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Abstract

Urban data visualization plays a vital role
in sustainable city evolution. Visual me-
dia enable efficient communication which
is the cornerstone of any development.
This thesis presents a design and imple-
mentation of a modular visualization sys-
tem of urban data. The initial research
focuses on the role of data platforms in ur-
ban planning and analyses the integration
of visualization with diverse data sources,
including simulation models. Further, the
thesis explores possible geometry represen-
tations and ways to process large geospa-
tial datasets. A simple and extensible
styling language is proposed. The sys-
tem implementation is available as two
python packages for data processing and
visualization. On the inside, the geom-
etry processing is implemented in C++4
using spatial and temporal acceleration
data structures. The visualization compo-
nent is implemented as an accessible web
application enabling data viewing and ex-
port. The validation of the implemented
solution includes the evaluation of perfor-
mance tests and an iterative qualitative
user study.

Keywords: urban data, visualization
systems, extensive datasets, dynamic

data, open data, web application

Supervisor: Ing. David Sedlacek, Ph.D.
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Abstrakt

Vizualizace urbanistickych dat zdsadnim
zpusobem prispiva k udrzitelnému rozvoji
mést. Vizualni média umoznuji efektivni
komunikaci, ktera je zdkladnim kamenem
vyvoje. V této praci je predstaven navrh a
implementace modularniho vizualiza¢niho
systému urbanistickych dat. Pocatecni re-
Serse se zameéruje na roli datovych plat-
forem v méstském planovani a analyzuje
moznosti integrace vizualizace s riznymi
datovymi zdroji, véetné simula¢nich mo-
delt. Zpracovand reserse se dale zabyva
moznostmi reprezentace geometrie a zpra-
covani rozsahlych datovych sad. Prace
obsahuje navrh a implementaci jednodu-
chého a rozsititelného stylovaciho jazyka.
Systém je implementovan formou dvou
Python balickti umoznujicich zpracovani a
vizualizaci dat. Interni zpracovani geome-
trie je implementovano v C++ a vyuziva
prostorovych a ¢asovych akcelera¢nich da-
tovych struktur. Vizualiza¢ni komponenta
je implementovana jako pristupna webova
aplikace umoznujici prohlizeni a export
dat. Validace implementovaného feseni za-
hrnuje vyhodnoceni vykonnostnich testi a
iterativni kvalitativni uzivatelskou studii.

Klicova slova: urbanisticka data,
vizualizacni systémy, rozsahlé datové
sady, dynamicka data, oteviena data,
webova aplikace

Preklad nazvu: Vizualizace
urbanistickych dat
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Chapter 1

Introduction

A city is often compared to an ever-evolving organism. As humans do with
most known complex systems, we try to observe them, describe them, and
predict their behavior. We also try to shape the city structures in response
to our needs and current events. The city is a complex system, and to plan
and control its evolution, we need to understand it as a whole.

An inherent loop arises as decision-makers influence citizens’ daily lives; citi-
zens adjust and influence plans by feeding new data back into the system. The
effectiveness of this loop can be increased by enabling cooperation throughout
the participating groups, which opens up space for data visualization as a
communication medium. Visual media enable efficient communication and
therefore are essential for achieving sustainable city evolution.

The base for the visualization includes more than just data. Predictive
models, the know-how of the participants, and their diverse views are all
equally significant inputs. The main topic of this thesis is the specification
and implementation of tools that could help find common ground and provide
a unified view of the city’s state.

The primary goal of this thesis is to design and implement a visualization
system that supports both virtual and physical media. The developed system
should be easily accessible, extensible, and performant. Existing visualization
tools often prioritize some of these qualities over the rest; however, an ideal
visualization tool should balance them all.

. Thesis Structure

Chapter 2 focuses on the role of data platforms in urban planning; diverse
forms of data visualization are examined. Chapter 3 examines urban data
visualization principles and methods enabling the processing of extensive
datasets. Chapter 4 explores the existing geospatial data formats and infor-
mation systems. The design of the visualization tool is presented in chapter
5. Finally, the chapter 6 presents the implementation details, the evaluation
of performance tests, and a small user study.






Chapter 2
From Data to Models

This chapter maps the current state of urban data sources and approaches
to visualization using various types of media. As data alone is not always a
sufficient source of information for decision-making, alternative approaches
using simulations and models are discussed. The implications of data and
model integration are examined in the context of user interface and software
architecture design.

. 2.1 Urban Informatics

In 2011, Forth et al. [1] described Urban Informatics as a separate field of
study. It focuses on three key aspects - place, technology, and people in
the context of urban environments. The urban environment is described as
a "complex techno-social network; the city only meaningfully exists when a
sustained stream of people occupies it" [1]. The authors outline and study four
dominant trends: the emergence of Ubiquitous Computing, the accessibility of
real-time information, informed sustainability and planning based on citizen
participation.

One of Urban Informatics’ objectives is to help develop communication
channels between local authorities and citizens. Moreover, thanks to the
gathered information, the citizens can, directly and indirectly, influence the
development of the urban area. The communication channels, as understood
by Urban Informatics, are omnidirectional.

. 2.2 Data Sources

Robinson et al. [2] presented a classification of the data sources into two cate-
gories — Open Data and Ubicomp sensing. The authors further demonstrate
how the gathered collective knowledge could serve as a basis for optimizing
daily activities, such as trip planning.

Open Data. The most prominent source of data are governments and local
institutions. The data is commonly released in several open formats, which
are further described in the section 4.1. This data often includes maps,
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London - City Dashboard THE SCORE

Day Week Month QTR

(a) : London City Dashboard [7] (b) : Boston CityScore [8]

Figure 2.1: Examples of City Dashboards

building layouts, terrain models, public transport data, etc. The previously
mentioned data are mainly static; some cities also offer real-time weather
information or public transport vehicle locations.

Ubicomp. Ubiquitous Computing was first presented by Weiser in 1991
[3]. The concept of ubicomp relies on small embedded computers, which
communicate together and allow for seamless interaction between users and
technology. As these devices are used by users or exposed to the environment,
they can gather the information that will later serve as input for predictive
models and as a basis for decision-making. Further research in this area lead
to the development of fields such as Participatory Sensing [4], which enables
gathering data from devices of individual users, or Urban Computing [5],
which studies the impact of the ubiquitous information on the city level.

B 23 City Dashboards

The gathered data is usually made public in an open format or processed
and subsequently presented in a visual form on a data platform. While
this approach is reasonably straightforward and data platforms can help
answer simple questions, further analysis shows that these platforms alone
are insufficient for improved communication between stakeholders.

B 23.1 City Dashboard Classification

Barns [6] presents a four-class classification of dashboard-like platforms: Data
Repositories, Data Showcases, City Scores, and Data Marketplaces.

Data Repositories. Data Repositories or Open Data Portals usually function
as a public site where data is freely available in machine-readable formats.
The data is usually authored by a public institution or city government.
Example of such platforms can be NYC Open Data Portal [9], Helsinki Open
Data Portal [10], Vienna Open Data Portal [11], and the Chicago Data Portal
[12].



2.3. City Dashboards

Data Showcases. Data Showcases, also generally known as Dashboards,
offer a public interface to the data. The data is usually presented in a visual
format, such as a map, a timeline, or a graph. The underlying data might
not be publicly available. Examples of such platforms include the City of
London Dashboard operated by Datopian [7], see figure 2.1a.

City Score. City Score platforms integrate several data sources to provide a
performance metric against a target set by, e.g., city government. Examples
of such platforms include The Greater Sydney Dashboard [13] and the Boston
CityScore [8], see figure 2.1b.

Data Marketplace. Data Marketplace is a broader term, which encompasses
the combination of all previously mentioned platform types. Generally, public
and private sector representatives can operate the site together to provide
access to a broader range of performance metrics or machine-readable data. A
great example of such a platform was the City Data Exchange (CDE) project
run by the Municipality of Copenhagen, the Capital Region of Denmark, and
Hitachi in years 2013-2018 [14].

B 2.3.2 City Dashboard Analysis

All previously listed examples of data dashboards function on similar principles.
Most of them inform the viewer about the current city-state using tables
and graphs and appear as a static environment offering limited interactivity.
The presented information has been simplified to offer a quick overview. If a
deeper understanding of the situation is necessary, the user needs to download
the source data and attempt to visualize it using a different tool. A problem
arises if the data sources are not publicly available.

The City Data Exchange Report [14] lists several observed barriers to
effective data exchange, including lack of use cases and the reluctance of
the participants to share data on an open data platform. Goldsmith and
Crawford argued [15] that the adoption of data platforms and data-driven
governance would "open up the machinery of government to its people, letting
them collaborate to create solutions coproduced by public servants and their
constituents” [15]. Despite the ongoing efforts to implement smart city
solutions by the public sector alone, it is possible to observe signs of a lack of
support for the proposed approach.

Robinson writes: "Commercial agendas for smart cities are just as likely to
reduce our life expectancy and social engagement by making it easier to order
high-fat, high-sugar takeaway food on our smartphones to be delivered to our
couches by drones whilst we immerse ourselves in multiplayer virtual reality
games." [16] In the article [16], he proposes that one of the main reasons why
the smart city transformation stalled so far is the lack of cohesion between
the public and private sectors.

Most existing smart city solutions are funded as research-and-development
pilot projects, and very few reach sustainable states. The commercial sector
provides most of the significant investments into the smart city agenda,
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Figure 2.2: Sociotechnical system model [17]

focusing on expanding their business, hence the previous quote. The lack of
incentive for the private sector to participate explains why virtually no smart
city projects funded by private companies are developed in cooperation with
public institutions in the public interest of city development.

Summary. An alignment of questions posed by the public and private sector
representatives is needed to make the dashboards applicable as an effective
information source for both groups. City Dashboards might function well
as a general source of information; however, the general-purpose dashboards
lack the ability to answer targeted questions that require more profound
insight into the input data. It is certainly possible to extend the dashboard to
provide a more detailed view of the data, but this extension has to be provided
on-demand and requires the action of the dashboard developer/supervisor.

B 24 Modeling the Urban System

Urban data alone is not always sufficient input for city planning. Winder
[17] describes the paradigm of generating insight from data illustrated in
figure 2.2. It emphasizes the role of the user interface, which is essential in
getting familiar with the actual data and analytics. The generated insight
influences further planning and development. The impact of these actions has
the potential to generate new data that feeds back into the loop. The step
from data to analytics can be rather intensive and involves creating analytical
models presented as interactive simulations. The practical application of
this approach is well illustrated in the article [18], presenting a physical
environment using tangible media that acts as a control panel of the urban
development modeling tool (see figure 2.3).

