
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Combining verification methods and adversarial
sample generation with game-theoretic frameworks

Ondřej Skoumal

Supervisor: Mgr. Branislav Bošanský, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2021

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

368933Osobní číslo:OndřejJméno:SkoumalPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Využití algoritmů verifikace a generování adversariálních vstupů v herně-teoretických algoritmech

Název diplomové práce anglicky:

Combining verification methods and adversarial sample generation with game-theoretic frameworks

Pokyny pro vypracování:

Seznam doporučené literatury:
[1] Dvijotham K, Stanforth R, Gowal S, Mann TA, Kohli P. A Dual Approach to Scalable Verification of Deep Networks.
InUAI 2018 Mar (pp. 550-559).
[2] Ruan W, Huang X, Kwiatkowska M. Reachability analysis of deep neural networks with provable guarantees.
InProceedings of the 27th International Joint Conference on Artificial Intelligence 2018 Jul 13 (pp. 2651-2659). AAAI Press.
[3] Šilhavý P. "Využití algoritmu inkrementálního generování strategií pro klasifikaci akcí útočníka." (2019). Diplomová
práce. České vysoké učení technické v Praze

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Mgr. Branislav Bošanský, Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 21.05.2021Datum zadání diplomové práce: 19.02.2020

Platnost zadání diplomové práce: 19.02.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Mgr. Branislav Bošanský, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank my supervisor, Doc.
Mgr. Branislav Bošanský, Ph.D., for his
very patient guidance, insightful helpful
advises, and constructive criticism.

Declaration
I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis.

Prague, May 21, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze 21. května 2021

v

Abstract
This thesis examines the possible use of
the domain-specific knowledge of NNs to
speed up the double-oracle framework,
which solves the Nash equlibria of the ad-
versarial classification game. We examine
various adversarial attack methods and
methods for verification of NNs and ana-
lyze their possible compatibility with the
DO framework. We create a compatibility
framework for entire families of methods
and examine three of them in the exper-
iments. It shows that PGD attack with
compatibility framework can rapidly ac-
celerate the DO algorithm, although new
bottleneck shows up.

Keywords: Double Oracle, adversarial
machine learning, infinite games

Supervisor: Mgr. Branislav Bošanský,
Ph.D.

Abstract
Diplomová práce se zabývá možným
použitím doménově-specifických znalostí
z oblasti neuronových sítí v double-oracle
frameworku, který se zabývá najitím
Nashova equilibria adversariálního klasi-
fikačního problému. Procházíme různé
druhy metod adversariálních útoků a
metod na verifikaci neuronových sítí, a
analyzujeme jejich možnou kompatibilitu
s frameworkem double-oracle. vytvořili
jsme framework zajišťující kompatibilitu
s celými "rodinami" metod a tři z nich
experimentálně analyzujeme. Ukazalo se
že PGD útok společně s frameworkem za-
jišťujícím kompatibilitu dokáže rapidně
zrychlit DO algoritmus, i přesto že se našel
další zdroj zpomalení algoritmu.

Keywords: algoritmus inkrementálního
generování strategií, adversariální
klasifikace, nekonečné hry

Title translation: Využití algoritmů
verifikace a generování adversariálních
vstupů v herně-teoretických algoritmech

vi

Contents
1 Introduction 1
1.1 Related work 3
1.2 Outline . 3
2 Game Theory Concepts 5
2.1 Introduction 5
2.2 Normal-Form Games 6
2.2.1 Definition 6
2.2.2 Strategies in Normal-Form
Games . 6

2.2.3 Definition of Nash Equilibrium 7
2.2.4 Computing Nash Equilibria in
Zero-Sum NFG 8

2.2.5 Computing Nash Equilibria in
General-Sum NFG 10

2.3 Infinite Games 10
2.3.1 Definition 10
2.3.2 Computing Nash Equilibria in
Infinite Games 11

2.4 Double-Oracle Algorithm for NFG 12
3 Double-Oracle Framework 15
3.1 Adversarial Classification Problem
as a Game . 15

3.2 Computing Nash Equilibrium by
the Double-Oracle algorithm 16
3.2.1 Defender’s Oracle 18
3.2.2 Attacker’s Oracle 18
3.2.3 Additional comments and
observations 19

4 Adversarial Attacks and
Verification Methods 21
4.1 Introduction 21
4.1.1 Deep Feedforward Neural
Networks . 22

4.1.2 Properties of Adversarial
Attacks . 22

4.1.3 Adversarial Attacks as
Optimization Problem. 23

4.2 Finding Lower Bounds -
Adversarial Attacks 25
4.2.1 Fast Gradient Sign Method. . 25
4.2.2 Basic Iterative Method 26
4.2.3 Projected Gradient Descent . 26

4.3 Exact Solution - Complete
Verification . 27
4.3.1 Reluplex 28

4.3.2 Marabou 28
4.3.3 MIPVerify 28
4.3.4 Worst-case Adversarial Attack 29

4.4 Finding Upper Bounds -
Incomplete Verification 30
4.4.1 Convex Relaxations 30
4.4.2 Abstract Interpretations 31
4.4.3 Bound Propagation 31

5 Compatibility Framework 33
5.1 Methods . 33
5.2 Direct Attack 33
5.2.1 Outline 33
5.2.2 Attack Setup 34

5.3 Utility Estimation Net 35
5.3.1 Modelling Attacker’s Best
Response by DNN 35

5.3.2 Basic Structure of Utility
Estimation Net 36

5.3.3 Support Size Minimization . . 37
5.3.4 Compatibility with PGD
Attack . 38

5.3.5 Compatibility with MIPVerify
and Worst Case MILP 39

6 Experimental Analysis 43
6.1 Experimental Data 43
6.2 DO Framework Settings 45
6.3 Direct Attack 46
6.3.1 Advantages and disadvantages
and discussion 48

6.3.2 Training of NNs 48
6.4 Estimation net Attack using PGD 49
6.4.1 Advantages and disadvantages
and discussion 50

6.5 Estimation net Attack using
MILP . 52
6.5.1 Advantages and disadvantages
and discussion 53

6.6 Issues . 53
6.7 Other methods 54
6.8 Implementation Details 54
7 Conclusion 55
7.1 Future Work 55
A Bibliography 57
B Framework Source Code 63

vii

C CD Content 67

viii

Figures
1.1 An image of "pig" from ImageNet
database [1]. 1

1.2 An image of "pig airliner"
adversarial example. 2

1.3 A random noise computed by
gradient descent to create "pig
airliner" adversarial example. 2

2.1 The payoff matrix of Rock, Paper,
Scissors game. 6

2.2 A Stag Hunt game [2]. 8
2.3 The visualization of the
Double-oracle algorithm [3]. 12

3.1 Schema of the used neural network
(taken from [4]. 18

4.1 An example of a fully-connected
DNN with 5 input neurons (green), 2
hidden layers each containing 10
neurons (blue) and 5 output nodes
(red). 22
4.2 An simplified visualization of
learned decision boundary and real
decision boundary for a problem with
two classes [5]. 23

4.3 An exact adversarial polytope
(second from right), and an (convex)
outer approximation of the
adversarial polytope (first from right)
[6]. 27

4.4 An illustration of the convex
relaxation of ReLU [6]. 30

4.5 An illustrative example of deriving
the quadratic constraints for the tanh
function [7]. 31

4.6 An illustrative example of interval
bound propagation from IBP method
[8]. 32

5.1 The schema of UEN with n input
neurons (green) as features, two
hidden layers with custom number of
neurons (blue) and one neuron (red)
in output layer. The defender’s pure
strategy is "incorporated" into the
UAE roughly the same as is depicted
on the schema (in the schema
defender plays only one pure strategy
with probability 1). 36

5.2 The schema of Multiply net with n
input neurons (green) as features,
two hidden layers with custom
number of neurons (blue) and one
neuron in output layer (red). The
probability inputs connected to the
second hidden layer represents
possible pure strategies of the
defender (teal nodes). 37

5.3 The schema of the utility
estimation net performing an
classification, with n input neurons
(green) as features, three hidden
layers and eleven neurons (red) in the
output layer (classes). This network
represents the defender playing only
pure strategies. The orange nodes
represents the defender’s NN. The
brown nodes represents threshold net.
Orange and brown nodes together
make the DetectionThreshold net
(with input weights). Blue nodes
together with red nodes represents
the multiplication network (with
input weights). On the schema,
weights with predefined zero value
are not depicted. the schema
therefore represents the actually
copied weights from all required
networks. The output layer has
marked the individual points which
belongs to the respective class. . . . 41

6.1 The example of attacker’s
functions and the benign points [4]. 43

ix

6.2 The size of the support in the
respect to the number of iterations
for PGD attack on estimation net,
with the two-dimensional linear
utility. 45

6.3 The size of the support in the
respect to the number of iterations
for PGD attack on estimation net,
with the three-dimensional linear
utility. 46

6.4 The convergence of PGD direct
attack with the two-dimensional
linear utility, for 100 DO iterations,
with only 3 restarts. The average
time needed for the one PGD direct
attack best response was 0.56 sec.
The defender’s training took 2968
sec. 47

6.5 The convergence of PGD direct
attack with the two-dimensional
linear utility, for 100 DO iterations,
with only 8 restarts but stopped after
PGD encountered loss in a value of
the actual point. The average time
needed for the one PGD direct attack
best response was 8.74 sec. The
defender’s training took 5606 sec. . 47

6.6 The difference between the
attacker’s actual utility values for
PGD estimation network attack and
discretization with the gradient
optimization (original) algorithm on
50 iterations of DO in dimension 1,
linear utility, for PGD with 5
restarts. 51

6.7 The difference between the
attacker’s actual utility values for
PGD estimation network attack and
discretization with the gradient
optimization (original) algorithm on
50 iterations of DO in dimension 2,
linear utility, for PGD with 5
restarts. 51

6.8 The utility values of MILP
Worst-case attack with the
one-dimensional linear utility and
maximum allowed support size of 3. 52

6.9 The utility values of MILP
Worst-case attack with the
two-dimensional linear utility and
maximum allowed support size of 3. 53

x

Tables
6.1 The formulas for the number of
benign points being generated
generated [4]. 44

6.2 The exact values of the Nash
equilibria from [4]. 44

6.3 Experimental results for the PGD
estimation network attack linear
utility and individual dimensions in
columns and size of the maximum
allowed best response on the rows.
All results are for the defender’s Nn
with 10 neurons. 49

6.4 Experimental results for the PGD
estimation network attack with linear
utility and individual dimensions in
columns and size of the maximum
allowed best response on the rows.
All results are for the defender’s NN
with 10 neurons. 49

6.5 Experimental results for the PGD
estimation network attack with
one-maxima utility and individual
dimensions in columns and size of the
maximum allowed best response on
the rows. All results are for the
defender’s NN with 10 neurons. . . . 50

6.6 Experimental results for the PGD
estimation network attack with
one-maxima utility and individual
dimensions in columns and size of the
maximum allowed best response on
the rows. All results are for the
defender’s NN with 10 neurons. . . . 50

6.7 Experimental results for the PGD
estimation network attack with
two-maxima utility and individual
dimensions in columns and size of the
maximum allowed best response on
the rows. All results are for the
defender’s NN with 10 neurons. . . . 50

6.8 Experimental results for the PGD
estimation network attack with
two-maxima utility and individual
dimensions in columns and size of the
maximum allowed best response on
the rows. All results are for the
defender’s NN with 10 neurons. . . . 50

B.1 The version of software used in the
framework . 63

xi

Chapter 1
Introduction

In today world, artificial intelligence (AI) becomes less and less the enigmatic
field inducing the ideas of huge computers that one day mysteriously become
self-aware and tries to do some malicious intention against humans, as is
common for example in science-fiction movies.

Instead, subfield of AI, the machine learning, has incredibly advanced over
the last 10 years, and its many state of the art successes such as optical
character recognition [9], face recognition [10], speech recognition [11], to
playing various games, e.g. Starcraft 2 [12] or Atari games [13] and huge
practical application potential exposes it’s true paradigms, algorithms and
possibilities to a wider public. Yet another example of possible machine
learning deployment can be seen in recent trend in automotive and other
industries called Industry 4.0 [14].

In the machine learning, the deep neural networks surpasses other machine
learning technologies and are behind successes mentioned earlier. [15]. Yet
recently, it was shown that exactly these neural networks are highly susceptible
to small perturbations performed to the input (these minimally perturbed
inputs are called adversarial examples, because they are generated by the
adversary), which cause NNs to misclassify with high probability [16, 17, 5].

To demonstrate simplicity and effectiveness of adversarial attacks, we will
create an adversarial example for the winner of ILSVRC 2015 classification
task, the 50-layer deep convolutional neural network ResNet50 [18]. We take
an image of a pig from ImageNet images [1] (if we would classify it by our
(pre-trained) model we would get approximately 0.996 probability of a pig)

Figure 1.1: An image of "pig" from ImageNet database [1].

1

1. Introduction ...
We create adversarial example from it (we will describe process of creation

of adversarial examples in much greater detail later in chapter) by using
e.g. PyTorch framework [19]. It can be done by computing gradient with
respect to this original image, so it tells us how small change to image will
affect the loss function. So we will maximize the loss with respect to our
new adversarial image and original image will be changed to other image
with highly decreased logit value of the original class. If we in the same time
minimize loss of a target class, we will get targeted adversarial example. With
PyToch, in a few lines of code we change the visuals of a pig (unnoticeably
to human viewers) and trick model into deciding that this new image is an
airliner, with a convicting approximately 0.968 probability:

Figure 1.2: An image of "pig airliner" adversarial example.

And all it took was adding this "random" noise to the original image:

Figure 1.3: A random noise computed by gradient descent to create "pig airliner"
adversarial example.

As this example can be seen rather funny than dangerous, it is not hard
to conceive much more dangerous situations, such as autonomous car not
stopping on the Stop sign because of a little mud on this sign, or much
more sensitive areas where machine learning can be used, more exposed to
adversarial behavior such as security - e.g. malware detection.

This lead us to the adversarial settings - the game theory studies various
adversarial games [20] and one such game can be detecting an input to be
malign or benign, in dependency on some negative data. We can use game-
theory to model such situations, and even use its tools to find the optimal or
near optimal solutions [21].

So why we could not use the game-theory to solve the problem of finding
the optimal or nearby optimal strategy how to resist the adversarial attacks -

2

... 1.1. Related work

game theoretic approaches are employed by many works that aims to make
adversarially robust classifiers [22].

In this thesis, we examine these approaches and methods for generating
adversarial examples and verification of neural networks to analyse their
possible use and compatibility in game-theoretical model. We use an existing
Double Oracle framework [4], which models an adversarial classification
problem as an almost zero-sum game, in which the strategy of the defender is
to setting up hyper-parameters of a classifier and the strategy of an attacker
is to choose such an input that causes misclassification. The framework is
capable to incrementally build a discrete version of this infinite game and
converge to it’s Nash equilibrium on various predefined domains, thus find a
robust classifier for the defender [4]. The framework experiments with three
classifier types - decision trees, support vector machines and neural networks,
and although it converges with all these classifiers in it’s experiments, the
computation time grows very quickly with number of dimensions.

