} {4, 10, 15} {5, 8, 13}
Day 4 {1, 8, 9} {2, 12, 15} {3, 5, 6} {4, 11, 14} {7, 10, 13}
Day 5 {1, 10, 11} {2, 13, 14} {3, 4, 7} {5, 9, 12} {6, 8, 15}
Day 6 {1, 12, 13} {2, 4, 6} {3, 9, 10} {5, 11, 15} {7, 8, 14}
Day 7 {1, 14, 15} {2, 5, 7} {3, 8, 11} {4, 9, 13} {6, 10, 12}

Table 2.1: One possible solution to the Kirkman’s schoolgirl problem. The days
can be interpreted as the parallel classes.

KTSs are especially useful when it comes to three player balanced tour-
naments. The method for their construction is described later in chapter
5.

2.4 Other Block Design types

As was mentioned in the beginning, Balanced incomplete block design is the
simplest block design type. Other block designs, that will be discussed, are
Pairwise balanced designs and Group divisible designs. Fortunately, most of
the concepts introduced for BIBD can be (at least partially) applied to the
other block designs as well.

2.4.1 Pairwise balanced design

In BIBD, the size of all the blocks has to be the same and it is given by the
parameter k. In a Pairwise balanced design, however, the blocks might have
different sizes given by a whole set K.
Definition 2.5. A Pairwise balanced design PBD(v,K, λ) is a collection of
blocks on a v-sized set S, such that each pair of elements from S occurs
together in exactly λ of the blocks and the size of each block is in the set K.

Example 2.3. Blocks {1, 2, 4}, {1, 6, 7}, {1, 3, 8}, {2, 5, 6}, {2, 7, 8}, {3, 5, 7},
{3, 4, 6}, {4, 5, 8} of size 3 and blocks {1, 5}, {2, 3}, {4, 7}, {6, 8} of size 2 form
a PBD(8, {2, 3}, 1).

One method for the construction of PBD is to take a BIBD(v, k, λ) and
remove a single element. This way a PBD(v− 1, {k− 1, k}, λ) is obtained. In
example 2.3 a BIBD(9, 3, 1) was used for the construction of the PBD.

BIBD is actually a sub type of PBD, where K = {k}.

2.4.2 Group divisible design

A design somewhat similar to PBD and the most complicated design discussed
here is the Group divisible design.

6



.............................. 2.5. BIBD construction methods

Definition 2.6. A Group divisible design or GDD of order v consists of a
v-sized set S of elements, a collection of subsets G called groups and a
collection of blocks B such that. the groups form a partition of S;. each pair of elements from the same group do not occur together in any

of the blocks;. each pair of elements from different groups occur together in exactly one
of the blocks.

All the designs mentioned before are usually defined in a very similar
way across the literature but there is quite a divergence when it comes
to GDDs. In [1] for example, only uniform sized blocks and groups are
considered. Furthermore, parameters λ1 and λ2 are used to describe the
number of occurrences of pairs from the same group as opposed to the number
of occurrences of pairs from different groups. Here, we only consider λ1 = 0
and λ2 = 1. In [2], however, GDDs are defined with both variable sized blocks
and groups.

The definition used here is the most convenient for the scope of this thesis.
We mostly work with uniform sized block and groups and denote such designs
as GDD(v, g, k) where g is the size of groups and k is the size of blocks. In
some of the construction methods, however, we require variable sized groups
and blocks, so the definition was chosen to include these cases.

2.5 BIBD construction methods

There are several BIBD construction methods. Most of them, however, use
already existing BIBDs to construct specific new designs.
Example 2.4. Take the 7 blocks of the BIBD(7, 3, 1) in example 2.1 twice to
obtain a BIBD(7, 3, 2).

A convenient general construction method would take the parameters of the
BIBD as the input and it would output the desired design. Unfortunately, as
the necessary conditions for the existence of BIBDs are not known, there are
no efficient general construction methods. The task of the BIBD construction,
however, can be formulated as an integer quadratic program.

2.5.1 Quadratic programming approach

Consider a binary incidence matrix X = (xi,j) of dimensions v×b representing
the given BIBD. xi,j = 1 only if element i is part of the block j. A valid
BIBD can then be described with the following equations:

b∑
j=1

xi,j = r, i = 1, . . . , v (2.6)

7



2. Design theory: Block designs..............................
v∑
i=1

xi,j = k, j = 1, . . . , b (2.7)

b∑
j=1

xi,jxi′,j = λ, i, i′ = 1, . . . , v, i < i′ (2.8)

Equation 2.6 ensures that all of the elements are present in exactly r of
the blocks. Equation 2.7 guarantees that all of the block are of the same size
k. And the last equation 2.8 ensures, that all the elements occur together in
exactly λ of the blocks.

These conditions can be easily translated into a quadratic program, which can
then be solved by any quadratic solver. If there is no BIBD for the instance
given by input parameters, the solver should label the instances as infeasible.
Otherwise, it should return a valid BIBD with the given parameters in some
finite time. Unfortunately, even with relatively small instances and with a
state-of-the-art solver, the calculation takes a long time.

The quadratic programming BIBD construction is implemented in the
QuadraticProgrammingBIBDConstruction class in the application accompa-
nying this thesis.

2.5.2 Incremental block building approach

A more efficient alternative to the quadratic programming approach was
proposed by Yokoya and Yamada in [7]. This approach combines simple
backtracking with linear programming.

Instead of computing the whole incidence matrix X as in 2.5.1, we try to
obtain its rows incrementally, one by one.

Xk+1 =
[
Xk

x

]
(2.9)

This way, because we only need to determine a single binary row vector x,
the problem can be written as linear binary program instead of the quadratic
one.

Maximize
b∑

j=1
xj +

b∑
j=1

(
k∑
i=1

x̄ij)xj (2.10)

subject to
b∑

j=1
xj ≤ r, (2.11)

xj ≤ k −
k∑
i=1

x̄ij , j = 1, . . . , b, (2.12)

b∑
j=1

x̄ijxj ≤ λ, i = 1, . . . , k, (2.13)

xj ∈ {0, 1}, j = 1, . . . , b. (2.14)

8



.............................. 2.5. BIBD construction methods

It can be shown, that if the optimal value of the objective function 2.10 is
less than r+ kλ, no BIBD exists as an extension of Xk. In that case, we need
to backtrack to the previous Xk−1 problem, find a different optimal solution
and try again - now with a different Xk−1 input matrix.

The first two rows of X2 can always be initialized as

X2 =

r︷ ︸︸ ︷
1 1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0

︸ ︷︷ ︸
λ

1 1 · · · 1 0 · · · 0 ︸ ︷︷ ︸
r − λ

1 · · · 1 0 · · · 0 (2.15)

This incremental approach to the construction of BIBDs is implemented
in the IncrementalBIBDConstruction class. As described in the original
paper, this method can be further augmented with tabu search.

9
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Chapter 3
Design theory: Latin squares

So far, only several types of block designs have been discussed. Another
closely related structure in the field of combinatorial design are Latin squares.
Their relation to tournament scheduling is not immediately obvious. Latin
squares are, however, quite useful on their own and are required for the
construction of several of the block design types which are in turn used for
the scheduling of tournaments.

Definition 3.1. A Latin square of n symbols is an n× n matrix, such that
each row and column of the matrix contains each of the n symbols exactly
once. The number n is called the order of the Latin square.

Example 3.1. A Latin square of order 5.

A B C D E
B C D E A
C D E A B
D E A B C
E A B C D

A Latin square of any order n ≥ 2 can be constructed. Furthermore, it can
be shown that any r × n, r < n Latin rectangle (an incomplete Latin square
with some missing rows) can be expanded into a Latin square.

3.1 Bipartite Tournaments

Latin squares can be utilized to construct bipartite tournaments. In a bipartite
tournament, there are two teams of the same size, say n. The goal is to
construct the tournament in such a way, that every player from the first
team will play exactly once against every player from the second team. The
tournament should have n rounds, all of the rounds consisting of n games.

It turns out, that the construction of bipartite tournament only requires a
single Latin square of order n. The players from the first team will be fixed
to the same game in each of the rounds and players from the second team

11



3. Design theory: Latin squares ..............................
will be distributed according to the Latin square. The scheduling of bipartite
tournaments is implemented in the BipartiteTournamentPlanner class.
Example 3.2. The bipartite tournament with teams Ta = {a1, a2, a3, a4},
Tb = {b1, b2, b3, b4} and the Latin square of order 4 used to construct the
tournament.

Round 1: a1 v b1 a2 v b2 a3 v b3 a4 v b4
Round 2: a1 v b2 a2 v b1 a3 v b4 a4 v b3
Round 3: a1 v b3 a2 v b4 a3 v b1 a4 v b2
Round 4: a1 v b4 a2 v b3 a3 v b2 a4 v b1

Table 3.1: The constructed bipartite tournament.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

3.2 Mutually orthogonal Latin squares

The concept of Latin square orthogonality was studied in detail by Leonhard
Euler but it dates back even further. A nice way to introduce this concept
is with Jacques Ozanam’s 1725 puzzle [8]. The goal is to arrange the 16
face cards of a standard deck into a 4× 4 grid, such that each row and each
column will contain all four face values and all four suits.
Example 3.3. One possible solution of the playing card puzzle.

A♠ K♥ Q♦ J♣
Q♣ J♦ A♥ K♠
J♥ Q♠ K♣ A♦
K♦ A♣ J♠ Q♥

The grid of face values can be viewed as the first Latin square and the grid
of the suits can be viewed as the second Latin square. The fact, that the
superimposed grid contains 16 unique pairs - the 16 face cards of the deck -
is ensured via the mutual orthogonality of the two squares.

The formal definition is as follows:
Definition 3.2. Let L1 and L2 be Latin squares of the same order. We
say that L1 and L2 are mutually orthogonal Latin squares (MOLS) if, when
superimposed, each of the possible ordered pair occurs exactly once.
Latin squares L1, . . . , Ln are mutually orthogonal if they are orthogonal in
pairs.

12



.............................3.3. Latin squares and quasi-groups

Example 3.4. Three MOLS of order 4.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Another famous problem, similar to the playing cards puzzle and studied
by Euler, was the 36-officer problem. In it, the goal was to arrange 36
officers of 6 different ranks drawn from 6 different regiments (no two officers
have the same rank and regiment) in a square so that in each row and column,
there are 6 officers of different ranks and different regiments. In other words,
the goal was to find two mutually orthogonal Latin squares of order 6.

Euler was not able to solve this problem, but he conjectured that there
are no two MOLS of order 6. Furthermore, he conjectured that there are
no MOLS of order n = 4k + 2. The non-existence of MOLS of order 6 was
confirmed in 1901 through a proof by exhaustion [9]. However, in 1959 Bose
and Shrikhande were able to construct MOLS of order 22, thereby disproving
Euler’s conjecture [10]. Furthermore, in their follow-up work, they have shown
that at least 2 MOLS exist for any order n ≥ 10 [11].