The MIT City Science Research Group has taken a similar approach and
developed the CityScope platform. The framework integrates computational

6
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(a) : Participants using Tactile Matrix [19] (b) : SDK Schema [20]

Figure 2.3: Tactile Matrix framework

models and data warehouses with digital and physical user interfaces. [21] The
available CityScope online documentation [22] is quite limited. It describes
the overall structure of the project (see figures 2.4 and 2.5); however, it does
not go into detail, and further investigation of the available source codes
is necessary to replicate or extend the current state of the platform. The
backend of the platform (CityIO) acts as an integration layer for simulation or
computational modules (GAMA, SUMO, Brix) and user interface (CityScoPy,
RoboScope). This setup is particularly effective from a software architecture
perspective and allows for virtually any modeling software integration. [22]

Urban Modeling Tools. According to [23], "the modeling process can be seen
as an iterative process, in which specific knowledge is injected, and series of
issues has to be discussed.” Although this description is provided in reference
to the OpenMOLE modeling toolbox, it applies to other modeling tools
such as GAMA [24], modeling tool used by CityScope, and MATSim [25],
multi-agent transport simulation tool also utilized by urban planners [26].
The agent-based modeling approach is well suited for urban planning, as
it allows to model the dynamics of the urban environment, including the
interaction between agents.

A different approach to urban modeling utilizes cellular automata. Santé
et al. [27] present an exhaustive analysis of the currently known cellular
automata models for the simulation of real-world urban processes. "The main
strength of CA-based models is their ability to integrate the modeling of the
spatial and temporal dimensions of urban processes. Yet, the main reason
for the widespread acceptance of these models is their simplicity." [27] The
simplicity of CA can also act as an obstacle, and the basic cellular automata
rules and principles need to be extended by relaxations. The use of cellular
automata together with agent models is also possible. [28] Santé et al. also
state that based on the known qualities, the cellular automata models "will
not be used to exactly predict a phenomenon, but to interactively simulate
different scenarios by modifying the parameters of the model" [27].

Integration of Modeling Tools and Visualization. A basic understanding
of the utilized data structures is required to generate a visualization based on

7
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Figure 2.4: Integration Schema of CityScope Framework [21]

the inputs and outputs of the modeling tools. Both introduced agent-based
tools — GAMA and MATSim — produce output files in XML format. The
structure of these files is well documented, and the files can be parsed using
a general XML parsing tool; however, the contents do not adhere to any
generally used spatial data format. As for cellular automata, the underlying
grid structure makes them quite simple to export and integrate into different
applications. Therefore, the visualization platform must be easily extensible
to account for the output files’ specific structure.

. 2.5 Visualization Media

The discussion of modeling tools in the previous section mentions different
visualization approaches. To overcome the inherent incompatibility of 2D
digital media, 3D physical models, and dynamic simulations, Underkoffler
and Ishii conducted several experiments [29, 30] and introduced a framework
called Urp — a system for urban planning. The system integrates the before-
mentioned components and utilizes a concept of 1/0O Bulb. This setup enabled
the projection of information onto objects’ surfaces while the objects acted
both as the projection plane and as a controller. This proof-of-concept was
later extended into the Luminous Table Project [31], which extended the data
integration and simulation capabilities and explored the system’s potential in
the context of collaborative urban planning.

Winder [18] suggested that by constraining the objects into a matrix, "we
enable scanning in a way that is cheap in terms of both computation and
hardware while facilitating projection-mapping, " which allows for smoother in-
teraction. Based on a similar idea, Larson and Hadhrawi presented CityScope
as "the proposed framework combines physical and digital mediums: it projects
precise sets of data on tangible, physical constructs made out of LEGOs" [21].

8
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(a) : Tangible Interface [22] (b) : Web Interface [22]

Figure 2.5: CityScope Framework

Later studies [32, 33] demonstrated the potential of collaborative interfaces
and how consensus can be achieved by collaborative real-time plan optimiza-
tion using the physical interface. Although these research papers go more
into detail about the used predictive models, from the perspective of this
thesis, the most interesting is the successful validation of the physical user
interfaces.

The only shortcoming of the physical media and projection mapping is that
it requires a permanent site for the physical model and an elaborate setup.
The usage of matrix-like grids can lower the complexity of the setup; however,
it is still not as easily shared with multiple participants as the dashboards
and purely web-based visualization tools.

B 2.6 Citizen Participation

An interactive system with physical components is also a suitable tool for
exhibitions and galleries to let visitors engage in city planning. In 2019,
the OFICINA studio created an interactive exhibition [34] for CAMP and
IPR Prague that aimed to present Strategic Plan for Prague [35]. The
visitors’ task was to regulate city life (e.g., tourism, transport) and set the
course of future development (e.g., investments, housing). The simulation
was controlled by the placement of physical blocks (see figure 2.6a) and
analog pulls; the feedback was provided on a wide-screen visualization (see
figure 2.6b). Another exhibition at CAMP in 2019 used a combination of
the architectural model and projection mapping [36], see figure 2.7. The
exhibition was not interactive; however, the projection served as a visual aid
for the visitors standing around the physical model marking the transformed
area.
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(a) : Color blocks (b) : The exhibition environment

Figure 2.6: Pie(d)stav si Prahu by OFICINA in CAMP [34]

(a) : Highlighted area (b) : Physical model

Figure 2.7: Rohansky ostrov: novy Karlin? in CAMP [37]

B 27 Summary

Previous attempts to establish data-sharing platforms were unsuccessful due
to the lack of cooperation between the private and public sectors. These
platforms usually act as dashboard-like data marketplaces. While these
platforms can work well as general information sources and are easily sharable,
their extensibility and interaction capabilities are limited. Depending on
the used software, integration with modeling tools might be difficult. The
questions the visualization needs to answer are often obtained on the go,
which requires the use of flexible and interactive solutions. The alternative is
to use a more complex system primarily designed to integrate various forms
of visualization, modeling tools, and data. While these tools are designed to
be used in a collaborative manner, and studies have shown their potential in
urban planning, the on-site presence of the users is required, which rules out
the possibility of remote cooperation.
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Chapter 3

Visualization Principles

This chapter discusses the general principles of spatial data visualization.
The traditional visualization workflows following the visualization pipeline
are not always sufficient; the model utilized by visual analytics is presented.
Spatial data representations are discussed in the context of data manipulation
and integration. Appropriate mapping of data attributes and visual elements
is considered. Finally, different concepts enabling large data quantities are
presented.

B 3.1 Visualization Pipeline

Classical visualization pipeline as presented by Telea et al. [38] consists of
four steps: Importing, Filtering, Mapping, and Rendering, see figure 3.1.
Several extensions of this pipeline exist [39], including extensions for out-
of-core data processing [40, 41] and streaming prioritization depending on
the current focus area [42] combined with level-of-detail-based accelerations
[43]. The pipeline execution can be accelerated using task, pipeline, and data
parallelism [44].

{ Raw Data ]H{ Dataset ]H[ Filtered Dataset ]4»{ Visual Elements ]4»[ Render ]

Importing Filtering Mapping Rendering

Figure 3.1: Visualization pipeline

Importing. Importing data requires choosing a suitable representation of
the input data. The transformation might require representation conversions;
however, the import step should be non-destructive and preserve all of the
input information.

Filtering. The main goal of data filtering is to extract desired information
from the input dataset. Filtered datasets are easier to both process and
perceive. The input and output of the filtering function are datasets with
identical domains.

11
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Mapping

Visualization ]
Model
Refinement Insight
Model
Visualization
Data Mining
[ Models ]

Feedback

Figure 3.2: Visual Analytics

Mapping. During the mapping step, the values are encoded using visual
elements. The reason why mapping and rendering steps are separated is the
increased modularity of the system, which gives the user the possibility to
tweak the final rendering properties.

Rendering. The final rendering step takes the visual representation of the
dataset plus viewing parameters and creates the desired output — most
commonly an image. The user is given the possibility to change the viewing
parameters, e.g., the visible range, the size of the image, etc.

B 32 Visual Analytics

The current rate at which cities generate new data exceeds the limits of
automatically analyzable and visualizable quantities. Moreover, the initial
pipeline design does not support the interaction with the analytical models
introduced in section 2.4 of the previous chapter. Thomas and Cook [45]
suggest a new approach to the visualization process and offer a natural
extension of the original pipeline by integrating data, models, visualization,
and user interaction into a singular loop, see figure 3.2. When applied to
the decision-making and geospatial domain, it becomes apparent that visual
analytics is yet another example of a sociotechnical system introduced in the
previous chapter.

According to Andrienko et al. [46], the application of visual analytics to
geospatial data brought security implications and revealed a lack of evalua-
tion standards. Analyzing specific geospatial data can conflict with privacy
protection; examples of such data are one’s home or workplace location, daily
activities, or trips. "Researchers (...) are typically concerned with the possible
threats to privacy arising from computational data processing and from the
integration of two or more datasets. They do not study the privacy issues aris-
ing from the involvement of human analysts empowered with interactive visual
tools." [46] Similarly, visualization and data analysis evaluation standards
only apply to each domain individually.

12



3.3. Geospatial Data Representation

Prior research in the area of geovisual analytics for decision making has
been conducted by Andrienko et al. [47] It explored the area of geovisual
analytics to support physical space analysis, facilitate cooperation of "multiple
actors with diverse roles, expertise, capabilities, and interests, and to integrate
innovative computational technologies into the established human practices
of decision-making." [47] The objectives are consistent with those of visual
analytics. Andrienko et al. also presented several practical examples of when
this approach can be applied:

® site selection (placement of housing, offices) that takes into account
neighborhood building relationships, traffic patterns, socio-demographic
data, availability of services, future growth, etc.,

B or time-critical scenarios such as evacuation, which requires the decision
to be made in a limited amount of time.

Nowadays, the first of these problems is usually solved using geospatial
software and multi-criteria decision analysis when a reduced processing strat-
egy is used, and most of the relevant information is not considered. These
two situations are just examples; finding the optimal classification of spa-
tial decision problems remains an open issue. [47] Further, Andrienko et al.
propose the geovisual analytics need to build on the following principles:

Collaboration inclusion of stakeholders in the decision-making process
with the focus on the groups who are affected by the decision in both the
positive and negative directions, and across different institutions, cities,
and between countries or cultures

Communication visual interface utilization for the information transfer

Flexibility adaptability of the system to the needs of participants

B 33 Geospatial Data Representation

This section aims to describe basic principles of commonly used spatial
data representations; actual file formats are later described in the section
4.1. Following subsections introduce structures for geometry and attribute
representation and algorithms for dataset integration. Integrating datasets,
also known as overlay mapping, involves finding intersections and mapping
attributes from the original dataset pair. Memory efficiency and extensibility
of the structures and algorithms are considered. This section draws from the
publication [48].

B 3.3.1 Krovak’s Projection

Most of the data representations operate on a plane, which is inherently
incompatible with the round shape of the Earth. The main focus is on
preserving shapes, angles, and sizes while projecting the data onto a flat

13
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Figure 3.3: Krovak’s projection — planar situation [49]

surface. A range of map projections is available, deforming some of these
properties in different areas. As the main focus of this thesis is the application
of urban visualization in Prague, Czech Republic, Kfovak’s projection needs
to be mentioned.

