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Abstract

Image geolocalization, inferring the geographic location of an image, is a challenging com-
puter vision problem with many potential applications. In this work, we explore the problem
of predicting the geolocation of an input image based on a content-based image retrieval ap-
proach. We firstly collect a large dataset of geotagged photos that were taken in the Czech
Republic. We extract descriptors from the collected photos using a convolutional neural net-
work. Using obtained descriptors we build an image geolocalisation system that finds similar
images in the database and predicts the location of input image based on the coordinates of
similar images and kernel density estimation. We propose a neural network that is designed
to improve obtained descriptors specifically for the task of image geolocalisation with kernel
density estimation.

Keywords: content-based image retrieval, image geolocalisation, kernel density estima-
tion, neural network
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Abstrakt

Geolokalizace obrazů je náročným problémem počítačového vidění s mnoha potenciálními ap-
likacemi. V této práci zkoumáme problém predikce geolokace vstupního obrázku na základě
přístupu založeného na vizuálním vyhledávaní obrazů. Nejprve sbíráme velký datový soubor
geotagovaných fotografií, které byly pořízeny v České republice. Ze shromážděných fotografií
extrahujeme deskriptory pomocí konvoluční neuronové sítě. Pomocí získaných deskriptorů
budujeme geolokalizační systém obrázků, který najde podobné obrázky v databázi a před-
povídá lokace vstupního obrázku na základě souřadnic podobných obrázků a jádrového
odhadu hustoty. Konečně navrhujeme neuronovou síť pro vylepšení získaných deskriptorů
speciálně pro úlohu geolokalizace obrazu s jádrovým odhadem hustoty.

Klíčová slova: vyhledávání obrázků založené na obsahu, geolokalizace obrázků, jádrový
odhad hustoty, neuronová síť
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1 Introduction

1.1 Motivation and goal

This thesis explores the problem of predicting the geolocation of an image based on an image
retrieval technique. This means that given an input image that we don’t know anything
about, except its content, we want to predict the geographical coordinates of a place where
this image was taken. Having a large collection of images annotated with GPS coordinates,
we can find the most similar images to our input image. Based on those similar images and
their GPS coordinates, we can predict the location of the input image.

The problem of inferring coordinates from an input image is a challenging and interesting
problem that has various applications, such as determining where the photo was taken for
forensic analysis, usage in a search engine, also knowing the coordinates of an image we
can easily enrich it with additional metadata such as climate, population density, average
income, etc.

The goal of this work is to

1. Collect a large dataset of geotagged images.

2. Build an image localization system that relies on a content-based image retrieval
pipeline. The system should predict coordinates at which a given input image was
taken.

3. Seek improvements to the geolocalisation system by learning an improved image rep-
resentation.

We will approach our goal as follows, at first we will use an image hosting platform called
Flickr to download geotagged images. We will build the image geolocalisation system based
on kernel density estimation and other methods. To be able to compare photos, we will
obtain image representations using a convolutional neural network by Radenovic et al. For
the final task, we will propose an artificial neural network that we will train to improve image
representations for the task of geolocalisation prediction with kernel density estimation.

1.2 Thesis structure

The rest of this thesis is structured in the following way:

1



• In chapter 2 we describe the background theory for this work, in particular, we describe
the content-based image retrieval and its application for image geolocation with an
overview of existing work in these fields.

• In chapter 3 we describe our data collection process and analyze collected data.

• In chapter 4 we will describe in detail the models we use for image geolocation and show
how we performed parameter selection for these methods, and explain how different
parameters influence performance. Lastly, we will evaluate models on the test set.

• In chapter 5 we will propose an approach based on a neural network to improve the
results of models described in chapter 4.

• Finally, in chapter 6 we will summarize this work.

2



2 Theoretical background and related work

Since the concept of content-based image retrieval is crucial to the thesis in this chapter we
will first provide a theoretical overview of the method and after that, we will describe how
it can be used for the task of image geolocation.

2.1 Content-based image retrieval

The goal of content-based image retrieval (CBIR) is to find similar images in the reference
database given some input image (also referred to as query image) based on the content of
images. CBIR approach is opposite to text-based image retrieval, which relies on the textual
description of images or some other metadata.

Figure 2.1: Content-based image retrieval system

As described in [7], classical content-based image retrieval system is shown in the figure
2.1. Using raw images in CBIR is impractical mostly due to the high dimensionality of
the data, and also due to the fact that a lot of redundant information is embedded into
an image. So the first thing that we see is that database images and query images are
subjected to feature extraction. The purpose of feature extraction is to create a compact

3



image representation that includes the most relevant information. The output of feature
extraction is called a feature vector or a descriptor. As we can see feature vectors of database
images are stored in the database, which implies that usually, descriptors from database
images are pre-computed in advance. For the query image, feature extraction is usually
performed upon the query’s submission. In the last stage, the descriptor of a query image
is compared to the descriptors from the database to determine the similarity scores between
them. Then usually top 𝑁 most similar images are retrieved from the image database.
Normally, feature databases can contain a large number of entries, so comparing a query
descriptor with all descriptors in the database in a brute-force manner can be inefficient. In
order to increase the speed of image retrieval database feature vectors are usually indexed
using data structures like R-trees, K-d trees, SS-trees, quad-trees, and many more [7].

Feature extraction is a core concept in content-based image retrieval. In general, we
can divide features into two main categories, local and global features. Global features are
extracted from the visual content of the entire image. Some examples of global features are
global color histogram [1] and Histograms of oriented gradients (HoG) [5]. Local descriptors
on the other are extracted from regions of interest or objects in the image. Examples of local
descriptors are Scale Invariant Feature Transform (SIFT)[3], Speed Up Robust Features
(SURF)[6], Local Binary Patterns (LBP)[2], and many more. Such features are usually
aggregated using methods such as bag-of-visual-words [4], VLAD [9] and Fisher Vectors [10].

Nowadays, convolutional neural networks (CNN) are used as feature extractors. Some
previous methods used activations of CNNs trained on ImageNet dataset for the classification
task as features for image retrieval [16], [13] [12]. Even though those descriptors from CNN
showed good results, the networks were not trained specifically for the end task. In this work
[11] authors re-trained such networks on the dataset that is closer to the end task, however,
they were still training the network for the classification task. In [15] authors proposed
an end-to-end convolutional neural network that was trained specifically for visual place
recognition using a metric learning approach. They used a collection of geotagged images
which offered a form of weak supervision for training. The metric learning approach uses
two-branch Siamese or triplet networks and they use matching and non-matching pairs of
images. In this approach, image embedding is learned so that Euclidean distance captures the
similarity. However, the problem of data annotation for this approach is more pronounced,
for the classification only a class label for an image is required, but for metric learning,
labels are required per image pair. In [19] Radenovic et al. train CNN for image retrieval
with dataset created from structure-from-motion pipeline to automatically annotated image
pairs.

2.2 Geolocation based on CBIR

Content-based image retrieval can be used for predicting the geolocation of a query image.
In [8] Hays and Efros collected a large database of images labeled with GPS coordinates.
They created image representation using classical non-deep-learning feature extractors and
for a query image, they predict its geolocation as coordinates of the most similar image
in the database. It is clear that in this case the problem was formulated as content-based
image retrieval. In that same paper, authors were also searching for k-nearest-neighbors
in the database, using mean-shift clustering to predict coordinates of a query image. In
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[17] Weyand et al. formulated geolocation task as a classification problem. They divided
the surface of the Earth into multiple smaller regions where each region represents a target
class. For an image from their dataset of geo-tagged images they assigned a class based on
whether image belongs to a region that the class represents. And finally they trained a CNN
model with classification loss. In [20] Vo et al. train a similar network as in [17], however
they later use it as a feature extractor to perform image retrieval in order to find similar
images in their database, and similarly to [8] they predict coordinates of a query image using
kernel density estimation method.
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3 Dataset overview

In this chapter we will describe our data collection process, and we will provide the analysis
of the collected data. We will also describe how we split our data into datasets for image
retrieval, training, testing and validation.

3.1 Data collection and analysis of collected data

For the task of image geolocation we need photos that are labeled with GPS coordinates
that correspond to a place where the photo was taken. Papers such as Im2gps [8], PlaNet
[17] and Revisiting im2gps [20] focus on datasets that include photos from all over the world,
however datasets from these papers are not fully available as of today. For this work we
decided to concentrate only on those photos that were taken in the Czech Republic, due to
limited time and computational resources.