Theorem 3.1. A pair of MOLS exists for all orders n except for 2 and 6.
The fact that there are no MOLS of order 2 can be proven easily by

exhaustion.

3.3 Latin squares and quasi-groups

Definition 3.3 (Quasi-group). A (combinatorial) quasi-group (Q, ◦) is a set
Q equipped with a binary multiplication operation

Q×Q→ Q; (x, y)→ x ◦ y

denoted by ◦, such that any two of x, y, z in the equation x ◦ y = z determine
the third uniquely [12].
Definition 3.4 (Orthogonal quasi-groups). Two quasi-groups (Q, ◦1) and (Q, ◦2)
on the same set Q are orthogonal, if the system of equations

x ◦1 y = a (3.1)

x ◦1 y = b (3.2)

has a unique solution for any a, b ∈ Q.
Considering the properties of Latin squares, it should be clear that they yield

the multiplication tables of finite quasi-groups, as in table 3.2. Furthermore,
mutually orthogonal Latin squares yield the multiplication tables of orthogonal
quasi-group.

13



3. Design theory: Latin squares ..............................
Q 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 3 4 5 6 7 1 2
3 5 6 7 1 2 3 4
4 7 1 2 3 4 5 6
5 2 3 4 5 6 7 1
6 4 5 6 7 1 2 3
7 6 7 1 2 3 4 5

Table 3.2: Multiplication table of a quasi-group yielded by Latin square of order
7.

Quasi-groups and orthogonal quasi-groups are useful in many mathematical
fields. In design theory, they can be used to construct Steiner triple systems
or several types of PBDs (see 5.2.1).

3.4 Orthogonal arrays

The definitions of orthogonal arrays differ across literature, but the main
concept is the same. Here, we use a simplified definition which is sufficient
for the scope of this thesis.
Definition 3.5. An orthogonal array or OA(k,m) on m elements is a k ×m2

matrix, such that any two rows yield each of the possible ordered pairs of
elements in their pairs of columns.

An OA(k,m) is equivalent to a set of k − 2 MOLS of order m. This fact is
illustrated in the following example.
Example 3.5. Consider the following 2 MOLS of order 4

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

The first two rows of the equivalent orthogonal array are the row and
column coordinates of the elements in the MOLS. The third row lists the
elements of the first Latin square according to the coordinates and the fourth
row lists the elements of the second Latin square.

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3

The number k of the orthogonal array is called its factor and m is called
its level. In some literature, the definition of an orthogonal array is actually
the transpose of the orthogonal array defined here [25].

14



.................................. 3.5. Transversal designs

3.5 Transversal designs

Definition 3.6. A transversal design or TD(k,m) on km elements consists
of k-sized blocks and a collection m-sized groups such that the k groups
partition the set of elements, each block contains exactly one element from
each group and any pair of elements from different groups occurs together in
exactly one block.

On the first glance, transversal designs might seem more similar to block
design as a specific GDD. They are, however, very closely related to MOLS
and orthogonal arrays.
Example 3.6 (TD(4, 4)). Consider the OA(k = 4,m = 4) form example 3.5.
Modify its rows by adding (i− 1)m to each of the elements in the ith row.

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 10 11 12 10 9 12 11 11 12 9 10 12 11 10 9
13 14 15 16 15 16 13 14 16 15 14 13 14 13 16 15

Consider the columns of the modified array as blocks. These blocks together
with groups G1 = {1, 2, 3, 4}, . . . , G4 = {13, 14, 15, 16} form a TD(4, 4).

TD(k,m) is clearly equivalent to OA(k,m) and to k− 2 MOLS of order m.
The construction of transversal designs is implemented in the TDConstruc-
tion class.

Theorem 3.2. A resolvable TD(k,m) exists only if a TD(k + 1,m) exists.
Having constructed a TD(k + 1,m), it is easy to obtain a resolvable

TD(k,m). Take the (k+ 1)th groups of TD(k+ 1,m) and remove its elements
from the blocks. This leaves blocks of size k and k groups of size m. For each
removed element of the removed group, take the blocks that contained said
element. These blocks form a parallel class. This construction is implemented
in the RTDConstruction.

3.6 Construction of MOLS

The construction of complete sets of MOLS of any order is still an open
problem [17]. We show and implement the construction of pairs of MOLS of
odd orders and of orders that are multiples of 4 according to Guichard[18].
Unfortunately, some of the designs required for the scheduling of tournaments
can not be constructed without larger sets of MOLS. These larger sets were
therefore obtained using Sage Math1 and stored in the data store of the
application accompanying this thesis. It should be noted however, that the
larger sets of MOLS and MOLS of order 4k+ 2 are the only designs, that are
not constructed directly by our application.

1Sage Math is a mathematical package for Python. It covers many fields of mathematics
including statistics, calculus and combinatorics.
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3.6.1 Pairs of MOLS of odd orders

Construction of pairs of MOLS of odd order n is very simple. Define the
matrices A and B as follows:

ai,j = i+ j (mod n), (3.3)

bi,j = 2i+ j (mod n). (3.4)

Both A and B form Latin squares. Matrix B contains the same rows as A,
only in different order. When superimposed, they yield all the elements of
{0, . . . , n− 1} × {0, . . . , n− 1}.
Example 3.7. Two MOLS of order 3 constructed using this method.

0 1 2
1 2 0
2 0 1

0 1 2
2 0 1
1 2 0

This construction method is implemented in OddMOLSPairConstruction.

3.6.2 Pair of MOLS of order 4× k

Construction of pairs of MOLS of order 4k is a bit more involved. It uses two
pairs of MOLS of smaller orders m, n and a special matrix product operation
to construct a larger pair of MOLS of order mn.

Let A be a Latin square of order m and B of order n. Let ci,j , 1 ≤ i ≤
m, 1 ≤ j ≤ n be new mn symbols. Form a mn×mn grid by replacing each
element of B with a copy of A. Then replace each element i in this copy of
A with ci, j where j is the element of B that has been replaced. We denote
this new matrix as A ◦B.
Example 3.8. The special product operation on Latin square A of order 4
and B of order 3.

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

◦
1 2 3
2 3 1
3 1 2

=

c1,1 c2,1 c3,1 c4,1 c1,2 c2,2 c3,2 c4,2 c1,3 c2,3 c3,3 c4,3
c2,1 c3,1 c4,1 c1,1 c2,2 c3,2 c4,2 c1,2 c2,3 c3,3 c4,3 c1,3
c3,1 c4,1 c1,1 c2,1 c3,2 c4,2 c1,2 c2,2 c3,3 c4,3 c1,3 c2,3
c4,1 c1,1 c2,1 c3,1 c4,2 c1,2 c2,2 c3,2 c4,3 c1,3 c2,3 c3,3
c1,2 c2,2 c3,2 c4,2 c1,3 c2,3 c3,3 c4,3 c1,1 c2,1 c3,1 c4,1
c2,2 c3,2 c4,2 c1,2 c2,3 c3,3 c4,3 c1,3 c2,1 c3,1 c4,1 c1,1
c3,2 c4,2 c1,2 c2,2 c3,3 c4,3 c1,3 c2,3 c3,1 c4,1 c1,1 c2,1
c4,2 c1,2 c2,2 c3,2 c4,3 c1,3 c2,3 c3,3 c4,1 c1,1 c2,1 c3,1
c1,3 c2,3 c3,3 c4,3 c1,1 c2,1 c3,1 c4,1 c1,2 c2,2 c3,2 c4,2
c2,3 c3,3 c4,3 c1,3 c2,1 c3,1 c4,1 c1,1 c2,2 c3,2 c4,2 c1,2
c3,3 c4,3 c1,3 c2,3 c3,1 c4,1 c1,1 c2,1 c3,2 c4,2 c1,2 c2,2
c4,3 c1,3 c2,3 c3,3 c4,1 c1,1 c2,1 c3,1 c4,2 c1,2 c2,2 c3,2

This ◦ operation preserves orthogonality. So if we performed this operation
on the orthogonal pair of A and B, we would obtain a Latin square orthogonal
to A ◦B.
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................................ 3.6. Construction of MOLS

Now, the order 4k can be written as 4k = n · 2m where n is odd and m ≥ 2.
We can construct a pair of MOLS of order n using the method from the
previous subsection. The only thing left is to construct a pair of MOLS of
order 2m.

Suppose that we are able to construct pairs of MOLS of orders 4 and 8.
Using these orders and the (repeated) application of special product operation
◦, we are able to construct any pair of MOLS of order 2m. So we only require
MOLS of order 4 and 8. MOLS of order 4 are listed in example 3.4 and
MOLS of order 8 are shown bellow.

1 3 4 5 6 7 8 2
5 2 7 1 8 4 6 3
6 4 3 8 1 2 5 7
7 8 5 4 2 1 3 6
8 7 2 6 5 3 1 4
2 5 8 3 7 6 4 1
3 1 6 2 4 8 7 5
4 6 1 7 3 5 2 8

1 4 5 6 7 8 2 3
8 2 6 5 3 1 4 7
2 8 3 7 6 4 1 5
3 6 2 4 8 7 5 1
4 1 7 3 5 2 8 6
5 7 1 8 4 6 3 2
6 3 8 1 2 5 7 4
7 5 4 2 1 3 6 8

Figure 3.1: A pair of MOLS of order 8.

This construction is implemented in the FourKMOLSPairConstruction
class.
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Chapter 4
Architecture and design of the application

The software part of this work is a web application named TournamentPlan-
ner. In this chapter, we describe the software architecture including the
modelling of designs, tournaments and their construction methods. But first,
we summarize the basic requirements we put on the system.

4.1 General requirements

The process of requirement gathering is one of the most important steps in
software engineering. Normally, it involves consultations with the client and
the stakeholders. With this project however, there is no client and the only
stakeholder is me as the sole designer and developer. It would be convenient
for me to retrofit the requirement specifications to fit the resulting system
perfectly. To avoid this and to have more freedom during the development,
I kept the initial requirements fairly general and broad. They were the
following:. implement the construction of several types of design structures;. implement the planning of tournaments using the constructed designs;. propose and implement a more general method for tournament planning

using constraint programming;. provide a simple GUI that allows the construction of designs and tourna-
ments according to the input parameters; display the constructed designs
and tournaments.

4.2 Architecture of the TournamentPlanner

TournamentPlanner is a monolithic web application developed using the
ASP.NET Core1 net5.0 framework. Web application was chosen over desktop
application because it does not require any additional software installations

1Free and open-source web framework developed by Microsoft. https://docs.
microsoft.com/en-us/aspnet/core/?view=aspnetcore-5.0
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4. Architecture and design of the application ........................

Figure 4.1: Diagram illustrating the architecture of the TournamentPlanner
and showcasing its main components.

except a web browser on the client side and because I was already familiar
with the ASP.NET framework.

The server side of the application includes the construction of the designs
and tournaments. The only programming language used here is C#. MongoDB2

is used as the data store for larger sets of MOLS. As has been stated before,
these are the only designs that are not constructed directly by the application.
The modelling of the designs, tournaments and their construction methods is
addresses in the following sections.