1.1 Related work

As mentioned earlier, there is now a very large volume of work on the
verification of neural networks and generating adversarial examples. Many
of these works proposes various forms of adversarial training, a method of
training in which the defender augments each minibatch of training data with
adversarial examples to improve robustness of a model [23]. We discuss these
works in detail in chapter ID, but to date, it remains unknown what exactly
makes neural network models so vulnerable to adversarial attacks or if exists
any universal defense to protect from them [5].

An intriguing existence of the adversarial examples was first discovered by
Szegedy et al. [16]. In [17], authors suggests that adversarial examples can
be explained as a property of high-dimensional dot products, and that they
are caused by the fact that a models are being too linear.

Therefore, in this work we study the various adversarial attacks and veri-
fication methods for the deep neural network domain and we hope to find
a methods compatible with the reward functions and strategic constraints
of the adversarial game setting, which we would leverage to improve the
scalability of the DO framework.

1.2 Outline

We first define necessary game theoretic concepts, on which is Double Oracle
framework build on, in Chapter 2.

Later in Chapter 3 we use these concepts and define adversarial classification
problem as a game as is implemented in Double Oracle framework we use,
and introduce this framework in detail.

Next in Chapter 4 we study the adversarial attacks and verification methods
to possibly use the to accelerate the DO framework.

3

1. Introduction ...
In Chapter 5, we propose a compatibility framework that is possible to

provide compatible ground for many various methods.
We study and experiment with three of them and provide the experimental

analysis in 6.
Finally, we conclude the efforts we made and discuss the results, as well as

possible future work.

4

Chapter 2
Game Theory Concepts

In this chapter, we provide basic overview of necessary game theory defini-
tions and concepts which are in the next chapter used to define adversarial
classification problem as a game, and to find it’s solution.

We define basic concepts on the simplest form of games first, which we
later generalize to the game-theoretical models which are able to capture
critical features of our adversarial classification problem, and which we are
able to solve.

2.1 Introduction

Game Theory is a computational framework used in various fields such as
economics, political science, psychology, biology and computer science. It
is using mathematical formalization of a strategic interaction between self-
interested agents - and works with mathematical models called games. The
agents interacting in the games are called players, and in game theory they
are expected to behave rationally [21, 24].

Example 2.1. Popular Rock, Paper, Scissors is an example of a two-player
game.

The objective of the game theory is to completely analyze games, which
means to predict the result or at least find conditions which the result must
uphold [24].

Games can be divided into non-cooperative games and cooperative games.
Non-cooperative games models interactions between individual players with
their interests, and in cooperative games there are modelled interactions
between coalition of players [21].

The individual player’s interests are modelled using utility theory. An
utility function maps states of the game to real numbers and thus shows
player’s preferences. The interests of individual players doesn’t need to be
necessarily in conflict with other players, but often is [21].

We focus only on the two-player games in this thesis, as our adversarial
classification problem setting has only two players - the attacker and the
defender.

5

2. Game Theory Concepts
2.2 Normal-Form Games

2.2.1 Definition

The most fundamental formalization of strategic interaction between players
is the normal form game. In this form, every player’s utility is stated for all
players’ combined actions. The game is single-step, which means that after
all players performs simultaneously single action, the game ends.

Definition 2.2 (Normal-form game [21]). A (finite, n-person) normal-form
game (NFG) is a tuple (N,A, u), where:.N is a finite set of n players, indexed by i;. A = A1 × · · · ×An, where Ai action is a finite set of actions available to

player i. Each vector a = (a1, . . . , an) ∈ A is called an action profile;. u = (u1, . . . , un), where ui : A → R is a real-valued utility (or payoff)
function for player i

Small normal-form games can be conveniently represented by matrices,
called the payoff matrices:

Example 2.3. We show the payoff matrix of an previous example 2.1 of hand
game Rock, Paper, Scissors.

P
la
ye
r
1

Player 2
Rock Paper Scissors

Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

Figure 2.1: The payoff matrix of Rock, Paper, Scissors game.

Each of the two players can choose either rock, paper, or scissors 1. Each
player action wins against one, loses against other and draws against itself.
E.g. rock wins over scissors, loses against paper and draws against another
rock.

2.2.2 Strategies in Normal-Form Games

If the player choose single action and play it, we term it as a pure strategy.
So the rows of the matrix in example 2.3 represent pure strategies for player
1, columns represent pure strategies of player 2.

Concept of pure strategies is not enough for solution of the normal-form
games, as there exists games in which the solution must contain randomization
over available actions. Such a game is indeed the Rock, Paper and Scissors
game, because the pick of an arbitrary pure strategy leads to negative utility,

1there exists many variants, such as a full-body variation in lieu of the hand signs called
Bear, Hunter, Ninja

6

......................................2.2. Normal-Form Games

e.g. if player 1 strategy would be Rock, then player 2 will always choose
Paper, so player 1 would always lose.

Definition 2.4 (Mixed strategy [21]). Let (N,A, u) be a normal-form game,
and for any set X let Π(X) be the set of all probability distributions over X.
Then the set of mixed strategies for player i is Σi = Π(Ai).

So the mixed strategy can be seen as generalization of the pure strategy
concept. The pure strategies which are given non zero probabilities by mixed
strategy s are called support of s. If the size of support of s equals number of
actions of s, we will call it the full support [21].

We can extend the utility function to calculate the expected utility value as:

Definition 2.5 (Expected utility [21]). Given a normal-form game (N,A, u),
the expected utility ui for player i of the mixed-strategy profile σ = (σ1, . . . , σn)
is defined as

ui(σ) =
∑
a∈A

ui(a)
n∏
j=1

σj(aj) (2.1)

Now that we can compute expected utility of individual players according
to their respective strategies, we can ask how to maximize their individual
utility, because as utility represents preferences of players, each player’s goal
is naturally to maximize it [3].

Example 2.6. We stay with our example of Rock, Paper and Scissors game,
for which we have already defined the payoff matrix (example 2.3), and
we compute expected utility for player 1 with the strategy profile σ =
((1

4 ,
1
2 ,

1
4), (1, 0, 0)), i.e. player 1 plays strategy with full support, Rock and

Scissors have probabilities of 1
4 , Paper have probability of 1

2 . Player 2 plays
strategy with only one single action in support - Rock. The expected utility
can be computed as (we leave actions for which player 2 has zero probability
of playing out of computation):

u1(σ) = 0 · 1
4 · 1 + 1 · 1

2 · 1− 1 · 1
4 · 1 = 1

4 (2.2)

Because player 1 plays with highest probability Paper, which "counters"
pure Rock strategy of player 2, he gets positive expected utility of 1

4 . From
this observation we can notice that if player 1 knew pure strategy of the
opponent, he can simply choose the best response and have maximum possible
utility - his best response to pure Rock strategy of the opponent would be
to play pure strategy Paper with expected utility 1. This observation is
important and will take us further to the most influential concept in game
theory, the Nash equilibrium [21].

2.2.3 Definition of Nash Equilibrium

Definition 2.7 (Best response [25]). Let σ = (σ1, . . . , σi, . . . , σn) be a strategy
profile. Player i’s best response to the strategy profile σ−i = (σ1, . . . , σi−1,

7

2. Game Theory Concepts
σi+1, . . . , σn) is a mixed strategy σ∗i ∈ Σi such that ui(σ∗i , σ−i) ≥ ui(σi, σ−i)
for all strategies σi ∈ Σi.

So the best response is such a strategy of the player that there doesn’t
exists any other strategy that would give better utility for this player against
some given strategy of the opponent.

Definition 2.8 (Nash equilibrium [25]). A mixed strategy profile σ is a Nash
equilibrium if ui(σ′i, σ−i) ≤ ui(σ) for all i and all σ′i ∈ Σi.

If the players are playing Nash equilibrium (NE), neither of them has
anything to gain by changing only their own strategy, so Nash equilibrium is
a stable strategy profile. It is important to state that Nash equilibrium don’t
anticipate any form of communication between players - they cannot arrange
ahead.

Example 2.9. We show Nash equilibrium in interesting example that is less
classical (but very similar to the Prisoner’s dilemma) - the Stag Hunt [2]. We
have two hunters going to the hunt, each one from a distant village and they
cannot coordinate ahead which game to hunt. They can go hunting for a stag
which has the most meat but risks that the other hunter will go hunting for
a hare, and if they both go for a hare they share two small hares living in the
range. If one goes for a hare and other for a stag, the one going for a hare
finds two of them and other cannot alone catch a stag, so he returns with
nothing. The payoff matrix is:

P
la
ye
r
1

Player 2
Stag Hare

Stag 3, 3 0, 2
Hare 2, 0 1, 1

Figure 2.2: A Stag Hunt game [2].

We can simply find the pure-strategy Nash equilibria in this game by
iterating through all possible states and analyse if any of players has a
incentive to change his or her strategy.

The one Nash equilibrium is the {Stag, Stag} strategy profile, but there
exists another one, the {Hare,Hare}.

The example 2.2 demonstrates important aspect - in general a game can
have multiple NE that have different expected utilities [3].

2.2.4 Computing Nash Equilibria in Zero-Sum NFG

If we want to compute NE effectively in NFG, we must define additional
types of games - general-sum games with arbitrary player’s utility values, and
zero-sum games, where for each strategy profile holds that it’s utilities sum
to zero (they are also called strictly competitive, because one player’s gain
is to the expense of the other). Additionally, for the zero-sum games holds

8

......................................2.2. Normal-Form Games

ui = −u−i [21].
So even in normal-form games, we cannot compute NE effectively for any

game variations. The great advantage of the normal-form zero-sum games is
that their NE are much easier to find than in the case of general-sum games,
and they all have the same value. This equilibrium strategies expected utility
value is called value of the game [3].

As our adversarial classification problem has only two players, the linear
programming (LP) can be conveniently adopted for the computation of a
solution - it is because the problem of solving the two player, zero-sum games
can be expressed as a linear program, which allows us to avoid the other more
complicated game solutions [3, 21]. The linear program used is from [21, 4]:

minimize U∗1 (2.3)
subject to

∑
k∈A2

u1(aj1, ak2) · sk2 ≤ U∗1 ∀j ∈ A1 (2.4)

∑
k∈A2

sk2 = 1 (2.5)

sk2 ≥ 0 ∀k ∈ A2 (2.6)

The linear program is formed using the minmax theorem [26]. It minimizes
utility of player 1, and it’s Nash equilibrium gives us mixed strategy of player
2. By solving the dual:

maximize U∗2 (2.7)
subject to

∑
j∈A1

u2(aj1, ak2) · sj1 ≥ U∗2 ∀k ∈ A2 (2.8)

∑
j∈A1

sj1 = 1 (2.9)

sj1 ≥ 0 ∀j ∈ A1 (2.10)

we get mixed strategy of player 1, so we now have a Nash equilibrium.

Example 2.10. We again return to our Rock, Paper and Scissors game
(example 2.6). First, from the payoff matrix can be seen that this game is
zero-sum, because all utilities always sum to zero. Moreover, if we compute
the expected utility value again for player 2, we would obtain u2(σ) = −1

4 ,
which is correct value according to the definition of the zero-sum games
(expected utility of player 2 can be in zero-sum games computed as u2(σ) =
−u1(σ) = −1

4).
As the game is zero-sum, we can just use the described linear program

for finding of NE in zero-sum games or we deduce solution by reasoning, we
discover that Nash equilibrium for the game is (σ1, σ2) = ((1

3 ,
1
3 ,

1
3), (1

3 ,
1
3 ,

1
3)).

If we think for a while about the game, we will discover that the game has
only one Nash equilibrium - the one we found. The pure-strategy NE doesn’t
exists - to any pure strategy can be easily found adequate best response, as
we discussed in example 2.6, so this example shows another observation -

9

2. Game Theory Concepts
even in zero-sum two-player games, Nash equilibrium doesn’t need to exists
in pure strategies.

In the context of these findings, We state another related fundamental
game-theoretical theorem, known as the Nash’s theorem - it states that in
mixed strategies, Nash equilibrium exists for all finite games [?].

2.2.5 Computing Nash Equilibria in General-Sum NFG

Example 2.11. If we get back to the example 2.2, we can see from the payoff
matrix of the Stag Hunt game that this game is not zero-sum, but general-sum.
So we cannot simply use our defined LP for finding of NE in zero-sum games
in this game.

Because in two-player general-sum games utilities are not diametrically
opposite, these games cannot be conveniently formalized as the optimization
problem or form it’s linear program [21].

But as mentioned before in example 2.2, in this concrete game we can
simply find NE by simple enumeration and check for which strategy profiles
are the required best response conditions fulfilled. And as mentioned before,
another difficulty of finding NE in general-sum games is that their expected
utility values doesn’t need to match, so NE in this case doesn’t provide any
guarantees of expected outcome [3].

2.3 Infinite Games

2.3.1 Definition

In the previous section, we occasionally encountered term finite games. Finite
games are defined as the games in which each player has a finite set of
possible actions. So previous examples of normal-form games - Rock, Paper
and Scissors (2.3) and Stag Hunt (2.2) are finite games.

The normal-form finite games are not enough to model our more complex
adversarial classification setting, where player’s set of pure strategies is infinite
and continuous, so we use more generalized model of infinite games [4].

Definition 2.12 (Infinite game [4]). A two-player infinite game is a tuple
(N,C, u), where:. N is a set of two players, indexed by i ∈ {1, 2}. C = C1 × C2, where Ci is a compact metric space corresponding to the

ith player’s set of pure strategies.. u = (u1, u2), where ui : C → R is a real-valued utility (or payoff) function
for player i

As every finite space is a compact metric space under a discrete metric,
every finite normal-form game is also an infinite game [24].

Next we generalize concept of mixed strategy to infinite games:

10

.. 2.3. Infinite Games

Definition 2.13 (Mixed strategy [27]). Let (N,C, u) be an infinite game, and
for any set X let ∆(X) be the set of Borel probability measures over X. Then
the set of mixed strategies for player i is Σi = ∆(Ci).
The set of mixed-strategy profiles is the Cartesian product of the individual
mixed-strategy sets, Σ1 × Σ2.

And next we generalize expected utility concept to infinite games:

Definition 2.14 (Expected utility [27]). Given an infinite game (N,C, u), the
expected utility ui for player i of the mixed-strategy profile σ = (σ1, . . . , σn)
is defined as

ui(σ) =
∫
C
ui(c)dσ (2.11)

Although generalized definitions are more complex, their concept remains
same as in finite games [4].

2.3.2 Computing Nash Equilibria in Infinite Games

Computation of equilibria in infinite games is recognized as complex. There
arises "natural" problems with the discontinuity of utility functions, which
leads to non-existence of Nash equilibria in such games, example e.g. in [24].

We need to introduce another subtypes of infinite games, which in some
reasonable way limits the "bad" behavior of infinite games, e.g. we will be
able to guarantee that NE can even exist or that NE can have finite support
[28].

We therefore introduce continuous games with conditions on compactness
of strategy space and continuity of utility functions.