Krovak’s projection utilizes a conformal oblique equidistant conic projection;
the planar situation is presented in figure 3.3. Meters are used as a unit of
measurement. While the actual mathematical formulation of the projection
can be found in the literature, see [49], from the application perspective, its
properties are more interesting:

conformal preserves angles,
oblique does not utilize perspective,
equidistant preserves lengths.

The projection can be found under the identification EPSG:5514 (utilizing
Greenwich meridian); several variants differ in the used projection param-
eters. There are variants utilizing Ferro meridian (EPSG:5221), modified
axes (EPSG:5513, EPSG:2065), or slightly modified projection (EPSG:5515,
EPSG:5524, and other).

B 3.3.2 Vector Data

The fundamental elements utilized by vector representation are points, lines,
and polygons. These structures can be linked to additional attributes, and
the basic model can be extended to capture topological relationships; the
structure is illustrated in figure 3.4. The table of attributes can theoretically
contain arbitrary values, and attributes can be assigned to any of the three
fundamental element types. Moreover, this structure can be extended to
support various grouping of the primary elements (e.g., multiple polygons
can be grouped into a multipolygon) or extend the topological relations of
the elements (e.g., polygons with holes).

14
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The vector representation is memory efficient since it stores only the bare
geometrical and topological information. The attribute data can be separated
from the geometry or extended if necessary. When applied to two-dimensional
data, the dataset can be viewed as a planar subdivision or two-dimensional
line segment arrangement and represented using DCEL (Doubly Connected
Edge List) data structure. [50]

Planar Overlay Mapping. In practice, planar vector datasets can be in-
tegrated using the DCEL overlay algorithm and boolean operations. The
MapOverlay algorithm [50] is well suited for this task as it preserves the
relations between the overlay DCEL and the input data.

Cross-dimensional Planar Overlay Mapping. A possible approach to two-
and three-dimensional dataset integration involves projecting the three-
dimensional dataset into two dimensions and then using the MapOverlay
algorithm. The height information must be preserved for individual vertices
to facilitate the reverse projection and height interpolation in the intersection
points. The procedure is illustrated in figure 3.5. Degenerate polygons can
appear after the initial projection if the three-dimensional dataset contained
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task/property polygonal vector data triangulated vector data

specification ambiguities needs specification of allowed polygon none
extensions (using holes, multipolygons)

loading inputs requires transformation of vector in- triangulate input data
puts with unsupported extensions

memory requirements lower higher

overlay computation using MapOverlay [50] using MapOverlay [50] or triangle-
primitive intersections and queries ac-
celerated by hierarchical data struc-
tures

rendering needs triangulation as is

Table 3.1: Comparison of polygonal and triangular vector data workflows

vertical polygons; however, these polygons must remain in the projected
DCEL as overlapping groups of half-edges. The MapOverlay algorithm ex-
cludes self-intersections of overlapping half-edges that belong to the same
input DCEL. If the plane sweep algorithm! yields a new point for each over-
lapping half-edge when an intersection is found, the output of the MapOverlay
can be reverse-projected into three dimensions.

Graphics-friendly Approach. It is safe to assume that the data will be
visualized using a graphics library for rendering in an interactive environment.
Current graphics libraries can render a limited number of primitive types,
including points, lines, triangles, and array-like extensions of these primitives
only. Therefore, general polygons need to be triangulated prior to rendering.
This situation opens up the possibility of performing the overlay mapping
after the triangulation step. The benefits, as well as drawbacks of the two
outlined approaches, are described in the table 3.1. The overlay mapping of
triangular data can be computed using the approach outlined in pseudocode
1. It uses the same technique as collision detection algorithms for triangular
mesh, traversing two hierarchical structures in parallel. Some notes on this
algorithm:

® The projection of the input dataset3 is not stored; the tree structure for
the projected data can be built without actually storing the projected
coordinates of the dataset.

® BVH (Boundary Volume Hierarchy) is a suitable hierarchical structure
for dealing with the mesh collisions. Here, the problem is reduced to a
single plane; therefore, R-trees utilizing rectangles as bounding volumes
and top-down greedy split construction strategy [51] are a valid choice.

B The projection and reverse projection, as illustrated in figure 3.5, is
performed in the intersection routine.

®m Degenerate cases appear after the projection of vertical triangles. A
possible solution is to avoid the projection and clip the three-dimensional
triangles by supporting planes of the intersected planar triangles extruded
to infinity in the third dimension.

1The plane sweep algorithm for line-segment intersection is described in [50].
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Figure 3.6: Quad-tree-based Raster Representation
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Figure 3.7: Raster Data Resampling Strategy Examples

B 3.3.3 Raster Data

Raster data is organized in a grid-like structure, usually utilizing rectangular
cells containing singular values. The data contained in the grid can be effec-
tively compressed utilizing chain, run-length, or block codes. Another raster
representation with built-in compression utilizes quad-tree-based pyramids,
illustrated in figure 3.6.

One of the main shortcomings of raster data is its precision. While vec-
tor data can, in theory, be represented with arbitrary precision, the raster
resolution will always limit the precision of the stored data. Additionally,
the amount of stored data grows exponentially as the resolution increases.
Another issue arises during raster undersampling. There are several strategies
of data resampling illustrated in figure 3.7.

As the raster usually contains a single value per cell, multi-attribute data
require the layering of several rasters to store all available values. Contrary to
vector data mapping, integration of multiple raster datasets is algorithmically
simple — it comes down to reprojecting the rasters to match resolution and
coordinate systems.
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Input: two-dimensional triangulated dataset2, three-dimensional

triangulated dataset3

Output: overlay, three-dimensional dataset
Function intersection(trianglesA, trianglesB) is

triangles2, triangles3 < classify(trianglesA, trianglesB)
overlay < []
plane2 < get__plane(any of triangles2)
foreach tri2 € triangles2 do
foreach tri3 € triangles3 do
tri23 < project(tri3, plane2)
plane3 + get_ plane(tri3)
itris2 < triangulate(intersect(¢ri2, t1i23))
foreach itri2 € itris2 do
//optionaly label the projected itri2 with tri2 and tri3
L overlay + project(itri2, plane3)

return overlay

Function compute_overlay(nodeA, nodeB) is

if disjoint(nodeA.bbox, nodeB.bbox) then
‘ return ()
if is_leaf(nodeA) & is_leaf(nodeB) then
‘ return intersection(nodeA.triangles, nodeB.triangles)
if is_leaf(nodeA) & —is_leaf(nodeB) then
‘ return Ugpiidenodes cOmpute_overlay(nodeA, child)
if —is leaf(nodeA) & is_leaf(nodeB) then
‘ return U.piidenodes cOmpute_overlay(nodeB, child)

nodeSml, nodeLrg < sort_by bbox_size(nodeA, nodeB)
return UchildenodeLrg cOmpute_overlay(child, nodeSml)

tree2 < build_ rtree(dataset2)
tree3 <— build_projected rtree(dataset3)
return compute_ overlay(tree2.root, tree3.root)

Algorithm 1: Two-to-Three-Dimensional Overlay Mapping
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3.4. Visual Elements and Attributes

Visual attribute Quantitative Ordinal Selective Associative

v

Position v
Size v
Brightness

Texture

Hue

Orientation

Shape

ASENENEN
NN N SRNEN
ENENENEN

Table 3.2: Organization levels of visual attributes [38]

B 3.4 Visual Elements and Attributes

This section describes the mapping of the data to the visual elements. Ac-
cording to Munzer [52], it is necessary to consider the properties of the visual
elements in terms of the following qualities:

Accuracy how the perceived value correlates with the actual data,
Discriminability allows discriminating between value categories,
Separability how individual visual channels interfere,

Popout how quickly can the encoding be spotted.

Additionally, it is possible to characterize the visual channels in terms of
organizational structures they can convey [38], see table 3.2:

Associative does not require multiple instances to convey the value,
Selective allows discriminating between value categories,

Ordinal allows comparing values,

Quantitative allows computing the amount of difference between values.

Following the expressiveness principle, matching channel and data character-
istics is desirable. [52] The nature of spatial data limits the use of position or
orientation to the expected use cases. Table 3.3 illustrates appropriate match-
ing of data representations and visual elements. The table also illustrates
which visual attributes can convey nominal and ordered data attributes well.

Color is the common attribute among all of the available visual elements.
Telea [38] suggests a set of rules to ensure optimal color mapping; however, the
invertibility rule generally applies to the entire mapping process. The principle
suggests that optimal mapping should allow deriving the original values from
their visual representation. The visualization should be accompanied by a
legend to ensure this principle is followed.

19



3. Visualization Principles

visual attributes encoding

representation visual elements

nominal values ordered values
point  glyphs color, shape color, size
vector line lines, curves color, type, thickness color, thickness
area polygons color, texture color, texture
raster pixels, grid cells color color

Table 3.3: Visual Elements and Visual Attributes Mapping

B 3.5 Data Processing

The raw computational power is often insufficient to deal with large quantities
of data. The increasing amounts of gathered data require a special memory
and performance management approach. Similar problems arise when the
amounts of data are not overwhelming, but the availability of computational
resources is limited.

Out-of-core memory. Suppose it is impossible to fit the entire dataset into
memory. This situation arises when processing sizeable topographical areas,
dense datasets, or rich metadata sets. As presented in [40], the idea is to
process the data segment by segment. The data needs to be stored in a
structure that will allow bulk-loading to optimize the performance. The goal
is to minimize the number of reads from the external memory. According
o [41], this approach can be used only by separable, result invariant, and
mappable algorithms:

Separable the algorithm requires only a segment of the data at a time,
Result invariant the order of the data segments does not matter,

Mappable required inputs are identifiable for each output.

Parallelization. As mentioned in section 3.1, there are several approaches
to parallelization of the visualization pipeline, see [44]. Data parallelism
runs several pipeline instances, effectively processing multiple data segments
concurrently, see figure 3.8a. Task parallelism focuses on finding which parts
of the visualization pipeline can run in parallel, see figure 3.8b. Pipeline
parallelism builds on the out-of-core memory principle and runs several
pipeline stages in sync with the data loading procedure, see figure 3.8c.

Prioritization. Often only a portion of the datasets is in focus. This sit-
uation presents an opportunity to prioritize processing of the visible areas.
Furthermore, visibility is not the only available criterium. Ahrens and Desai
[42] suggest a set of rules to ensure optimal prioritization. In summary, the
prioritized areas should possess at least one of the following characteristics:
being close to the observer or least likely to get culled, containing values in
the range of interest, or containing highly variable data.
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B 36 Summary

The classical visualization pipeline can be utilized for geographical data
visualization; however, it might be necessary to employ additional data
processing techniques — out-of-core memory, prioritization, or parallelization
— to deal with the large amounts of data. The principles of visual analytics
present a way of integrating visualization with analytical models, creating
a collaborative and interactive simulation tool. The shortcomings of this
approach include a lack of validation standards and a potential for creating
privacy issues. Finally, vector and raster data representation can be utilized
for spatial data representation; two approaches for vector data processing
were suggested.
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Chapter 4

Geospatial Information Systems

This chapter presents an overview of existing geospatial formats and tools.
Further analysis of the formats focuses on the utilized data model and
representation capabilities. The selection of the analyzed formats is based
on their occurrence at Geoportdl hl. m. Prahy [53]. The final section of
this chapter contains a brief survey of the available geospatial information
systems, visualization tools, and frameworks.