The user interface of the application is developed using Razor pages3

which allow for combination of HTML, CSS and JavaScript with pieces of
C# code. There are several forms to specify the parameters of the design
or tournament. When submitted, an according design or tournament is
constructed on the server side and then visualized on the client side. With
the combination of ASP.NET and Razor, there is no need to explicitly specify
the Web API through which the client and the server communicate.

4.3 Modelling the designs and tournaments

There are 2 main groups of models in the TournamentPlanner - one for the
combinatorial designs and the other for the tournaments. They both im-
plement their separate interfaces and are kept in separate namespaces Tourna-
mentPlanner.Model.Designs and TournamentPlanner.Model.Tournaments.

4.3.1 Design structures

When modelling the designs introduced in the previous 2 chapters, the goal
was to keep them as close as possible to their original definitions. All the

2MongoDB is a document based data store which is fairly convenient for storing large
arrays.

3Razor is an ASP.NET programming syntax used to create dynamic web pages.
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Figure 4.2: Class diagram of the block designs. Interfaces are shown using the
lollipop notation.

classes representing a design implement the IDesign interface.
1 namespace TournamentPlanner .Model. Designs
2 {
3 public interface IDesign
4 {
5 public int V { get; }
6 }
7 }

Listing 4.1: Code of the IDesign interface without documentation.

Its only property - the integer V - denotes the size of the set the design is
constructed on. For simplicity, we always consider the set {0, 1 . . . , V - 1}
as the elements of the design structure and do not store this set explicitly.

Designs are further divided into Latin square like structures (Latin squares,
MOLS and orthogonal arrays) in the LatinSquares namespace and block
designs in the BlockDesigns namespace.

A single block of a block design is represented as a list of integers List<int>,
and all the blocks of a design as List<List<int>>. The block designs derive
from the abstract BaseBlockDesign class. The resolvable blocks designs
also implement the IResolvableDesign interface with the ParallelClasses

property (List<List<List<int>>>). All the class names follow the same abbre-
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4. Architecture and design of the application ........................
viations that are used in this text.

Figure 4.3: Class diagram of OrthogonalArray, LatinSquare and MOLS.

The Latin square like structures are listed in figure 4.3. The matrices
in LatinSquare and OrthogonalArray are represented as two-dimensional
arrays int[,]. MOLS has a list with 2 or more LatinSquare instances that are
mutually orthogonal.

4.3.2 Tournaments

Instead of implementing an interface, all the tournaments in the Tournament-
Planner inherit from the abstract BaseTournamentClass.

Figure 4.4: Class diagram of the tournaments.

Players in the tournaments are also represented as integers and the rounds
of the tournament are represented in the same way as the parallel classes
of resolvable block designs. The int Order property of the BaseTournament
denotes either directly the number of players, or the number of players in a
single team when it comes to the BipartiteTournament.

4.4 Construction algorithms

It has already been established that the designs and the tournaments form 2
separated groups of classes in the TournamentPlanner. The same applies to
the classes facilitating the construction of these objects. We call the classes
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................................ 4.4. Construction algorithms

dealing with the construction of design structures Construction algorithms.
They are placed in the TournamentPlanner.Algorithms.ConstructionAlgorithms
namespace and their names always end with the word Construction (RecursiveKTSConstruction
for example).

1 namespace TournamentPlanner . Algorithms . ConstructionAlgorithms
2 {
3 public interface IDesignConstruction <IDesign >
4 {
5 public IDesign ConstructDesign ();
6 }
7 }

Listing 4.2: Code of the IDesignConstruction interface without documentation.

All the construction algorithms implement the generic IDesignConstruc-
tion interface. Its single method public IDesign ConstructDesign() returns
a design structure implementing the IDesign interface. Then, a concrete
construction algorithm can look as the code in listing 4.3.

1 public class TDConstruction : IDesignConstruction <TD >
2 {
3 // constructor and variables
4 // ...
5

6 public TD ConstructDesign ()
7 {
8 // construction of the groups and blocks
9 // ...

10 return new TD(k, m, groups , blocks );
11 }
12 }

Listing 4.3: Snippet of the transversal design construction class.
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Figure 4.5: Several of the construction algorithm classes.

Some of the construction algorithm classes are displayed in figure 4.5. Their
hierarchy copies the hierarchy of the design structures they are supposed to
construct to some extent. All the BIBD subtype construction algorithms
inherit from the abstract BaseBIBDConstruction class (similarly as KTS
and STS inherit from BIBD). Analogically, RTDConstruction inherits from
TDConstruction as RTD inherits from TD.

4.5 Tournament planners

Tournament planners are conceptually similar to the construction algorithms,
but they facilitate the scheduling of tournaments. They are placed in the
TournamentPlanner.Algorithms.TournamentPlanners namespace. All the
tournament planners implement the ITournamentPlanner interface which is
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akin to the IDesignConstruction.

1 namespace TournamentPlanner . Algorithms . TournamentPlanners
2 {
3 public interface ITournamentPlanner < BaseTournament >
4 {
5 public BaseTournament PlanTournament ();
6 }
7 }

Listing 4.4: Code of the ITournamentPlanner interface without documentation.

Figure 4.6: Class diagram of several tournament planners. Whist tournaments
are difficult to plan and require several planners.

A concrete tournament planner then specifies the type of the BaseTourna-
ment and returns it on calling the PlanTournament() method. Several of the
tournament planners are displayed in figure 4.6.

Both the construction algorithms and the tournament planners are using the
command pattern. They encapsulate all the data required for the construction
of the given object and the construction itself is performed on the call of the
corresponding method.
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Figure 4.7: Page for the construction of balanced tournaments for three player
games. Individual sections are highlighted with rectangles.

4.6 User interface design

The design of the rendered page, which is displayed to the user of the
TournamentPlanner application, can be seen in figure 4.7 and is fairly simple.
The user can select the type of the design or tournament in the left menu
and the content of the page changes accordingly.

The content of the page is divided into several sections, but only 2 sec-
tions are displayed initially. The first introductory section introduces the
selected tournament or design and suggests the input parameters for which
the tournament or design can be constructed.

The second form section contains one or more input fields to specify
the input parameters and a submit button. On submitting the form, the
TournamentPlanner attempts to construct the selected structure for the
specified input parameters. If the construction fails an error message is
displayed as in figure 4.8. Otherwise, one or more result sections appear
visualizing the constructed structures. The rounds of tournaments or the
blocks of the designs are displayed in tables.
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Figure 4.8: Error message message when constructing MOLS of order 6 which
do not exist.
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Chapter 5
Balanced three-player game tournaments

In this chapter, balanced and partially balanced three-player tournaments will
be discussed and methods for constructing them will be shown. We will only
consider situations, in which the number of players is a multiple of 3 - so there
are no left over players in any of the rounds of the tournament. Ideally, in a
balanced tournament, each possible pair of player will play a game together
exactly once. This is however only achievable for certain numbers of players.

Fortunately, for any number of players (that is divisible by 3), it is possible
to construct a partially balanced tournament. In such a tournament, every
player will take part in the same number of games and will play a game in
each of the rounds of the tournament. Contrary to the completely balanced
tournament, there will be groups of players, that are not going to play a game
together during the tournament.

An attentive reader could have already noticed that there is a close connec-
tion between a KTS and completely balanced three-player game tournaments.
To reiterate, a KTS(v) is a BIBD(v, λ = 3, k = 3) with the additional prop-
erty of being resolvable. Indeed, the blocks of the KTS can be interpreted
as the games in the tournament and the parallel classes as the individual
rounds of the tournament. As has been stated in theorem 2.2, KTS only
exist for orders v, such that v = 6n+ 3, n ∈ N. So to construct a completely
balanced three-player games tournament with v = 6n + 3 players, we only
need to construct a KTS(v). Unfortunately, the construction of KTSs is a
difficult task and so a large part of this chapter is dedicated to describing
this construction.

5.1 Construction of Kirkman triple systems

There are several KTS construction methods, most of them recursive in nature
[13][14]. The method used here uses smaller KTSs to construct larger ones as
in Lindner and Rodger [2]. The main theorem, this construction method is
based on goes as follows:
Theorem 5.1. If there exists a PBD(3n+ 1) with block sizes k1, . . . , kx and if
there exists a KTS(2ki + 1) for all 1 ≤ i ≤ x, then there exists a KTS(6n+ 3).
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5. Balanced three-player game tournaments.........................
Before we describe the steps of the construction, we need to clarify a few

things. The PBDs (or pairwise balanced designs) mentioned in the theorem
were introduced in section 2.4.1. For the KTS construction, we will only
consider PBDs with block sizes k ∈ {4, 7, 10, 19}. Later in this chapter, it
will be shown how to construct such PBD(3n+ 1) for any n ≥ 1. For now,
just suppose we are able to construct them.

For all of the listed block sizes k ∈ {4, 7, 10, 19} of a PBD, we are able to
construct small KTSs of orders 2k + 1: 9, 15, 21, 39. These smaller auxiliary
KTSs are constructed directly (in the code, their blocks are defined statically)
and will be used to construct the blocks of the larger KTS.

In the construction, instead of denoting the elements of the design as single
integers as we are used to, we use pairs of integers and a special element
denoted as ∞. Each unique pair represents a unique element of the design.
After the design is constructed, an arbitrary bijection can be used to map
the pairs back to single integers.

Now we can finally show, how to construct the blocks of the new, larger
KTS. Suppose we have already constructed a PBD(3n + 1) with elements
{1, 2, . . . , 3n+1} and with block sizes in {4, 7, 10, 19}. We define the elements
of the new KTS(6n+3) as S = {∞}∪{{1, 2, . . . , 3n+1}×{1, 2}} with blocks
B. We obtain the blocks of the new KTS using the following 2 approaches:..1. For 1 ≤ i ≤ 3n+ 1, construct blocks {∞, (i, 1), (i, 2)} and..2. for each block b of the PBD(3n+1), use the smaller auxiliary KTS(2|b|+1)

with elements S(b) = {∞} ∪ {b × {1, 2}} renamed in such a way, that
blocks {∞, (i, 1), (i, 2)} for all i ∈ b will be amongst the blocks of the
auxiliary KTS. We will call this renamed auxiliary KTS as b induced KTS.
All the blocks of the b induced KTS except {{∞, (i, 1), (i, 2)} | i ∈ b} are
also blocks of the new KTS.

It might be hard to see, that the design constructed in a such a way is
really a KTS(6n+ 3). We have constructed all the blocks and later we will
show, how to obtain the parallel classes of the design. First, however, we will
try to demonstrate, that the constructed blocks truly form a STS (i.e. KTS
without resolvability).

Clearly, all the pairs of elements in block b of PBD are unique to block
b and do not occur together in any other block of PBD. Then, in the b
induced KTS, all the blocks except E = {{∞, (i, 1), (i, 2)} | i ∈ b} form a
set {{(i, ∗), (j, ∗), (k, ∗)} | i, j, k ∈ b, ∗ ∈ {1, 2}, i 6= j 6= k}. All the elements
(i, ∗), (j, ∗), (k, ∗) occur together exactly once (property of KTS) and as the
pairwise occurrences of i, j, k are unique to block b, none of these elements
occur together in any other block induced KTS.