Definition 2.15 (Continuous game [29]). A continuous game is an infinite
game (N,C, u), where:. u = (u1, . . . , un), where ui : C → R is a continuous real-valued utility

(or payoff) function for player i

The most important property of continuous games is that in every continu-
ous game, Nash equilibrium must exist in mixed strategies [24].

But despite the fact that the Nash equilibrium in mixed strategies must
exist in continuous games, it is still very hard to compute or even approximate
it - the equilibrium measures can be too complicated [24]. We must limit these
games to yield such strategy sets of players which admit "simple" descriptions
[24].

Thus, we define separable games:

Definition 2.16 (Separable game [29]). A separable game is an infinite game
with utility functions ui : C → R taking the form

ui(σ) =
m1∑
j1=1
· · ·

mn∑
jn=1

aj1···jni f j11 (σ1) · · · f jnn (σn) (2.12)

where aj1···jni ∈ R and the f ji : Ci → R are continuous.

11

2. Game Theory Concepts
Every finite set is a compact metric space under the discrete metric and

any function from a finite set to R is continuous and can be written in the
form 2.12 by replacing f ji by Kronecker delta functions, so finite games are
also separable games [28].

In this class of continuous games, it is known that Nash equilibrium exists
in finitely supported mixed strategies for zero-sum games. In [28], authors
show that this holds for nonzero-sum separable games as well.

2.4 Double-Oracle Algorithm for NFG

As the last game-theoretic concept, we describe the Double-Oracle algo-
rithm used in the Double-Oracle framework for actual solving of adversarial
classification game.

Adopted from decision theory and introduced by (McMahan et al., 2003),
the Double-Oracle algorithm is proven to converge to Nash equilibrium, and
demonstrated high performance in variety of domains [3, 20].

The goal of the algorithm is to find the Nash equilibrium of a normal-form
game without actually solving the complete linear program of the game, thus
allowing to solve much bigger game instances that would be otherwise possible
[25].

On the beginning, the restricted game from the original game is created,
which allows players to play only a limited set of actions. This restricted game
is solved by linear programming. Then in each iteration of the algorithm, each
player chooses best response to the optimal strategy of the opponent in the
current restricted game. The best responses are chosen from the unchanged
original game. The rows and columns of the actual restricted game are then
expanded by these new computed best responses. Then, expanded restricted
game is solved again and iterations continues, until no other actions are added
to the game.

We show visualization of main steps of the algorithm:

Figure 5: Schematic of the double-oracle algorithm for a normal-form game.

3. For each player, compute a pure best response strategy against the
equilibrium strategy of the opponent; pure best response can be any
action from the original unrestricted game.

The best response strategies computed in step 3 are added to the restricted
game, the game matrix is expanded by adding new rows and columns, and the
algorithm follows with the next iteration. The algorithm terminates if neither
of the players can improve the outcome of the game by adding a new strategy
to the restricted game; hence, both players play best response strategies to
the strategy of the opponent. The algorithm maintains the values of the best
expected utilities of the best-response strategies for each player throughout
the iterations of the algorithm. These values provide bounds on the value of
the original game V (from Equation 1), and their sum represents the error
of the algorithm which converges to zero.

4.3.2. Integrating Double-Oracle with Backward Induction

The double-oracle algorithm for matrix games can be directly incorpo-
rated into the backward induction algorithm: instead of immediately evalu-
ating each of the successors of the current game state and solving the linear
program, the algorithm can exploit the double-oracle algorithm. Pseudocode
in Algorithm 3 details this integration.

Similarly to BIαβ, the algorithm first tests, whether the whole game can
be solved by using the serialized variants of the game (line 3). If not, then
in each state of the game the algorithm initializes the restricted game with
an arbitrary action (line 5)3 – A′ represents the restricted matrix game, A′i
represents the restricted set of available actions to player i. The algorithm

3In practice we use the first action of a shuffled ordered set Ai for each player i. This
initialization step can be improved with domain knowledge and by adding more actions.

Figure 2.3: The visualization of the Double-oracle algorithm [3].

Double-oracle repeats these three steps until convergence:..1. Create a restricted game from the original game, with restricted set of
pure strategies of each player..2. Find Nash equilibrium in the restricted game

12

................................ 2.4. Double-Oracle Algorithm for NFG..3. Compute a pure best response strategy with respect to the equilibrium
strategy of the other player (this pure best response strategy can be
chosen from any action in the original game), and expand actual restricted
game by adding this newly computed best response if possible (if the
strategy already exists in the actual restricted game, we are not adding
it)

If neither player can add any new action to the actual restricted game,
the double-oracle converged (But even if only one player can add new action,
double-oracle continues).

The expected utility values of the best responses of the respective player’s
strategies computed during individual iterations provides bounds on the value
of the game of the original unrestricted game [25].

The important note is that DO algorithm can exploit domain-specific
knowledge, since the problem of finding best responses of individual players
is a single-player optimization problem. Because single-player optimization
problem can be solved faster in general, the algorithms for finding respective
best responses are termed oracles [3].

Algorithm runs in time polynomial to the size of the game, since solving
the restricted normal-form game is of polynomial complexity and there is
linear number iterations (and if oracles also computes best responses with
polynomial complexity). In the worst case, double-oracle adds all actions of
players to the restricted game and thus solves the original unrestricted game,
but this doesn’t happen often [3]. There are not known any guarantees about
the number of iterations needed for convergence to the Nash equilibrium [3].

13

14

Chapter 3
Double-Oracle Framework

In this chapter, we describe the double-oracle framework we use in this thesis
in detail. The original framework of Prokop Šilhavý [4] experiments with
three classifiers - the decision trees, Support Vector Machines and deep neural
networks. In our work, we focus only on the deep neural networks, as our
goal is to leverage specific knowledge of this domain. We therefore describe
framework with consideration of only deep neural network as a classifier.

We use the game-theoretical concepts from the previous chapter to define
the adversarial classification problem as the game, then we describe how
exactly original framework utilizes double-oracle algorithm to find a solution
of this game.

3.1 Adversarial Classification Problem as a Game

We briefly described the adversarial setting we study before in the introduction.
We can state the adversarial classification problem as follows (we use the
same example as in the original work [4]):

Example 3.1. We are managing a part of the computer network, and we want
to create a security system which detects a malicious traffic. We can measure
only the size of the data transferred during one connection, but we have
examples of regular traffic available. Let us assume that the attacker tries to
transfer as much data as possible. Thus, he has a utility, which linearly grows
with the size of the data. When we detect the attack, we can stop it, and the
attacker transfers nothing. Finally, we can limit the maximal payload on 10
GB for simplicity.

So we have two players, the attacker and the defender. The attacker tries
to transfer as big traffic as he can - he is inclined to try to choose the biggest
payload possible by his utility function. The defender needs to classify if the
size of the data transferred could be attacker’s point, or it is a regular traffic
- benign point.

As the size of the data transferred can be real valued, the attacker’s set of
pure strategies is infinite. The space of possible classifiers the defender can
use as a pure strategies is also infinite, so the game is infinite.

We formally define the adversarial classification game as:

15

3. Double-Oracle Framework
Definition 3.2 (Adversarial classification game [4]). Adversarial classification
game is a two-player infinite game, where:. N = {defender, attacker}, indexed by i ∈ {1, 2}. C = C1 × C2, where. C1 is a compact metric space to the set of classifier’s parameters. C2 is a compact metric space to the set of attacker’s pure strategies. P ⊆ C2 is a set of benign points. f : C1 × C2 → [0, 1] is a defender’s classification function, where:. 0 corresponds to a benign point. 1 corresponds to an attacker’s point. l : C2 → R is a loss function for a benign point misclassification. u2 : C2 → R is an attacker’s default payoff function. u = (u1, u2), where:. u2 : C1 × C2 → R is defined as

u2(c1, c2) = (f(c1, c2)) · u2(c2). u1 : C1 × C2 → R is defined as

u1(c1, c2) = −u2(c1, c2)−
∑
p∈P

f(c1, c2) · l(p)

We can now formally instantiate the game from the example 3.1 as:

Example 3.3. Let’s say that regular traffic is {1, 1.5, 2} Then:. C1 = [0, 10]. C2 = [0, 10]. P = {1, 1.5, 2}. f : C1 × C2 → [0, 1] is:

f(c1, c2) =
{

0, if the defender classify the point as an attacker’s
1, if the defender classify the point as a benign. l(p) = 1. u2(c2) = c2

Because utility functions in the defined adversarial classification game
(3.2) take a sum-of-products form, it is a separable game (definition 2.16).
Therefore, we have a guarantee that the Nash equilibrium in this game exists
and have a finite support.

3.2 Computing Nash Equilibrium by the
Double-Oracle algorithm

In this section, we describe how is the adversarial classification problem solved
by the DO algorithm.

16

.................... 3.2. Computing Nash Equilibrium by the Double-Oracle algorithm

The DO can be used in the exact same form as defined in previous chapter
(subchapter 2.4), although there are several differences because we now solve
the infinite game.

The main loop is realized as:..1. Create a restricted game from the original game, with restricted set of
pure strategies of each player - by this step, DO creates finite normal-form
game..2. Find Nash equilibrium in the restricted game - game is now finite and
in a normal-form, but is not zero-sum in general - the penalty for mis-
classification of benign points makes game general-sum, but by limiting
this penalty by hard constraint in the linear program for the solving of
zero-sum game, the game can be made zero-sum or nearly zero-sum (we
define modified LP afterwards)..3. Compute a pure best response strategy with respect to the equilibrium
strategy of the other player (this pure best response strategy can be
chosen from any action in the original game), and expand actual restricted
game by adding this newly computed best response if possible (if the
strategy already exists in the actual restricted game, we are not adding
it) - this step remains the same, we describe the individual oracles in the
next subchapters

Restricted game in step 2 is forced to be nearly zero-sum by constraining
expected false-positive rate of the defender’s mixed strategies :

minimize U∗1 (3.1)
subject to

∑
k∈A2

u1(aj1, ak2) · sk2 ≤ U∗1 ∀j ∈ A1 (3.2)

∑
k∈A2

sk2 · fp(ak2) ≤ FP (3.3)

∑
k∈A2

sk2 = 1 (3.4)

sk2 ≥ 0 ∀k ∈ A2 (3.5)

The constraint (5.4) is added to the original LP for solving zero-sum normal-
form game (2.2.4), limiting the expected false-positive rate of defender’s
strategies by constant FP . If the constraint is chosen to be very small, the
penalty for misclassification of benign points can be "neglected", making the
game nearly zero-sum. Another benefit is a very low false-positive rate of the
actual defender’s strategies (in the original work, more means of constraining
game to be nearly zero-sum was considered, but this one was considered the
best [4]).

This LP yields equilibrium strategy of the defender and the value of the
game (the utility U∗1 of the first player which is minimized). The dual of this
program (2.2.4) yields equilibrium strategy of the attacker.

17

3. Double-Oracle Framework
The individual oracles for the respective players in the original framework

are solving single-player optimization problem:

3.2.1 Defender’s Oracle

The defender’s strategy space is formed by possible deep neural networks.
The defender’s oracle goal is to find best response with respect to the actual
attacker’s strategy - such a deep neural network that will classify nearly
all benign points (in the optimal setting all) as negative and as much as
possible attacker’s points as positive. To train the best classifier as possible,
standard classification methods with support of weighting of training points
are used. Because constraint on the maximum allowable false-positive rate is
in expectation (5.4), it permits the defender to play strategies with classifiers
which doesn’t necessarily satisfies the false-positive rate constraint.

The original framework use the artificial feedforward deep neural network -
multilayer perceptron with one hidden layer. The features of a model respects
the input dimensions - if the input is one dimensional, input to the network is
one feature etc. The number of hidden layer’s neurons is used as a parameter
determining DNN’s learning potential, the activation function used is the
Rectified Linear Unit (ReLU). The output layer has one neuron with Sigmoid
activation function. Loss function used is weighted cross entropy, learning
of the DNN is stopped if change of the loss is smaller than the predefined
constant. The output of DNN is soft - float value between 0 and 1. It is
rounded (with threshold of 0.5) to 0 or 1 before use in further computations.
It can be interpreted as probability that input to the network is positive.

The architecture of the DNN is:

...

...

I1

I2

I3

Idim

H1

Hn

O1

Input
layer

Hidden
layer

Output
layer

Figure 3.1: Schema of the used neural network (taken from [4].

3.2.2 Attacker’s Oracle

As the attacker’s strategy space is used the closed interval - e.g. in one
dimension [0, 10]. The attacker goal is to find best response with the respect to
the strategy of the defender - he optimizes his actual expected utility - which
is calculated as initial utility of a respective point given by his utility function,

18

.................... 3.2. Computing Nash Equilibrium by the Double-Oracle algorithm

multiplied by classification outcome (0 or 1), and weighted by probability of
playing respective neural network (pure strategy) in actual defender’s strategy
(the involved example is discussed in chapter 5). So for the optimal solution,
the attacker must find the global optimum of a discontinuous function.

As the optimization algorithms to solve the global maximum search prob-
lem of the attacker, the original framework offers several possibilities. We
consider only the one with which the original work achieved the best results,
the discretization with gradient optimization (L-BFGS-B algorithm). This
algorithm yields approximation of the optimal value, but it is still very accu-
rate and more than enough for the convergence of DO. It also emerged as
the fastest of all evaluated algorithms of the original framework for finding
the best response of the attacker [4].

Although the L-BFGS-B optimization algorithm is the state of the art
gradient optimization method, it requires many evaluations of the attacker’s
function, which evaluates actual tested point on all classifiers in actual
defender’s strategy, which is demanding and slows down the algorithm, making
it the actual bottleneck of the framework [4].

3.2.3 Additional comments and observations

The DO algorithm for the infinite game can be seen as some form of smart
dicretization - in each iteration DO inserts new pure strategies to the game,
which corresponds to inserting new samples to the discretization [4].

As the speed of the attacker’s oracle is a substantial bottleneck of the
DO framework, precisely in this step we hope to improve DO the most by
maximally utilizing the domain knowledge of the deep neural networks.

The DO allows for modifying of main loop - the oracles can be computed
simultaneously, or they can alternate - in the original work, both types
were considered but simultaneous computation has revealed better course
of convergence in general [4], so we concentrate only on the simultaneous
computation of the individual oracles.

19

20

Chapter 4
Adversarial Attacks and Verification
Methods

In the previous chapter, we described the original DO framework and discussed
it’s bottleneck, which is the computational speed of the attacker’s oracle. It is
very slow as requires many evaluations of the possible points by the respective
trained classifiers in the process of finding the optimum.

Therefore, in this chapter we study the various adversarial attacks and
verification methods for the deep neural networks with lens of usability in
the attacker’s oracle. We hope to find methods which could be used for the
optimization of the attacker’s utility function, so we would utilize them to
increase computational speed of the attacker best response algorithm and
thus increase the scalability of the whole DO framework.

Our domain of interest are the DNNs, so we restrict our focus only on this
domain, more precisely on the DNNs which perform the classification of an
input (i.e. learning a mapping from an input x to a category y; y = f∗(x),
where f∗ is an approximated function [15]), as our adversarial classification
task is to distinguish between benign and malign points.