As a source of images, we choose Flickr. Flickr is an image hosting platform that hosts
more than 10 billion photos and has more than 100 million registered users. More impor-
tantly for us, Flick extracts GPS coordinates (if available) from photo metadata and stores
them along with a photo. Also, Flickr provides a public API (Application Programming In-
terface) which we can use to search and download photos. Unfortunately, this API doesn’t
offer a convenient way to search images based on a country. On the other hand, the API
allows to search photos based on tags that users add manually to their photos. So we over-
came this limitation by searching only for photos that are tagged with ”czechrepublic” tag.
Additionally, we search for photos that have GPS coordinates and were uploaded to Flickr
between January 1, 2005 and November 11, 2020. Using this approach we were able to
collect 230883 photos that were taken in the Czech Republic. In the figure A.1 from the
appendix you can see several examples of photos from the collected dataset.

When we download a photo from Flickr we also store its metadata in MongoDB, a no-
SQL database that is optimized for storing documents in JSON format. The metadata
includes photo id, owner name and id (owner is a Flickr user who uploaded a photo), tags,
GPS coordinates and URLs which we can use to download the photo. Storing metadata in
MongoDB brings several advantages. Firstly, we can retrieve the metadata of an image easily
and faster. But most importantly, MongoDB has built-in features for working with geospatial
data. Using this MongoDB built-in functionality, we can easily perform computations on
GPS coordinates which helps, for example, determine nearest neighbors of an image based
on GPS, compute the geographical distance between two photos, get all photos within some
radius from a query image, and etc.

6



Using this built-in functionality of MongoDB we can gain more information about the
collected dataset. One thing we would like to know is how collected images are distributed
across the Czech Republic. For this, we will use coordinates of administrative boundaries
publicly available at the Czech Office for Surveying, Mapping and Cadastre website [22] and,
for each image in the dataset, we will determine in which administrative region of the Czech
Republic it was taken based on the available GPS coordinates. The distribution of photos
by the regions is shown in the figure 3.1.
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Figure 3.1: Distribution of photos by regions of Czech Republic

As we can see, almost 60% of images were taken in Prague. This can be explained by the
fact that Prague is the capital and the biggest city of the Czech Republic as well as by the
fact that Prague is the main tourist attraction in the Czech Republic and we collect images
from Flickr which is an international platform. So we can expect that majority of photos
from the Czech Republic that are hosted on Flickr are made by tourists.

Given that majority of photos in our dataset are from Prague, let’s also have a look at
the distribution of photos by Prague districts.
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Figure 3.2: Distribution of photos by Prague districts

In the figure 3.2 X-axis represents the percentage of all photos from Prague, and the Other
category on the Y-axis represents the combination of all Prague districts that separately have
less than 1% of photos from Prague. From this distribution, we can see that majority of
photos come from Prague 1 and Prague 2 city districts, which are the main touristy areas
in the city.

3.2 Dataset splits

For the purpose of validation, testing and later training we split the collected dataset into
four sets: database, validation queries, testing queries and training queries. The database
set represents the biggest part and it’s a set where we will be looking for similar images to
the query images. Validation and testing query sets will serve as datasets of query images
and as names imply we will use them for validation and testing. Finally, the training queries
set, will serve as a dataset of query images on which we will try to learn a model to improve
the results of localization later in this work. For the purpose of geolocation prediction we
treat coordinates of images in the database set as known and for the queries datasets we
treat locations as unknown.

To split collected data in the datasets mentioned above we employ the following strategy.
We devote 95% of images to the database set, 3% of images to the training queries set and
1% to validation and testing queries sets each. However, when we split the data we also
want to make sure that all photos from the same author belong only to one of the datasets.
In other words, we don’t want to be in a situation when one photo of an author is in the
database set and another photo of the same author is in testing queries dataset. We do this
since some authors can have multiple photos from the same location or an author can have
a unique style of his/her photos and this can falsely boost localisation results.

In the end we end up with the following number of photos per dataset:
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Dataset Number of photos
Database set 219342

Training queries set 6936
Testing queries set 2314

Validation queries set 2291

Table 3.1: Number of photos per dataset

Lastly for this chapter let’s have a look at the distribution of images by regions per
dataset, similarly as we did above.
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Figure 3.3: Distribution of photos by region per dataset

In the figure 3.3 Y-axis represents a percentage of photos that were taken in the region on
the X-axis for each dataset. For example, we can see that 60% of images from the database
set are from Prague, while around 70% from the train queries set were taken in Prague,
the same goes for test queries and validation queries. So we can actually see that photos
from Prague are over-represented in queries datasets compared to the database set. This
happened due to the fact that when we split data we also want to keep photos from the same
author in one dataset. This is not ideal, but it is something that is hard to control with this
splitting strategy.
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4 Geolocation with Kernel density estima-
tion and other methods

In this chapter, we will describe how we perform image geolocation. Since we rely on content-
based image retrieval to perform image geolocation, we will first explain what kind of image
representation we use to perform a lookup in our database. Then we will describe in detail
what methods we use for image geolocation and how we measure the performance of our
models. Then we will describe how we selected parameters for individual methods and how
these parameters influence the performance of a model. Lastly, we will pick the best models
and compare them on the testing set.

4.1 Image representation for image retrieval

In the chapter 2, we described a problem of image retrieval. We saw that we need some
compact image representation that we can use to measure similarity between a query image
and images from our database. For this work, we have chosen to obtain image representations
(also referred to as descriptors in this work) using a convolutional neural network proposed
by Radenovic, Tolias, Chum in [19]. This is a state-of-the-art neural network that was
designed to produce compact image representation specifically for the task of content-based
image retrieval and was trained on a dataset of photos that depict some landmarks. We feed
the images that we collected for this work to the network, and as output, we get a descriptor
vector D ∈ ℝ2048 for each photo.

For two different vectors p and q we can compute a distance between them, and it should
hold that for photos that are similar, the distance between their respective descriptors should
be minimal. We can use either Euclidean distance

𝑑𝑒(p, q) =
√√√
⎷

2048
∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 (4.1)

or we can also use cosine distance

𝑑𝑐(p, q) = p ⋅ q
||p||||q|| (4.2)

Euclidean distance can be any non-negative real value, and the closer the distance be-
tween two descriptor vectors to zero, the more similar are the original images. Cosine distance
can obtain values from [−1, 1] interval, and the closer the distance between two descriptor
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vectors to 1, the more similar are the original images. Note that the descriptors that we
obtain from the neural network are normalized, and for the unit vectors Euclidean distance
and cosine distance are proportional. However, we will still evaluate our models on both
distances to see if there is some advantage of using one over another and because we will
later define similarity metric differently for Euclidean and cosine distances.

Finally, we will need to find the nearest neighbors of a query image among images from
our database. The naive approach would be to compute a distance between a query image
descriptor and every other descriptor in our database set. However, as we stated in chapter 3
our database set contains 219342 images, so to compute the distance for every image from the
database set would be computationally expensive. Another approach is to build some index
(for example, using KD trees), to perform a nearest-neighbors search in high dimensional
space. However, making such an index from scratch can take a lot of time, so we decided
to use Faiss library [18] developed by Facebook AI Research. Faiss provides methods for
efficient nearest-neighbor search in high dimensional space, GPU utilization to speed up
computations, and Python interface, which helps easily integrate Faiss into our codebase.

4.2 Description of geolocation methods

To utilize image retrieval for geolocation, we can use several different methods. The first
one is a simple one-nearest-neighbor. The idea is that we will use an image retrieval pipeline
to find the closest image to a query in the descriptor space and use its coordinates as a
prediction for the coordinates of a query. The disadvantage of this method is that we only
use information from one neighbor, and it’s not guaranteed that the closest image in the
descriptor space will be the closest image in the coordinate space.