. 4.1 Formats

Previous chapter outlined the basic concepts of geospatial data representation
and manipulation. This section takes this topic one step further and introduces
some of the most common geospatial data formats. There are several factors
worth considering for each format — the purely technical aspects (internal
data structure, data compression), adoption (loader/writer availability and
support), and the utilized data model (semantic structure of the data).

The table 4.1 provides a summary of the utilized formats available at
Geoportal hl. m. Prahy [53]'. The data is divided into 38 categories; some
contain more than one dataset. The format occurrence is weighted by the
number of datasets. Shapefile, CityGML, GeoJSON, and DXF are the most
utilized file formats, and the vast majority of the publicly available data
utilizes vector representation. Without exception, all vector data is available
in the Shapefile format. The following section describes these file formats in
more detail.

B 4.1.1 Esri Shapefile

Esri Shapefile [54] is a vector format with a database-like structure illustrated
in figure 4.2. The actual data is divided into several files and stored in a binary
format, see table 4.2. The files do not contain any topological information; it
is necessary to recreate it manually from the geometry description. Attributes
are tied directly to the geometry. The data model allows linking multiple
geometries to the same attribute. The format structure suggests it would

!Evaluated at 4. 1. 2021, updated at 27. 12. 2021
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Raster representation Vector Representation
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Table 4.1: Format Occurance at Geoportal hl. m. Prahy [53]

be possible to store different geometry types in a single file; however, the
specification explicitly states that the geometry type must be the same for
all geometries.

According to the specification [54], there are 14 different geometry types
supported, including no geometry (Null shape), two-dimensional geometries
(Point, Polyline, Polygon, MultiPoint), three-dimensional geometries (PointZ,
PolylineZ, PolygonZ, MultiPointZ), two-dimensional geometries with a mea-
surement attribute (PointM, PolylineM, PolygonM, MultiPointM), and a
type capable of representing a three-dimensional compound geometry with
a measurement attribute (MultiPatch). The attributes stored in the DBF
file are structured according to the dBase IV specification using a table-like
schema. There are several limitations to what can be stored in the DBF file,
notably:

® the maximum key length is ten characters, and the range of available
characters is also limited,

® the maximum value length is 4000 characters,

® all numbers (including floating-point numbers) are stored as a string,

® and the total allowed number of attributes is 255.

The broad support of the format mitigates these disadvantages; namely, the
GDAL [55] library provides reliable drivers for loading and saving Shapefiles.
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File Description Required
SHP  geometry description v
DBF  attributes (table-like) v

SHX index file linking the geometry with the attributes v
PRJ  projection information
XML geospatial metadata

Table 4.2: Shapefile File Components

Bl 4.1.2 CityGML and CityJSON

GML (Geography Markup Language) is an XML-based language capable of
describing the geometry, attributes, and styling rules of geographical data.
CityGML [56] format utilizes GML application schema. The basic structure
of the model is outlined in the figure 4.3.

CityGML introduces the concept of a semantic model isolated from the
actual geometry, see figure 4.1. Individual objects correspond to classes and
can be represented by a set of geometries with a different level of detail.
CityGML utilizes a class-hierarchy model. The CityGML specification is
under active development; the newest version, 3.0, supports static geometrical
representations and object hierarchies, point clouds, time-dependent data,
and versioning. CityGML standard is designed to be modular, meaning
"the implementations are not required to support the complete CityGML
model in order to be conformant to the standard" [56]. The core model can
also be extended; the standard supports domain-specific extensions through
ADEs (Application Domain Extensions). There is a web-friendly mutation
of CityGML — CityJSON [57]. Both CityGML and CityJSON are open
formats; there are converters and importers available, see [58, 59].

Both formats — CityGML and CityJSON — have a similarly extensive
structure. The purpose of these formats is to capture the entire city, including
the geometry, semantics, and relations, which makes the formats rather
complex. This complexity makes it difficult to parse the formats without
a dedicated tool. CityJSON tries to overcome this problem using a JSON-
based syntax and a limited set of features; however, the overall structure
and complexity remain the same. The citygml4j [59] is a java-based toolkit
offering an APT to access the CityGML data; a python-based toolkit cjio [61]
is available for the CityJSON format.

B 4.1.3 GeolJSON

GeoJSON is a JSON-based format utilizing a feature-based approach — all
data which belongs to a single object (Feature) is contained in a single JSON
object. This ties the attributes (Properties) directly to the geometry, while
the geometry is stored in place (contrary to CityJSON, which uses index-
based geometry representation). The utilized data model is illustrated in
figure 4.4. Features and geometries can be grouped into collections, providing
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Figure 4.1: Coherence of semantics and geometry in CityGML [60]

elementary support for hierarchy representation. The format offers a very
flexible specification of the attributes — an attribute can be any JSON object.

Similar to the Shapefile format, GeoJSON does not contain any topological
information. According to the specification, there are nine different object
types supported: 6 geometries (Point, LineString, Polygon, MultiPoint, Mul-
tiLineString, MultiPolygon), one object class (Feature), and two group classes
(GeometryCollection and FeatureCollection). The GeoJSON specification
explicitly forbids adding new object types; however, it allows extending the
existing ones. All geometry types can store both 2D and 3D geometries.
Since the format is text-based and utilizes a direct geometry representation,
the file size increases quickly with the number and size of geometries. Due to
the simplicity of the format, a vast majority of geospatial tools support it,
including tools such as GDAL [55] or GeoPandas.

B 4.1.4 Other Formats

Several other formats need to be mentioned. A family of CAD formats (DGN,
DWG, DXF) appeared in the table 4.1, and while these formats ranked
fourth, they are highly utilized among architects and designers. In the early
2000s, the BIM standard emerged, which set the course towards a more
collaborative and continuous workflow. While the BIM standard has been in
development for many years, it is becoming increasingly popular. The new
standard disrupts the traditional 2D workflow by integrating various data
emerging throughout the life-cycle of a building.
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DGN, DWG, and DXF. DGN and DWG are proprietary vector formats
utilized by CAD editors, such as AutoCAD. The developer tools for importing
and converting DWG and DGN are provided by OpenDesignAlliance (ODA)
[62] and Autodesk [63]. GDAL [55] provides limited DWG and DGN loading
capabilities. Unlike DGN and DWG, DXF is an open version of these formats.
[64] While the DXF format has a limited set of features, open-source tools
are available [65] for importing and exporting DXF files.

BIM and IFC. Building Information Model (BIM) is a standard for designing,
developing, and maintaining urban projects. According to [66], the standard
is designed with sharing and continual project management in mind. The
complete project documentation for each development phase can be assembled
using BIM, which should, in theory, speed up the designing and construction
periods and reduce overall costs. The specification utilizes three-dimensional
models instead of classical 2D drawings. Industry Foundation Classes (IFC)
format is a platform-neutral and open file format utilized for BIM data sharing
and exchange. While BIM is a future-proof standard, the format’s adoption
is still relatively slow, and no open data is currently available in the IFC
format.

. 4.2 Tools

Geospatial data processing is a pretty competitive field, and many professional
tools are available. The following sections present some of the most popular
tools and frameworks. Some of the presented tools offer a wide range of cross-
platform services, including data integration, planning, and data publishing.
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Figure 4.5: ArcGIS Enterprise deployment pattern [68]

B 4.2.1 Applications

This section presents a selected set of available geospatial visualization appli-
cations. These tools are either targeted at experts in the field of geospatial
systems (ArcGIS, QGIS, Cesium) or provide a more straightforward way to
visualize data in the spatial context (Kepler.gl, Movement). Both proprietary
and open-source solutions are available. The complexity of these tools can be
overwhelming and can act as a barrier to their adoption by a broader range
of users.

ArcGIS. Esri offers a complete software suite for geospatial visualization
and analysis under the name of ArcGIS [67]. The offered products include a
full desktop environment for data analysis, server components for web map
service management, and web frontend components. Complete developer
documentation is available for the open segments of the ArcGIS software
ecosystem. Esri offers several categories of products, including individual
applications, tools for building custom map applications, and SDKs for
developers to integrate Esri products into their own. A setup exposing
ArcGIS services to external users is illustrated in figure 4.5. Selected products
also support user scripting. As it is a commercial software with full-time
support, it is a widely popular solution often utilized by local authorities.

QGIS. QGIS [69] is an open-source alternative to ArcGIS. It supports
a wide range of formats (Esri Shapefiles, ArcInfo files, Maplnfo files, .csv,
OpenStreetMap data, PostGIS data, etc.). A QGIS plugin, Qgis2threejs,
provides a way to view 3D content in the browser, but it appears that the
only supported input format is .hgt - DEM (Digital elevation model) format.
From version 3.0, there is built-in support for 3D content; supported formats
are mostly Esri Shapefiles and raster formats (e.g., GeoTiff). It is possible to
export static images and short animations created from time-series data.
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Vis.gl Apps. Kepler.gl [70] is an open-source visualization application de-
veloped by vis.gl [71]. The tool was created and popularized in collaboration
with Uber; scalability and good performance are the strong features of the
application. The tool is based on Deck.gl, a WebGL-based rendering frame-
work optimized for big data visualizations. The application uses a layer-based
approach — a layer is an isolated entity with its base geometry (lines, arcs,
points, hex or rectangular grid, heatmap, etc.) and style. The application
uses OpenStreetMap [72] and Mapbox [73] as data sources for 2D maps and
3D building models. A component for displaying three-dimensional terrain is
missing. It is possible to use Kepler.gl as a Python library for visualization
inside Jupyter Notebooks. The supported formats include CSV, GeoJSON,
and proprietary JSON-based application format. Similarly to kepler.gl, Move-
ment is also developed by vis.gl in collaboration with Uber [74], with the
primary focus to visualize transport-related data. This project stands on the
border of visualization and data analysis. Unlike the previous examples, this
application was developed to present a fixed set of curated datasets. The goal
is to help cities (they operate only in a limited number of cities) to reduce
congestion, emissions and improve road safety.

Cesium. Cesium [75] is a platform for building geospatial applications. It
provides a way to push 3D content to both web (CesiumJS) and Unreal
Engine. A part of the services is a platform called Ion, which automatically
tiles and optimizes the content for both web and the game engine and offers a
library of assets such as images, terrain, and building models. The platform
is targeted towards commercial projects and offers pre-paid plans with higher
bandwidth.

B 4.2.2 Frameworks

In terms of visualization frameworks, there are several existing solutions.
Visualization frameworks usually provide a set of features (data management,
rendering, etc.) used throughout the visualization pipeline; however, the final
deployment is up to the framework user.