We would like to use the chosen methods as a black-box or to minimally
adjust them to be compatible with the attacker’s oracle, and to integrate
them into the DO framework and afterwards provide experimental analysis
about their performance.

4.1 Introduction

In [23], Madry et al. formulated unifying perspective of adversarial robustness
as a theoretical framework of a robust optimization to provide an unified
view on the adversarial attacks and defenses to date. They also present an
effective adversarial attack and propose a strong defense, the adversarial
training, which remains among the most trusted defenses [30, 31, 32].

We found this approach useful, as it provided valuable insights and clarifica-
tions into many emerged verification and attack methods and to the problem
of generating adversarial examples, so we used it’s ideas in this chapter.

We outline the basics of DNNs first, because in this and mainly in the next
chapter we work with DNNs extensively. Next we outline basic properties of

21

4. Adversarial Attacks and Verification Methods...........................
adversarial attacks and define adversarial example generation problem as an
optimization problem. In next subchapters, we discuss the individual attack
and verification methods.

4.1.1 Deep Feedforward Neural Networks

The Artificial deep feedforward neural networks are composed of the several
layers - an input layer, one or more hidden layers, and an output layer.
Each layer has multiple nodes (neurons), each of these nodes are connected
to the preceding layer. Every such connection is accompanied with the
predefined weight, nodes in hidden layer and output layer have an predefined
bias in addition. During training, these weights are selected by some training
algorithm [15], e.g. most used gradient descent [33, 15]. By feeding inputs
to the input layer, values are propagated through the network (at each
layer values can be computed from the previous layer’s values), resulting in
propagating the input values to the last layer.

The values of the hidden and output nodes are computed as a linear
combination of the node values from the previous layer and by adding the
respective bias of the node, afterwards and only for the hidden nodes the
activation function is applied (simulating the firing of neurons in the brain, as
the neural networks are inspired by biology of real neurons [15]). If a network
doesn’t have feedback connections (connections in which the outputs of a
network are fed back to itself), we say a network is fully-connected [15]. An
example of the fully-connected DNN is in Figure 4.1.

Figure 4.1: An example of a fully-connected DNN with 5 input neurons (green),
2 hidden layers each containing 10 neurons (blue) and 5 output nodes (red).

An example of an activation function is e.g. the Rectified Linear Unit -
ReLU (recently the most popular activation function for deep neural networks
[34]). It’s defined as the positive part of its argument: f(x) = max(0, x),
where x is the input [34].

4.1.2 Properties of Adversarial Attacks

During the training when examples are fed through the network and weights
and biases are being updated, the classifier learns a map of the input space. It
will only learn an approximation of the true boundaries between the classes for

22

... 4.1. Introduction

many possible reasons, e.g. training cannot update all parameters of a model
correctly, or model family is not sufficient enough, or there wasn’t enough
examples during training [5]. The error between real task decision boundaries
and model’s learned decision boundaries is exploited by an adversary for
generating adversarial examples [5]. An simplified visualization is in Fig. 4.2.

Figure 4.2: An simplified visualization of learned decision boundary and real
decision boundary for a problem with two classes [5].

In Fig. 4.2, we see a boundary in the dashed line, which is the true
boundary to the problem, solid line, which is learned by model. The arrows
represents then the possible adversarial examples.

Adversarial attacks can be characterized as white-box or black-box, depend-
ing on the amount of access an adversary has to the model. In a white-box
setting, the adversary has full access to a model including gradients, loss
function, hyper-parameters etc. In a black-box setting, the attacker can access
targeted model only by a limited interface, but can create a substitute model,
which would mimic the original one. On this substitute, the attack can be
prepared. If a substitute model is "close enough" to the attacked one, it
is very much possible that the adversarial example for a substitute will be
incorrectly classified by the targeted model as well [16, 17, 5].

From our game-theoretical perspective, as all defender’s possible strategies
are known to the attacker in our adversarial game, we focus only on the
white-box attacks.

Adversarial attacks can also be targeted or untargeted. An untargeted
attack’s goal is only to change the actual predicted class of a classifier to any
other class, which can be class "close" to the actually predicted class, e.g. for
adversarial example in the introduction ??, where original image is classified
as a "pig", the "closest" adversarial example with highest loss is a "wombat"
(Australian animal). In the contrast, targeted attack specifies target class
in advance - the example in the introduction, which changes a "pig" to an
"airliner", is an example of a targeted adversarial attack.

4.1.3 Adversarial Attacks as Optimization Problem

First, we define the model and a loss function:

23

4. Adversarial Attacks and Verification Methods...........................
Definition 4.1 (Hypothesis function [15]). Given an input space X, where k
is a number of classes being predicted, the hypothesis function is a mapping:

hθ : X 7→ Rk (4.1)

where Rk is the output space, θ represents all the hyper-parameters of the
deep neural network, and hθ represents entire (trained) DNN.

Definition 4.2 (Loss function [15]). Given an k−dimensional vector (logit
output from a DNN) and true labels of an inputs, a loss function l is a
mapping:

l : Rk × Z+ 7→ R+ (4.2)

where Z+ is a non-negative integer and R+ is a non-negative real number.

Because we are restricted to the classification, we use cross entropy [15] as
a loss function.

Typically, an approach to train DNNs is to optimize its parameters (weights
and biases) by minimizing the average loss over the training data, using the
e.g. stochastic gradient descent (SGD) [33, 15]. The gradient of a loss with
the respect to the DNN’s parameters is computed, and by update step with
respective learning rate, the DNN’s parameters are iteratively optimalized
[33, 15]. Adversarial attacks exploits these facts, and instead they attempt to
maximize the loss:

Definition 4.3 (Maximization problem [23]). Given the model hθ, the sample
x, the true label y and a set of allowable perturbations ∆, the problem of
finding an adversarial example can be stated as:

max
δ∈∆

l(hθ(x+ δ), ytrue) (4.3)

where δ is an perturbation.

The set of an allowable perturbations ∆ is often defined as (L∞ metric):

∆ = {δ : max
i
|δi| ≤ ε}. (4.4)

In [35], authors argue that L∞ is the optimal distance metric for adversarial
example generation. We use it in our experiments, as it is a metric used in
many adversarial attacks.

The maximization problem can be solved by three possible ways:..1. Find a lower bound - solve problem by heuristic - find an adversarial
example...2. Solve the problem exactly...3. Compute the upper bounds - bound the problem by relaxation.

24

........................... 4.2. Finding Lower Bounds - Adversarial Attacks

4.2 Finding Lower Bounds - Adversarial Attacks

The maximization problem (4.3) can be solved heuristically - any feasible
δ gives the lower bound - the adversarial example. Therefore all "heuristic"
methods for a generation of an adversarial examples (adversarial attacks) are
trying to find a (best possible) lower bound [23].

Szegedy et al. [16] first discovered the adversarial examples and proposed
a method to find them - using the box-constrained L-BFGS. This method is
very successful in generating the adversarial examples, but is time consuming
and impractical [36].

A fast method for adversarial attack was proposed by Goodfellow et al.
in [17] - the Fast Gradient Sign Method (FGSM). It was later modified by
Kurakin et al. into the Basic Iterative Method (BIM) [37], and finally modified
by Madry et al. to the Projected Gradient Descent (PGD) [23].

In [38], Papernot et al. proposed different type of attack using Jacobian of
the trained model - Jacobian Saliency Map Attack (JSMA), but this method
is as time consuming and impractical as the L-BFGS [5, 36].

To the several approaches to adversarial attacks (e.g. [16, 17]), many
defenses have been introduced, but in a quick succession, many proposed
defenses were soon defeated by a stronger attacks or were found to perform
incomplete evaluations [39, 40, 41, 42, 43]. This competition grew into an
"arm race" between attacks and defenses [31, 36].

Madry et al. [23] argues that the projected gradient descent (PGD) is the
ultimate first-order adversary and that adversarial training against it provides
broader security guarantee. Authors also held an attack challenge that invited
community to attack their trained networks on the MNIST and CIFAR10
datasets1 in both white-box and black-box setting.

Another competition which evaluated performance of adversarial attacks
(in the black-box setting) was [44]. In both competitions, the iterative attacks
related fundamentally to the FGSM or BIM showed the best performance [44]
(In Madry et al. attack challenge, plain PGD with random restarts showed
very well performance). Moreover, [31] reveals that iterative attacks generate
near-optimal adversarial examples. These findings, as well as simplicity of the
implementation of these attacks (they can be written in a few lines of code)
leads us to use the iterative attack as our chosen baseline attack method.

We now describe iterative gradient attacks (and attacks related to them)
in a greater detail:

4.2.1 Fast Gradient Sign Method

In the canonical FGSM attack, each component of the input x is modified by
adding or subtracting a small perturbation ε to create an adversarial example
xadv. Thus, it uses the L∞ metric [45]. The ε is a hyper-parameter to be
chosen.

1Links to the respective challenges are: https://github.com/MadryLab/mnist_
challenge, https://github.com/MadryLab/cifar10_challenge.

25

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge

4. Adversarial Attacks and Verification Methods...........................
The attack finds a solution to the 4.3 by computing the gradient of the loss

function with respect to the perturbation δ. The gradient can be conveniently
found using the backpropagation:

g = ∇δl(hθ(x+ δ), ytrue) (4.5)
The step taken is the chosen size of the perturbation ε, depending upon

the sign of the respective gradient g:

δ = ε · sign(g) (4.6)
so the attack becomes:

δ = ε · sign(∇δl(hθ(x+ δ), ytrue)) (4.7)
and the adversarial example is found as:

xadv = x+ ε · sign(∇δl(hθ(x+ δ), ytrue)) (4.8)
Therefore, the FGSM generates adversarial examples using a linear approx-

imation of the target model [36, 45, 44].

4.2.2 Basic Iterative Method

Although FGSM gives quickly very good results, its disadvantage is that it
makes a potentially too big step and fact that the DNNs are not linear even
on a small region [37, 44].

The simple solution is to just iterate FGSM with smaller steps (method is
also called Iterative FGSM (I-FGSM)):

xadv0 = x; xadvN+1 = ClipX,ε{xadvN + α · (∇δl(hθ(xadvN + δ), ytrue))} (4.9)

where ClipX,ε performs element-wise clipping of x. The ε, learning rate α
and number of iterations N are the hyper-parameters to be chosen.

The naming is not united, sometimes the PGD is called BIM or otherwise.
We use the naming from Madry et al. [23] (Generally the only difference
is that PGD described in next subchapter can be named BIM or I-FGSM
instead).

4.2.3 Projected Gradient Descent

Madry et al. "ultimate first-order adversary" PGD algorithm (sometimes
called the BIM or defined slightly differently) improves the BIM setting and
generates adversarial examples under the L∞ metric as:

xadv0 = x; xadvN+1 = ClipX,ε{xadvN +α · sign(∇δl(hθ(xadvN + δ), ytrue))} (4.10)

where ClipX,ε performs element-wise clipping of x. The ε, learning rate α
number of iterations N are the hyper-parameters to be chosen.

26

..............................4.3. Exact Solution - Complete Verification

Another hyper-parameter is the number of restarts. Authors in [23] show
that restarting the algorithm from a random point within the ε-norm ball
considerably increases the performance [44]. It is because the performance of
PGD is still limited by the local optima, and the added restarts can "slightly"
improve chances to avoid them [23].

The algorithm can be viewed as making many smaller FGSM steps. With
enough number of iterations, this attack almost always finds an adversarial
example (even without the restarts) [44].

As this attack is relatively simple and very effective (considered as actual
state of the art under the L∞ metric [46]), we would like to use it as a baseline
heuristic method.

4.3 Exact Solution - Complete Verification

Verifying properties of DNNs is very useful approach, because it can prove
if tested DNN can be prone to any type of attack, as the verifying tests if
input violates or satisfies given property [36].

DNN verification methods can be divided as complete and incomplete [47].
The exact set representing all final-layer activations which can be achieved
by applying a bounded perturbation to the input is called the adversarial
polytope (more about polytopes and settings of verification problem is in
[48]) Incomplete verifiers works with an outer approximation of adversarial
polytope, while complete verifiers works with an actual adversarial polytope
[6, 49]. Illustration is on Fig. 4.3.

Figure 4.3: An exact adversarial polytope (second from right), and an (convex)
outer approximation of the adversarial polytope (first from right) [6].

The complete verifiers give an actual adversarial example - the optimal
one (more precisely, best attack under some chosen perturbation ε) - as they
optimally solve the maximization problem (definition 4.3). Unfortunately it
is for the price of high computational cost - these methods are infeasible for
complete verification of a larger DNNs, because the problem is very hard
(NP-complete) even for verifying of simple properties of neural networks [50].

This difficulty is caused by the activation functions. They render the
problem non-linear and non-convex [50]. Because of this, vast majority of all
verification methods reason only on a restricted subset of DNNs, and many
methods require only a full-connected feedforward deep neural networks with
only ReLUs as an activation functions [51, 52].

27

4. Adversarial Attacks and Verification Methods...........................
There are two main approaches for exact verification [53, 49]. One type

of verifiers employ a combinatorial optimization to formulate maximization
problem as a mixed integer linear program (MILP) [49, 54]. Another approach
employs satisfiability modulo theories (SMT) [50, 55].

Several works provides review of verification methods. Bunel et al. [53]
compare several baseline exact verification algorithms - including Planet [54]
and Reluplex [50]. In [51], authors review primal optimization methods which
are using MILP, Boolean satisfiability (SAT) and SMT. Finally [48] provide
comprehensive survey of verification algorithms.

We describe the representative methods in a greater detail.

4.3.1 Reluplex

This sound and complete verification method based on the SMT solver is
able to verify properties of DNNs with only ReLU activation functions, using
the simplex algorithm to support the ReLU constraints. It is written in C++
and uses open-source GLPK LP solver [50].

Unfortunately, Reluplex verification is very slow and is able to verify
networks up to several hundreds of nodes [56].

4.3.2 Marabou

The Marabou framework builds upon Reluplex solver and brings many en-
chancements in its toolbox2. It uses the same SMT-based techniques but
improves upon Reluplex by using lazy search technique and replaces external
GLPK solver by complete simplex-based linear programming core [55]. Like
the previous Reluplex, it is written mainly in C++.

It extends its possibilities of application by extending support to the
convolutional DNNs with arbitrary piecewise-linear activation functions, and
as the Reluplex, its verification is sound and complete [55]. In the evaluation,
Marabou showed better performance than the Planet verifier ?? overall, but
not better performance than ReluVal [57] in general [56].

4.3.3 MIPVerify

The MILP-based methods for verifying the DNNs are recognized as a very
slow, but in [49], Tjeng et al. used a tighter formulation for a non-linearities
and a new presolve algorithm, and managed to scale their mixed-integer linear
programming approach MIPVerify3 to the medium-sized networks [7].

According to the experiments, MIPVerify is two to three orders of magnitude
quicker than the Reluplex and can verify a network with over 100,000 units
[49].