Now, considering all the block induced KTSs for all the blocks of the
PBD, all pairs of element in S should occur together exactly once. So the
constructed design should be a STS.
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n new KTS PBD block sizes aux. KTSs
1 9 4 4 -
2 15 7 7 -
3 21 10 10 -
4 27 13 4 9
5 33 16 4 9
6 39 19 19 -
7 45 22 4, 7 9, 15

Table 5.1: Orders of PBDs, their block sizes and the orders of auxiliary KTSs
required for the construction of new KTSs. Several values of n.

Example 5.1 (Construction of KTS(27)). The smallest order of KTS for which
the recursive construction can be applied is 27 (see 5.1). The blocks of the
required PBD(13) are of size 4 and can be constructed in a cyclic manner (see
5.2.1). For the auxiliary KTS(9), the design in example 2.2 can be used. The
27 elements of the resulting KTS are S = {∞} ∪ {{1, 2, . . . , 13} × {1, 2}}.

Now, let us describe how to find the parallel classes of the newly constructed
KTS. Every KTS(6n+ 3) is going to have 3n+ 1 parallel classes - that is of
course the number of elements of the PBD used during the construction.

For each element i of the PBD, we will obtain a parallel class πi. We
continue with example 5.1 and try to find π3. First, we need to find all the
blocks of PBD(13) containing the element 3.

B3 = {{1, 2, 3, 4}, {5, 10, 3, 8}, {9, 6, 3, 12}, {3, 7, 11, 13}}

For each block b ∈ B3, we find the parallel class of b induced KTS contain-
ing block {∞, (3, 1), (3, 2)} (generally for i, find the parallel classes containing
{∞, (i, 1), (i, 2)}).

Block b π of b induced KTS containing {∞, (3, 1), (3, 2)}
{1, 2, 3, 4} {∞, (3, 1), (3, 2)}, {(1, 1), (4, 1), (2, 2}, {(1, 2), (2, 1), (4, 2)}
{5, 10, 3, 8} {∞, (3, 1), (3, 2)}, {(5, 1), (8, 1), (10, 2)}, {(5, 2), (10, 1), (8, 2)}
{9, 6, 3, 12} {∞, (3, 1), (3, 2)}, {(9, 1), (12, 1), (6, 2)}, {(9, 2), (6, 1), (12, 2)}
{3, 7, 11, 13} {∞, (3, 1), (3, 2)}, {(7, 1), (11, 1), (13, 1)}, {(7, 2), (13, 2), (11, 2)}

The union of these parallel classes forms the parallel class π3 of the newly
constructed KTS. The block {∞, (3, 1), (3, 2)} is naturally only listed once.

The construction described in this section is implemented in the Recur-
siveKTSConstruction class.

5.2 Construction of pairwise balanced designs

In the previous section, we claimed that the PBD(3n+ 1) with block sizes
in {4, 7, 10, 19} can be constructed for any n ≥ 1. Now, we will try to prove
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this.

Similarly as with the KTS, the PBD construction method also uses smaller
PBDs to construct the larger ones. With the KTS construction we only
required small KTSs of orders 9, 15, 21, 39. Here, however, we need ’small’
PBDs up to the order 46 to be able to construct larger ones.

First, we demonstrate a few of the smaller PBD construction methods.
Then we introduce Wilson’s group divisible design construction and we show
how it can be extended to obtain PBDs of larger orders.

5.2.1 Smaller order PBDs

There are several special construction methods for PBD(v = 3n+ 1) up to
the order v = 46 with the addition of orders v = 79, 82. Only a few of these
methods are shown bellow. All of the methods, however, are implement in
SmallOrderPBDConstruction and neatly summarized in [2].

PBD(v = 4, 7, 10, 19). Design with a single block b = {1, 2 . . . , v}.

PBD(v = 13). Two mutually orthogonal Latin squares of order 3 can
be used as orthogonal quasi-groups ({1, 2, 3}, ◦1), ({1, 2, 3}, ◦2) (see 3.3) to
construct PBD(13) with elements S = {∞} ∪ ({1, 2, 3} × {1, 2, 3, 4}) and
blocks

B = {{(x, 1), (y, 2), (x ◦1 y, 3), (x ◦2 y, 4) | 1 ≤ x, y ≤ 3}}
∪ {{∞, (1, l), (2, l), (3, l)} | 1 ≤ l ≤ 4}.

PBD(16) and PBD(28) can be constructed in a very similar manner.

PBD(v = 37) Use cyclic construction to obtain blocks B = {{i, i+ 1, i+
3, i+ 24}, {i, i+ 4, i+ 9, i+ 15}, {i, i+ 7, i+ 17, i+ 25} | 1 ≤ i ≤ 37} reducing
all sums module 37. PBD(40) can be constructed similarly.

5.2.2 Wilson’s GDD construction

Theorem 5.2 (Wilson’s Fundamental Construction [15]). Let there be a GDD
with elements S, groups G and blocks B. Let ω be a positive integer called
weight, and let W = {1, 2, . . . , ω}. Suppose that for each b ∈ B, there exists
a (auxiliary) GDD with elements W × b, groups {W × {p} | p ∈ b} and
blocks B(b). Then, there exists a GDD with elements S′ = W × S, groups
G′ = {W × g | g ∈ G} and blocks B′ =

⋃
b∈B B(b).

Wilson’s construction is somewhat similar to the KTS construction de-
scribed in the previous section. Instead of auxiliary KTSs transformed into
block induced KTSs, it uses auxiliary GDDs transformed into block induced
GDDs. It turns out, that the only auxiliary GDDs we require to use this
construction efficiently are GDD(v, g, k) with uniform group and block sizes.
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Example 5.2 (GDD(42, 6, 4) construction). GDD(12, 3, 4) can be obtained
from PBD(13) above by removing element ∞ from its blocks and considering
the modified blocks {(1, l), (2, l), (3, l) | 1 ≤ l ≤ 4} as groups of the GDD.

GDD(14, 2, 4) with elements {1, 2, . . . , 14} can be constructed cyclically
by defining groups as G = {{i, i + 7 | 1 ≤ i ≤ 7}} and blocks as B =
{{i, i+ 1, i+ 4, i+ 6} | 1 ≤ i ≤ 14} reducing all sums modulo 14.

Now, apply Wilson’s construction to GDD(14, 2, 4) using weight w = 3.
All its blocks b have size 4, so we can use auxiliary GDD(12, 3, 4) to obtain b
induced GDDs for each of the blocks. Following Wilson’s construction, we
end up with a GDD(42, 6, 4) with elements {{1, 2, 3}× {1, 2, . . . , 14}}, groups
{{1, 2, 3} × {i, i+ 7} | 1 ≤ i ≤ 7} and block

⋃
b∈B B(b).

Wilson’s construction is implemented in the WilsonGDDConstruction class.

5.2.3 Larger order PBDs

It was stated that we are able to construct PBD(v = 3n+ 1) up to the order
46 with the addition of orders 79, 82.

Now, we show how to constructs PBDs for v = 3n+ 1 ≥ 49, v /∈ {79, 82},
again with block sizes in {4, 7, 10, 19}. We will use Wilson’s Fundamental
Construction in 5.2 and the following theorem, the proof of which can be
found in [17].
Theorem 5.3. For all n ≥ 4, n 6= 6 and possibly n 6= 10, there exist 3
MOLS(n).

The PBD order v can be expressed as

v = 12m+ 3t+ 1, where 0 ≤ t ≤ m,m ≥ 4 and m /∈ {4, 6}. (5.1)

By theorem 5.3, there exist 3 MOLS of order m forming 3 orthogonal
quasi-groups (Q, ◦1), (Q, ◦2) and (Q, ◦3) on the set Q = {1, 2, . . . ,m}. Using
them, we define a GDD(5m,m, 5) with elements S′ = Q×{1, 5, 3, 4, 5}, groups
G′ = {Q× {i} | 1 ≤ i ≤ 5}, and blocks B′ = {{(x, 1), (y, 2), (x ◦1 y, 3), (x ◦2
y, 4), (x ◦3 y, 5)} | x, y ∈ Q}.

Next, we modify this GDD by deleting m − t elements that have the
same second coordinate, for example 4. This leaves a GDD (S,G,B) with
|S| = 4m+ t elements, 4 groups of size m and 1 group of size t, and blocks of
size 4 and 5.

To this modified GDD, we apply Wilson’s Fundamental Construction with
weight w = 3. For its blocks b of size 4, we use auxiliary GDD(12, 3, 4) from
example 5.2 to get B(b). For blocks of size 5, we use GDD(15, 3, 4) formed
by deleting one point from PBD(16) so that all its blocks have size 4.

The newly constructed GDD has 12m+ 3t elements. All its blocks are of
size 4 and there are 4 groups of size 3m and one block of size 3t.

Finally, we add a new element∞ to each of the groups, producing 4 subsets
of size 3m + 1 and 1 subset of size 3t + 1. As the sizes of these subsets fit
the PBD(3n+ 1) from, we can recursively replace them with the correctly
renamed blocks of PBD(3m+ 1) and PBD(3t+ 1) with sizes in {4, 7, 10, 19}.

This construction is implemented in LargerOrderPBDConstruction.
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5.3 Partially balanced tournaments

The KTS approach to the three player tournaments is only useful, when
the number of players is 6n + 3, n ∈ N. However, as was suggested in
the introduction of this chapter, we are able to plan a partially balanced
tournament for any number of players divisible by 3: 3n, n ∈ N with the
exception of n = 2, 6.

For the scheduling of partially balanced tournaments, we will only require
resolvable GDDs with blocks of size 3 and 3 groups of size n. Fortunately,
this class of GDDs - denoted as RGDD(3n, n, 3) - can be constructed simply
using Mutually orthogonal Latin squares and adjusted orthogonal arrays.
The resolvable classes of the design can be then directly interpreted as the
rounds of the tournament.

The steps for the construction of RGDD(3n, 3, n) are:. construct 2 MOLS of order n;. construct an orthogonal array equivalent to the 2 MOLS;. adjust the orthogonal array by leaving out its first row, adding n to the
elements of its 3rd row and adding 2n to the elements of its 4th row;. form the blocks of the RGDD taking the columns of the orthogonal array
in the previous step;. form the 3 groups of the RGDD as {1, 2, . . . , n}, {n+ 1, n+ 2, . . . , 2n}
and {2n+ 1, 2n+ 2, . . . , 3n}.

In a RGDD constructed in this way, the first n blocks form the fist parallel
class π1, the following n blocks form the second parallel class π2 and so on.
There will be n parallel classes.

Because RGDD(3n, n, 3) is structure equivalent to 2 MOLS of order n and
because there are no MOLS of order 2 and 6 (see theorem 3.1), there are no
such RGDDs for n = 2, 6.

Example 5.3 (RGDD(9, 3, 3)). Two mutually orthogonal Latin squares of
order 3 can be constructed using the method described at 3.6.1.