Another approach that we will try is to find several nearest-neighbors in descriptor space
and compute the coordinates of a query image as an average of coordinates of those nearest
neighbors. We will use the simple average and the weighted average. Let’s say we have 𝑘
nearest neighbours, their coordinates is two-tuple of longitude and latitude (𝜙𝑖, 𝜆𝑖), where
𝑖 ∈ {1, 2, ..., 𝑘}, for the simple average we can compute the coordinates of a query (𝜙, 𝜆) as

(𝜙, 𝜆) = (1
𝑘

𝑘
∑
𝑖=1

𝜙𝑖,
1
𝑘

𝑘
∑
𝑖=1

𝜆𝑖) (4.3)

For the weighted average, we can compute the coordinates of a query like this

(𝜙, 𝜆) = (∑𝑘
𝑖=1 𝑤𝑖𝜙𝑖

∑𝑘
𝑖=1 𝑤𝑖

, ∑𝑘
𝑖=1 𝑤𝑖𝜆𝑖

∑𝑘
𝑖=1 𝑤𝑖

) (4.4)

The weight 𝑤𝑖, in this case, is the similarity of a neighbor 𝑖 to the query. How we compute
similarity depends on a distance metric that we use. For the Euclidean distance 𝑑𝑒 from the
equation 4.1 similarity 𝑠𝑒 = 𝑤 between query q and some neighbour p is computed as

𝑠𝑒(p, q) = ( 1
𝑑𝑒(q, p))

𝑚
(4.5)

where 𝑚 is a tunable parameter added to introduce non-linearity.
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For the case when we use cosine distance 𝑑𝑐 from the equation 4.2 we compute similarity
𝑠𝑐 = 𝑤 as follows

𝑠𝑐(p, q) = (𝑑𝑐(q, p) + 1)𝑚 (4.6)

As we stated previously, 𝑑𝑐 ∈ [−1, 1], so we add one to the distance to avoid negative values
in similarity. The term 𝑚 also introduces non-linearity, so the more two image descriptors
are similar, the more they contribute to similarity.

Finally, we will use kernel density estimation (KDE) as described in [20] to estimate
a distribution of coordinates of nearest-neighbors, and we will pick coordinates with the
highest density. Let’s formulate kernel density estimation with Gaussian kernel as follows

̂𝑓(x) = 1
(∑𝑘

𝑖=1 𝑤𝑖)|Σ| 1
2

𝑘
∑
𝑖=1

𝑤𝑖𝒩(x; x𝑖, Σ) (4.7)

This means that we will estimate a density function ̂𝑓 in the point x = (𝜙, 𝜆), for this
we will use 𝑘 nearest-neighbors, which have GPS coordinates x𝑖 and 𝑤𝑖 is a weight, which
corresponds to the similarity between 𝑖-th neighbor and a query. We compute similarity in
the same way as described in the equations 4.5 and 4.6 depending on which distance metric
we will use. Notation 𝒩(x; x𝑖, Σ) represents a value of Gaussian (Normal) density function
in point x with mean x𝑖 = (𝜙𝑖, 𝜆𝑖) and covariance matrix Σ = 𝜎2𝐼 , where 𝜎 is tunable
parameter. Note that we talk about multivariate normal distribution since we estimate a
distribution of coordinates in GPS space where each point is two-tuple of longitude and
latitude. We also divide by ∑𝑘

𝑖=1 𝑤𝑖 to ensure that ∫ ̂𝑓(𝑥)𝑑𝑥 = 1.
After we estimated a density function ̂𝑓 we choose optimal coordinate x∗ for a query as

follows

x∗ = argmax
x

̂𝑓(x) (4.8)

Another important detail to describe is how we sample points in GPS space for kernel
density estimation. In theory, point x in equations 4.7 and 4.8 comes from a space of all GPS
points in the Czech Republic. However, it’s computationally infeasible to generate all those
points and compute KDE. Instead, for each nearest-neighbor, we construct a grid around it
with a total number of points equal to (2𝑏𝑛 + 1)2. We also construct a grid based on a 𝜎
parameter we use for KDE.

There are 3 important parameters that determine how we generate a grid: 𝑏, 𝑛 and 𝜎.
To understand how we generate the grid, let’s have a look at figure 4.1 below. A cross in the
middle is a point in GPS space with coordinates (𝜙, 𝜆), representing some nearest-neighbor
of a query. Parameter 𝜎 determines how far away from the neighbor generated points will
be in GPS space. Parameter 𝑏 determines how many 𝜎-intervals we will use. In the figure
𝜎-intervals are depicted by bigger dashed lines. We can also see that the half-width and half-
height of a grid in the image equals 3𝜎, which means that in this example 𝑏 = 3. This implies
that coordinates of a top-right point in the grid will be (𝜙 + 3𝜎, 𝜆 + 3𝜎) and coordinates of
bottom-left point in the grid will be respectively (𝜙 − 3𝜎, 𝜆 − 3𝜎). Parameter 𝑛 determines
how many points we will generate per one 𝜎-interval, this corresponds to smaller dotted lines
in the image. So the height and the width of a grid, in terms of a number of points, is
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2 ∗ 𝑏 ∗ 𝑛 + 1 since we use 𝑏 𝜎-intervals and generate 𝑛 points, and since we want to compute
the whole width and height, we must multiply it by two. We also include coordinates of the
original point in the grid, and therefore, we add one to the number of points.

In the end, we get a space of 𝑘(2𝑏𝑛+1)2 points on which we run kernel density estimation.
In this work we use 𝑏 = 3 and 𝑛 = 3.

Figure 4.1: Illustration of sampling points in GPS space

4.3 Accuracy metric

To determine how well our models perform, we use the accuracy metric, which is the pro-
portion of correctly predicted locations of queries to the total number of queries.

Accuracy = number of correctly predicted locations
total number of queries (4.9)

We say that location is predicted correctly if the geographical distance between the predicted
location and true location is within some threshold. Throughout this work, we will determine
accuracy for several thresholds, namely, 10 meters, 100 meters, 500 meters, 1 kilometer, and
5 kilometers. For example, for the threshold of 10 meters, we say that prediction is correct
if the distance between the predicted location and true location is equal or less than 10
meters, and similarly for other thresholds. For two points in GPS space a = (𝜙1, 𝜆1) and
b = (𝜙2, 𝜆2), where 𝜙𝑖 and 𝜆𝑖 are latitude and longitude respectively, we compute a distance
between them using Haversine distance
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𝑑ℎ(a, b) = 2𝑟 arcsin √ℎ𝑎𝑣(𝜙2 − 𝜙1) + ℎ𝑎𝑣(𝜆2 − 𝜆1)[1 − ℎ𝑎𝑣(𝜙1 − 𝜙2) − ℎ𝑎𝑣(𝜙1 + 𝜙2)]
(4.10)

where 𝑟 is the radius of the Earth and function ℎ𝑎𝑣 is

ℎ𝑎𝑣(𝜃) = sin2 𝜃
2 = 1 − cos 𝜃

2 (4.11)

4.4 Parameter selection

Some methods that we described in the previous section have parameters that we need to
pick correctly to ensure that they produce the best results. This process is called parameter
selection. Geolocation based on averaging requires to pick number 𝑘 for the number of
nearest-neighbors, while for the weighted average, we also need to pick 𝑘 as well as 𝑚,
which is the exponential term in equations 4.5 and 4.6. For the geolocation method based
on kernel density estimation, we need to select 𝑘, 𝑚 and 𝜎. Since the 1-nearest-neighbor
method doesn’t have any parameters we won’t touch it in this section. To find the best
parameters, we use the grid search approach, which means that for each parameter 𝑘, 𝑚 and
𝜎, we define a set of values, and for each method, we will compute all possible combinations
of relevant parameters and we will run a model on each combination. We will perform
parameter selection on the validation set and measure accuracy on different thresholds, as
described in the section 4.3 above.

4.4.1 Parameter selection for the method based on averaging

For this method, we only need to select one parameter, which is 𝑘. We will try the following
values: {2, 3, 4, 5, 8, 10, 20, 40, 70, 90, 100} and we will perform parameter selection using both
cosine and Euclidean distances.

In the figure 4.2 below we can see accuracy plotted for each parameter 𝑘 for different
distance thresholds. It is apparent from the graphs that with increasing number of nearest-
neighbors accuracy of the method decreases. This is most probably given by the fact that
averaging is susceptible to outliers.

Also, we run experiments both for Euclidean distance and cosine distance, but the results
are nearly identical. This is most certainly because, as we stated previously, Euclidean and
cosine distances are proportional, and we don’t use similarity in this case, therefore we obtain
the same ranking. Also, we don’t include a graph for parameter selection with cosine distance
in this chapter to reduce clutter, but it’s included in the appendix (see figure A.2).
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Figure 4.2: Accuracy of averaging method for different parameters and different thresholds

In the table 4.1 below we provide the best results and corresponding parameters for
different thresholds. As we can see, the best results are obtained for 𝑘 = 2 on different
thresholds.