We show the MILP formulation (without the ReLU constraints) of MIPVer-
ify for the L∞ metric, where x is an input with true label λ(x), x′ is an
adversarial example, fi(·) is the ith output of the network and Xvalid = [0, 1]m:

2https://github.com/NeuralNetworkVerification/Marabou.
3https://github.com/vtjeng/MIPVerify.jl.

28

https://github.com/NeuralNetworkVerification/Marabou
https://github.com/vtjeng/MIPVerify.jl

..............................4.3. Exact Solution - Complete Verification

min
x′

ε (4.11)

subject to argmaxi(fi(x
′)) 6= λ(x) (4.12)

x
′ ∈ Xvalid (4.13)
ε ≥ x′

j − xj (4.14)

ε ≥ xj − x
′
j (4.15)

MIPVerify can handle arbitrarily feedforward DNNs with layers that use
linear transformations - fully-connected, convolution, and average-pooling
layers, and with layers that use piecewise-linear functions - ReLU and max-
pooling layers [49].

As the MIPVerify is a state-of-the art in the MILP-based exact solvers
[58] and uses well studied combinatorial optimization methods (where we can
relatively easily modify the method itself in case of light incompatibility) we
would like to use this method as a baseline exact verification method.

4.3.4 Worst-case Adversarial Attack

In the Madry adversarial learning tutorial4, there is an interesting formulation
of the worst-case adversarial attack, where an attacker is trying to perform a
targeted attack - change the class label from the true class y to the target
class ytarg within some bounded ε. The problem can be stated as follows:

min
z1,...,d+1

(ey − eytarg)T zd+1 (4.16)

subject to ‖z1 − x‖ ≤ ε (4.17)
zi+1 = max{0,Wizi + bi}, i = 1, ..., d− 1 (4.18)
zd+1 = Wdzd + bd (4.19)

where attack is under the L∞ metric, ei means the unit basis (with a
one on i-th position), ε is an perturbation, x is an input, max represents
the ReLU activation function, d is number of layers, i is index of layer z,
Wi, bi are respective hyper-parameters of the DNN, the ouput of DNN is the
zd+1 = hθ(x) (where hθ is a DNN model 4.1). The output of hθ are the class
logits.

The result of this problem gives the worst possible adversarial attack. If
the result is positive, then the attack did not found any possible adversarial
example within the bounded region ε. If the result is negative, then the logit
value of the "attacked" class ytarg is lower than true class y and adversarial
example is found. Exact full formulation of the MILP model is in madry
tutorial.

4https://adversarial-ml-tutorial.org/adversarial_examples/.

29

https://adversarial-ml-tutorial.org/adversarial_examples/

4. Adversarial Attacks and Verification Methods...........................
This MILP method can handle arbitrarily feedforward full-connected DNNs

with the ReLU activation functions and also convolutional neural networks
(CNNs).

This MILP-based exact verification method is similar to the MIPverify,
but is not scaled too well. It uses again combinatorial optimization methods,
and its great advantage is that it is simple and can be easily modified if need,
so can be great exact baseline method for testing if MILP methods are even
feasible or work as intended.

4.4 Finding Upper Bounds - Incomplete
Verification

In the previous subchapter, we discussed various exact methods for the ver-
ification of DNNs. These algorithms are slow because verification of DNN
properties is NP-complete problem [50]. On the contrary, the incomplete ver-
ification algorithms sacrifice "exactness" to improve computational efficiency
[7].

Incomplete verification algorithms are more efficient, but they "reason" over
an outer approximation of the adversarial polytope (Fig. 4.4), meaning these
approaches may not anwer (aswer may not be decidable) every query about
the adversarial polytope [49, 7, 6]. That means that these methods typically
doesn’t find the actual adversarial example [49, 7].

As mentioned before, many verification algorithms and methods are re-
viewed in [48], which also offers performance experiments.

We will now describe families of various baseline methods:

4.4.1 Convex Relaxations

Convex-based relaxations are the among the most popular methods of the
incomplete verification [32].

Instead of finding an exact worst adversary on given perturbation, these
methods compute tractable bound, using convex relaxations of the ReLU
constraint [6]. An illustration is on Fig. ??.

Figure 4.4: An illustration of the convex relaxation of ReLU [6].

Method of [6] uses duality to find even better bounds than with only convex
relaxations. In [59], authors extends and generalizes this work.

Using a single semidefinite program (SDP), duality and convex relaxations,

30

..........................4.4. Finding Upper Bounds - Incomplete Verification

[60] finds an upper SDP bound on the adversarial loss. In [61], the semidefinite
relaxations turns ReLU constraints into a quadratically constrained quadratic
program (QCQP), then this QCQP is relaxed into an SDP.

In [62], authors formulate dual convex optimization problem and use
subgradient methods to solve it.

Another SDP method is proposed in [7], where various properties of activa-
tion functions are abstracted using quadratic constraints. These quadratic
constraints are later used to formulate verification problem as the SDP. An
illustration of derivation of an quadratic constraints is in Fig. 4.5.

Figure 4.5: An illustrative example of deriving the quadratic constraints for the
tanh function [7].

Finally, in [47] authors unify all LP-relaxed verifiers in a convex relaxation
framework and performs large-scale experiments on deep ReLU networks to
find insights about the gap between the lower-bounds (found using PGD
attack [23], subchapter 4.2.3) and upper-bounds (found by [6], subchapter
4.4.1). The resulting bounds are also compared with exact solution from
MILP [49] (subchapter 4.3.3).

As the convex relaxation methods are among the most studied incomplete
DNN verification methods and there are many individual interesting works
(e.g. [6], [61]), we would like to use these methods as a baseline.

4.4.2 Abstract Interpretations

Another approach is to use an abstract domain (represented by logical formu-
las) to approximate the reachable set at each layer [63]. They use zonotope,
which is an symmetric polytope [48]. This method is called Ai2 (Abstract
Interpretation for Artificial Intelligence), and is incomplete [48].

The work is build upon and following works introduce DeepZ [64], DeepPoly
[65], RefinePoly [66] and RefineZono [67]. All these approaches are included
in the toolbox ERAN (ETH Robustness Analyzer for Neural Networks)5.

4.4.3 Bound Propagation

These incomplete methods "carefully" propagate bounds through a network.
Neurify6 [68] combine symbolic interval analysis and linear relaxation.

5https://github.com/eth-sri/eran.
6https://github.com/tcwangshiqi-columbia/Neurify.

31

https://github.com/eth-sri/eran
https://github.com/tcwangshiqi-columbia/Neurify

4. Adversarial Attacks and Verification Methods...........................
In toolbox CROWN-IBP7 [32], authors combine relaxation-based verifica-

tion bound (CROWN) [69] with efficient interval bound propagation (IBP)
[8] (illustrative example of IBP is on Fig. 4.6) and focuses on its use in
training of robust models.

Figure 4.6: An illustrative example of interval bound propagation from IBP
method [8].

Although later updated too, the CROWN algorithm replaced techniques
Fast-Lin [70] (network relaxation) and Fast-Lip [70] (Lipschitz estimation) of
the same author, used before.

7https://github.com/huanzhang12/CROWN-IBP.

32

https://github.com/huanzhang12/CROWN-IBP

Chapter 5
Compatibility Framework

In the previous chapters, we have described the DO framework and its
bottleneck - attacker’s oracle, next we discussed and reviewed methods for
adversarial attacks and verification of DNNs, and we have also highlighted
some methods which we would like to choose as a baseline methods for further
experiments and integration into the DO framework.

In this chapter, we discuss and describe possible compatibility of these
methods with reward functions and strategic constraints in the attacker’s
oracle of the DO framework, and create an compatibility framework which
enables easy use of many such methods.

5.1 Methods

As there are three options how to find a solution to the adversarial example
generation problem (definition 4.3), we thought it would be convenient to
experiment with at least one of each type.

As the heuristic method, we have chosen the Projected gradient descent
(PGD) attack by Madry et al. [23] (subchapter 4.2.3), as the exact method
we have chosen MIPVerify MILP method by Tjeng et al. [49] (subchapter
4.3.3) or the interesting simple formulation of Worst-case Adversarial Attack
(adversarial tutotial by Madry et al.) (subchapter 4.3.4), and as the method
upper bounding the problem (incomplete verification), we have chosen any
from the convex-relaxation family (e.g. Wong and Kolter [6] or Raghunathan
et al. [61], subchapter 4.4.1).

The critical question is now, how to use these methods for the computation
of the attacker’s best response in the DO. One possibility is simple and
straightforward - we can attack the defender’s networks itself.

5.2 Direct Attack

5.2.1 Outline

We will show a possible scenario of a straightforward use of the adversarial
attacks on an example:

33

5. Compatibility Framework....................................
Example 5.1. As described in subchapter 3.2, in each iteration of DO, the
defender trains a new DNN as his best response to the previous attacker’s
strategy - his generated point he played last iteration of DO. The attacker’s
oracle computes his best response in the reaction to the previous defenders
strategy - his chosen classifier or classifiers weighted by according defender’s
support values. Then, if for simplicity we will assume that the defender plays
only the pure strategies (so he always "plays" only one DNN, i.e. plays only
one DNN with the probability 1), we can perform an untargeted1 adversarial
attack on this DNN to try to change the defender’s DNN’s output (e.g. by
using PGD attack). If the output of the defender’s classifier would change
(e.g. from classifying a point as a malign to classify it as a benign), the
attacker’s utility would also certainly change. But even if the adversarial
attack would be successful and manage to change the output of the defender’s
classifier, it is still not enough for us, as there is also an attacker’s utility
function - i.e. the resulting adversarial example within the chosen distance
from the original can be classified as benign, but it’s utility evaluation for
the attacker can be low or even zero, making such adversarial point useless.
Therefore, successful crafting of an adversarial example - the straightforward
use of adversarial attacks - is not enough for us.

5.2.2 Attack Setup

We can still use the "straightforward" adversarial attack, i.e. to attack directly
the defender’s DNN, but we must also take into consideration the attacker’s
utility function.

If we would choose the PGD method to attack (and we would still anticipate
that the defender is playing only the pure strategies), we can perform the
attack as follows: We will use the standard PGD hyper-parameter setting,
only we will modify value of maximal possible perturbation ε - as the size of
the space of the attacker’s strategies, e.g. the size of interval [0, 10] is 10. If
we now perform the attack, the PGD algorithm will then try to change the
class of the original input, i.e. it will iteratively "move" in the direction of
greatest loss with respect to the original input. As we are trying to find the
global optimum, we can also set number of iterations to the arbitrary high
value (we will end in a global or a local optima anyway).

Now we need to include the attacker’s utility function. We can simply
resolve this problem by evaluating the actual PGD point in each iteration of
PGD - after the next step of PGD is taken, we evaluate the new actual point
and store it’s actual utility value. By this, we can evade the attacker’s utility
problem and "remember" the best found actual utility.

The last thing we need is to generalize this attack setting into realistic
scenario when the defender use the mixed strategy and in his support are
several classifiers (pure strategies). In fact, as discussed in the ending of
the DO chapter (subchapter 3.2.3), the defender have nearly always the

1We can because defender’s DNN classify points as adversarial or benign, so there are
only two classes.

34

..................................... 5.3. Utility Estimation Net

full support. This can be viewed as a difficult problem, but we can again
circumvent it - because adversarial attacks can transfer well between the
"close" models [16] (discussed in subchapter 4.1.2), we can easily choose such
a model with the highest probability in the defender’s support, perform
the PGD attack against this model and generate an adversarial point with
our "computed" highest attacker’s utility. As adversarial attack provides
transferability, the other classifiers in defender’s strategy will also "probably"
misclassify the adversarial point and the attack then would be close to the
best response.

5.3 Utility Estimation Net

We will depict the problem of the attacker’s best response computation in a
greater detail.

5.3.1 Modelling Attacker’s Best Response by DNN

From the definition 3.2, the attacker’s best response is defined as:

u2(c1, c2) = (f(c1, c2)) · u2(c2) (5.1)

where u2 : C2 → R is an attacker’s default payoff function, u2 : C1 ×
C2 → R is attacker’s actual utility function, f : C1 × C2 → [0, 1] is a
defender’s classification function where 0 corresponds to an attacker’s point,
1 corresponds to a benign point.

We can view the equation 5.1 as a setting where the defender plays only
the pure strategies. The key observation is that the attacker’s actual utility
value depends on the multiplication of the probability of detection by the
defender’s classifier × utility (reward) function for the attacker’s actual point
(u2(c2)). Our new best response algorithm needs to reflect this property.

In the previous subchapter about direct adversarial attack, the attacker’s
best response did not properly reflect this property (in fact, it evaded this
property altogether).

We will resolve this issue by modelling exactly this attacker’s function
(which we want to optimize) by the neural network - we will create a DNN
which will be trained to estimate the attacker’s actual utility as accurately as
possible, i.e. the neural network will have the same inputs as the equation
5.1 and also the same (as accurate as possible) output. The key idea is to
attack this DNN by adversarial attacks (because DNN will now model the
multiplication in the equation 5.1), it’s gradients would "lead us" exactly to
the maximum of this multiplication - to the optimum we need.

So we need to train a DNN model (we call it the Utility estimation net,
UEN) to learn the equation 5.1, so we would to be able to perform an attacks
on it afterwards.

35

5. Compatibility Framework....................................
5.3.2 Basic Structure of Utility Estimation Net

Basic Schema

The input of UEN consists of the same values that are required to compute
actual attacker’s utility - the actual point, the attacker’s utility function, the
defender’s classification function and his actual (mixed) strategy. The actual
point is the only input of the UEN - the number of input features of the
network is equal to the dimension of an input point. In the DO framework,
individual defender’s pure strategies are represented by individual trained
NNs of the defender - we need to incorporate these NNs into the UEN to
be able to correctly estimate the attacker’s actual utility. We incorporate
them as a black-box - we take the defender’s NNs which represents his pure
strategies which are in the support of his actual strategy and use them to
construct the actual UEN (implementation details are in appendix B). The
weighting of individual defender’s strategies in support of mixed strategy is
also incorporated into the UEN (appendix B). The output consists of only one
neuron - we estimate the real value - the attacker’s actual utility, therefore
UEN performs an regression, not a classification. The basic schema where
defender plays only pure strategies is depicted in the Fig. 5.1.

Figure 5.1: The schema of UEN with n input neurons (green) as features, two
hidden layers with custom number of neurons (blue) and one neuron (red) in
output layer. The defender’s pure strategy is "incorporated" into the UAE
roughly the same as is depicted on the schema (in the schema defender plays
only one pure strategy with probability 1).

Multiplication Net

The two hidden layers of UEN perform an multiplication between the input
point evaluated by attacker’s utility function and the probability that the
input point is benign (the output of the defender’s NN - rounded to 0 or 1).

The multiplication network is separately trained to learn both the multi-

36

..................................... 5.3. Utility Estimation Net

plication and the attacker’s function. It has two separate inputs - the input
point which enters the network in the leftmost input layer, and the second
input which is the probability that the input point is benign mentioned before,
which enters the multiplication net in the second hidden layer. After the
multiplication net is learned, the complete utility estimation net can be build
by attaching the multiplication net and the defender’s NNs into it, to perform
the attacker’s actual utility estimation.