1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

The equivalent orthogonal array obtained from the 2 MOLS:

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2
1 2 3 3 1 2 2 3 1
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.............................5.3. Partially balanced tournaments

The adjusted orthogonal array:

1 2 3 1 2 3 1 2 3
4 5 6 5 6 4 6 4 5

︸ ︷︷ ︸
π1

7 8 9 ︸ ︷︷ ︸
π2

9 7 8 ︸ ︷︷ ︸
π3

8 9 7

The groups of the constructed RGDD are {1, 2, 3}, {4, 5, 6}, {7, 8, 9}. The
parallel classes of the design are indicated by curly braces. The resulting
tournament is captured in the table bellow. Notice, that the players from the
same group never play a game together.

Round # Game 1 Game 2 Game 3
Round 1 1,4,7 2,5,8 3,6,9
Round 2 1,5,9 2,6,7 3,4,8
Round 3 1,6,8 2,4,9 3,5,7

Table 5.2: Partially balanced tournament with 9 players.

For the same number of players v = 6n+ 3, there are 2n+ 1 rounds in a
partially balanced tournament and 3n+ 1 rounds in a completely balanced
one. So partially balanced tournaments can also be used, when we want to
reduce the number of rounds.
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Chapter 6
Whist tournaments

Classic whist tournaments consist of games, where two players play against
other two players. The name Whist refers to an old English card game[16],
but the tournament schedule can be applied to many other games such as
doubles tennis, table football or many video games where two players compete
against other two players.

In this chapter, we only discuss Whist tournaments for 4n and 4n + 1
players, for which they are know to exist. In case of 4n players, we provide
construction methods up to n = 10494.

Construction of Whist tournaments has been studied for more than a
century. The first ground-breaking work was Moore’s 1896 [20] publication,
in which several construction methods have been described. Anderson and
Finizio expanded upon his work in [21]. Anderson later summarized his and
Moore’s work in [1], which is the main source for this chapter.

Definition 6.1. A whist tournament Wh(4n) (Wh(4n+ 1)) with 4n (4n+ 1)
players is a schedule of games, where each game involves two players playing
against other two players, such that:

. for 4n players, the games are arranged in 4n− 1 rounds, each consisting
of n games and each player plays in exactly one game in each round;

. for 4n+1 players, the games are arranged in 4n+1 rounds, each consisting
of n games and each player plays in one game in all but one of the rounds;

. each player partners every other player exactly once;

. each player opposes every other player exactly twice.

Example 6.1 (Whist tournament with 8 players). Wh(8) with 7 round, each
consisting of 2 games.
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Round # Game 1 Game 2
Round 1 8,1 v 5,6 2,4 v 3,7
Round 2 8,2 v 6,7 3,5 v 4,1
Round 3 8,3 v 7,1 4,6 v 5,2
Round 4 8,4 v 1,2 5,7 v 6,3
Round 5 8,5 v 2,3 6,1 v 7,4
Round 6 8,6 v 3,4 7,2 v 1,5
Round 7 8,7 v 4,5 1,3 v 2,6

It might seem strange at first that a player is supposed to play only once
with others in a team but twice against others as an opponent. When we
look at a single game, however, say

8,1 v 5,6

it becomes clear, that the game yields 2 pairs of partners (8, 1), (5, 6) and 4
pairs of opponents (8, 5), (8, 6), (1, 5), (1, 6).

There are several construction methods used to obtain Whist tournaments.
A lot of them are using the properties of difference sets and finite fields. We
give a brief introduction to these concepts.

6.1 Difference sets for Whist tournaments

To be able to work with difference sets (and finite fields), the concept of a
(commutative) group needs to be introduced.
Definition 6.2 (Group [19]). A group is a set G with a binary operation ◦,
such that:. the associative law (x ◦ y) ◦ z = x ◦ (y ◦ z) holds for any x, y, z ∈ G;. there is an identity element e ∈ G such that for all x ∈ G, e ◦ x =

x ◦ e = x;. for all x ∈ G, there exists an inverse element y ∈ G such that
x ◦ y = y ◦ x = e.

Furthermore, if the commutative law x ◦ y = y ◦ x holds for any x, y ∈ G,
the group is said to be commutative or abelian.

Now, the difference sets can be introduced.
Definition 6.3 (Difference set [1]). A (v, k, λ) difference set in an additive
abelian group G of order v is a set D = {d1, . . . , dk} of distinct elements from
G such that each non-zero element g ∈ G can be expressed as g = di − dj
exactly λ times.
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A so called translate of a difference set D can be obtained by D+ g, g ∈ G.
A translate of a difference set is also a difference set. Taking all the translates
of a difference set as blocks forms a BIBD(v, k, λ).

Often, a single difference set D is not enough to generate a valid design.

Definition 6.4 (Difference system). Let D1, . . . , Dn be sets of size k in an
abelian group G of order v such that the differences of elements in Di, 1 ≤
i ≤ n give all the non-zero elements of G exactly λ times.

Difference systems generate block designs in the same way as difference sets.

For the construction of Whist tournament, we need to extend the concept
of difference sets.

Definition 6.5 (Starter and 2-fold starter). A starter in an abelian group G of
order 2n− 1 is a set of n− 1 unordered pairs {x1, y1}, . . . , {xn−1, yn−1} of
elements in G such that x1, y1, . . . , xn−1, yn−1 are exactly all the non-zero
elements of G and ±(x1 − y1), . . . , ±(xn−1 − yn−1) are also exactly all the
non-zero elements of G.

The pairs {x1, y1}, . . . , {x2n−2, y2n−2} form a 2-fold starter in G if x1, y1,
. . . , x2n−2, y2n−2 are the non-zero elements of G, each occurring twice and
±(x1 − y1), . . . , ±(x2n−2 − y2n−2) are also all the non-zero elements of G,
each occurring twice.

The following theorem shows, how starters can be used to construct some
Whist tournaments.

Theorem 6.1. Games (∞, 0 v b1, d1), (a2, c2 v b2, d2), . . . , (an, cn v bn, dn)
where ai, bi, ci, di are the non-zero elements of an additive group G, can be
taken as the first round games of a cyclic Wh(4n) if. the pairs {ai, ci}, {bi, di} form a starter;. the pairs {ai, bi}, {bi, ci}, {ci, di}, {di, ai} form a 2-fold starter.

Basically, the pairs of partners should form a single starter and the pairs
of opponents should form a 2-fold starter because every game yields twice as
many opponents than partners.

Example 6.2. Take the first round of Wh(8)

∞, 0 v 4, 5 1, 3 v 2, 6.

The additive abelian group is G = {0, 1, 2, 3, 4, 5, 6} with operation x◦y = x+y
modulo 7. The pairs of partners {4, 5}, {1, 3}, {2, 6} form a starter. The
pairs of opponents {0, 4}, {0, 5}, {1, 2}, {1, 6}, {3, 2}, {3, 6} form a 2-fold
starter. Cyclically developing the first round yields a tournament equivalent
to example 6.1.
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6.2 Finite fields

Definition 6.6 (Finite field [19]). Finite field, also known as Galois fields
and denoted as GF (q), is a finite set T of size q with two binary operations
addition + and multiplication ×, such that:. (T,+) is a commutative group with identity element 0;. (T \ {0},×) is a commutative group with identity element 1;. The distributive law a× (b+ c) = a× b+ a× c holds for any a, b, c ∈ T .

The set of real numbers with the classic addition and multiplication is a
(non-finite) field. The simplest example of a finite field is Zp where p is a
prime and the additions and multiplications are reduced modulo p.

Example 6.3. GF(5) with elements {0, 1, 2, 3, 4}.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Theorem 6.2. If q is a prime or a prime power, there exists a GF(q).

The construction of prime power finite fields is more complicated and will
not be addressed here.

Finite fields are extremely useful in cryptography, error correction and
combinatorics. For the construction of Whist tournaments, the generating
property of the primitive element of the finite field is utilized.

Definition 6.7. A non-zero element θ of a GF(q) is called a primitive element,
if θ, θ2, . . . , θq−1 = 1 are exactly all the non-zero elements of GF(q).

Example 6.4. The primitive element of GF(5) is 2:

21 = 2, 22 = 4, 23 = 3, 24 = 1

It is fairly complicated to find the primitive element of a finite field and to
perform calculation in the finite field arithmetic. For these purposes, we use
the AppliedAlgebra1 library.

1Open source .NET library developed by D. Litichevskiy. https://github.com/
litichevskiydv/GfPolynoms.
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6.3 Whist tournaments with 4n + 1 players

The theorem 6.1 showing the cyclic construction of Wh(4n) can also be
applied for the construction of Wh(4n+ 1). Only instead of an abelian group
of order 4n, we consider an abelian group of order 4n + 1 (or a GF in our
specific case).

We only show the construction of Wh(v = 4n+ 1) where v is a prime or
prime power. In such cases, the first round of the tournament can be written
using the primitive element of GF(v) as

θi , θ 2n+i v θ n+i, θ 3n+i.

It can be shown that the ± differences between the partners yield all the
non-zero elements of GF(v) and the ± differences between the opponents
yield all the non-zero elements of GF(v) twice.
Example 6.5 (Wh(5)). Take the GF(5) in example 6.3 with its primitive
element 2. Then, the first round of Wh(5) is

1, 4 v 2, 3.

The following 4 rounds can be obtained by cyclically developing the first
round in GF(5):

2, 0 v 3, 4
3, 1 v 4, 0
4, 2 v 0, 1
0, 3 v 1, 2

This method is implemented in PrimePowerWhistPlanner. Wh(5) and
Wh(17) are required for the construction of larger Wh(4n).

6.4 Whist tournaments with 4n players

As with the PBD construction, there is no unified method to construct Whist
tournaments for smaller number of players. We show, however, that if we
are able to construct Wh(4n) up to n ≤ 80, then we can utilize transversal
designs and GDDs to construct Whist tournaments of any order.
Theorem 6.3. Suppose that a Wh(4n) exists for all n ≤ 80. Then a Wh(4n)
exists for all n ≥ 1.

The goal of this section is to show the construction methods for n ≤ 80
and then introduce the technique, which will allow the construction of any
Wh(4n).

6.4.1 Cyclic Wh(4n)

Tournaments Wh(4), Wh(8), Wh(12), Wh(16), Wh(20) and Wh(24) can be
formed by cyclically developing their first rounds, because these round meet
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the requirements in 6.1. The first rounds are listed bellow.

Wh(4)

∞, 0 v 1, 2

Wh(8)

∞, 0 v 4, 5 1, 3 v 2, 6.

Wh(12)

∞, 0 v 4, 5 1, 10 v 2, 8 3, 7 v 6, 9

Wh(16)

∞, 0 v 5, 10 1, 2 v 4, 8 3, 11 v 12, 14 6, 9 v 7, 13

Wh(20)

∞, 0 v 11, 12 3, 9 v 16, 1 4, 14 v 13, 18 6, 8 v 5, 2 7, 15 v 10, 17

Wh(24)

∞, 0 v 7, 10 1, 8 v 12, 22 5, 6 v 2, 11 3, 9 v 14, 18 17, 19 v 4, 16
15, 20 v 13, 21

The cyclic construction is implemented in the CyclicWhistPlanner.