Threshold k Accuracy
10m 2 0.0104
100m 2 0.1145
500m 2 0.2845
1km 2 0.4038
5km 2 0.6118

Table 4.1: Best parameters for the method based on averaging

4.4.2 Parameter selection for method based on weighted averaging

For this method we need to select 𝑘 and 𝑚, firstly let’s define a set of values for each
parameter:

1. 𝑘 ∈ {2, 3, 5, 6, 8, 10, 20, 40, 70, 90, 100}

2. 𝑚 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 10, 15}

We will run parameter selection on all combinations of the values above, which amounts
to a total of 110 combinations.
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The figure 4.3 below shows the results of parameter selection with Euclidean distance.
We can see that the accuracy, similarly to the averaging method, also decreases with an
increasing number of neighbors. However, increasing 𝑚 reduces the loss in accuracy.
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Figure 4.3: Parameter selection for weighted averaging with Euclidean distance

The results for running parameter selection with cosine distance are shown in figure A.3.
The behavior is similar, accuracy decreases with the number of neighbors, however, the effect
of the parameter 𝑚 is less pronounced.

Table 4.2 shows best results and corresponding parameters for different distance metrics.
We can see that using Euclidean distance is slightly better than cosine distance.

Euclidean distance Cosine Distance
Threshold k m Accuracy k m Accuracy

10m 3 7 0.0118 2 2 0.0104
100m 2 15 0.1245 2 5 0.1171
500m 2 15 0.2945 2 15 0.2875
1km 2 5 0.4069 2 4 0.4055
5km 2 15 0.6201 2 15 0.6145

Table 4.2: Best parameters for the method based on weighted averaging for Euclidean and
cosine distances

4.4.3 Parameter selection for KDE method

For this method we will need to select 3 parameters, 𝑘, 𝑚 and 𝜎. Let’s define a set of values
for these parameters:
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1. 𝑘 ∈ {10, 20, 30, 40, 50, 60, 80, 100}

2. 𝜎 ∶ {0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01}

3. 𝑚 ∈ {2, 5, 8, 10}

The total number of all combinations for these parameters is 256.
The figure 4.4 shows the results of parameter selection for the KDE method with Eu-

clidean distance. Since we are selecting 3 parameters, the visualization is a bit more compli-
cated. Each row in the graph represents different distance thresholds, each column represents
different values of 𝑚, and lines of different colors represent different values of 𝜎. On the x-
axis, we have parameter 𝑘, and on the y-axis, we have accuracy.
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Figure 4.4: Parameter selection for KDE with Euclidean distance

From the graph above it’s harder to understand how different parameters influence the
performance of the KDE model. Let’s try to examine the influence of each parameter indi-
vidually.

The figure 4.5 below shows values of 𝜎 parameter on the x-axis and the average accuracy
for the respective value of 𝜎 on the y-axis. We have 8 values for parameter 𝑘 and 4 values for
parameter 𝑚, so there are 32 combinations of 𝑘 and 𝑚 for each value of 𝜎, and we compute
average accuracy for each 𝜎 among those 32 runs. The vertical lines in the plots represent
the standard deviation of accuracy, which helps to understand the variability of accuracy for
a given value of 𝜎.
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Figure 4.5: Average accuracy for different values of 𝜎. KDE with Euclidean distance.

In the figure 4.5 we can see that value of 𝜎 has a strong influence on the accuracy of
the model. We can also see that different values of 𝜎 perform better for different distance
thresholds. And it makes sense if you think about 𝜎 as the standard deviation of a normal
distribution (we use multivariate normal distribution in the KDE, but for the sake of ex-
ample, let’s think about a univariate case). Let’s assume that we build a univariate normal
distribution where a random variable is either a longitude or latitude coordinate. The points
close to the mean will have a higher value of the density function, and the points that are
3𝜎 away from the mean will have a very small value of the density function. Also note, that
longitude and latitude are measured in degrees, and the change of 0.001∘ in a coordinate
is approximately equal to the change of 100 meters in distance. In the KDE method, we
construct a normal distribution for each nearest-neighbor of a query and then sum them up.
So when we set 𝜎 = 0.001, this means that only points that are approximately within 300
meters (or within 3𝜎) from a nearest-neighbor will contribute to the final density function.
That’s why we see that 𝜎 = 0.001 or 𝜎 = 0.0025 perform better on the 100 meter threshold,
and 𝜎 = 0.005 or 𝜎 = 0.0075 perform better on the 500 meter threshold.

Let’s also see how the other two parameters influence the accuracy of the KDE method.
The figure 4.6 is similar to the figure 4.5, only it shows the relation between average accuracy
on the y-axis and parameter 𝑘 on the x-axis. Here we can see that for distance thresholds
of 500m, 1km and 5km using more neighbors reduces the performance, and for those levels,
the optimal value of 𝑘 is probably around 20. And for the threshold of 10m and 100m, the
optimal value of nearest neighbors is around 40 to 60. There is also a lot of variability in
accuracy, probably because parameter 𝜎 has the most influence on the accuracy.
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Figure 4.6: Average accuracy for different values of 𝑘. KDE with Euclidean distance.

The figure 4.7 shows the relation between average accuracy and parameter 𝑚. Here we
can see that for the thresholds of 100m, 500m and 1km, the best value of 𝑚 is around 5, and
the performance starts to decrease with an increase in 𝑚. For the 10m threshold preferred
value of 𝑚 seems to be 2. And for the threshold of 500m, accuracy increases with increasing
𝑚, and the best value appears to be 10. There is also a lot of variability in the accuracy,
which is probably again caused by the fact that 𝜎 is more important to the accuracy on a
certain distance threshold.
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Figure 4.7: Average accuracy for different values of 𝑚. KDE with Euclidean distance.

We performed the same analysis for the KDE with cosine distance, but results are largely
the same, so we won’t discuss them in detail here, but we add the graphs to the appendix
(see figures A.4, A.5, A.6 and A.7).

The table 4.3 below shows the best results and corresponding parameters for different
distance metrics for the KDE method. We can see that the difference in the accuracy between
KDE with Euclidean and cosine distances is practically negligible.

Euclidean distance Cosine distance
Threshold k m 𝜎 Accuracy k m 𝜎 Accuracy

10m 80 2 0.0001 0.0388 100 10 0.0001 0.0410
100m 60 5 0.0025 0.2316 100 10 0.001 0.2342
500m 20 5 0.0075 0.3876 10 10 0.005 0.3885
1km 20 5 0.01 0.4777 20 10 0.01 0.4759
5km 100 10 0.01 0.6949 20 10 0.01 0.6879

Table 4.3: Best parameters for KDE method with Euclidean and cosine distances

4.5 Selection of the best method and performance analysis

In the previous section, we’ve selected the best parameters for individual methods, and
for this we were using the validation set. In this section, we will choose the best models
and compare their performance on the testing set. However, some models have the same
best parameters across different distance thresholds, but as we’ve seen with the KDE model,
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parameter choice determines how well the model will perform on a certain threshold. Because
of this, we will only choose the model that performs best on the 100m threshold since it’s
hard to keep track of all the models on different thresholds. We choose the 100m threshold
firstly because modern consumer-grade GPS systems have an accuracy of 5 to 10 meters, so
predictions on this level may suffer from inaccuracy of GPS coordinates. Secondly, because
the 100m threshold is still quite detailed and predictions at this level should be possible in
the city. In the end, we will also analyze the model that performs the best on the testing
set.

For this section we’ve chosen the next models:

1. 1-nearest-neighbour

2. Model based on averaging, with 𝑘 = 2

3. Model based on weighted averaging, with 𝑘 = 2 and 𝑚 = 15

4. Model based on KDE, with 𝑘 = 60, 𝑚 = 5 and 𝜎 = 0.0025.

Also, since in the previous section we found that using cosine distance doesn’t bring addi-
tional advantages we will only compare models using Euclidean distance since the descriptors
that we obtained from the neural network were optimized for Euclidean distance.

In the figure 4.8 below we can see how methods compare on the testing set. In the fig-
ure, ”kde” denotes kernel density estimation method, ”nn” denotes the 1-nearest-neighbor
method, ”avg” and ”w_avg” denote averaging method and weighted averaging method, re-
spectively. We can see that kernel density estimation outperforms all other methods by
a significant margin, except on the 5km threshold where it has the same performance as
1-nearest-neighbour, which is probably caused by the fact that we use 𝜎 tuned for 100m
threshold. Also, we can see that 1-nearest-neighbour outperforms methods based on aver-
aging.
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Figure 4.8: Comparison of geolocation methods

The same information but with concrete numbers is provided in the table below.