Mapbox. Mapbox offers a range of products for geospatial data visualiza-
tion on the web and in mobile apps. Besides classical static maps, Mapbox
offers several modules for movement data visualization and vehicle naviga-
tion. Mapbox also offers a Studio allowing developers to customize the data
visualizations similarly to Kepler.gl. All Mapbox services are offered for a fee;
the final cost is determined by the number of requests and monthly users.

3DCityDB. 3DCityDB [76] is a framework oriented towards effective storing,
analysis, and export of urban data. Figure 4.6 presents an application
structure where the framework is utilized as a geometry and metadata source
along with other services. The framework utilizes the CityGML standard as
the base schema for the data representation. The framework supports export
into several formats, such as Collada, gITF, and KML.
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Figure 4.6: Workflow of using 3DCityDB web client coupled with Cloud-based
online spreadsheets [76]

Vis.gl Frameworks. Vis.gl develops several web-based frameworks for visu-
alization, see [71]. Deck.gl is a WebGL-based rendering framework for visual
exploratory data analysis of large geospatial datasets, compatible with React
and Mapbox. A more general-purpose visualization framework is Luma.gl,
also a WebGL-based toolkit. To provide a way for plotting various data in
2D, vis.gl developed the React-vis library.

LuciadRIA. Hexagon offers a portfolio of geospatial visualization tools under
the name of Luciad [77]. The visualization tools are mainly targeted at the
web environment; the visualization toolkit LuciadRia utilizes state-of-art
web technologies, including WebAssembly and WebWorkers. The toolkit is
proprietary, and the documentation is targeted mainly towards end developers
using the framework to assemble their applications. The framework handles
various formats, including BIM and point cloud data.

B a3 Summary

The commonly utilized geospatial formats include Shapefile, GeoJSON,
CityGML, and DXF. The concept behind CityGML — decoupling geometry
and metadata — is beneficial because it offers a flexible approach to data
versioning and integration. Standards such as BIM offer a way to represent
the complete project documentation in a comprehensible and sharable way;
although, the adoption of this standard is not yet observable in the open data
field.

A range of geospatial information systems and visualization frameworks is
available, the summary of their capabilities and limitations is presented in
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[ Data Model ]

[ Inputs/Outputs ]—[ Data Storage ]—[ Filtering and Styling ]
[ Data Processing ] [ Rendering ]
[ Analytics

Figure 4.7: General schema of a geospatial data processing and visualization
system

table 4.3. Some of these tools offer services beyond data visualization, e.g.,
modeling tools and data publishing. Most of these tools support visualization
on the web, which makes the content easily accessible and collaboration with
other users simpler. Typical limitations include high system complexity or
limited visualization pipeline implementation.

Based on the presented examples, it is possible to devise a general architec-
ture of a geospatial visualization tool. The central component manages the
data representation, while additional tools service the required inputs and
outputs. Some of the more extensive toolkits (ArcGIS, QGIS) offer analytical
tools and ways for the user to create custom data processing scripts. An
independent module manages the visualization styles (the mapping step of
the visualization pipeline). The rendering is handled separately. The general
schema is illustrated in figure 4.7.
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Chapter 5
Design

This chapter presents the design of the visualization system. The goal is
to develop a modular system for urban data processing and visualization.
The thesis assignment lists factors that need to be considered; each factor
influences several aspects of the system. The factors to consider include:

selection of supported input data formats
visualization customizability

accessibility and usability

presentation formats and media

memory and computation efficiency
system extensibility

Several system outputs are expected:

® virtual model presentation
® visual outputs for video mapping
® outputs for physical model construction

The first section explains the high-level system structure to make the design
process more comprehensible. The remaining sections of this chapter introduce
the individual system components and the utilized concepts.

B 5.1 System Structure

The high-level structure presented in figure 5.1 is based on the research in
chapter 3 and examples in chapters 2 and 4. The design follows the general
system schema presented in figure 4.7 at the end of the previous chapter. The
system is divided into three main components — a user interface, a server
component, and a processing toolkit. The following paragraphs offer a brief
description of the individual components; more details are presented in the
following sections.

Processing Toolkit. The processing toolkit serves as the baseline component
of the system. The goal is to create a standalone package that can be utilized
both by the system and the user in scripts or from a command line. The
toolkit’s purpose is to handle data imports and allow data filtering and
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[ Administration ] [ Styling Editor ] [ Visualization Engine J

Web User Interface

[ Web API ]
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—[ Runtime J—

Processing Toolkit Y

[ Processing Core ]4—[ Data Storage ]

Figure 5.1: System Structure

modification. The structure of the utilized data model, the extensibility of
the toolkit architecture, and the performance of the utilized algorithms and
data structures are key focus areas of the design.

Web User Interface. The user interface is designed as a web app to make
the visualization and data administration accessible and easily sharable. The
visualization engine is designed to handle both static and dynamic data types.
Styles defined in the style editor control the visualization appearance based
on the present object metadata.

Server Component. The server component integrates the user interface
and the processing toolkit. This component exposes a public web API and
schedules data processing in the background. Several important technical
details were omitted in the diagram 5.1 for clarity; the server requires super-
vising software to handle the interprocess communication, exceptions, etc. A
description of the deployed system is provided in the next chapter.

B 5.2 Processing Toolkit

The processing toolkit handles geometry and metadata transformations. The
data is represented using a general data model, separating metadata and
geometry. The data storage utilizes an out-of-core memory approach and
enables large dataset processing. The toolkit utilizes several additional spatial
and temporal data structures to allow for fast data manipulation.

B 5.2.1 Data Model

The design of the internal data model is the primary issue. Previous research
revealed that most available datasets are currently available in the Shapefile
format. This observation indicates that the vector representation should
be supported directly; however, the designed data model must be format-
independent to remain extendable. The proposed data model, presented in
figure 5.2, is designed according to the following principles:
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Figure 5.2: Proposed Data Model

8 Format-independent data model allows the integration of various types
of inputs.

® To increase cross-program compatibility, it is desirable to make the data
model similar to those utilized by existing GIS and graphics software —
Projects include Layers of Objects.

® As demonstrated by the CityGML standard, Geometry and Metadata
separation offers more flexibility. Each object can be represented by a
collection of geometries.

8 When a Layer Owverlay is computed, it is possible to store only the
overlay geometry without duplicating the object metadata. Instead, the
geometry contains links to the original objects, allowing the original
metadata retrieval.

Bl 5.2.2 Data Storage

This section deals with the data storage. Utilizing a database for data storage
has several advantages (e.g., scalability, performance, easy integration with
web services); it also adds a system dependency and requires each user to
install the database software first if they wish to use the toolkit locally. The
proposed alternative, illustrated in figure 5.3, utilizes a local file system. This
approach limits the ability to query data based on relations effectively; on
the other hand, it removes the database dependency and can be optimized
for selected operations. Some notes on the proposed approach:

® The directory hierarchy in figure 5.3 follows the design of the data model
in figure 5.2 up to the layer level.

8 The object geometry and metadata components are stored in separate
Data Storage Directories, which speeds up the data retrieval when only
one component is required.
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Figure 5.3: An outline of the directory structure of the local data storage; Data
Storage Directories act as special data containers although the structure consists
of regular files and directories
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Figure 5.4: Individual data items in Data Storage Directories are packed into
chunks and stored in separate Data Set Files

Data Storage Directory, illustrated in figure 5.4, is a type of directory
containing data in an array-like file structure. The data management remains
transparent to the user, and the storage appears as an ordinary array. The
design is based on the following assumption:

B the total data size exceeds the available memory,

® the data is almost always read and updated in a sequential order,
® random access is required for the least frequent operations,

B and the items are nearly never deleted.

Figures 5.5 and 5.6 illustrate the initialization and sequential access of the
storage items. An important parameter is the granularity of the data sets —
one object per file is inefficient and possibly hits the limits of the file system
(e.g., inode counts). Storing all objects in a single file might not be possible
due to insufficient memory resources. The figure 5.7 shows the data storage
design applied to geometry and metadata.
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Figure 5.7: Example of Data Storage Contents

B 5.2.3 Geometry Representation

Similar geometric types are utilized among the formats described in chap-
ter 4. Some types are not suitable for rendering, as described in the section
3.3.2. The preservation of the original data is desirable, as it enables precise
reconstruction and re-processing of the input data. Figure 5.8 illustrates the
proposed set of geometric types.

Some of the geometry types in figure 5.8 are visibly related. Each type
can be directly rendered (Multi Point, Segment Cloud, Triangular Mesh,
Multi Time Point) or transformed into a renderable alternative (Multi Line,
Multi Polygon). Multi Line is a series of points bounded by beginning and
ending point, while Segment Cloud contains a list of unconnected segments.
Multi Polygon is a collection of arbitrary polygons (possibly with holes, as
supported by Shapefile, GeoJSON, and CityGML) and can be triangulated
into Triangular Mesh. Multi Time Point is an ordered sequence of points
with timestamps.

The out-of-core memory approach requires the geometry representation to
be persistable. Utilizing the aforementioned vector formats is not possible
due to the lack of support for all expected geometry types. CityGML and
GeoJSON store geometry coordinates as string values; however, a loss of
precision due to string representation is undesirable. The glTF format
developed by the Khronos Group suggests an alternative approach — the
buffers of the geometries can be stored directly as base64-encoded strings
in a JSON-like format. The base64-encoding provides a lossless geometry
representation, and it is also suitable for streaming into the web visualization
engine.
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Figure 5.8: Supported Geometry Types

B 5.2.4 Regular Grid

None of the concepts so far directly addressed the spatial layout of the data.
The array-like approach utilized by data storage allows pre-sorting the objects
based on their position; however, utilizing a spatial structure would improve
the performance in the following situations:

B processing simple geometry queries based on position or range,
® and map overlay computation.

The first expected query type can be accelerated using a regular grid — it
is a relatively simple yet sufficient structure. The second use case — map
overlay — is described in a separate section; however, the general idea is
first to query the overlaying grid tiles and then proceed with the overlay
computation.

It is necessary to clip the geometry to the tile boundaries to avoid triangles
or lines spanning multiple tiles. The naive grid construction algorithm could
iterate over all objects, clip their geometry and assign the geometry slices to
the appropriate tiles. The algorithm would effectively load the entire dataset
into memory.

A more memory-efficient approach is presented in figure 5.9. While the
outline of the algorithm remains the same, the intermediate geometry slices
are first stored in a tile cache utilizing an out-of-core data storage. The cache
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Figure 5.9: Grid Construction

allows virtually keeping all tiles in memory, while the actual data is mainly
stored on a disk. The final step — building tiles from cache — requires joining
geometry slices of the same type for each tile. The output tile contains up to
three renderable geometry instances — one of each renderable type. Thus,
the rendering engine can render the tile contents directly without further
transformations.

It is possible to tag the geometry slices with the original object identifiers
before storing them in the cache. It consequently allows the reconstruction
of the original objects. The identifiers also allow picking and highlighting
selected objects in the visualization.