The schema of the multiplication net is depicted in the Fig. 5.2.

Figure 5.2: The schema of Multiply net with n input neurons (green) as features,
two hidden layers with custom number of neurons (blue) and one neuron in
output layer (red). The probability inputs connected to the second hidden layer
represents possible pure strategies of the defender (teal nodes).

5.3.3 Support Size Minimization

We have described the UEN and its ability to effectively estimate the value
of the actual attacker’s utility, but given the fact that the defender’s pure
strategies represented by NNs must be directly incorporated into the UEN,
the size of the defender’s support cannot be equal to the number of his pure
strategies (full support), as suach problem make the UEN creation infeasible,
as it would mean incorporating hundreds of networks. Because of this, we
try to reduce the size of the support.

The actual support of the defender is computed by LP from chapter 3 (3.1).
We will use the value of the game computed by this LP, create a similar model
with the same constraints, fix the maximal utility in these constraints by
computed value of the game and we will connect the probabilities of playing
the respective strategies to the binary variables, and we will minimize this
sum in the objective.

37

5. Compatibility Framework....................................

minimize
∑
x∈A2

xk ∀k ∈ A2 (5.2)

subject to
∑
k∈A2

u1(aj1, ak2) · sk2 ≤ U∗1 ∀j ∈ A1 (5.3)

∑
k∈A2

sk2 · fp(ak2) ≤ FP (5.4)

∑
k∈A2

sk2 = 1 (5.5)

sk2 ≥ 0 ∀k ∈ A2 (5.6)
sk ≤ xk ∀k ∈ A2 (5.7)
xk ∈ {0, 1} ∀k ∈ A2 (5.8)

where U∗1 is the value of the game computed before. The LP is extended
by constraints 5.7 - which makes connection between binary variables and
probabilities of defender to play respective pure strategies and 5.8, which
defines binary variable x and changes LP to MILP. The objective 5.2 is
changed to minimization of sum of the binary variables x.

Unfortunately, the complexity of this MILP problem (5.2) is np-complete,
which can create another bottleneck in the DO, but it permits us to use the
UEN.

5.3.4 Compatibility with PGD Attack

We outlined the basic structure of UEN, now we describe how to use our
chosen PGD attack to perform the adversarial attack on it.

Using PGD Attack

We can now attack the UEN model (absolutely trivially) by the untargeted
PGD attack. The PGD attack will try to maximize the loss for the current
"class" - if we set the current "class" label of the PGD attack as a 0, then
PGD attack will try to maximize the loss for the mean squared error (MSE)
loss function (MSE is the standard loss function for an regression tasks) and
yield such an adversarial example that will have maximized loss for "class"
0. Therefore, because we are estimating utility of the attacker and we need
this value as high as possible, this setting will give us an adversarial example
with the maximum possible value of the output from the utility estimation
net, therefore exactly the result of the optimization we need.

We have an adversarial attack, now we describe how to build the UEN to
be compatible with this attack. Since heuristic attacks doesn’t have much
restrictions in the structure of the attacked network, we do not need to adjust
the UEN structure for these types of attacks much (it also means that when
we create the compatible UEN for the PGD adversarial attack, the PGD can
be very easily replaced by any other compatible attack).

38

..................................... 5.3. Utility Estimation Net

Building Compatible UEN

The PGD attack is not limited to any specific activation functions (they only
need to propagate gradient) and our feedforward DNN structure from the
Fig. 5.1 is absolutely sufficient. But thanks to this, there are some details we
can exploit.

As described in subchapter 3.2.1, the defender’s NN returns the probability
of a point being attacker’s or benign. Its output as defined in the adversarial
game 3.2 is attained by rounding the value (threshold 0.5). As the attacker’s
actual utility function requires this rounded value, it is not clear how to attain
this rounding by UEN. Because PGD needs only the gradients to perform
the attack, we can use the gradient-compatible functions from the PyTorch
framework (using torch.autograd) [19] to dodge this problem. This allow us
to use the exact rounding without a need to resort to the other options. The
weighting of the pure strategies of the defender is done in the same manner -
we use gradient-compatible functions to implement the weighting.

We do not need to make any more compatibility adjustments for the PGD
attack and we can use actual utility estimation net for the experiments. In
every iteration of the DO framework, when the best response for the attacker
must be computed, the new utility estimation net is build from the prepared
multiplication net (we train this net for various dimensions and attacker’s
utility functions ahead) and the defender’s networks (according to his mixed
strategy and support).

The basic algorithm how to build the UEN for the PGD attacks can be
outlined as follows: We train the multiply net on according dataset. Next
we define the UEN in pytorch as a plain net accepting multiply net and list
of nets and list of probabilities of "playing" these nets. Next, we in each
iteration of DO we build UEN again, from prepared learned multiply net,
and from the pure strategies of the defender (his NNs). Thanks to pytorch,
we don’t need to build the complete full-connected net, but we can use the
"mock" UEN to connect our learned models together. We can use standard
pytorch functions which works with tensors to multiply output values from
defender’s NNs as weighting of his pure strategies.

5.3.5 Compatibility with MIPVerify and Worst Case MILP

To satisfy the compatibility requirements for the MIPVerify and Worst Case
MILP, we need to make many more adjustments. As mentioned in subchapter
about MIPVerify (MIPVerify), this MILP method works only for the layers
that use linear transformations, e.g. fully-connected DNNs, CNNs, with the
ReLU activation function only. This is not so much restricting for us, as
defender’s NN use only the ReLU layers. As fully-connected DNNs with
ReLU activation functions is common denominator for nearly all verification
methods (complete or incomplete), if we manage to adjust the compatibility
with this type of network, we again create a compatible framework for many
possible methods (indeed, if we make it compatible with MIPVerify, the worst
case MILP will work as well).

39

5. Compatibility Framework....................................
Transform into Classification

The first big problem we encountered is that these methods work only for the
classification, and our utility estimation net performs the regression (they are
build for this type of DNN, because major testing datasets are the MNIST
and the CIFAR10, as testing on an images is very popular). So to make the
UEN compatible, we need to transform the regression into the classification.
We can use standard idea - the discretization - we will divide the output
interval into the sections and all uncountable values in these sections will
belong to the same class. It doesn’t matter for us, because we are opting
for the maximum value from the UEN, therefore our target class (both the
MIPVerify and the worst case MILP supports targeted attack) can be chosen
as the highest possible class beyond possibility (e.g. 11), and MILP verifiers
will give us the maximum possible value regardless (They will try to change
the class to the 11, which corresponds to maximum value of 10).

Therefore, we can simply divide the output interval into 11 sections. The
0-1 interval, 1-2 second etc. to the 10-11, which will be the last.

Rounding Problem

We now have UEN performing the classification, but there is yet another
big problem - this time, we must make the rounding of the output of the
defender’s NNs withount the help of external functions. This problem is
hard, as there are not many possibilities how to solve it, as the solution
must be transferable into the fully-connected DNN with only ReLUs. We
managed to overcame it with the use of the Threshold net - we will create
the additional network, which will be trained to round the logit output of
the defender’s network - to 0 or 1 with the threshold 0.5 (as we cannot use
defender’s sigmoid functions in the output layer). By this strategy, we can
bypass even this problem.

Building Fully-connected UEN

The last problem is that the UEN must be now fully-connected without even
any skip connections (we used the skip connections in the UEN compatible
with the heuristic family of the methods, because it allowed us to make less
complex implementation). The solution is again simple but demanding -
we will create a plain untrained fully-connected DNN with ReLUs which
will represent the final UEN. Next, we will prepare all component networks
needed - the possible many defender’s NNs, on each of this defender’s network
we will add the threshold net layer, and finally the multiplication network
(transformed into the classification, as this network directly make up for the
output layers of UEN). Then, we need to carefully transform all necessary
weights and biases from all these component networks (even the defender’s),
and precisely change the connections in such a way that the final UEN
will have the precisely same logit output vector as the combination of these
networks (this property can be verified).

40

..................................... 5.3. Utility Estimation Net

Figure 5.3: The schema of the utility estimation net performing an classification,
with n input neurons (green) as features, three hidden layers and eleven neurons
(red) in the output layer (classes). This network represents the defender playing
only pure strategies. The orange nodes represents the defender’s NN. The
brown nodes represents threshold net. Orange and brown nodes together make
the DetectionThreshold net (with input weights). Blue nodes together with
red nodes represents the multiplication network (with input weights). On the
schema, weights with predefined zero value are not depicted. the schema therefore
represents the actually copied weights from all required networks. The output
layer has marked the individual points which belongs to the respective class.

The tranforms done to the models are simple in nature, but can be complex
to program for working with arbitrary number of pure strategies. The
algorithm is the simple reconnecting the connections of component networks
to the UEN for the classification. All component networks must have the
adequate neuron sizes. The copying works as working with graphs, and we
help ourselves from situations where the connections pass forward through
bias by removing bias from output layers of component networks, which
allows us to freely multiply weight values of connections and even connecting
connections of arbitrary networks together by mupliplying them between
themselves and this new weight we assign to new connection created from
them.

The final UEN with described components is depicted in Fig. 5.3.
As can be seen in Fig. 5.3, this time we had to make many changes to the

41

5. Compatibility Framework....................................
baseline UEN. We had to add the additional layer, and the output layer was
redone to reflect the classification. Again, in each iteration of the DO this
network has to be again build from its components, although we can prepare
the important threshold net and the multiplication net and train them ahead.

42

Chapter 6
Experimental Analysis

In this chapter, we experimentally evaluate the compatibility framework and
the individual optimizing methods we integrated into the DO framework.

We first introduce the used datasets for the experiments, then we describe
our framework settings we used, and then the individual experiments and
discussion.

(a) : Linear function with
benign points.

(b) : Quadratic (in ine
dimension) attacker’s func-
tion. The benign points are
only on the sides.

(c) : The benign points are
in the middle of the two at-
tacker’s extrema.

(d) : Linear function with
benign points.

(e) : The benign points are
in the "corners" of the at-
tacker’s utility function.

(f) : The two extrema func-
tion, benign points are in
the middle.

Figure 6.1: The example of attacker’s functions and the benign points [4].

6.1 Experimental Data

We use the same datasets as in the previous work [4], as they comes incorpo-
rated with the DO framework. It is also convenient to test new optimalization
methods on the same data, because it allows for easy comparison of the
results.

The data are defined by dimension and the type of attacker’s function.

43

6. Experimental Analysis
There are three types of attacker’s function - the linear, one with local
maximum (quadratic in one dimension), and function with two maxima
(these traits remain in every dimension).

The individual attacker’s functions are dispayed on the Fig. 6.1
All functions are defined on the interval as the adversarial game 3.2 - [0, 10],

and the range is normalized also in [0, 10].
The benign data are randomly generated, and they form a normal distribu-

tions in the lower values of utility function [4]. The individual functions are
defined as:

f(x) = 1
dim

dim∑
n=i

xi (Linear function)

f(x) = 10−

dim∑
n=i

(xi − 5)2

dim · 5
2

(Function with one maximum)

f(x) = max

−

dim∑
n=i

((xi − 5) · dim)4 − 25 · dim ·
(
dim∑
n=i

(xi − 5) · dim
)2

625
40 · dim5 , 0

(Function with two maxima)

The number of the benign points being generated is computed by the
formula:

Dataset 1 Dataset 2 Dataset 3
10 + 40 · (dim− 1) 5 + 30 · (dim− 1) 5 + 50 · (dim− 1)2

Table 6.1: The formulas for the number of benign points being generated
generated [4].

The depiction of the individual attacker’s utility functions, with generated
benign points is displayed on the Fig. 6.1.

Using the specialized dicretization, the exact solutions to the game with
the defined datasets was computed before in [4]. We outline it here for easy
comparison in Table 6.2.

dim linear one extreme two extremes
1 1.39609 7,11946 0,79075
2 2,00348 6,22406 0,92138
3 1,84211 5,95752 0,87073

Table 6.2: The exact values of the Nash equilibria from [4].

The equilibria above are computed using the FP rate of 0.01. We use the
same rate in all experiments

44

.................................... 6.2. DO Framework Settings

6.2 DO Framework Settings

For our experiments, we set the DO framework to the highest performing
setting described in [4]. We use the simultaneous computation of the respective
best responses in DO, as in [4] was showed that simultaneous best response
computation converges better. We also use nearly the same settings for the
learning of the defender’s NN. The defender’s NN is trained by weighted cross
entropy, and is trained until the loss falls under the threshold value of 0.01,
as this setting showed better results previously (DO do not fails) [4].

The training itself is performed in loops of 100 iterations, in each iteration
the NN learns for the 1000 epochs, and afterwards is checked for the utility
value. We do not use the weights from a previous training as an initialization
of weights in next training, as is used in the previous work [4], but we use
randomized weights as initialization. From our experiments, such learned
network fares better and converges with higher values of DO - which favors
the defender. We set weights of all benign points during training to the 1, as
this setting was used in the previous work [4].

Because we have found a way how to minimize the size of the support in
the game, we use it to compute the minimized strategy of the defender in
all our experiments. We have tested the effect of the minimized support of
the defender on the DO convergence and its value in the original framework.
In our tests with original framework and optimization methods, the results
stays the same. The size of the unminimized support and minimized support
are shown for the comparison in the Fig. 6.2 for the input dimension pf 2
and in the Fig. 6.3 for the input size of 3.

Figure 6.2: The size of the support in the respect to the number of iterations
for PGD attack on estimation net, with the two-dimensional linear utility.

45

6. Experimental Analysis

Figure 6.3: The size of the support in the respect to the number of iterations
for PGD attack on estimation net, with the three-dimensional linear utility.

6.3 Direct Attack

The direct PGD heuristic attack performs well in the one dimension with the
linear utility. But its performance worsens rapidly in higher dimensions. The
PGD hyper-parameters are the learning rate (or step), number of iterations,
the maximal perturbation under the L∞ norm and number of restarts. In
our case of bending the algorithms and use them in domains for which they
wasn’t designed for, we can view the restarts anywhere in our interval, as we
can set the ε = 10. Then, if we can view the benign points as the perfect
restart points. We set the high number of iterations, the 1000, and we set
the step relatively small as α = 0.01.

In the initialization of the PGD direct attack, we moreover inject the one
point - the maximum of the current optimized function - computed by the
other exact methods of DO, to the set of starting points (The original points).
The reason is that for the other than the linear case, from our experiments
follows that on the beginning of DO, the PGD for the direct attack struggles
under the other attacker’s utility functions than the linear, e.g. it doesn’t
have a good starting point, as other benign points are in the beginning far
from the optimum.

In the Fig. 6.4, it is shown the course of convergence for 100 iterations
of DO for dimension 2, the linear utility and the parameters are α = 0.01,
ε = 10, 1000 iterations of PGD and the three restarts. The PGD which uses
the calculation of the actual attacker’s utility in each step is computationally
demanding, so we must restrict the number of restarts. The second option
we experimented with was the setting when the number of restarts was 8
(other parameters the same), but we stopped the PGD iteration when it
encountered loss after the step, as it means it has found the local minima.
This modification rapidly accelerate computational speed (much less iterations

46

...6.3. Direct Attack
are made), but because the PGD in the direct attack makes the step in the
direction of the greater loss of the classifier - in this case the detection NN,
then it steps "blindly", because takes into account only the probability of
detection, and not the utility of the attacker or the multiplication of the
utility and the probability. The course of convergence of second case for 100
iterations of DO is on Fig. 6.5.