Threshold KDE NN AVG W_AVG
10m 0.0195 0.0242 0.013 0.0156
100m 0.2697 0.1782 0.1422 0.1509
500m 0.4444 0.3681 0.33 0.3508
1km 0.5234 0.4791 0.4679 0.4605
5km 0.7098 0.7098 0.6595 0.66

Table 4.4: Accuracy for different methods on different thresholds

It’s clear that the KDE model performs better than the others. When we described our
dataset, we saw that we had significantly more photos from Prague than from the other
regions. From the figure 4.9 below we can see that the performance is significantly better in
Prague than in the other regions, which is expected due to the imbalance in the dataset.
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Figure 4.9: Performance of KDE model by different regions

In the table 4.5 below we compare Prague with the rest of the Czech Republic, and we
can see that performance is 2 to 3 times better in Prague.

Threshold Prague Other
10m 0.0289 0.0014
100m 0.3662 0.094
500m 0.5641 0.2387
1km 0.6581 0.2966
5km 0.9171 0.3473

Table 4.5: Accuracy of KDE model in Prague vs the rest of Czech Republic

4.6 Summary

In this chapter, we described what kind of image representation we use in our image retrieval
pipeline and discussed what type of distance metric we use to compute a distance between
image descriptors. Then we described methods that we use for geolocation, namely these were
1-nearest-neighbor, averaging and weighted averaging methods and kernel density estimation
method. We also discussed how we measure accuracy and that we track accuracy on 10
meters, 100 meters, 500 meters, 1 kilometer and 5 kilometers distance thresholds. Then
for each geolocation model, we performed parameter selection and discussed how different
parameters influence the accuracy of a model. We also determined the set of parameters that
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perform the best on a given distance threshold for each model. Finally, we compared the
performance of different models on the test set and saw that the KDE model outperforms
the other models. However, due to our dataset’s limitations, we saw a significant difference
in the performance between Prague and other regions in the Czech Republic.
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5 Improving Performance of KDE Geolo-
cation Method

This chapter will describe our approach to improving the results of geolocation predictions for
the method based on kernel density estimation described in the previous chapter. However,
since our approach is based on artificial neural networks, the first section of this chapter will
be dedicated to the theoretical overview of ANN. In the second section of this chapter, we
will describe our approach in detail. And in the third section, we will show our experimental
results.

5.1 Overview of Artificial Neural Networks

Artificial neural networks (ANN) are computing systems inspired by biological neural net-
works that constitute human or animal brains. An ANN is based on a collection of connected
units called artificial neurons. An example of an artificial neuron is shown in figure 5.1 below.

Figure 5.1: Artificial neuron. Image from [14]

Each neuron can have multiple inputs 𝑥𝑖 multiplied by weights 𝑤𝑖 and then summed in
an adder, and with added bias 𝑏 sent to and activation function 𝑓 . Mathematically we can
describe a neuron as follows

𝑦 = 𝑓(
𝑛

∑
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏) (5.1)
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Where 𝑓 is usually some non-linear function, the most popular activation functions for
ANNs are the sigmoid function, hyperbolic tangent function, rectified linear unit (ReLU),
and softmax.

Neurons organized into a collection constitute a fully connected layer. This layer is
defined by the number of inputs 𝑛 and outputs 𝑚, and without an activation function can
be represented as a basic linear transformation

y = Wx + b (5.2)

Where 𝑊 is a matrix of weights of size 𝑛 × 𝑚, 𝑥 is a vector of inputs of size 𝑚, and 𝑏 is
a vector of biases of size 𝑚.

Artificial neural networks consist of multiple layers. Also, as a useful abstraction, ac-
tivation functions are separated into different layers. We use ReLU and softmax functions
in this work, so let’s discuss them in more detail. Mathematically ReLU function can be
described as follows

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (5.3)

Basically, ReLU returns 0 if the input 𝑥 is less or equal to zero or it returns a value of input
𝑥 otherwise. The advantage of the ReLU activation function is that it adds non-linearity
to the network but it doesn’t suffer from the vanishing gradient problem as a sigmoid or
hyperbolic tangent.

The softmax function can be mathematically described in the following way. Given the
input vector x of length 𝑛 and parameter 𝜏 which is called temperature, softmax function
will output vector y where 𝑦𝑖 is

𝑦(x)𝑖 = 𝑒 𝑥𝑖
𝜏

∑𝑛
𝑗=1 𝑒

𝑥𝑗
𝜏

(5.4)

The softmax function will output a vector of values between 0 and 1 that will sum to
1. The output of the softmax function represents a probability distribution, and parameter
𝜏 helps control the final distribution. The softmax function is often used as a smooth and
differentiable alternative to argmax function.

As we’ve seen, a fully connected layer has weights W and biases b. These are the
trainable parameters of such a layer. A neural network can consist of multiple layers and
has different trainable parameters. Let’s define Θ as a set of all trainable parameters of a
network. To train a network means we what to find such a set of trainable parameters Θ∗

that will minimize a loss function ℒ(Θ)

Θ∗ = argmin
Θ

ℒ(Θ) (5.5)

There exists a variety of different loss functions, depending on the task. For example,
for the regression task, we can use mean squared error, for the classification task, we can
use cross-entropy loss, and for metric learning, triplet loss or contrastive loss is used. In
this work, we will use cross-entropy loss so let’s discuss it further. Firstly, neural networks
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are trained on a set of training examples 𝒯 = {(x𝑖, y𝑖)|𝑖 ∈ {1, 2, ..., 𝑁}}. Here x𝑖 is an
input vector, and y𝑖 is a target vector of size 𝐶 which corresponds to the number of classes.
Additionally, a vector y𝑖 is one-hot encoded, meaning that 𝑦𝑖𝑐 is equal to 1 if example 𝑖
belongs to class 𝑐 otherwise it’s 0. With this, we can formulate cross-entropy loss as follows

ℒ(Θ) = − 1
𝑁

𝑁
∑
𝑖=1

𝐶
∑
𝑐=1

𝑦𝑖𝑐 log( ̂𝑦𝑖𝑐) (5.6)

where ̂𝑦𝑖𝑐 is 𝑐-th element of output of the network for example 𝑖 from the training set.
Another critical aspect to discuss is how to minimize the loss function with respect to all

parameters of a network. There are two crucial algorithms at the heart of loss minimization:
the backpropagation algorithm, and the gradient descent. The backpropagation algorithm
tells how to compute a gradient of the loss function with respect to its parameters ∇ℒ(Θ).

Figure 5.2: Neural network illustration with backpropagation. Image from [21]

In the figure 5.2 above we can see an example of a neural network that consists of 3 layers:
a fully connected layer with parameters 𝑤1, softmax, and loss function. Here 𝑧1 indicates
input to the network, 𝑧2 is the output of the fully connected layer and etc. If we would want
to compute the derivative of loss with respect to parameters of the fully connected layer, we
could use the derivative chain rule, and we would get

𝜕ℒ
𝜕𝑤1 = 𝜕ℒ

𝜕𝑧3
𝜕𝑧3

𝜕𝑧2
𝜕𝑧2

𝜕𝑤1 (5.7)

However, for big networks, it’s impractical. Therefore, backpropagation uses divide and
conquer approach and defines the so-called sensitivity.

𝛿𝑙
𝑖 = 𝜕ℒ

𝜕𝑧𝑙
𝑖

= ∑
𝑗

𝜕ℒ
𝜕𝑧𝑙+1

𝑗
⋅

𝜕𝑧𝑙+1
𝑗

𝜕𝑧𝑙
𝑖

= ∑
𝑗

𝛿𝑙+1
𝑗

𝜕𝑧𝑙+1
𝑗

𝜕𝑧𝑙
𝑖

(5.8)

Where subscript 𝑖 indicates the fact that z𝑙 and 𝛿𝑙 are vectors. And superscript 𝑙 indicates
a layer.

Notice that sensitivity is defined recursively, and in order to compute the sensitivity of
𝑙-th layer, we need to compute the sensitivity of layer 𝑙 + 1.

Lastly, we can compute the derivative of loss with respect to some parameters 𝑤𝑙 as
follows
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𝜕ℒ
𝜕𝑤𝑙

𝑖
= ∑

𝑗

𝜕ℒ
𝜕𝑧𝑙+1

𝑗
⋅

𝜕𝑧𝑙+1
𝑗

𝜕𝑤𝑙
𝑖

= ∑
𝑗

𝛿𝑙+1
𝑗

𝜕𝑧𝑙+1
𝑗

𝜕𝑤𝑙
𝑖

(5.9)

From the equations 5.8 and 5.9, we can see that for each layer, we need to define only
the derivative of output w.r.t. input 𝜕𝑧𝑙+1

𝜕𝑧𝑙 . If a layer has trainable parameters, we also need
to define the derivative of output w.r.t. parameters 𝜕𝑧𝑙+1

𝜕𝑤𝑙 for the backpropagation algorithm
to work.