B 525 Timeline

The queries dealing with spatio-temporal data face similar issues as the spatial
queries. The expected spatio-temporal query involves locating positions of
objects, e.g., agents or vehicles, at a given time. The query can be constrained
by a spatial range.

As the regular grid consists of same-sized tiles, the proposed timeline
acceleration structure consists of equally-sized intervals. The intervals store
the location of each moving object in each second. A linear motion of the
object between the specified time points is assumed. The timeline construction
algorithm, illustrated in figure 5.10, is similar to the grid construction; it also
utilizes identical memory optimization methods.
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Figure 5.10: Timeline Construction

The supported temporal geometry types include only Multi Time Points.
The structure of intervals is optimized for data streaming into the visualization
engine. As the visualization client requests a time window, the precomputed
object positions can be quickly retrieved and directly passed to the rendering
engine. The interval length is configurable. The timeline structure can be
combined with the regular grid, creating a spatio-temporal regular grid.

B 5.2.6 Overlay Mapping

This section deals with the overlay mapping in the context of previous design
decisions. The overlay mapping focuses on preserving the relations between
the input and output geometries since it allows filtering, styling, and modifying
the overlay geometry based on the metadata of the original objects. Various
approaches to overlay computation have been discussed in section 3.3.2. The
approach utilizing triangulated data is preferred for the following reasons:

8 the regular grid structure containing renderable geometry types can
further accelerate the overlay mapping,

® and preserving relations between the triangular overlay and original
geometry is simpler.

The second argument is not as obvious. The section 3.3.2 introduced
MapOverlay algorithm that computes the overlay and links each output
polygon to the input overlaying it. Since the links do not distinguish between
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Figure 5.11: Layer Overlay Mapping

the polygons of the input, the MapOverlay needs to be extended to preserve
more detailed relations, and additional effort is required.

The pseudocode 1 in section 3.3.2 suggested how each overlay triangle can
be linked to the original geometry. Since the geometry in the regular grid
is tagged with the object identifiers, all necessary information is available.
The section 3.3.2 also suggested how to deal with degenerate cases. The
pseudocode 1 can be further generalized to support mapping of different
geometry types. The overlay mapping illustrated in figure 5.11 is applicable
to four types of mappings:

Multi Time Point to Triangular Mesh (Point-Triangle intersection),
Point Cloud to Triangular Mesh (Point-Triangle intersection),

Segment Cloud to Triangular Mesh (Segment-Triangle intersection),
and Triangular Mesh to Triangular Mesh (Triangle-Triangle intersection).

If the input geometries are stored in matching regular grids, the output overlay
geometry can be directly stored in a regular grid with identical parameters.

B 5.2.7 Styling

This section deals with the customizability of the visualization. The key idea
is to change the geometry appearance based on the object metadata. As
presented in section 3.4, the common visual attribute of all geometries is color.
The color can convey both nominal and ordered values. For demonstrational
purposes, this thesis limits the stylable properties to color. Each object
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= @layer ( STRING ) { }

::= Qcolor : COLOR ;

= Q@source { }

= QOtarget { }

= G@meta ( ) { ;)% }
::= STRING . STRING

= COLOR

= COLOR+

= @legend { ;)% }

::= STRING : :  COLOR+

::= STRING Q@default
::= [ SIGNED_NUMBER SIGNED_ NUMBER ]

Grammar 5.1: The terminals are highlighted in black; nonterminal symbols are
light gray. The notation utilizes an asterisk as a denotation of any number of
occurrences; plus sign as one or more occurrences; round brackets in gray denote
a group of symbols.

represents a virtual structure, and based on the structure properties; it is
assigned a color. A prime example of a similar styling system is Hypertext
Markup Language (HTML) and Cascading Style Sheets (CSS) — HTML
describes the structure, while CSS describes the appearance. The proposed
styling mechanism is based on identical principles.

Grammar 5.1 describes the designed styling language. The language sup-
ports both static colors as well as the definition of colormaps. Additionally,
it is possible to define a legend displayed along with the visualization. The
language uses the following keywords:

@layer scope of styles applied to a selected layer

@meta scope defining metadata attribute styling rules

@color default for a selected layer

@default default for a defined metadata attribute (no other rules match)
@source and @target scope of overlay source or target layer metadata
@legend scope of legend entries

The styling language grammar is easily extensible. Upon submission, a
context-free grammar parser generates a styling table based on the predefined
grammar and provided user styles. As illustrated in figure 5.12; the color of
each object is evaluated and stored in a separate object-color map. When the
visualization engine requests the style to be applied, the visible geometry is
traversed, and the colors are assigned based on the geometry object identifiers
and the object-color map.
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Figure 5.12: Style Schema

Examples. The first example defines styling rules for the layer Usage. All
objects with the metadata attribute type equal to roads will render gray,
water features will be blue, and trees will turn green. The rest of the objects
in the layer Usage (objects without a defined type) will turn red.

@layer (Usage) {
Qcolor: #FF0000;
Ometa(type) {
@default: #FFFFFF,;
"roads": #999999;
"water": #000OFF;
"tree": #00FFO0O;

¥

The second example illustrates a simple colormap. All objects in the layer
buildings with the attribute tenants will be colored according to the linear
colormap. The colormap ranges from 0 (red) to 100 (blue), and the color is
extrapolated for the values beyond those limits.

@layer (buildings) {
@meta(tenants) {
[0 100]: #FF0OOOO #00FFOO #O0OOOFF;
}
}

The final example illustrates the styling of the layer overlay. The layer overlay
3D Usage utilizes the metadata of the source layer. The geometry overlayed
over the source layer objects with a metadata attribute type is colored using
the same color schema as in the first example.

@layer ("3D Usage") {
@source {
@meta(type) {
"roads": #999999;
"water": #00OOFF;
"tree": #00FFO0O0;
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Figure 5.13: Transforming Geometry into LEGO

B 5.2.8 Outputs

The final required output involved the generation of physical models. Two
approaches were considered — 3D printing and LEGO models.

3D printing. The system has to slice the geometry and provide geometry
files in a printer-compatible format (e.g., STL, OBJ). Since the regular grid
construction already requires the slicing functionality, it can be reused. The
geometry file for a selected area can be created on-demand.

LEGO models. Generating the LEGO models is a more complex task.
Several approaches were considered; however, the scale of the test models
limited the available detail. Instead, the proposed design utilizes a heightmap,
illustrated in figure 5.13. First, the heightmap is rendered with a resolution
larger than the brick resolution of the output. The heightmap is then filtered
using a box filter. The filtered heightmap is quantized to match the scale
of the bricks to the original geometry. The choice of a suitable box filter is
discussed in the following chapter.

Bl 529 Summary

The processing toolkit utilizes a data model organizing Objects into Layers
and Projects. The semantic and geometrical object representation is separated.
The data is stored directly in the file system; a complete overview of the
directory structure is provided in figure 5.13. The toolkit uses out-of-core
memory to enable processing of extensive datasets. This principle is reused
at several points in the toolkit. A range of geometry types is supported,
including dynamic point data.

The toolkit utilizes several structures to enable efficient data streaming and
accelerate spatial or temporal range queries. Datasets can be integrated using
the introduced overlay mapping algorithm to preserve the relations between
overlay geometry and original objects. The appearance of the geometry can
be customized based on the object metadata using a custom styling language.
Finally, the toolkit can generate resources for 3D printing and LEGO model
assembly.
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5.3. Visualization Engine

B 5.3 Visualization Engine

The visualization engine is a system component responsible for the visual
outputs. The proposed software architecture of the engine is illustrated
in figure 5.15. The engine design needs to adjust to the web technology
limitations — capped frame rate, limited memory, and limited performance.
The user interface was designed using an iterative approach; the proposed
design was consulted with the participants of a user study. The results of the
study are presented in section 6.3.

B 5.3.1 Data Processing Principles

The architecture of the engine takes into account the data processing ap-
proaches suggested in section 3.5 and the limitations imposed by the web
technologies. The architecture design is based on the following principles:

® The engine architecture mirrors the layout of the processing toolkit
components, as well as the data model structure.

8 The engine needs to prioritize processing the tiles close to the viewer to
those further away (the prioritization principle).

® The loaded data needs to require as little proce ssing as possible. Since
the data representation utilized by the processing toolkit stores geometry
in base64 buffers, the only processing required prior to rendering is
decoding the buffers.

® The individual geometries are independent, which allows the engine to
process them in parallel (data parallelism approach).

® All metadata is stored on the server only and presented on-demand.

B 5.3.2 Engine Components

The presented architecture of the visualization engine contains three primary
submodules — Project, Decoder Worker Pool, and Renderer component.

Project. The Project component manages the visualization data. It is
responsible for resource management, loading geometry, and applying styles.
Each project Layer contains a Grid and Timeline class. The Grid manages
the static geometry, requests tile geometry on viewpoint change, and supplies
the decoded data to the Renderer. Timeline similarly manages the dynamic
data. The data is dynamically loaded based on the viewer’s current position.
Two approaches are possible:

8 Download the data, store it as long it is visible, free the memory resources
when it leaves the visibility radius. This approach limits the memory
footprint for the cost of higher data transfer.
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® Download the data once and cache it in local memory. When requested
again, the data is served from the local memory. This approach limits
the data transfer and increases the memory footprint.

Since it is not clear which approach is preferable, the engine should allow the
user to select the preferred approach.

Decoder Worker Pool. Decoder Worker Pool transforms the base64 encoded
buffers into data arrays that can be passed to a graphic library directly for
rendering. Each geometry consists of a list of buffers (vertices, normals, object
ids, etc.). Since the buffers can be decoded independently, it is possible to
distribute the decoding among several threads. One of the main limitations of
the web environment is the default single-threaded code execution. Decoding
the data in the main thread would throttle the performance and block the user
interface updates, ultimately freezing the system. An alternative approach is
proposed utilizing Web Workers. Web Workers are now widely supported,
providing a way to run several threads in the browser. Moreover, the Web
Worker implementation allows the copy-less transfer of the data array buffers,
reducing the memory footprint. The figure 5.16 illustrates how the decoding
jobs are submitted to a job queue. When all buffers belonging to a job are
decoded, the Decoder returns the decoded geometry to the tile or interval.

Renderer. The Renderer component encapsulates the graphics library calls,
handles camera controls and picking. The technical options for facilitating a
web visualization are quite limited — all of the existing visualization libraries
use WebGL. The existing visualization libraries offer very similar APIs. Still,
it is advisable to use a graphic library and avoid raw WebGL — it helps
encapsulate the rendering layer and keeps the architecture cleaner.