6.4.2 Moore’s construction

The following method has first been described by E. H. Moore in 1896 [20].
It allows the construction of Wh(v = 3q + 1) where q is a prime power and
can be written as q = 4m+ 1, m ∈ N.

First, construct a resolvable BIBD(3q + 1, 4, 1) by cyclically developing its
first parallel class

{01, 02, 03,∞};

{θ ij , θ i+2m
j , θ i+mj+1 , θ

i+3m
j+1 } 1 ≤ i ≤ m− 1, 1 ≤ j ≤ 3

reducing all sums containing j modulo 3. This parallel class is defined using
mixed difference sets which are basically just 3 normal difference sets on
GF(q) distinguished by the subscript. θ is naturally the primitive element of
GF(q). The design contains q elements for each of the difference sets and one
extra element ∞ - that is 3q + 1 in total.

This construction of a resolvable BIBD is implemented in the MooreRBIBD-
Construction class.

Next, construct a Wh(4) on each block of a given parallel class. Taken
together, these yield 3 rounds of a Wh(3q+ 1). Repeat for each of the parallel
classes to obtain all the rounds of the tournament.

This part of the Wh(3q + 1) construction is implemented in MooreWhist-
Planner.
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6.4.3 Product construction

Whist tournaments can be obtained as products of smaller whist tournaments.
Theorem 6.4. Suppose that Wh(v) and Wh(w) exist. Then a Wh(vw) also
exists.

There are actually 2 different constructions we require. One is used when
both v and w are even and the other when one of them is odd. We only
describe the even-even method, the other one is very similar.

Suppose that v ≡ w ≡ 0 (mod 4). Given Wh(v) on set Sv and Wh(w) on
set Sw, the resulting Wh(vw) is constructed on S = Sv × Sw. The first w− 1
rounds can be obtained simply. For each i ∈ Sv, form tournaments Wh(w)
on i× Sw. The unions of the parallel rounds of these Wh(w) form the first
w − 1 rounds of Wh(vw).

Next, take one round of Wh(v) and for all its games i, j v k, l, form a
resolvable TD(4, w) on {i, j, k, l}×Sw with its groups determined by the first
component. A block {(i, p), (j, q), (k, r), (l, s)} of the TD can be interpreted
as game (i, p), (j, q) v (k, r), (l, s). Take all these games formed by the games
of one round of Wh(v) belonging to the same parallel class of TD to obtain a
new round of Wh(vw). A single round of Wh(v) with the TDs constructed on
its games yields w rounds of Wh(vw). Repeat this for all the v − 1 round of
Wh(v) to obtain w(v − 1) rounds of Wh(vw). Together with the first w − 1,
we have obtained all the vw − 1 rounds of Wh(vw).

This construction method is implemented in the EvenEvenProductWhist-
Planner class. EvenOddProductWhistPlanner implements the construction
for cases when one of the whist orders is odd.

6.4.4 Construction utilizing SAMDRRs

Definition 6.8. Spouse-avoiding mixed doubles round robin tournament for
n couples or SAMDRR(n) is a tournament involving n husband and wife
pairs. Each game of the tournament involves two pairs of the opposite sex
competing against each other. The games are scheduled in such way, that
every player plays exactly one game against every other player of the same
sex and every player plays with each member of the opposite sex (except his
or her spouse) once as a partner and once as an opponent. A game is denoted
as HiWk v HjWl.

Resolvable SAMDRRs can be used to schedule whist tournaments. The
construction of resolvable SAMDRR(n), where GCD(n, 6) = 1 was described
(in disguise as construction of self orthogonal Latin square) by Mendelsohn
[22] and is very simple: For round k, 1 ≤ k ≤ n, construct games 1 ≤ h ≤ n−1

2
as

Hk−hWk−3h v Hk+hWk+3h

reducing all sums modulo n. Notice that n−1
2 is an integer because GCD(n, 6) =

1. This construction is implemented in the SimpleSAMDRRPlanner class.
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6. Whist tournaments ..................................
A resolvable SAMDRR(n) where n is odd has n rounds and can be trans-

formed into a Wh(4n) on set S = {1, . . . , n} × {1, 2, 3, 4}. For simplicity, we
denote element (i, j) as ij . Each round of the SAMDRR yields 3 rounds of
the whist tournament. For every game HiWl v HjWk of a round t of the
SAMDRR, construct 3 games for each of the 3 rounds of the whist tournament
as follows:. i1, j1 v l3, k3, i2, j2 v l4, k4, t1, t3 v t2, t4;. i4, l1 v j4, k1, i3, l2 v j3, k2, t1, t4 v t3, t2;. i1, l2 v k2, j1, i3, l4 v k4, j3, t1, t2 v t4, t3.

This gives 3n rounds. The last n− 1 rounds are obtained using a TD(4, n)
constructed on set S in such way that all the elements in a single group
have the same subscript and with one parallel class containing all the blocks
{t1, t2, t3, t4}, 1 ≤ t ≤ n. From the other remaining n − 1 parallel classes
of the TD, form n − 1 rounds of the tournament by interpreting blocks
{i1, j2, k3, l4} as games i1, k3 v j2, l4.

6.4.5 Construction of larger Whist tournaments

The previously described methods - the cyclic construction, Moore’s, product
and SAMMDR - taken together allow for the construction of Wh(4n), n ≤ 80.
Now we show how to obtain larger Wh(4n). The described method is yet
again recursive in nature and is based on the following theorem.
Theorem 6.5. Let v = 4n and suppose that there exists a GDD of order
v− 1 such that for all its blocks sizes k ∈ K, there exists a Wh(k) and for all
its group sizes g ∈ G there exists a Wh(g + 1) and g ≡ 3 (mod 4). Then a
Wh(v) exists.

First, construct a transversal design TD(17, g) with 17g elements, blocks
of size 17 and 17 groups of size g. Valid choices of g will be shown later.
TDConstruction can be used to obtain this TD.

Next, take 0 ≤ u ≤ g, 0 ≤ v ≤ g and select u elements from the first group
and v elements from the second group of the transversal design. Replace each
of the selected elements with 5 new ones and place them in the same group
as the selected element. Now, there should be 17g + 4(u+ v) elements, 15
groups of size g, 1 group of size g + 4u and one group of size g + 4v.

Any block of the of the TD contains at most 2 replaced elements - according
to the definition 3.6, each element of a block is from a different group. If
a block B has 1 replaced element, form a set containing the 16 unchanged
elements of the block and the 5 new elements the original was replaced by.
On this set of size 21, construct a BIBD(21, 5, 1) such that the 5 new elements
form a single block of this design. Replace the original TD block B with the
20 other blocks of the BIBD (leave out the block with the new elements).

If a block contains 2 replaced elements, take the 15 unchanged elements
and the 10 new ones. On this set of size 25, form a BIBD(25, 5, 1) such that
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...........................6.4. Whist tournaments with 4n players

the 2 sets of 5 new elements form 2 disjoint blocks of the new design. Replace
the original block B by the other 28 blocks (leaving out the 2 blocks with
the new elements).

If a block of the TD does not contain any replaced element, leave it
unchanged.

With these adjustments to the groups and blocks of the original TD, a GDD
with 17g+4(u+v) elements, blocks of sizes 5 and 17 and groups of sizes g, g+4u,
g+4v is created. This is exactly the GDD from theorem 6.5. This construction
is implemented in GDDForWhistConstruction. The auxiliary BIBD(21, 5, 5),
(25, 5, 1) are constructed in SmallBIBDForWhistConstruction. Valid choices
of g for some n are listed bellow.

Range of n g

81 - 119 19
120 - 169 27
170 - 194 31
195 - 269 43
270 - 294 47
295 - 419 67

Range of n g

420 - 519 83
520 - 669 107
670 - 869 139
870 - 1244 199
1245 - 1519 243
1520 - 2019 323

Range of n g

2020 - 2769 443
2770 - 3869 619
3870 - 5394 863
5395 - 7544 1207
7545 - 10494 1679

Example 6.6. For Wh(4n = 348), n = 87, a GDD(347) is required. It can
be constructed with g = 19, u = 3, v = 3. Indeed, 17× 19 + 4(3 + 3) = 347.
Other choices of u, v are also possible.

The last step is converting the GDD(v − 1) to Wh(v). Take the set of
elements X of the GDD and add the last element ∞. On each block of the
GDD of size k ∈ {5, 17}, form a Wh(k). On the elements of each group of
size g with ∞ adjoined, form a Wh(g + 1) and label all its round by the g
elements of the group (arbitrarily).

Wh(v) is going to have |X| = v − 1 rounds. For each x ∈ X take as
round x all the games from the rounds of Wh(g + 1) (constructed on a group
containing x) labelled as x and add the games from the rounds omitting x of
Wh(k) constructed on blocks containing x (each such Wh(k) has exactly one
round omitting x). This last step is implemented in the LargerWhistPlanner
class.
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Chapter 7
Constraint programming approach to the
scheduling of tournaments

In the previous two chapters, we only focused on very specific tournament
types - be it three player game tournaments or Whist tournaments. For their
constructions, we mostly applied combinatorial designs.

Unfortunately, the construction of even the simpler design structures turned
out to be fairly difficult. Forming a KTS for example, which is just a resolvable
BIBD(v, 3, 1), requires specific MOLS, group divisible designs and pairwise
balanced designs.

For the construction of other tournament types such as four player game
tournament, we would require a whole new suite of design structures and
algorithms. And even with these new algorithms, we would only be able to
construct tournaments in highly specific cases.

With three player games and 9 players for example, we can only construct
a balanced tournament that has exactly 4 rounds. It is not possible to adjust
the number of rounds, nor is it possible to plan tournaments for arbitrary
number of players.

In this chapter, we propose a new, less rigid approach. Instead of using
balanced designs, we formulate the task of tournament construction as an
constraint programming problem and use a solver to optimize it.

We use the CP-SAT1 solver that can be applied for both constraint program-
ming and integer programming problems. We also use it for the construction
of BIBDs as described in sections 2.5.1 and 2.5.2.

7.1 Problem formalization

In this section, one possible formalization of the tournament planning problem
is given.

1CP-SAT solver is part of the Google’s OR-Tools bundle. It is free and open source.
https://developers.google.com/optimization/cp/cp_solver
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7. Constraint programming approach to the scheduling of tournaments.............
7.1.1 Variables of the model

For simplicity, we use similar terms as we used when working with block
designs. We denote the number of players in the tournament as v, the set of
players as S, the number of players in a single game as k and the number of
rounds as r. Variables v, k, r are the input of the model.

First, compute the number of games played in a single round

m = bv
k
c.

The number of players v does not have to be divisible by k - that is why a
floor function is used. In such cases, some players will not take part in some
of the rounds of the tournament.