After we have computed the gradient of loss, we can use gradient descent to update the
network’s parameters iteratively

Θ𝑘+1 = Θ𝑘 − 𝛼∇ℒ(Θ𝑘) (5.10)

Where Θ𝑘 is a set of network parameters at step 𝑘, and 𝛼 is called learning rate.
Finally, it’s usually infeasible to compute gradient descent steps on the whole training set

due to memory constraints. Therefore, for each iteration of gradient descent, we take only
part of the examples from the training set and compute the gradient only for these examples.
For the next step, we take another subset of examples that haven’t been seen yet, and we
repeat this until we use all examples from the training set. These subsets of the training set
are called mini-batches, and when we iterated over all mini-batches, this is called one epoch,
and we can train a network for multiple epochs.

5.2 Proposed solution overview

In the chapter 4 we’ve seen that the geolocation model based on kernel density estimation
performed better than 1-nearest-neighbor and averaging models. In this section, we will try
to improve the results of the KDE model even more. The obvious solution to this problem
would be to learn a new image representation on the dataset that is annotated specifically for
this task. However, as we discussed in the chapter 2, the problem with this approach is that
creating annotations for the task of metric learning is a challenging problem that may require
a lot of manual processing. Instead, we can optimize the existing descriptor that we obtained
from the CNN by Radenovic et al. [19]. This means that instead of learning completely new
descriptors from scratch, we can try to learn some transformation 𝑇 ∶ ℝ2048 ↦ ℝ2048 that will
apply to descriptors to improve the results of the KDE model. Our motivation for choosing
this approach is that it’s a potentially easier task to tune existing descriptors rather than
learn an entirely new representation.

5.2.1 Neural network

We propose to learn transformation 𝑇 ∶ ℝ2048 ↦ ℝ2048 using the neural network shown in
the figure 5.3 below.
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Figure 5.3: The architecture of the proposed neural network

The first thing we can see in the image is that we feed a descriptor of a training query
qt and the set of descriptors of neighbors (p1, p2, ..., p𝑘) for this query to the module called
backbone. We will discuss later how we prepare training examples (qt, (p1, p2, ..., p𝑘)), for
now let’s describe the architecture of the network. The backbone is basically a transformation
function that we want to learn. In this work we will experiment with two different backbones:

1. Backbone that consists of a single fully connected layer with the number of inputs and
outputs equal to 2048.

2. Backbone that consists of the fully connected layer, ReLU, and another fully connected
layer. Both fully connected layers have the number of inputs and outputs equal to 2048.

Figure 5.4: Illustration of two configurations of the network’s backbone

After the input descriptors are transformed in the backbone, they are normalized in the
L2 normalization layer.

After the normalization layer, we can see two custom layers, the first one is the descriptors-
to-weights (D2W) layer, and the second one is the KDE layer.

D2W layer computes similarity as described in the equation 4.5 between transformed
training query ||q′

𝑡||2 and neighbours (||p′
1||2, ..., ||p′

𝑘||2). The output of the D2W layer is
vector w whose length is equal to 𝑘. D2W layer has parameter 𝑚 that corresponds to
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exponential term in the equation 4.5, we can choose whether we want this parameter to be
trainable or not.

KDE layer performs kernel density estimation as described in the equation 4.7. As input
it accepts weights w, and a set of GPS coordinates 𝒞 = {c1, c2, ..., c𝑘} that correspond to
GPS coordinates of neighbours (p1, p2, ..., p𝑘). Similarly as we described in section 4.2 we
sample GPS space to create a set of points 𝒳 = {x1, x2, ..., x𝑁} on which we will compute
KDE. The output of KDE layer is vector ̂𝑓 which represents a density function. The size
of this vector is equal to |𝒳| = 𝑁 = 𝑘(2𝑏𝑛 + 1)2 where 𝑏 = 3 and 𝑛 = 3, the same as was
discussed in section 4.2. We can mathematically describe the KDE layer by rewriting the
equation 4.7 using notation from this section:

̂𝑓(x) = 1
(∑𝑘

𝑖=1 𝑤𝑖)|Σ| 1
2

𝑘
∑
𝑖=1

𝑤𝑖𝒩(x; c𝑖, Σ) (5.11)

where 𝑤𝑖 is 𝑖-th element of vector w, c𝑖 ∈ 𝒞, and x ∈ 𝒳. Lastly, Σ = 𝜎2I, where 𝜎 is
a parameter of the KDE layer, and we can choose whether we want this parameter to be
trainable or not.

After D2W and KDE layers, we can see the softmax layer and a loss function in figure
5.3. The softmax function was described in the equation 5.4, and the loss function that we
use is cross-entropy loss described in the equation 5.6. The fact that we use softmax and
cross-entropy loss is given by how we formulate the optimization problem. The KDE layer
outputs a vector, where each each element represents a value of density function ̂𝑓 for each
point x ∈ 𝒳. From section 4.2 we can remember that we predict coordinates of a query as
x∗ = argmaxx∈𝒳

̂𝑓(x). We cannot use argmax function in the neural network since it’s not
differentiable. Instead, we can use the softmax function as a smooth substitute for argmax,
and using cross-entropy loss, we can penalize the wrong prediction of coordinates. In other
words, we frame training of neural network as a classification problem, where we predict
coordinates of a query by classifying it into one of 𝑁 classes, where 𝑁 = |𝒳| = 𝑘(2𝑏𝑛 + 1)2,
and each class corresponds to one point in set 𝒳 of GPS points.

After we have trained the neural network, the idea is to obtain new descriptors by dis-
carding all layers after the L2 normalization layer and feed descriptors obtained from CNN
[19] to our network, see figure 5.5.

Figure 5.5: Illustration of our neural network during inference

In figure 5.3 we saw that we need to provide two inputs to the backbone, a training
query and corresponding neighbors. While in figure 5.5 we only need to provide one input
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to the backbone. This might be confusing, but our implementation has only one input for
the backbone and L2 normalization layer (though the D2W layer does require two inputs).
And what we actually do is that we firstly pass training query through the backbone and
then pass neighbors through the backbone, and the same for the L2 normalization layer. For
our implementation, we’ve chosen the PyTorch framework and in this framework, passing
one input through the fully connected layer and then the other input through the same layer
during training will result in accumulating of gradients.

We illustrate the difference between forward propagation during training and inference in
the listings 5.1 and 5.2, respectively. Code in these listings is Python-like pseudo-code, and
it does not represent the actual code from our implementation but serves as an illustration.

1 def forward ( s e l f , training_query , neighbours , neighbour_coordinates ) :
2 ”””
3 s e l f . backbone − repre s ent s backbone of the network
4 s e l f . l2_norm_layer − repre s ent s L2 normal izat ion laye r
5 s e l f . d2w − repre s ent s de sc r ip to r s −to−weights l aye r
6 s e l f . kde − repre s ent s the KDE layer
7 s e l f . softmax − repre s ent s softmax laye r
8 ”””
9 transformed_query = s e l f . backbone ( training_query )

10 transformed_neighbours = s e l f . backbone ( neighbours )
11

12 normalized_query = s e l f . l2_norm_layer ( transformed_query )
13 normalized_neighbours = s e l f . l2_norm_layer ( transformed_neighbours )
14

15 w = s e l f . d2w( normalized_query , normalized_neighbours )
16

17 kde_f = s e l f . kde (w, neighbour_coordinates )
18

19 return s e l f . softmax ( kde_f )

Listing 5.1: Forward propagation of the network during training

1 def forward ( s e l f , d e s c r i p t o r s ) :
2 ”””
3 s e l f . backbone − repre s ent s backbone of the network
4 s e l f . l2_norm_layer − repre s ent s L2 normal izat ion laye r
5 ”””
6 transformed_descr iptors = s e l f . backbone ( d e s c r i p t o r s )
7 normal ized_descr iptors = s e l f . l2_norm_layer ( transformed_descr iptors )
8

9 return normal ized_descr iptors

Listing 5.2: Forward propagation of the network during inference

5.2.2 Training Examples

In the previous subsection, we saw that for training the neural network, we need to provide
inputs, such as training query q, a set of neighbors (p1, p2, ..., p𝑘) as well as the set of coordi-
nates of the neighbors (c1, c2, ..., c𝑘), and additionally, we need to provide the classification
target for each query. In this subsection, we will describe how we generate these training
examples. To prepare the collections of training examples, we use training queries set as a
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source of query images, and we use database set as the source of neighbors. Additionally,
we use queries from validation queries set to perform validation. For this work, we have
prepared two collections of training examples, the first one we call the ”top70” training set,
and the second one we call the ”intersection” training set.