50



5.3. Visualization Engine

Styles Intervals Metadata ]

J
—

Geometry Tiles

J
)
J
)

Style Module ][ Grid Module ][TimelineModule ][ Layer Objects J

1 1 1 1

Layer
1\ 1
0“*
1
—[ Project ]

0.*
1

[ Web API H Workspace ]

communication

Visualization Engine J
1 1 1
1 1 1
Renderer ] [ Decoder Worker Pool ] [ Project ]
1 1
Decoder 1

GPU Picker

Main Timeline

J
)
Shadows ] [ Styles ] [
J
J

]

—[ Camera Controls
]

—[ Selector

Timeline

1

Geometry 0.%
Interval
1
0.*
Point Cloud ] [ Segment Cloud ] [ Triangular Mesh

Geometry Location

—

Point Cloud Overlay ] [ Segment Cloud Overlay ] [ Triangular Mesh Overlay ]

Figure 5.15: Visualization Engine Architecture

o1



5. Design

[ Current Location ] [ Current Time ]
A\ A\
i i for each tile for each interval i
( Active Tile —T Active Interval J
request

[ + Tiles in Visible Radius * + Intervals in buffer window ]

{ Web API ]

|
response

Base64 encoded buffers ¢

Job Base64 Buffer

Base64 Buffer

Base64 Buffer

r [ Geometry Buffers ]
[ )
[ )
L )

A4

{ Job Queue J

[ Decoder Worker Pool ]

Distributed ) H H H H
Decoding Y y y y
[ Base64 Buffer ] [ Base64 Buffer ] [ Base64 Buffer ] [ Base64 Buffer ]

A A A4 A
Data Array ] [ Data Array Data Array ] [ Data Array

| | | |
!

[ Active Tile I Decoded Geometry [ Active Interval I

] Data Array buffers

[ + Tiles in Visible Radius + Intervals in buffer window ]

\
to WebGL and Render

Figure 5.16: Parallelization of the geometry decoding

52



Chapter 6

Implementation and Results

This chapter presents the implementation of the visualization system and
testing results. The system’s performance is evaluated in a series of tests
focused on memory usage and frame rate. A qualitative user study was
conducted during development to help uncover the interface design and the
performance issues. The final design was validated with the users.

B 6.1 Implementation

The system was implemented according to the design presented in chapter 5.
The developed processing toolkit is available at PyPI as a python package
metacity. The server component, together with the user interface, is available
as python package metacity-workspace. The implementation is written in
a combination of languages — geometry processing is implemented in C++
behind a python interface. The visualization engine and the user interface
are coded in Typescript.

Shapefile and GeoJSON input formats are supported. The dynamic data
was obtained from the MATSim simulation software; a custom SIM format
was utilized for data transfer. The processing toolkit contains a custom
implementation of a GeoJSON parser; the Shapefiles are loaded using the
GDAL library. The deployed application runs behind an Nginx server and
uses the Nginx Unit for FastAPT apps. Gzip compression is utilized to save
bandwidth. The compression works well with the base64 encoded buffers.

B 6.2 Profiling and Validation

The implementation was tested and validated using a series of datasets
described in table 6.1. The static datasets are publicly available at Geoportél
hl. m. Prahy; the dynamic datasets were provided by Giang Chau Nguyenova'
and Anna Moudra? as an output of their synthetic population research.
The tests were conducted at a computer running Linux Kubuntu 18.04
with Intel Core i7 7700 @ 3.6GHz, 8GB of DDR4 RAM (2133MHz), NVIDIA

Lgengia@gmail.com
2anna.moudra@gmail.com
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Figure 6.1: Profiling memory consumption during datasets loading; different
sizes of data storage sets are tested

GeForce GTX 1060 6GT with compute capablity 6.1 and Cuda driver 390.116.
The following tests were conducted:

Test 1 Data importing, grid and timeline construction
Test 2 Static geometry streaming and visualization

Test 3 Dynamic geometry streaming and visualization
Test 4 Box filter function for LEGO model generation

Test 1. The data was uploaded into the system while the used memory and
disk space were monitored. The figure 6.1 illustrates the memory consumption
for different sizes of data storage sets. The utilization of the out-of-core
memory enabled predictable memory consumption. As the set sizes are all
powers of two, the memory consumption graph resembles a series of sawtooth
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Figure 6.2: Profiling visualization performance; the user loaded Building, Terrain,
Bridges, and Roads layers and changed the camera position twice before returning
the to the initial location.
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Figure 6.3: Profiling visualization performance; the user loaded all dynamic
data layers and changed the playback speed from 1x to 5x at 15 seconds, to
10x at 30 seconds, to 30x at 45 seconds, and finally to 60x at 60 seconds.

wave patterns aligned at the peaks. The disk space requirements are presented
in the table 6.1. The static data was tiled into 1x1 km tiles; the temporal
data was split into 60-second intervals. The data presented in table 6.1 also
include two overlays — Roads 3D were created by mapping Roads onto
Terrain, and the Land Use 3D overlay is a combination of the Terrain and
Land Use datasets.

Test 2. Building, Terrain, Bridges, and Roads layers were rendered using
the visualization engine. The user changed the viewing position three times,
which required dynamically loading the visible geometry. At the last position
adjustment, the user returned to the starting area. The utilized memory
and frame rate were monitored. The test was performed both with and
without geometry caching; the figure 6.2 presents the recorded values. The
implementation behaves as expected — the frame drops appear less with the
caching turned on. The engine discards the data once it is passed to GPU,
which explains the memory drops.

Test 3. All dynamic layers from table 6.1 were rendered at once. The user
changed the playback speed several times. The utilized memory and frame
rate were monitored. Figure 6.3 presents the recorded values. As the playback
speed increases, frequent frame drops are observed; however, the frame rate

o7



6. Implementation and Results

(a) : Minimum Box Filter (b) : Maximum Box Filter

(c) : Median Box Filter (d) : Average Box Filter

Figure 6.4: LEGO Transformation Outputs

stays above 30 fps. The memory consumption patterns are similar to those
observed in the previous test case.

Test 4. The implementation of the LEGO model generator, as presented in
section 5.2.8, was tested using the minimum, maximum, median, and average
box filters. Figure 6.4 illustrates the outputs of the proposed algorithm. The
median filter seems to yield the best results.
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Figure 6.5: The original design of the interface controls, the color overlay, and
the side panel proved to be problematic

B 63 User Testing

A qualitative user study with three participants was conducted during the
development. Based on the study results, adjustments were made to the
system. At the testing site, the user interface was briefly presented to the
participants, who were later asked to perform the following tasks:

1. Locate a particular building on the map
2. Zoom closer to the building

3. Select the building

4. Interpret the building metadata

All participants were familiar with geospatial information systems (ArcGIS
and QGIS). After the testing, the participants were asked the following list
of questions:

8 What observations do you have about the interface?
8 What tasks would you use the visualization for?

8 Has 3D wvisualization any advantages over 2D for you?

Participant 1. The first participant struggled with the controls. The diffi-
culties were caused by the lack of a reset button, low framerate, and softened
camera movement. The double click to select the building was not intuitive
for the participant. The participant appreciated the possibility of seeing the
city in both 2D and 3D. The 3D environment provides a richer context. The
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participant suggested adding keyboard controls. Another issue was the partial
overlay of the visualization when the controls were opened, as presented in
figure 6.5; the participant expected the visualization to be visible without the
partial overlay. They also suggested that a floating toolbox is preferable to
the side menu.

Participant 2. The second participant approached the navigation by remain-
ing in the top view position and located the selected building easily. The
participant described the controls as more intuitive for game players. The
double click to select was also not intuitive for the participant. The 3D model
helped the participant navigate the city, and they suggested restricting the
zoom at a certain distance from the buildings.

Participant 3. The last participant was pleasantly surprised by the controls

— the similarity the game controls was reiterated. The participant came up
with the idea of model styling on their own, and their suggestions were in
line with the capabilities of the implemented styling system.

Adjustments. Modifications based on the results of the user study were
proposed. The final design was validated with the users. The following
changes were made to the interface:

a single left click replaced double click to select,

B a view resent button with a compass was added,

the original menu design was replaced by a toolbox in the top-left corner,

the camera movement smoothing was removed completely,

the visualization was heavily optimized by the decoding parallelization.

. 6.4 Limitations

New problems were identified during the development. The system does not
optimize the geometry level of detail. The optimization can be implemented
as an additional module of the processing toolkit in the future.

Styles support only color modification; however, the styling system can be
extended by adding new rules to the styling grammar. The implementation of
the visualization engine also needs to be extended to support the new visual
attributes. The extended support could enable the customizability of the line
and point geometry appearance.

There is a minor issue related to naming — the layers can be renamed
while being processed; however, the processing job fails, as it cannot find the
layer under the original name. Nevertheless, this issue can be easily fixed.

As the system relies on out-of-core memory, disk space availability might
become a problem with the increasing number of layers and projects. This
limitation cannot be easily overcome — it is the main tradeoff for keeping
the memory footprint low.
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Figure 6.6: Render of the area Prague-Holesovice using datasets Buildings and
Land Use 3D; the visualization is styled using the Style 1 from appendix C

. 6.5 Results

The figures 6.6 to 6.13 showcase selected examples of the visualization outputs.
As demonstrated in figure 6.9, it is possible to select a region and export
the geometry as an OBJ file or as a LEGO model. The export page of the
LEGO model offers an interactive presentation (figure 6.10). It is possible to
divide the model into tiles and build it in a bottom-up fashion (figure 6.11).
The feasibility of this approach is demonstrated in the figure 6.12; a slice of
Néameésti Miru was assembled. The projection mapping of the visual outputs
was tested using the assembled LEGO model (figure 6.12) and a scale model
located at the Center for Architecture and Metropolitan Planning in Prague
(see figure 6.13). Examples of styles are presented in appendix C; additional
outputs are presented in the appendix D.
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Figure 6.7: Render of the Prague city center containing datasets Buildings and
Land Use 3D, styled using the Style 1 from appendix C
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Figure 6.8: Visualization of traffic simulation, the color indicates the speed at
which the agents are moving — read agents are waiting at junctions and stops
while green agents are moving at full speed
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Figure 6.9: The visualization interface allows selecting areas for OBJ or LEGO
model export.

Horizontal step: 1 brick is 7.5 units i ing: i Show layer: 19

Figure 6.10: The presentation of the exported LEGO model, the example is the
export of area presented in figure 6.9
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Horizontal step: 1 brick is 7.6 units  Vertical step: 9.6 mm bricks Tile spacing: 1 bricks Tile size: 8 bricks Show layer: 5

Figure 6.11: Assembly of the LEGO Model presented in the figure 6.10

Figure 6.12: Assembled LEGO models with projection mapping; the warping of
the projection was set up in TouchDesigner
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Figure 6.13: The visualization output is live projected onto a scale model of the
Zizkov Freight Railway Station area, courtesy of CAMP Prague. The red zone
highlights the current location of the railway station, soon to be redeveloped
into a new residential area.
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Chapter 7

Conclusion

The initial research was focused on the role of urban data platforms in
the context of urban planning. The analysis revealed that these systems
become truly meaningful only when all stakeholders are willing to participate.
The systems designed around simulation models encourage higher levels of
interaction. The model-based approach, also known as visual analytics, can
answer questions that arise during problem exploration. Unfortunately, the
validation of the model outputs can be problematic, and there is a potential
risk of creating privacy issues. Further, the analysis explored possible geometry
representations and ways to process large geospatial datasets. The existing
geospatial formats and information systems were examined in the context of
available open data.