Now we introduce the main binary decision variables we will work with:

bt,p,g where bt,p,g ∈ {0, 1} and 1 ≤ t ≤ r, 1 ≤ p ≤ v, 1 ≤ g ≤ m

We say that bt,p,g = 1 if and only if in round t the player p plays in the game
g. Indices t, p, g are obviously used to index the rounds, players and games.

7.1.2 Constraints of the model

There are only 2 constraints that need to be ensured:..1. a player can play at most in one game in each round;..2. all the games in the tournament have k players.

Let us focus on a single round and only consider variables bp,g. These can
be captured in a v ×m binary matrix

b1,1 b1,2 · · · b1,m
b2,1 b2,2 · · · b2,m
...

...
...

bv,1 bv,2 · · · bv,m

in which the rows represent the players and the columns represent the games
in a single round. To ensure constraint 1, the sum of the variables in a row
has to be less or equal to 1. To ensure constraint 2, the sum of variable in a
column has to be equal to k.

Considering all the rounds, the constraints can be formalized with the
following equations:

m∑
g=1

bt,p,g ≤ 1 for all 1 ≤ t ≤ r, 1 ≤ p ≤ v; (7.1)

v∑
p=1

bt,p,g = k for all 1 ≤ t ≤ r, 1 ≤ g ≤ m. (7.2)
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.................................7.1. Problem formalization

7.1.3 Objective of the model

All the variables and constraints used so far can be expressed using integer
programming. To express the objective function, however, it is easier to use
some logical constraints in the framework of constraint programming directly.

The objective function itself is simple. We just try to minimize the maxi-
mum number of occurrences of pairs of players across all the games in the
tournament. Denote the number of pair occurrences of players i, j where
i < j as λi,j . Then the objective function can be written as 7.3. As the
maximal λ is being minimized, the other λ values should increase. This way,
the differences between the pair occurrences should be minimal. Furthermore,
if the values of λi,j are the same for all i, j and the number of players is
v = km, the constructed tournament should be equivalent to a resolvable
BIBD(v, k, λ).

Minimize max{λi,j | 1 ≤ i < j ≤ v} (7.3)

A more difficult task is to express λi,j using the decision variables bt,p,g.
This can not be done via a simple summation. For all pair of players i, j|; i < j,
we need to iterate through all the round and games and increase λi,j only
if the bt,i,g = bt,j,g = 1 - meaning that the players i, j both take part in the
game g of round t.

Let us define a double square bracket function JαK→ {0, 1}, which takes
a logical expression α as an argument and returns 1 if the expression α is
evaluated as true and 0 otherwise. Then, the λi,j can be expressed as

λi,j =
r∑
t=1

m∑
g=1

Jbt,i,g ∧ bt,j,gK . (7.4)

Unfortunately, the CP-SAT solver does not provide (as far as I know) such a
convenient double bracket function. We can only use simple logical operators
and, or, not and implication.

We introduce a new binary variable λt,g,i,j , which is equal to 1 if and only
if the players i, j play together in the game g of round t.

λt,g,i,j ⇐⇒ bt,i,g ∧ bt,j,g (7.5)

However, equivalence can not be used either in this form so we need to replace
the single expression 7.5 with the following 3 logical expressions, which can
finally be used directly in the CP-SAT solver:

λt,g,i,j =⇒ bt,i,g (7.6)

λt,g,i,j =⇒ bt,j,g (7.7)

¬bt,i,g ∨ ¬bt,j,g ∨ λt,g,i,j (7.8)
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7. Constraint programming approach to the scheduling of tournaments.............
The first two expressions 7.6, 7.7 are equivalent to λt,g,i,j =⇒ bt,i,g ∧ bt,j,g
and the third one 7.8 is equivalent to bt,i,g ∧ bt,j,g =⇒ λt,g,i,j .

Finally, we can rewrite equation 7.4 as

λi,j =
r∑
t=1

m∑
g=1

λt,g,i,j (7.9)

and use the solver to minimize the objective function 7.3.

7.2 Evaluation of the CP approach

With three player game tournaments, we can select the number of players
and rounds so that there exists a perfectly balanced tournament. However,
proving that the found solution is optimal can take a long time for the CP-
SAT solver. So we create a simple callback function, that stops the search
when the objective value is 1. Then, the solution representing a perfectly
balanced tournament has clearly been found. This way we can compare the
run time of the CP scheduling method with the run time of the constructive
method using KTSs for the scheduling of the same tournament.

# Players CP approach KTS approach
9 141 1
15 14748 1
21 8900657 2
27 - 2

Table 7.1: The run times of the 2 methods in milliseconds.

The method utilizing KTSs schedules the tournaments almost instantly,
whereas the CP method can take up to several minutes, even on the smallest
instances. For 27 players, the optimal solution was not found even after 30
minutes. This result is not surprising but it nicely illustrates how difficult
it is to "brute-force" this problem. The CP approach should only be used,
when we do not require an optimal solution.

To evaluate the quality of the solution, we use the difference between
the maximal and minimal pair occurrences λmax − λmin. The smaller this
difference is, the better the solution. This value is more telling than the
objective function. However, when the difference was used as an objective
function, the results were the same but the model was more complicated.
That is because minimizing the objective value also minimizes this difference.

For the experiment, we yet again consider three player games, we fix the
number of rounds to 5 and set the time limit of the solver to 30 seconds.
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Figure 7.1: The quality of the solution measured as λmax − λmin on the
construction of three player game tournaments with 5 rounds. Time limit set to
30 seconds

The difference between the pairs that occur the most and the pairs that
occur the least in the tournament ranges from 1 to 2. These values seem
acceptable.
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Chapter 8
Pairwise Testing

In the previous chapters, we have only been discussing the utilization of
design structures for the scheduling of tournaments. Naturally, there are
many other applications, where design theory turns out to be useful. In this
chapter, we show one such application in the field of software testing.

8.1 Application of pairwise testing

Suppose there is a website selling public transportation tickets and fares,
similar to PID Lítačka1. When buying a ticket, the customer has to specify
the type of the ticket he wants to buy, its duration, the payment method and
whether he is eligible to some sort of discount.

Discount
Child

Student
Senior

Tariff
Type 1
Type 2
Type 3

Duration
1 Day

1 Month
1 Year

Payment
PayPal

Bank transfer
Credit card

Table 8.1: Variables and the values they can take.

To exhaustively test the system with all combinations of values, we would
require 34 = 81 test cases. That is still manageable, but the number of
test cases increases rapidly with the growing number of variables and values.
With only 5 variables, where each of the variable can take 5 values, we would
requite 55 = 3125 test cases to test the system exhaustively.

With pairwise testing we can decrease the number of test cases significantly
while still testing the system quite thoroughly. The rationale is, that the
most common bugs in a piece of software are triggered either by a single
input parameter or an interaction between pairs of parameters [23]. The
number of bugs involving interactions between three or more parameters are
progressively less common [24].

1Prague’s public transportation website at https://pidlitacka.cz where customers
can buy fares on-line.
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8. Pairwise Testing ...................................
Instead of creating 81 test cases to test the fare selling system, we can

cover all the possible variable pair interactions with only 9 test cases.

TC # Discount Tariff Duration Payment
TC 1 Child Type 1 1 Day PayPal
TC 2 Child Type 2 1 Month Bank transfer
TC 3 Child Type 3 1 Year Credit card
TC 4 Student Type 1 1 Month Credit card
TC 5 Student Type 2 1 Year PayPal
TC 6 Student Type 3 1 Day Bank transfer
TC 7 Senior Type 1 1 Year Bank transfer
TC 8 Senior Type 2 1 Day Credit card
TC 9 Senior Type 3 1 Month PayPal

Table 8.2: The pairwise test cases that test all the possible variable pair
interactions.

8.2 Simple construction of Pairwise test cases

The property of the pairwise test cases that all the possible pairs of parameters
have to occur together in at least one test case is close to the λ = 1 property
we discussed in the block designs - there clearly is some connection. The test
cases, however, can not be represented directly by block designs. For this, we
need Orthogonal arrays.

To reiterate, an orthogonal array OA(k,m) is a k ×m2 matrix on m ele-
ments, such that any 2 rows contain each possible ordered pairs of elements
in their vertical pairs. This is exactly the property we require for the pairwise
tests.

Consider the following OA(4, 3):

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9
Discount 1 1 1 2 2 2 3 3 3
Tariff 1 2 3 1 2 3 1 2 3

Duration 1 2 3 2 3 1 3 1 2
Payment 1 2 3 3 1 2 2 3 1

The 4 rows of the orthogonal array represent the 4 variables in table 8.1.
Each of the rows only contains integers 1, 2, 3. These numbers represent the
values any of the variables can take. If we consider the mapping suggested
in table 8.3, the columns of the orthogonal array provide exactly the 9 test
cases in table 8.2.
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Discount (row 1) Tariff (row 2) Duration (row 3) Payment (row 4)
Child → 1 Type 1 → 1 1 Day → 1 PayPal → 1

Student → 2 Type 2 → 2 1 Month → 2 Bank transfer → 2
Senior → 3 Type 3 → 3 1 Year → 3 Credit card → 3

Table 8.3: Mapping of the possible variable values to the numbers in the rows
of the orthogonal array.

In this example, the array fits the variable values perfectly. Generally, the
factor k of the orthogonal array is chosen as the number of variables and the
level m is chosen as the maximum number of values that each variable will
take on. More often than not, the orthogonal array will not fit the variables
and values perfectly.

8.3 Problems with the construction of test cases

There are two problems that need to be addressed when using orthogonal
arrays to construct pairwise test cases.

8.3.1 Left over variable values

The number of values that a variable can take on might differ as in the
following table.

Variable 1 Variable 2 Variable 3
v1,1 v2,1 v3,1
v1,2 v2,2 v3,2
- v2,3 -

The minimal orthogonal array required to construct the test cases is
OA(3, 3). However, there is one left over value in both its 1st and 3rd row
that can not be mapped to any value of Variable 1 and Variable 3. The test
cases constructed using this OA are captured in the table bellow.

TC # Variable 1 Variable 2 Variable 3
TC 1 v1,1 v2,1 v3,1
TC 2 v1,1 v2,2 v3,2
TC 3 v1,1 v2,3 "left over"
TC 4 v1,2 v2,1 v3,2
TC 5 v1,2 v2,2 "left over"
TC 6 v1,2 v2,3 v3,1
TC 7 "left over" v2,1 "left over"
TC 8 "left over" v2,2 v3,1
TC 9 "left over" v2,3 v3,2

Table 8.4: Test cases with some left over values.
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8. Pairwise Testing ...................................
The left over values in the test cases can be replaced by arbitrary values

the variable can take on. A better way is to cycle through the possible values
when filling in the left overs so that the number of occurrences of each of
the values is similar. Some of the test cases might become redundant (in the
sense of pairwise testing).

8.3.2 Non existent orthogonal array

For the given factor k and level m, there might not exist an OA(k,m). For 6
variables k = 6, where each of the variables could take on 4 values m = 4, we
would require an OA(6, 4). In the TournamentPlanner application, MOLS
are used to obtain orthogonal arrays as in example 3.5. For the construc-
tion of OA(6, 4), we would require 4 MOLS (k − 2) of order 4. However,
there are only 3 such MOLS. Fortunately, we can utilize the following theorem.