Let’s start by describing the ”top70” set. For each query from the training queries set,
we search for 70 nearest-neighbors in the descriptors space. This means that we find 70
descriptors, from the database set that have the lowest Euclidean distance from the query
descriptor for each training query. Then for each query, we compute its prediction target on
the fly during training. The target is computed as follows. Given the true coordinates of
a training query, we find the closest coordinates in the space of generated GPS coordinates
𝒳. Remember that the set 𝒳 represents a space of GPS coordinates that we generated to
compute KDE. The motivation for training the network on these training examples is that we
assume that the top 70 neighbors that we get are indeed similar, however, the most similar
neighbor in descriptor space is not the closest neighbor in coordinates space. So by using
these training examples, we hope to optimize descriptors such that transformed descriptors
will become closer if they are similar and closer in GPS space.

We generate the ”intersection” training set in the following way. For a query image, we
find 100 closest images from the database set in the descriptor space (let’s call this set 𝐷).
Additionally, we find 100 nearest images from the database set in GPS space (let’s call this
set 𝐶). Then we select all those photos that are both in the set 𝐷 and in the set 𝐶. We
call these selected photos the intersection. We add all images from the intersection to the
list of neighbors. For this collection, we have 100 neighbors in total. After we added the
intersection to the list, we fill the rest by adding an even amount of photos from 𝐷 and
𝐶 sets. For each query, we compute the geographical distance between the query and all
images from the intersection and we assign the target to each query as coordinates of the
closest image from the intersection. However, there are cases when the intersection can be
empty. In these cases, we evenly add images from the 𝐷 and 𝐶 spaces to the list of 100
neighbors and the target, and we assign the target as the coordinates of the closest image
(in terms of GPS distance) from the 𝐷 space. Motivation for using these training examples
is similar to the motivation of using the ”top70” set, however, we also add points that are
close in GPS space but not necessarily similar. So we hope that during training, the network
will learn a transformation that will optimize descriptors that are similar and close in GPS
space but will keep further in descriptor space those points that are close in GPS space but
far in descriptor space.

For both ”top70” and ”intersection” training sets, we create respective validation sets, in
the same manner, using validation queries instead of training queries.

5.3 Experiments and results

This section will present our experiments on training the proposed network and discuss
the results. We trained networks with both 1 layer backbone and 2 layers backbone, and we
trained them on both training sets. Before discussing the experiments, let’s first describe how
we perform training. During training, we have three major steps—training step, validation
step, and testing step.
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During the training step, we split the training set into mini-batches and perform opti-
mization. During this step the weights are updated. For each training step, we record the
average loss across all mini-batches.

We split the validation set into mini-batches during the validation step and compute the
average loss on all mini-batches. We use validation loss to estimate how the model performs
on the data that it was not trained on.

We use the network’s backbone to transform descriptors from the database set and val-
idation queries sets during the testing step. Using the transformed descriptors, we perform
KDE geolocation prediction, and we record the accuracy of the prediction on five different
thresholds: 10m, 100m, 500m, 1 km and 5km. We use this step to evaluate how transformed
descriptors influence predictions of the KDE method.

Additionally, we will train the network using two different optimizers and then select the
optimizer that suits better. We use Stochastic Gradient Descent (SGD) with Momentum
and Adam optimizer. For the SGD with momentum, we choose the value of momentum
𝛾 = 0.9 and keep it fixed across all experiments. For both SGD and Adam, we will need to
pick the appropriate learning rate 𝛼.

5.3.1 Training network with one layer backbone

Let’s start by training the network with one layer backbone on the ”top70” training set.
Our network is quite small, therefore it doesn’t take much time to train. We can utilize

this to find the best combination of optimizer and learning rate by running multiple training
procedures for three epochs and record the loss and testing accuracy. We will train the
network with the following combinations of optimizer and learning rate:

• For SGD learning rate 𝛼 ∈ {0.001, 0.005, 0.0075, 0.01, 0.05, 0.1, 0.5}
• For Adam 𝛼 ∈ {0.00005, 0.00001, 0.0005, 0.001, 0.01, 0.1}
Also, for this experiment, we set the parameter of the D2W layer 𝑚 = 3, and we set the

KDE layer 𝜎 = 0.001 and make them both constant, i.e. we don’t learn these parameters
during training.

The figure 5.6 shows training and validation losses for each epoch. We can see that for
the majority of runs, losses decrease.
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Figure 5.6: Training and validation losses
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However, let’s look at the figure 5.7, which shows the accuracy of the KDE model for
transformed descriptors. We can see that the KDE model’s performance significantly reduces
for some combinations of optimizer and learning rate . Also note, that on the x-axis of this
figure, we have −1 as the first epoch. This simply means that we run a testing step before
any training has started.
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Figure 5.7: Testing accuracy for multiple runs when training the network

In the figure 5.8 we show accuracy for the same runs, but we remove those runs that
significantly reduce performance from the graph, so we could better see the rest. From the
figure, it seems like the change of accuracy for most remaining runs is insignificant. It also
appears that accuracy tends to decrease.
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Figure 5.8: Testing accuracy for multiple runs when training the network
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From the figure 5.8 it seems that training with SGD optimizer and learning rate 𝛼 = 0.001
produces the best results on 100m threshold, even though the change in the accuracy is
insignificant. We try to train the model with these parameters for eight epochs to see if
this will help to improve the results. However, in the figure 5.9 we can see no significant
improvement in the accuracy.
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Figure 5.9: Training of the one-layer model on ”top70” dataset using SGD with momentum
and 𝛼 = 0.001

We further train the network on the ”intersection” training set to see if this will change
the outcome.

We also start by training the network using different optimizers and learning rates. For
this experiment, we use fewer combinations than for the previous one, namely

• For SGD learning rate 𝛼 ∈ {0.001, 0.01, 0.1, 0.5}

• For Adam 𝛼 ∈ {0.00005, 0.00001, 0.0005, 0.0001, 0.001}

In the figure 5.10 we can again see that for the majority of combinations performance of
the KDE model drops significantly. However, for SGD optimizer with learning rate 𝛼 = 0.05
and 𝛼 = 0.1 we can see significant improvements on the 10m and 5km thresholds.
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Figure 5.10: Testing accuracy for multiple runs when training the network

We train the network using SGD optimizer with a learning rate 𝛼 = 0.05 and 𝛼 = 0.1
for six epochs to see if this will result in additional improvements. The testing accuracy for
respective parameters is shown if figures 5.11 and 5.12. From these graphs, we can see that
additional training does not further improve results.
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Figure 5.11: Testing accuracy for training the network on the ”intersection” training set with
SGD optimizer and learning rate 𝛼 = 0.05
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Figure 5.12: Testing accuracy for training the network on the ”intersection” training set with
SGD optimizer and learning rate 𝛼 = 0.1

In chapter 4 we saw that parameter 𝜎 of the KDE methods influences accuracy on certain
thresholds. We try to set 𝜎 = 0.005 and train the network on these data to see if this can
help improve results not only on 10m thresholds but also on 100m and 500m. However, we
saw no improvements. We also try to train the network when the parameter 𝜎 is trainable.
However, during training, 𝜎 becomes very large, which significantly reduces the performance
of the KDE method.

5.3.2 Training network with two-layer backbone

In this subsection, we train a network with two-layer backbone. The motivation for this is
to see if using a more complex architecture, compared to the 1 layer backbone, can improve
the performance of the KDE geolocation method. First, we will train the network on the
”top70” training dataset and then on the ”intersection” training dataset.