Based on the initial research, a design of a visualization system was proposed.
It focused on enabling efficient data processing and accessible visualization
on the web. The internal data model was designed to facilitate a wide range
of input formats. The separation of semantic information and geometry
offers more flexibility. The processing of large datasets is enabled by using
out-of-core memory and spatial and temporal data structures. A simple and
extensible styling language was proposed to allow customizing the geometry
appearance based on the object’s metadata.

The system was implemented as two python packages. The first package
provides the necessary tools for data processing, while the second manages
the visualization. They can be deployed together as a standalone visualization
system; moreover, the modular design of the packages allows them to be
separately reused as libraries in a more extensive system. Behind the python
interface, all computations are implemented in C++4, providing an ideal
combination of interface accessibility and computational efficiency. The
system can be used to share and explore the data online. Users can request
OBJ files or generate LEGO models of any available urban area.

The system’s performance was tested using a set of static and dynamic
datasets. Concurrently, a user study was conducted to validate the design of
the user interface. All issues discovered in the user study were resolved.

The future objectives include extending the styling system. The open design
of the current styling language offers many opportunities for experimentation.
Geometry optimization poses an equally significant challenge. The complexity
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of the geometry increases with the application of transformations such as
overlay mapping. It is desirable to adjust the geometry level of detail and
further improve the performance of the system. The most challenging objective
is to integrate the developed system with a simulation modeling tool. As the
initial research suggests, pursuing this goal could significantly contribute to
sustainable city development.
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Appendix B

Dependencies and Installation

Significant dependencies that are not included in the packages are:

CGAL intersection computation in the overlay mapping algorithm
CMake building the C++ code
GDAL Shapefile parsing

Dependencies included in the packages are:

pybind11 integration of the C++ code into the python interface
gml vector operations

numpy fast array operations

lark context-free grammar parsing

orjson fast JSON parsing

fastapi web API library

react user interface framework

evergreenU]l user interface elements

monaco-editor editor framework utilized for style editor
three.js rendering

Deployment dependencies:

Nginx serving static files
Nginx Unit supervisor for FastAPI apps

. Installation

This is a guide for the Metacity System setup. This document will guide you
through setting up a local environment and creating a Metacity Workspace.
This guide is for Linux only; however, the system can be deployed on Windows
and macOS. Please find appropriate alternatives to the presented commands
for your system.

1. Install GDAL

1 sudo add-apt-repository ppa:ubuntugis/ppa
2 sudo apt-get update
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10.

11.

12.

. Dependencies and Installation

sudo apt-get install gdal-bin

sudo apt-get install libgdal-dev

export CPLUS_INCLUDE_PATH=/usr/include/gdal
export C_INCLUDE_PATH=/usr/include/gdal

Install CGAL

sudo apt-get install libcgal-dev

Install CMake

sudo apt-get install cmake

Install python virtualenv

sudo apt-get install virtualenv

Create python environment

virtualenv --python=python3.9 env

Activate the environment with
./env/bin/activate

Install the python package

pip install metaworkspace
or

3 pip install metacity

Continue only if you are installing the metaworkspace package for vi-
sualization. If you installed the metacity package for data processing,
you can leave this guide.

Create Metacity Workspace

python -m metaworkspace --install [name of your workspacel
Create new Workspace user

python -m metaworkspace --createuser [name of your workspace]
See other command-line options

python -m metaworkspace --help

Run the application

python -m metaworkspace —-run [name of your workspace] --serve
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B. Dependencies and Installation

B Hints

B8 You need locally installed python headers, install it with command sudo
apt-get install python3.9-dev, make sure the version of python
used in the environment matches the headers you install here

® You need a local C++ compiler, we recommend clang, install it with
command sudo apt-get install clang, g++ works too
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Appendix C
Style Examples

@layer ("Budovy") {
Qcolor: #F8F8F8;
}

@layer ("Vyuziti - Terén") {
@source {
@meta (CTVUK_POPI) {

"komunikace - silnice": #999999;
"komunikace - parkovisté": #999999;
"komunikace": #999999;
"komunikace - chodnik nebo parkova cesta'": #BBBBBB;
"zeleni v zastavbé - verejnd zelen": #78ff47;
"zelenn v zastavbé - ostatni zelen": #bfffa8;
"zelen v zastavbeé": #bfffa8;
"louky, zahrady": #bfffa8;
"vodni plochy - feka, potok": #47bcff;
"vodni plochy - rybnik, jezirko": #47bcff;

}
}
}
@legend {
"roads": #999999;
"nature, trees": #78ff47;
"water": #47bcff;
}

Style 1. Buildings and Land Use 3D
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C. Style Examples

1 @layer (Bubny) {

2 Q@color: #C5283D;

3

4 @meta(autocad_la) {

5 "U- 02 Model - terén - silnice": #2F3737;

6 "U- 02 Model - terén - parkovaci stani": #292e2e;
7 "U- 02 Model - Kralupska trat": #1d3333;

8 "U- 02 Model - Kladenska trat": #1d3333;

9 "U- 02 Model - Trat": #1d3333;

10 "U- 02 Model - terén - zelen": #CSED51;

11 "U- 02 Model - terén - chodnik": #FFFFEE;

12 "U- 02 Model - terén": #8a4900;

13 "U- 02 Model - opérné zdi": #DDDDDD;

14 "U- 02 Model - objekty - schodisté": #FFFFDD;
15 "U- 02 Model - stfechy - navrhované": #d11800;
16 "U- 02 Model - objekty - navrhované": #d11800;
17 "U- 02 Model - vltava": #A1E3FF;

18 "U- 02 Model - stfechy - pivodni": #ffe8bS;

19 "U- 02 Model - objekty - puvodni': #ffe8bS8;

20 }

21 }

22

23 @legend {

24 "Pivodni budovy": #ffe8bS§;

25 "Nova vystavba": #d11800;

26 "Zelen": #C8ED51;

27 }

Style 2. Style for buildings

82



C. Style Examples

1 @layer ("Vyuziti dzemi") {

2 Q@color: #000000;

3

4 Ometa (CTVUK_POPI) {

5 "komunikace - silnice": #FFFFFF;

6 "komunikace - chodnik nebo parkova cesta": #EEEEEE;
7 "zelefi v zastavbé - verejnad zelen": #00FFO0O;
8 "vodni plochy - feka, potok": #8888FF;

9 "Zeleznice": #FFO0000;

10 }

11 }

12

13 @legend {

14 "Zeleznice": #FF0000;

15 "Zelen": #O00FFO0O;

16 "Vodni plochy": #8888FF;

17 }

Style 3. Land Use with a legend, utilized for video-mapping on Zizkov
Freight Railway Station scale model in figure 6.13
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Appendix D
Outputs

AERP L RN
feE#H O K @+ - T

)|

Styles

VyuZiti

No Style

Legend

roads

nature, trees

Metadata

CTVUK_KOD 502

CTVUK_POPE vodnf plochy - rybnik, jezirko
POSKYT MHMP-IPR
Shape_Area: 8218.03578516
Shape_Leng 407.848686666
oid 175872
layer Vyusiti

] . W eion|
L ERERYAL
)

Figure D.1: The final design of the visualization user interface; floating toolbox

is on the top left and dialog containing metadata for the selected element on the
bottom right.

85



D.OUtpUtSllIllllIllllllIIIIIIIIIIIIIIIIIIIIIIIII

Figure D.2: Bubny-Zitory, datasets Roads, Buildings, and Terrain, no styles;
an additional dataset with the currently constructed buildings in Prague Bubny-
Zatory is inserted into the visualization, courtesy of IPR Prague.

Figure D.3: Campus Dejvice closeup, no styles
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Figure D.4: Vitézné namésti, no styles

Figure D.5: Prague overview, no styles
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Figure D.6: Prague overview, styled with Style 1 in appendix C

Figure D.7: Vitézné namésti, styled with Style 1 in appendix C
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A
Figure D.8: Namésti Miru, styled with Style 1 in appendix C

Figure D.9: Model Bubny-Zatory, courtesy of IPR Prague, styled with Style 2
in appendix C
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Figure D.10: Zizkov, styled with Style 3 in appendix C

Figure D.11: Distribution of population
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PROJECTS
® Addproject Project Praha
Praha
=* Add Layer [# Addstyle & Publish 3D & Styles. B map Layers
Agents
Vybavenost Layers
Obyvatelstvo
VyuZiti - 20 na 3D LAYER NUMBER OF OBJECTS TYPE
Etapizace
Agents - testing Mosty 672 layer
project
Bubny
Budovy 228472 layer
VyuZiti 20
TSK Ulice 47522 layer
Terén 4502183 layer
Silnice 30 47622 x 4602183 overlay
Bubny 4800 layer

& View / Rename @ Delete Project

PUBLIC RENAME DELETE

v e
v e
x e
v e
v e
v e

Figure D.12:

The user interface of project administration allows adding layers,

styles, and overlays to the project; each layer can be made public or remain
hidden for the unauthenticated users

Metacity
Style Vyuziti @ Back to Project Vyuiti - 2D na 3D
1 @layer ("Budowy") {

2 @color: #F8F8F8;

3 )

a

5  @layer ("vyuziti - Terén") {

6 @source {

7 @meta(CTVUK_POPI)

8 "komunikace - silnice": #999999;

9 "komunikace - parkoviité": #999999;

10 “'komunikace": #999999;

11 “komunikace - chodnik nebo parkovd cesta": #BBBBBB;
12 Yzeleh v zdstavbé - vefejnd zelei": #78ff47;
13 "zeleh v zéstavbé - ostatni zelefi": #bfffas;
14 “zeleh v zastavbé": #bfffas;

15 "louky, zahrady": #bfffa8;

16 “vodni plochy - feka, potok": #47bcff;

17 “vodni plochy - rybnik, jezirko": #47bcff;
18

19

0}

21

22 @layer ("vyuziti") {

23 @color: #000000;

24

25 @neta(CTVUK_POPI) {

26 "komunikace - silnice": #FFFFFF;

27 "komunikace - parkovidté&": #999999;

28 “komunikace": #999999;

29 "komunikace - chodnik nebo parkovd cesta": #EEEEEE;
30 "zeleh v zdstavbé - vefejnd zelel": #00FFO0;

<> Parse

% oithub B Running Tasks
© save & Save and Compile
b

Figure D.13: The style editor utilizes the monako-editor library developed by
Microsoft; the editor supports defining custom rules for code completion.
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Appendix E
Contents of Enclosed CD

readme . tXt .ovvinr i e description of CD contents
imgs v the directory containing example image outputs
metacity........oooviiiiiiiiiin, source code of the processing toolkit
metacity-workspace.......... source code of the visualization package
thesis........ the directory containing IATEX source codes of the thesis
thesis.pdf . .ot e thesis in PDF format
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