Figure 6.4: The convergence of PGD direct attack with the two-dimensional
linear utility, for 100 DO iterations, with only 3 restarts. The average time
needed for the one PGD direct attack best response was 0.56 sec. The defender’s
training took 2968 sec.

Figure 6.5: The convergence of PGD direct attack with the two-dimensional
linear utility, for 100 DO iterations, with only 8 restarts but stopped after PGD
encountered loss in a value of the actual point. The average time needed for the
one PGD direct attack best response was 8.74 sec. The defender’s training took
5606 sec.

47

6. Experimental Analysis
6.3.1 Advantages and disadvantages and discussion

The PGD direct attack method is too slow, thanks to the frequent evaluations
of the attacker’s actual utility, which assess the PGD search. On the other
hand, it can find the heuristic best responses reasonably efficiently and it
seems to be close to the converge, although in our experiments, after several
hours the DO got over 150 iterations with no evidence of final convergence.

The undeniable advantage of this type of heuristic direct attack is the
simplicity to use - we do not need to train any NNs or make any complex
compatibility adjustments.

6.3.2 Training of NNs

For the our compatibility framework, we need to train many NNs. These
NNs provide basis of the algorithms, because their estimations must be as
accurate as possible to provide credible results. Therefore, we carefully train
the each one of these NNs.

The setting same for the training of all the NNs needed to assemble the
respective utility estimation networks (UENs) is using the rule of thumb [15]
of 5000 training examples with respective labels, divided into the training
data of 4000 and test data 1000 for cross-validation [15].

We need to train the specific UEN for the each dimension as we need to
define the input features for the UEN, each specific attacker’s utility function
and for the size of support which the UEN will support. E.g., to train for the
linear utility on the dimension 2, we need one UEN, the if we want to allow
the support of maximum size of 5, we need 5 specific NNs, as if we would
train the one supporting the five probability inputs, and for example return
zeroes for the inputs we don’t use, it would generate additional unwanted
noise for our experiments.

As the UEN for the PGD estimation net attack and UEN for the MILP
methods are structurally similar, the PGD UEN can have much larger indi-
vidual number of neurons, as the PGD scales even to the large networks. An
UEN for the PGD attack have two hidden layers (Fig. 5.2) with 200 neurons
each - we experimented with different sizes, but we observed best loss (MSE
loss) for this values. For the defender’s NNs we incorporate into UEN, we
use size of 10 neurons for the experimental purposes (with such a low value,
we can concatenate ten or more such networks).

The UEN for the verification methods is very small - as small as possible,
because we use the methods which do not scale well. The individual sizes we
use in the experiments are - the defender’s NN = 5 neurons, threshold net -
same as defender’s NN, 5 neurons, the multiplication net for the classification
problem has three layers - we use values 5, 5, and 10 for the respective hidden
layers 1, 2 and 3, with 11 additional neurons in the output layer for the
classes.

We carefully verified the propagation of an inputs through the respective
UEN networks - to test that our algorithm is correct. We implemented several
methods for this purpose in the DO framework.

48

................................ 6.4. Estimation net Attack using PGD

6.4 Estimation net Attack using PGD

For the PGD attack on the UEN, we have experimentally chosen these
hyper-parameters: We set the number of iterations of the PGD to the 1500 -
arbitrary large number, because we stop the iterations prematurely as soon as
the PGD falls into the local extrema (we use the same technique, we evaluate
the actual point of the PGD again in the loop, save it and compare it to
the last one, if the last one is greater, we stop). The number of restarts is
arbitrary - the higher the number, the more powerful adversary. We therefore
choose number 5 in our experiments, as we found this number of restarts
balanced between performance and the speed of the computation. The next
parameter is the ε - we set it to the value of 10 as before for in the direct PGD
attack, as we bound the outputs of PGD attack (to not leave the defined
intervals), and moreover we do not observed the often deviations from defined
bounds. The last parameter is the learning rate, which we again set the same
as in the case of direct attack - we observed that this value is big enough for
the step and at the same time not too big to endanger the convergence of
DO. Our experimental results are shown in tables 6.3, 6.4, 6.5, 6.6, 6.7, 6.8.

1 2 3
1 26 39 248
5 67 153 335

(a) : Number of the iterations

1 2 3
1 1.397 2.073 1.969
5 1.496 2.203 2.137
(b) : Final value of the game

Table 6.3: Experimental results for the PGD estimation network attack linear
utility and individual dimensions in columns and size of the maximum allowed
best response on the rows. All results are for the defender’s Nn with 10 neurons.

1 2 3
1 3.510 3.177 2.469
5 2.510 6.253 3.829

(a) : Average time needed for best re-
sponse (sec)

1 2 3
1 78.7 336.8 2508.8
5 403.4 2908.68 4563.7

(b) : Time needed for the defender’s
training (sec)

Table 6.4: Experimental results for the PGD estimation network attack with
linear utility and individual dimensions in columns and size of the maximum
allowed best response on the rows. All results are for the defender’s NN with 10
neurons.

We did not encountered any serious issues during experiments with the
PGD estimation network attack.

We show the comparison of the algorithm from the original DO (discretiza-
tion with the gradient optimization) and the PGD estimation network attack
in Fig. 6.6 and Fig. 6.7.

49

6. Experimental Analysis
1 2 3

1 13 43 186
5 50 50 287

(a) : Number of the iterations

1 2 3
1 7.474 5.982 6.385
5 6.970 6.558 7.155
(b) : Final value of the game

Table 6.5: Experimental results for the PGD estimation network attack with one-
maxima utility and individual dimensions in columns and size of the maximum
allowed best response on the rows. All results are for the defender’s NN with 10
neurons.

1 2 3
1 2.126 10.859 2.819
5 3.226 3.140 4.651

(a) : Average time needed for best re-
sponse (sec)

1 2 3
1 51.7 247.1 4068.4
5 181.6 315.3 4636.1

(b) : Time needed for the defender’s
training (sec)

Table 6.6: Experimental results for the PGD estimation network attack with one-
maxima utility and individual dimensions in columns and size of the maximum
allowed best response on the rows. All results are for the defender’s NN with 10
neurons.

1 2 3
1 8 37 N
5 5 28 N

(a) : Number of the iterations

1 2 3
1 3.620 4.284 N
5 5.492 4.740 N
(b) : Final value of the game

Table 6.7: Experimental results for the PGD estimation network attack with two-
maxima utility and individual dimensions in columns and size of the maximum
allowed best response on the rows. All results are for the defender’s NN with 10
neurons.

1 2 3
1 2.136 1.318 N
5 2.433 1.053 N

(a) : Average time needed for best re-
sponse (sec)

1 2 3
1 51.5 300.8 N
5 4.1 170.5 N

(b) : Time needed for the defender’s
training (sec)

Table 6.8: Experimental results for the PGD estimation network attack with two-
maxima utility and individual dimensions in columns and size of the maximum
allowed best response on the rows. All results are for the defender’s NN with 10
neurons.

6.4.1 Advantages and disadvantages and discussion

The algorithm is fast, simple and the random restarts fits very well with
the benign points in our adversarial settings. It scales well in the first three
dimensions, as the values of the average BR duration seems like random. As
it is a heuristic attack, it strongly depends on the current settings in the
individual experiments, so number of iterations of individual PGD restarts
varies, so the time of average duration of BR. The size of allowed support

50

................................ 6.4. Estimation net Attack using PGD

greatly affects the performance (in positive way), and from the result can be
observed that with increasing ability to perform better best responses grows
the need for the DO iterations.

Figure 6.6: The difference between the attacker’s actual utility values for PGD
estimation network attack and discretization with the gradient optimization
(original) algorithm on 50 iterations of DO in dimension 1, linear utility, for
PGD with 5 restarts.

Figure 6.7: The difference between the attacker’s actual utility values for PGD
estimation network attack and discretization with the gradient optimization
(original) algorithm on 50 iterations of DO in dimension 2, linear utility, for
PGD with 5 restarts.

The disadvantages are unreliability and bad performance when a grater
"leap" from the original point to the adversarial point is needed. The additional
computational "reliability" can be gained only from the randomization.

51

6. Experimental Analysis
This algorithm showed new bottleneck of the DO - as the size of game

grows, the time needed for calculations of minimized support grows rapidly.
In the experiment which ended in timeout - tables 6.3 and 6.4, the time
needed for the computation of minimized support is two fold as high as the
rest of the algorithm combined (over 8000 sec).

6.5 Estimation net Attack using MILP

Evaluating the MILP worst-case adversarial attack 4.16 was not easy. As we
mentioned earlier, we build the UEN for the verification algorithms smallest
as possible, because the worst-case adversarial attack MILP doesn’t scale
so well. This holds the major disadvantage, as so small number of neurons
negatively affects the performance of the NN. The best loss (cross-entropy)
on the test set we achieved was 0.1464.

We set the parameters of the algorithm as following: In each start of the
algorithm, the current label of the point we start the attack (we choose the
last attacker point as the starting point in each run of the algorithm, except
the first start - in this case, we start from the middle of the defined game
interval - 5 for the first dimension) is detected by propagating the sample to
the UEN, then the source of attack is defined as this label, the target is chosen
as the one step higher class label, e.g. for label of 4, targeted class would
be 5. By this heuristic, we minimize chances of worst-case attack to find
badly learned parts of the UEN - during the evaluation, we often observed
that worst-case MILP finds the best adversarial example - but this example
is often not the real optimal adversarial example, because the UEN is not
estimating the actual attacker’s utility too well.

Figure 6.8: The utility values of MILP Worst-case attack with the one-
dimensional linear utility and maximum allowed support size of 3.

The another parameter - the ε, we heuristically determine for the each
dimension. For the dimension 1, the ε = 2 worked best for us. For the

52

.. 6.6. Issues

dimension 2, the ε = 5 worked well. If the ε is not set by such a way, the
MILP has tendency to find wrong adversarial sample - one for which the UEN
wrongly predicts better utility than the real optimal adversarial example.

As we cannot learn the UEN with more neurons due to the scalability of the
worst-case MILP, we had difficulties with the performance of the method. We
show the worst-case MILP utility values of individual points for dimensions 1
and 2 in the Fig.6.8 and Fig. 6.9.

Figure 6.9: The utility values of MILP Worst-case attack with the two-
dimensional linear utility and maximum allowed support size of 3.

6.5.1 Advantages and disadvantages and discussion

Nevertheless, the advantages are the speed of the algorithm - it doesn’t need
any iterations or search like the heuristics, but if the UEN is sufficiently small,
the resulted adversarial example is computed instantaneously.

The disadvantage is the great dependency on the quality of the learning of
the UEN. The small models we experimented with were sufficient, but only
with heuristic approach. It scales only to the small models - tens of neurons.

6.6 Issues

We have implemented MIPVerify method (4.3.3) ahead of the MILP worst-case
adversarial attack MILP method, but we were unable to properly experi-
mentally evaluate it - it turned out that the MILP model which the method
uses isn’t compatible with our objective - we need to find the adversarial
example on the target class, but we need the best possible values of this
example even if the adversarial example will not have exactly the target label
- exactly this objective has the MILP model we use - subsection 4.16. But
the MIPVerify has in the MILP model the condition that the solution is
infeasible if the target class is not achieved (4.11), which is a major obstacle -

53

6. Experimental Analysis
we can only find adversarial example when it is really possible to change label
to the target class. We cannot efficiently evaluate experiments under that
condition - we could discretize the classes of the UEN even more, to 100 and
try by e.g. binary search which adversarial example could be achieved, but
because MIPVerify provides careful preprocessing to handle bigger NNs, it
takes a long time to compute even for small networks, making such a method
infeasible.

6.7 Other methods

We also wanted to try the methods from the incomplete verification "family".
But there are difficulties with these methods - many of them are designed for
training the robust models, and "it is enough for them" to compute only the
estimated upper bound on the adversarial sample, and use this bound during
training [7]. Many methods are reasoning over an outer approximation of the
adversarial polytope (subsection 4.4), e.g. even if they could give the actual
adversarial sample, it would be computed from the over-approximation of the
NN’s activations - it does not correspond to the real NN activations.

Therefore, we preferred testing of the other methods.

6.8 Implementation Details

The implementation details are in Appendix B. All experiments were run on
Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz 2.50GHz, 8.00 GM RAM,
64-bit OS.

54

Chapter 7
Conclusion

In this thesis, we study the problem of finding the Nash equlibria in the infinite
adversarial games using the double-oracle algorithm. We have outlined the
basics of game theory, used these definitions and state the adversarial problem
as the game. We described how to solve this game using the double-oracle
algorithm and described workings of existing DO framework which solves it.

We have outlined the bottleneck of this framework, the attacker’s oracle.
We studied adversarial attacks and verification methods in hope that we
could use this domain-specific knowledge of NNs to accelerate the search for
attacker’s best response.

We have evaluated and reviewed these methods and their possible com-
patibility with utility functions and strategic constraints and created a com-
patibility framework, which could be used to many other families of similar
methods as well and integrated three of them into the DO framework to
perform the experimental analysis.

We were surprised that the projected gradient descent adversarial attack
proved to be so very effective in this settings, as PGD estimation network
attack proved ideal for our adversarial setting with the benign points, which
serve as the perfect starting point for generating new adversarial samples.

The PGD attack itself allowed us to test a little higher dimensions - to
learn that we have yet another bottleneck in the DO framework.

Nevertheless, the attack itself proved efficient and scales well, and thanks
to our compatibility frameworks, it is very easy to integrate another methods
of finding an adversarial examples into the double oracle.

7.1 Future Work

Thanks to the compatibility framework, the opportunity for testing other
powerful methods from the fast growing adversarial learning domain presents
itself. The future work on the DO framework could include another less
computionally complex ways how to minimize defender’s support, to further
scale the algorithm, because the PGD showed to perform very well in this
setting, showing great performance and unparalelled scalability.

55

56

Appendix A
Bibliography

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

[2] B. Skyrms, “The stag hunt,” Proceedings and Addresses of the American
Philosophical Association, vol. 75, no. 2, pp. 31–41, 2001.

[3] B. Bosanský, “Iterative algorithms for solving finite sequential zero-sum,”
2014.

[4] P. Šilhavý, “Using double oracle algorithm for classification of adversarial
actions,” 2019.

[5] P. M. I. Goodfellow and N. Papernot, “Making machine learning robust
against adversarial inputs,” Communications of the ACM, vol. 61, pp. 56–
66, Jul 2018.

[6] J. Z. Kolter and E. Wong, “Provable defenses against adversar-
ial examples via the convex outer adversarial polytope,” CoRR,
vol. abs/1711.00851, 2017.

[7] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” 2020.