We also start by training the network using different optimizers and learning rates. For
this experiment, we use the following combinations

• For SGD learning rate 𝛼 ∈ {0.001, 0.01, 0.1, 0.5}

• For Adam 𝛼 ∈ {0.00005, 0.00001, 0.0005, 0.0001, 0.001}

We see a similar situation in the figure 5.13 as in the previous experiments on one layer
backbone.
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Figure 5.13: Testing accuracy for multiple runs when training two-layer backbone on ”top70”
training dataset

For some combinations, testing accuracy reduces significantly. Therefore we remove them
from the graph, and in the figure 5.14 we show results without those combinations. From
this figure, we don’t see any improvements in the accuracy of the KDE method.
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Figure 5.14: Testing accuracy for multiple runs when training two-layer backbone on ”top70”
training dataset

Additionally, we train the network with a two-layer backbone on the ”intersection” train-
ing set. Similarly, as in previous experiments, we train the network for different combinations
of optimizer and learning rate. We use the same combinations as in the last experiment.

In the figure 5.15 we see similar results as when we trained the network with a one-layer
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backbone. The only improvement we can see is that on 10m threshold when trained with
Adam optimizer with learning rate 𝛼 = 0.00005.
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Figure 5.15: Testing accuracy for multiple runs when training two-layer backbone on ”inter-
section” training dataset

We also tried to train the network with Adam optimizer and learning rate 𝛼 = 0.00005
for six epochs. However, performance starts to decrease after the third epoch.

5.3.3 Results

In the experiments described in previous subsections, we tried to train the neural network to
improve image representations for the KDE geolocation method. We trained two versions of
the network with different sets of hyper-parameters and optimizers on two different training
sets. As we can see from those experiments, we could not significantly improve the results of
geolocation prediction with the chosen approach. However, there were minor improvements
in geolocation prediction accuracy, namely on the 10m and 5km accuracy thresholds.

We would like to know how the performance of the KDE geolocation method with our
optimized descriptors compares to the performance with the original descriptors on the
testing queries set. When we were training the network, during testing we performed KDE
geolocation with parameters 𝑘 = 70, 𝑚 = 3 and 𝜎 = 0.001. However, the best parameters
for the KDE method with original descriptors were 𝑘 = 60, 𝑚 = 5, 𝜎 = 0.0025. So let’s see
how KDE with optimized descriptors compares to this original KDE. For this, we transform
descriptors from the database set and testing queries set using our neural network with one
layer backbone, trained on the ”intersection” training set. After that we will perform KDE
geolocation prediction with transformed descriptors, using both (𝑘 = 70, 𝑚 = 3, 𝜎 = 0.001)
and (𝑘 = 60, 𝑚 = 5, 𝜎 = 0.0025) sets of parameter, and we will compare it to the KDE
method with original descriptors.
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Threshold KDE optimized
(𝑘 = 70, 𝑚 = 3, 𝜎 = 0.001)

KDE optimized
(𝑘 = 60, 𝑚 = 5, 𝜎 = 0.0025)

KDE original
(𝑘 = 60, 𝑚 = 5, 𝜎 = 0.0025)

10m 0.039 0.029 0.019
100m 0.222 0.228 0.269
500m 0.346 0.378 0.444
1km 0.411 0.441 0.52
5km 0.705 0.715 0.709

Table 5.1: Accuracy of KDE with optimized descriptors vs. KDE with original descriptors
on different distance thresholds

This table shows that transformed descriptors outperform the original by 2% and 1% on
the 10m threshold. However, the difference on the 5km threshold is insignificant. Moreover,
this performance gain on the 10m threshold comes at the price of reduced performance on
100m, 500m and 1km thresholds.

Also, in chapter 4 we discussed that choosing different sigma influences the accuracy on
different thresholds. Let’s compare KDE geolocation with original and transformed descrip-
tors using more suitable parameters for predictions on the 10m threshold.

Threshold KDE optimized
(𝑘 = 60, 𝑚 = 3, 𝜎 = 0.0001)

KDE original
(𝑘 = 60, 𝑚 = 3, 𝜎 = 0.0001)

10m 0.052 0.038
100m 0.179 0.226
500m 0.302 0.392
1km 0.364 0.477
5km 0.692 0.665

Table 5.2: Accuracy of KDE with optimized descriptors vs KDE with original with param-
eters suitable for 10m threshold

The table above shows that the methods with transformed descriptors perform slightly
better on 10m and 5km distance thresholds. However, compared to the KDE method with
original descriptors, it performs significantly worse on 100m, 500m and 1km thresholds.

Lastly, let’s do the same, but now choose more suitable parameters for predictions within
the 5km threshold. The table below shows that KDE with optimized descriptors performs
slightly worse on 5km and slightly better on 10m thresholds. But again, the performance of
KDE is significantly worse on 100m, 500m and 1km thresholds with optimized descriptors.
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Threshold KDE optimized
(𝑘 = 60, 𝑚 = 10, 𝜎 = 0.05)

KDE original
(𝑘 = 60, 𝑚 = 10, 𝜎 = 0.05)

10m 0.013 0.005
100m 0.108 0.121
500m 0.330 0.386
1km 0.456 0.530
5km 0.730 0.740

Table 5.3: Accuracy of KDE with optimized descriptors vs KDE with original with param-
eters suitable for 5km threshold

Overall we didn’t manage to improve the performance of the KDE geolocation method
using transformed KDE. When we managed to improve performance on the 10m threshold,
it was at a price of worse performance on other thresholds. is significantly worse on 100m,
500m and 1km thresholds
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6 Summary

This thesis aimed to build an image localization system that relies on a content-based image
retrieval pipeline, given a large dataset of geotagged images, and seek improvements of the
system by learning an improved image representation. In this final chapter, we give a brief
summary of this thesis.

In chapter 1 we gave a brief introduction to this thesis, stated the goal, and outlined the
structure of the thesis.

In chapter 2 we provided an overview of the theoretical background of content-based
image retrieval and its application in image geolocation. We studied how compact image
representations are obtained using classical methods and convolutional neural networks. We
also studied how the problem of image geolocation is solved through content-based image
retrieval by reviewing related work.

In chapter 3 we described how we collected the dataset for this thesis. We used an image
hosting platform called Flickr to download publicly available photos taken in the Czech
Republic and had GPS coordinates. In total, we collected 230883 geotagged photos. We
also provided a simple analysis of collected data and showed that the majority of photos in
our dataset were taken in Prague. We also described how we split our data into 4 datasets:
database set, training queries set, testing queries set, and validation queries set. The database
set represented the biggest part, and it’s a set where we were looking for similar images to
the query images. Validation and testing query sets were used as datasets of query images
for validation and testing. We used the training queries set to train the model to improve
the results of the geolocalization model.

In chapter 4 we described the image representation that we use and that we obtained
them from the convolutional neural network proposed by Radenovic et al. [19]. Then we
defined the distance metrics and similarity functions that we use to determine the similar-
ity between images. Further, we introduced the methods that we used to predict image
geolocation; namely, we described 1-nearest-neighbor methods, two methods that use coor-
dinates averaging to predict the location, one which uses simple averaging and the other
uses weighted averaging, and lastly we described the geolocation method based on kernel
density estimation. We also mentioned how we calculate the methods’ accuracy and measure
accuracy on different distance thresholds. Later we performed experiments on these methods
to determine which parameters give the best results and how different parameters influence
the accuracy of a model. Lastly, we chose the best models and compared them, and we’ve
seen that the geolocation method based on kernel density estimation outperforms the other
methods.
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Lastly, in chapter 5 we proposed a method to improve the performance of the KDE
method by learning an improved image representation. Since our approach is based on
the artificial neural network, we firstly reviewed a theoretical background of ANNs. We
discussed what are neural networks and how they are trained. We described our approach
to improving the results of the KDE method by learning some transformation that could be
applied to existing descriptors. We discussed in detail the architecture of our neural network
and all inputs and outputs, as well as we described how we generate the training example on
which we train the neural network. Lastly, we tried to train the neural network. However,
we showed that we were not able to obtain image representations that would significantly
improve the performance of the kernel density estimation method, though we were able to
get some minor improvements on the 10-meter accuracy threshold. Still, this improvement
came at the cost of reduced performance on higher distance thresholds.
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A Appendix

Figure A.1: Example of 36 images from the dataset
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Figure A.2: Parameter selection for averaging method with cosine distance
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Figure A.3: Parameter selection for weighted averaging method with cosine distance
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Figure A.4: Parameter selection for KDE with cosine distance
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Figure A.5: Average accuracy for different values of 𝜎. KDE with cosine distance.
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Figure A.6: Average accuracy for different values of 𝑘. KDE with cosine distance.
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Figure A.7: Average accuracy for different values of 𝑚. KDE with cosine distance.

Link to the github repository with implementation https://github.com/ABlack-git/diploma-thesis
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