Theorem 8.1. Let N(n) denote the maximum number of MOLS of order n.
Then limn→∞N(n) =∞ [17].

Basically, we should be able to increase the level of the OA (which is the
order of the MOLS required for its construction) until we can obtain 4 MOLS
of the given order. Indeed, it turns out that there are 4 MOLS of order 5 so
OA(6, 5) can be constructed. In the test cases obtained from this OA, there
will be some left over values, but they can be dealt with in the same way as
in the previous subsection.

8.4 Construction of test cases in
TournamentPlanner

In the TournamentPlanner application, the goal is to minimize the number
of test cases while still testing all the possible variable pair interaction. The
creation of the test cases are summarized in the steps bellow..1. Determine the factor k as the number of variables and the level m as

the maximum number of values each variable can take on...2. Construct OA(k,m) using MOLS. If OA(k,m) does not exist, keep
incrementing m by 1 until an OA(k,m) can be obtained...3. Transform the columns of the OA into test cases. Keep track of the test
cases that do not contain any left over values and label them as final
test cases. Label the other test cases containing left over values as test
case candidates...4. For the test case candidates, choose the values for the "left overs" cycli-
cally.
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.......................8.5. Comparison with other pairwise testing tools..5. If the group of final test cases does not cover all the variable pair
interactions, choose a test case from the test case candidates that covers
the largest number of interactions that have not yet been covered by the
final test cases and label it as final test case. Repeat this until all the
pair interactions are covered.

8.5 Comparison with other pairwise testing tools

There are many tools on-line for the construction of pairwise test cases. We
compared the number of test cases constructed by 3 of these tools to the
number of test cases constructed by the TournamentPlanner. The size of the
inputs is denoted as an ordered list (v1, v2, . . . , vn) where n is the number of
variables and vi is the number of values the ith variable can take on. The
results are captured in the table bellow.

Input TournamentPlanner POT2 PG3 SQA4

(2, 3, 2) 6 7 6 6
(2, 4, 2) 9 8 8 8

(3, 5, 5, 3) 25 25 25 26
(5, 5, 6, 4) 38 35 36 35

(3, 3, 4, 7, 5) 39 41 36 36
(7, 8, 9, 7, 9) 81 81 89 93

Table 8.5: Number of pairwise test cases generated for different inputs.

It seems that each of the tools uses different heuristic to minimize the num-
ber of generated test cases. From the given inputs, it can not be determined
which of the tools is the best (in minimizing the number of test cases) but
the TournamentPlanner seems at least comparable to the other tools.

2Pairwise Online Tool at https://pairwise.teremokgames.com/ developed by Victor
Dementiev.

3Pairwise Generator at https://slothman.dev/pairwise-generator/ developed by
Pavel Kuptcov.

4SQA Pairwise at https://sqamate.com/tools/pairwise developed by Alexey Sotskov.
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Chapter 9
Testing and benchmarking of the
TournamentPlanner

The methods used to construct designs and tournaments described in the
previous chapters are complex and require a lot of code. With one misplaced
index or operator, the whole constructed structure is rendered invalid. It is
therefore crucial to test these methods thoroughly.

In the first part of this chapter, we discuss the testing of the Tourna-
mentPlanner application. Then we show several runtime measurements and
benchmarks of the tournament scheduling methods.

9.1 TournamentPlannerTests

As is the custom, the unit tests for the TournamentPlanner application are
placed in a separate unit test project called TournamentPlannerTests. The
namespace structure of the project copies the structure of the Tournament-
Planner. The majority of the classes of the application have a corresponding
test classes.

Unfortunately, most of the construction methods can not be easily split into
simpler testable parts. The best way to efficiently test them is to validate the
structures that have been constructed by them. This is done via validators.

9.1.1 Validators

Validators are static classes that validate of the constructed structures using
the NUnit1 framework. They are named after the structure, they are supposed
to validate.

For example BIBDValidator validates the instances of the BIBD class. It
checks the number of elements of the design, its block sizes and even all its
element pair occurrences (which have to be equal to λ). Therefore if a BIBD
instance passes through the validation without throwing any exception, it is
reasonable to assume that it represents a valid BIBD.

There are dedicated validators for most of the design types and tournaments.
There is also an additional validator for designs implementing the IResolv-

1NUnit is an open-source unit testing framework for .NET.
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9. Testing and benchmarking of the TournamentPlanner ...................
ableDesign interface that checks parallel classes of a given design. Using
these validators, the unit tests for the construction methods and tournament
planners become very simple.

1 [Test]
2 public void RecursiveKTSConstructionTest ()
3 {
4 var ns = Enumerable .Range (1, 20);
5 var orders = ns. Select (n => (6 * n) + 3);
6 foreach (var order in orders )
7 {
8 var alg = new RecursiveKTSConstruction (order);
9 var kts = alg. ConstructDesign ();

10

11 BIBDValidator . Validate (kts);
12 ResolvableDesignValidator . Validate (kts);
13 }
14 }

Listing 9.1: Snippet of the the KTS construction test using validators.

The structures that do not have a dedicated validator can usually be
checked using a combination of validators - like kts in listing ?? because a
KTS is a resolvable BIBD(v, 3, 1).

All of the validators are located in the TournamentPlannerTests.Model
namespace. As the user interface is fairly simplistic, it was possible to test it
manually.

9.2 Runtime measurements and benchmarks

The tournament scheduling methods combine several design construction
algorithms. Some of the construction algorithms also use some external
libraries. It is therefore difficult to determine their complexity exactly. Clearly,
all the constructive scheduling methods (the ones that are not using constraint
or integer programming) run in polynomial time. Unfortunately, I am not
proficient enough in complexity analysis to determine the exact degree of the
polynomial with certainty.

Nonetheless, it is still beneficial to measure the run times of the scheduling
methods and to show how it increases with the growing number of players in
the tournament. The experiments were performed on a modest machine with
16 GB of RAM and an Intel Core i5-8350U CPU.

All of the data depicted in the following figures were obtained by averaging
10 subsequent runs of the experiments.

9.2.1 Construction of tournaments with three players

There are 2 scheduling methods for tournaments with three player games. The
more complicated one uses KTSs and yields completely balanced tournaments.
The simpler one uses GDDs and only yields partially balanced tournaments.
They are described in chapter 5. Figure 9.1 depicts the run times of the these
methods up to 1005 player tournaments.
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.........................9.2. Runtime measurements and benchmarks

Figure 9.1: Runtime measurements of the 2 methods denoted as KTS and GDD
according to the design they use to schedule tournaments.

The outliers in the figure tend to appear in the same places across all
the experiments. The tournament scheduling methods use several design
construction algorithms and these outliers actually correspond to a switch
in the used construction algorithm. This is probably caused by the internal
workings of the CLR2 and just-in-time compilation.

9.2.2 Construction of whist tournaments

Figure 9.2: Run times of whist tournament construction up to 1000 players.

2The Common Language Runtime is the virtual machine component of the .NET frame-
work.
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9. Testing and benchmarking of the TournamentPlanner ...................
There are noticeable jumps in the run times of the whist tournament con-
struction when certain player number thresholds denoted by the vertical lines
are reached. These actually correspond to the growth of the group sizes g of
the auxiliary GDD used for the construction of larger whist tournaments as
is described in 6.4.5.

9.2.3 Integer programming construction of BIBDs

There are 2 integer programming methods for the construction of BIBDs.
The first is the naive quadratic formulation of the problem described in sub-
section 2.5.1. The second incremental block building method is implemented
according to [7] and described in subsection 2.5.2.

First, we compare these methods on the problem of STS construction in
figure 9.3. To reiterate, STS(v) exists if v = 6n+ 1 or v = 6n+ 3.

Figure 9.3: Comparison of the run times of methods on the STS construction.
INCR is the incremental block building, QUAD is the quadratic programming
method and BASE is the baseline constructive method.

The results are not surprising. The incremental method performs much
better than the naive quadratic programming method. Both of these methods
however pale in comparison with the constructive baseline method that uses
Bose’s and Skolem’s STS construction3. This should showcase how much
more efficient it is to use constructive methods instead of solvers.

However, when comparing the incremental and quadratic methods on the
construction of finite projective planes4, the result are unexpected. As can be

3Bose’s STS construction method is implemented in the BoseSTSConstruction class and
Skolem’s in SkolemSTSConstruction. As these methods were not used for the scheduling
of any tournaments, they were not addressed in this thesis.

4A finite projective plane of order n is a BIBD(n2 + n + 1, n + 1, 1). They are known to
exists for any n ≥ 1[1].
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.........................9.2. Runtime measurements and benchmarks

seen in figure 9.4, the naive quadratic programming method performs better.
The incremental method was not even able to construct a finite projective
plane of order 5 in reasonable time. It seems that the incremental method is
not generally faster and only works faster for certain subsets of BIBDs.

Figure 9.4: Comparison of integer programming construction methods on the
construction of finite projective planes.
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Chapter 10
Conclusion and future work

The goal of this thesis was to schedule tournaments with several opponents
in one game. This has been achieved completely for balanced tournaments
with three player games and for whist tournaments with 4n players. For the
scheduling of these tournaments, multiple designs from the field of combinato-
rial design theory were required. The construction of such designs is difficult
and they only allow for the scheduling of certain types of tournaments with
a predetermined number of players or rounds. To this end, a more general
constraint programming approach to the tournament scheduling has been
proposed and implemented.

The practical part of this thesis - the TournamentPlanner application -
implements all the described methods and provides a simple user interface for
the construction of tournaments, several types of block designs and mutually
orthogonal Latin squares.

The TournamentPlanner application could be extended by implementing
the construction of further block designs and larger sets of MOLS which could
then be used to schedule other types of balanced tournaments.

As has been shown in chapter 8, the application of combinatorial designs
is not limited to tournament scheduling. Aside from software testing, designs
can also be used in networking, mathematical chemistry or cryptography
[26]. For this purpose, the part of the TournamentPlanner dedicated to the
construction of combinatorial designs could be transformed into a .NET library
similar to the combinatorial module of Sage Math in Python.
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Appendix A
List of abbreviations

BIBD Balanced incomplete block design
(v, k, λ) BIBD with parameters v, k, λ
RBIBD Resolvable BIBD
KTS Kirkman triple system
STS Steiner triple system
PBD Pairwise balanced design
GDD Group divisible design
RGDD Resolvable group divisible design
MOLS Mutually orthogonal Latin squares
OA Orthogonal array
TD Transversal design
RTD Resolvable transversal design
GF(q) Finite (Galois) field with q elements
GCD Greatest common divisor
SAMDRR Spouse-avoiding mixed doubles round robin
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Appendix B
Contents of included DVD

. DP.pdf - a pdf version of the thesis. DP.zip - archive with the LATEX sources. tournamentplanner-master.zip - archive containing the source code
of the TournamentPlanner application. documentation.pdf - documentation of the source code generated using
doxygen
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