[8] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. A. Mann, and P. Kohli, “On the effectiveness of
interval bound propagation for training verifiably robust models,” CoRR,
vol. abs/1810.12715, 2018.

[9] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-
digit Number Recognition from Street View Imagery using Deep Con-
volutional Neural Networks,” arXiv e-prints, p. arXiv:1312.6082, Dec.
2013.

[10] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing
the gap to human-level performance in face verification,” in 2014 IEEE

57

A. Bibliography...
Conference on Computer Vision and Pattern Recognition, pp. 1701–1708,
June 2014.

[11] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[12] O. Vinyals, I. Babuschkin, W. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan,
M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. Agapiou, M. Jader-
berg, A. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,
Y. Sulsky, J. Molloy, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu,
R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul,
T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver,
“Grandmaster level in starcraft ii using multi-agent reinforcement learn-
ing,” Nature, pp. 1–5, 2019.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
2013.

[14] F. Ansari, S. Erol, and W. Sihn, “Rethinking human-machine learning
in industry 4.0: How does the paradigm shift treat the role of human
learning?,” Procedia Manufacturing, vol. 23C, pp. 117–122, 04 2018.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 12 2013.

[17] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” CoRR, vol. abs/1412.6572, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[19] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Informa-
tion Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran
Associates, Inc., 2019.

[20] M. Jain, D. Korzhyk, O. Vaněk, V. Conitzer, M. Pechoucek, and
M. Tambe, “A double oracle algorithm for zero-sum security games
on graphs,” in AAMAS, 2011.

58

http://www.deeplearningbook.org

..A. Bibliography
[21] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,

Game-Theoretic, and Logical Foundations. New York, NY, USA: Cam-
bridge University Press, 2008.

[22] P. Dasgupta and J. Collins, “A survey of game theoretic approaches
for adversarial machine learning in cybersecurity tasks,” AI Magazine,
vol. 40, p. 31–43, Jun 2019.

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018.

[24] N. Stein, “Characterization and computation of equilibria in infinite
games,” 02 2008.

[25] B. Bosansky, V. Lisy, M. Lanctot, J. Cermak, and M. Winands, “Algo-
rithms for computing strategies in two-player simultaneous move games,”
Artificial Intelligence, vol. 237, 04 2016.

[26] J. v. Neumann, “Zur theorie der gesellschaftsspiele,” Mathematische
Annalen, vol. 100, pp. 295–320, Dec 1928.

[27] J. Rehbeck, “Note on unique nash equilibrium in continuous games,”
Games and Economic Behavior, vol. 110, pp. 216–225, 2018.

[28] N. D. Stein, A. Ozdaglar, and P. A. Parrilo, “Separable and low-rank
continuous games,” International Journal of Games Theory, vol. 37,
pp. 475–504, 12 2008.

[29] N. D. Stein, P. A. Parrilo, and A. Ozdaglar, “Characterization and
computation of correlated equilibria in infinite games,” in 2007 46th
IEEE Conference on Decision and Control, pp. 759–764, Dec 2007.

[30] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!,”
CoRR, vol. abs/1904.12843, 2019.

[31] N. Carlini, G. Katz, C. W. Barrett, and D. L. Dill, “Ground-truth
adversarial examples,” CoRR, vol. abs/1709.10207, 2017.

[32] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning,
and C.-J. Hsieh, “Towards stable and efficient training of verifiably robust
neural networks,” 2019.

[33] A. Shrestha and A. Mahmood, “Review of deep learning algorithms and
architectures,” IEEE Access, vol. 7, pp. 53040–53065, 2019.

[34] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” CoRR, vol. abs/1710.05941, 2017.

[35] Adversarial Perturbations of Deep Neural Networks, pp. 311–342. 2017.

59

A. Bibliography...
[36] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li, “Adversarial examples:

Attacks and defenses for deep learning,” CoRR, vol. abs/1712.07107,
2017.

[37] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” CoRR, vol. abs/1607.02533, 2016.

[38] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European Symposium on Security and Privacy (EuroS P),
pp. 372–387, March 2016.

[39] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. J. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” CoRR, vol. abs/1902.06705, 2019.

[40] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
in Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pp. 274–283, 2018.

[41] N. Carlini and D. A. Wagner, “Adversarial examples are not easily
detected: Bypassing ten detection methods,” CoRR, vol. abs/1705.07263,
2017.

[42] N. Carlini, “Is ami (attacks meet interpretability) robust to adversarial
examples?,” CoRR, vol. abs/1902.02322, 2019.

[43] N. Carlini and D. A. Wagner, “Defensive distillation is not robust to
adversarial examples,” CoRR, vol. abs/1607.04311, 2016.

[44] A. Kurakin, I. J. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang,
T. Pang, J. Zhu, X. Hu, C. Xie, J. Wang, Z. Zhang, Z. Ren, A. L. Yuille,
S. Huang, Y. Zhao, Y. Zhao, Z. Han, J. Long, Y. Berdibekov, T. Akiba,
S. Tokui, and M. Abe, “Adversarial attacks and defences competition,”
CoRR, vol. abs/1804.00097, 2018.

[45] H. Khedher, M. Ibn Khedher, and M. Hadji, “Mathematical programming
approach for adversarial attack modelling,” 02 2021.

[46] W. Brendel, J. Rauber, M. Kümmerer, I. Ustyuzhaninov, and M. Bethge,
“Accurate, reliable and fast robustness evaluation,” 2019.

[47] H. Salman, G. Yang, H. Zhang, C. Hsieh, and P. Zhang, “A convex
relaxation barrier to tight robustness verification of neural networks,”
CoRR, vol. abs/1902.08722, 2019.

[48] C. Liu, T. Arnon, C. Lazarus, C. W. Barrett, and M. J. Kochenderfer, “Al-
gorithms for verifying deep neural networks,” CoRR, vol. abs/1903.06758,
2019.

60

..A. Bibliography
[49] V. Tjeng and R. Tedrake, “Verifying neural networks with mixed integer

programming,” CoRR, vol. abs/1711.07356, 2017.

[50] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient SMT solver for verifying deep neural networks,”
CoRR, vol. abs/1702.01135, 2017.

[51] F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Automated
verification of neural networks: Advances, challenges and perspectives,”
CoRR, vol. abs/1805.09938, 2018.

[52] H. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of deep con-
volutional neural networks using imagestars,” CoRR, vol. abs/2004.05511,
2020.

[53] R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar,
“Piecewise linear neural network verification: A comparative study,”
CoRR, vol. abs/1711.00455, 2017.

[54] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural
networks,” CoRR, vol. abs/1705.01320, 2017.

[55] G. Katz, D. A. Huang, D. Ibeling, K. D. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zeljic, D. Dill, M. J. Kochenderfer, and
C. W. Barrett, “The marabou framework for verification and analysis of
deep neural networks,” in CAV, 2019.

[56] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “To-
wards proving the adversarial robustness of deep neural networks,” Elec-
tronic Proceedings in Theoretical Computer Science, vol. 257, p. 19–26,
Sep 2017.

[57] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal se-
curity analysis of neural networks using symbolic intervals,” CoRR,
vol. abs/1804.10829, 2018.

[58] K. Y. Xiao, V. Tjeng, N. M. Shafiullah, and A. Madry, “Training for
faster adversarial robustness verification via inducing relu stability,”
2019.

[59] E. Wong, F. R. Schmidt, J. H. Metzen, and J. Z. Kolter, “Scaling provable
adversarial defenses,” CoRR, vol. abs/1805.12514, 2018.

[60] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against
adversarial examples,” 2020.

[61] A. Raghunathan, J. Steinhardt, and P. Liang, “Semidefinite re-
laxations for certifying robustness to adversarial examples,” CoRR,
vol. abs/1811.01057, 2018.

61

A. Bibliography...
[62] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli,

“A dual approach to scalable verification of deep networks,” CoRR,
vol. abs/1803.06567, 2018.

[63] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE Symposium on Security and
Privacy (SP), pp. 3–18, 2018.

[64] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in Advances in Neural Information
Processing Systems (S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates, Inc.,
2018.

[65] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An abstract domain
for certifying neural networks,” vol. 3, Jan. 2019.

[66] G. Singh, R. Ganvir, M. Püschel, and M. Vechev, “Beyond the single
neuron convex barrier for neural network certification,” in Advances
in Neural Information Processing Systems (H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, eds.), vol. 32,
Curran Associates, Inc., 2019.

[67] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “Robustness certification
with refinement,” in International Conference on Learning Representa-
tions, 2019.

[68] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal
safety analysis of neural networks,” CoRR, vol. abs/1809.08098, 2018.

[69] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient
neural network robustness certification with general activation functions,”
2018.

[70] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S.
Dhillon, and L. Daniel, “Towards fast computation of certified robustness
for relu networks,” 2018.

62

Appendix B
Framework Source Code

We have created a compatibility framework and integrated it with three
optimization methods into the DO framework. The framework uses the
Python 3.6. The used libraries with versions are listed in Table B.1

Library version
Python1: 3.6.2
NumPy2: 1.16.1
SciPy3: 1.1.0

CVXOPT4: 1.2.0
scikit-learn5: 0.23.1

PyTorch6: 1.7.1
matplotlib7: 3.0.3

glpk8: 4.6.5

Table B.1: The version of software used in the framework

The abstract class optimizationInterface of the DO framework is expanded
by the optimizationPgdDetection (direct PGD attack), optimizationPgdEsti-
mation.py (PGD estimation network attack) and optimizationMILP (Worst-
case MILP attack). These optimization methods are directly incorporated
into the DO framework and can be run from the main.py.

In the optimization folder, the NN models folder contains the implementa-
tion of the compatibility framework. In the models folder, the individual NN
models are saved for further use. The adversarialAttacks contains test imple-
mentations of various adversarial algorithms and served as testing ground.
The NN model is an abstract class for the individual classes, which manages
individual components of UEN - detectionNN, multiplyNN, thresholdNN,
utilityEstimationNN - each manages the exact component from the algorithm.

1https://www.python.org/
2https://www.numpy.org/
3https://www.scipy.org/
5https://cvxopt.org/
6https://scikit-learn.org/
7https://pytorch.org/
8https://matplotlib.org/
8https://www.gnu.org/software/glpk/

63

https://www.python.org/
https://www.numpy.org/
https://www.scipy.org/
https://cvxopt.org/
https://scikit-learn.org/
https://pytorch.org/
https://matplotlib.org/
https://www.gnu.org/software/glpk/

B. Framework Source Code....................................
the trainNeuralNetworks contains training scripts to train individual NNs.
The traningData contains a few saved datasets for the experimental training.

Usage of the script:

python main.py function points fp_threshold algorithm *params
[optimizer] [step] [weights]

function: 0 -> Linear utility
1 -> Utility with one maximum
2 -> Utility with two maxima

points: a path to the *.npy file with the benign points

fp_threshold: float - a number between 0 and 1 to limit
a false-positive rate

None - algorithm expects classifier
with hard false-positive constraint

algorithm: discretization -> discretization algorithm
SVM -> Double Oracle with SVM classifier
NN -> Double Oracle with neural network
DT -> Double Oracle with decision tree

optimizer: 0 -> discretization optimizer
1 -> Basin-Hopping optimizer with discretization
2 -> Basin-Hopping optimizer

step: 0 -> simultaneous computation of the attacker’s BR
1 -> alternating computation of the attacker’s BR
2 -> simultaneous computation of the attacker’s BR

on weighted a few strategies in history

weights: 0 -> benign points has weight 1
1 -> benign points has weight 1/n

*params: depends on the algorithm settings

discretization:
density: int - density of sampling

None - exact computation

SVM:
degree: int - degree of polynomial kernel

NN:
hidden_size: int - number of neurons in hidden layer
epochs: int - number of epochs before check of

classifier utility
iterations: int - number of repetitions of training

and utility checks

64

.....................................B. Framework Source Code

last for init: bool - initialize the NN with weights
from previous training

gradient: float - required descent of loss,
None - the addition of the first better

verbose: bool - sets which logging level is used - true for the debug level, false for the info level

basinHoppin: bool - use basinhoppin algorithm for comparison

additionalOpt int 0 -> PGD direct attack
1 -> PGD estimation network attack
2 -> MILP worst-case attack

DT:
max depth: int - a maximal depth of the tree

None - unlimited
gradient: float - required descent of weighted

misclassification change,
None - unlimited
First - the addition of the first better

65

66

Appendix C
CD Content

The enclosed CD contains following files and directories:. skoumond.pdf - The text of this thesis. text_source - The source code of the text. appendices - The appendices of the work. chapters - The chapters source code. img - The figures. specification - The specification of the thesis. data - The datasets used for the experiments. The generated datasets. generate_dataset.py - The script for generation of datasets. framework - The source code of the framework

The text source code is written in LATEXusing the template CTUstyle
created by Petr Olšák1.

For generation of new datasets, you can use the script generate_dataset.py.

Usage of the script:

python generate_dataset.py generator dimensions name

generator: 0 -> First dataset
1 -> Second dataset
2 -> Third dataset

dimensions: the number of dimensions of the points

name: name of the generated file

1http://petr.olsak.net/ctustyle.html

67

http://petr.olsak.net/ctustyle.html

	Introduction
	Related work
	Outline

	Game Theory Concepts
	Introduction
	Normal-Form Games
	Definition
	Strategies in Normal-Form Games
	Definition of Nash Equilibrium
	Computing Nash Equilibria in Zero-Sum NFG
	Computing Nash Equilibria in General-Sum NFG

	Infinite Games
	Definition
	Computing Nash Equilibria in Infinite Games

	Double-Oracle Algorithm for NFG

	Double-Oracle Framework
	Adversarial Classification Problem as a Game
	Computing Nash Equilibrium by the Double-Oracle algorithm
	Defender's Oracle
	Attacker's Oracle
	Additional comments and observations

	Adversarial Attacks and Verification Methods
	Introduction
	Deep Feedforward Neural Networks
	Properties of Adversarial Attacks
	Adversarial Attacks as Optimization Problem

	Finding Lower Bounds - Adversarial Attacks
	Fast Gradient Sign Method
	Basic Iterative Method
	Projected Gradient Descent

	Exact Solution - Complete Verification
	Reluplex
	Marabou
	MIPVerify
	Worst-case Adversarial Attack

	Finding Upper Bounds - Incomplete Verification
	Convex Relaxations
	Abstract Interpretations
	Bound Propagation

	Compatibility Framework
	Methods
	Direct Attack
	Outline
	Attack Setup

	Utility Estimation Net
	Modelling Attacker's Best Response by DNN
	Basic Structure of Utility Estimation Net
	Support Size Minimization
	Compatibility with PGD Attack
	Compatibility with MIPVerify and Worst Case MILP

	Experimental Analysis
	Experimental Data
	DO Framework Settings
	Direct Attack
	Advantages and disadvantages and discussion
	Training of NNs

	Estimation net Attack using PGD
	Advantages and disadvantages and discussion

	Estimation net Attack using MILP
	Advantages and disadvantages and discussion

	Issues
	Other methods
	Implementation Details

	Conclusion
	Future Work

	Bibliography
	Framework Source Code
	CD Content

