
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Visuo-Haptic Uncertainty-Driven Object Shape
Completion

Bc. Lukáš Rustler

Supervisor: Mgr. Matěj Hoffmann, Ph.D.
Supervisor–specialist: Jens Lundell
Field of study: Cybernetics and Robotics
January 2022

ii

Acknowledgements
I want to thank everyone who helped me
with this work. Firstly, to Matěj Hoff-
mann, who gave me the opportunity to
be part of this project, supervised the the-
sis and supported me during the whole
time—from technical to formal aspects
of this work. I also want to thank Jens
Lundell, whose knowledge and experience
helped me overcome many problems, and
the results would not be possible with-
out him. My gratitude also belongs to
Jan Behrens, who provided the base of a
simulation environment and gave me an
introduction to its functionality. I also
thank Martin Šrámek, who helped me cre-
ate a model of an additional finger for the
robot.

I would also like to thank my family for
continuous support through the years and
my friends for their encouragement. And
finally, I thank CTU in Prague for being
such a good alma mater.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských prací.

V Praze dne 04. ledna 2022

. .
Lukáš Rustler

iii

Abstract
Shape completion is the task of recon-
struction of an object using incomplete
information. Recently, advancements in
single-view visual-only shape completion
have been made. However, the objects can
self-occlude or be adversarial for cameras.
In this work, we propose a novel active
visuo-haptic shape completion method
(Act-VH). The method combines a point
cloud from a stationary camera and data
from haptic exploration with a robotic
manipulator. A state-of-the-art implicit
surface neural network is used to com-
plete the shapes. The location to explore
is actively computed from the reconstruc-
tion uncertainty. We evaluate the method
both in simulation, for which we present a
unique environment, and in the real world.
In both worlds, real-time visualizations of
current progress are provided. The perfor-
mance is compared to baseline methods in
terms of reconstruction accuracy and ex-
ploration efficiency. The results show that
Act-VH outperforms all baselines in both
criteria. In addition, we perform grasp
experiments on real-world objects, reach-
ing a significantly higher grasp success
rate than the baseline. Finally, Act-VH is
compared to an active visual-only method
that can obtain information from occluded
parts. Together, this work opens up the
door for using active visuo-haptic shape
completion in real-world robotic tasks.

Keywords: Perception for Grasping and
Manipulation, RGB-D Perception, Deep
Learning for Visual Perception, Shape
Completion, Shape Reconstruction

Supervisor: Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt
Modelováni tvaru objektu je úloha zabý-
vající se rekonstrukcí objektu z neúplné
informace. V nedávné době pokročila re-
konstrukce z neúplné, pouze vizuální in-
formace. Nicméně předměty se můžou pře-
krývat nebo být “nepřátelské” pro kameru.
Jako řešení navrhujeme naši metodu na-
zvanou aktivní visuo-haptické modelování
tvaru (Act-VH). Tato metoda kombinuje
mrak bodů ze stacionární kamery a data
z haptické explorace pomocí robotického
manipulátoru. Moderní neuronová sít na
principu implicitních povrchů je použita
pro doplňování tvarů. Místo pro explo-
raci je aktivně počítáno z nejistoty rekon-
strukce. Metoda je posouzena v simulaci,
pro kterou představujeme unikátní simu-
lační prostředí, a v reálném světě. V obou
světech jsou dostupné vizualizace aktuál-
ního pokroku v reálném čase. Přesnost re-
konstrukce a efektivita explorace je porov-
nána s existujícími metodami. Výsledky
ukazují, že Act-VH ostatní metody překo-
nává. Kromě toho provádíme sérii ucho-
povacích experimentů, ve kterých jsme
dosáhli vyšší úspěšnosti než existující me-
tody. Nakonec je naše metoda porovnána
s aktivní, pouze vizuální metodou, která
je schopná získat informaci i ze zakry-
tých části. Celkově je tato práce vstupním
bodem pro použití visuo-haptického do-
plňování tvarů v robotických úlohách v
reálném světě.

Klíčová slova: Vnímání pro uchopování
a manipulaci, Vnímání pomocí RGB-D,
Hluboké učení pro vizuální vnímání,
Modelování tvaru objektů, Rekonstrukce
objektů

Překlad názvu: Visuo-haptické
modelování tvaru objektu řízené
nejistotou

iv

Contents
1 Introduction 1

2 Related Work 3

2.1 Visual-only Shape Completion . . . 3

2.2 Haptic-Only Shape Completion . . 4

2.3 Visuo-Haptic Shape Completion . 4

3 Shape Completion Methods 5

3.1 Neural Network Types 5

3.1.1 Voxel-based Networks 5

3.1.2 Implicit surface networks 5

3.2 Networks Comparison 8

3.3 Implementation Details 9

3.4 Datasets . 10

4 Materials and Methods 11

4.1 Software and Implementation . . 11

4.1.1 ROS Overview 12

4.2 Robot and Cameras 13

4.3 Simulation 15

4.4 Point Clouds 17

4.5 Contact Detection 18

4.6 Custom Finger 20

4.7 Evaluation Methods 20

4.8 Baselines . 21

4.9 Grasping . 23

5 Visuo-Haptic Uncertainty-Driven
Object Shape Completion 25

5.1 Sampling of Shapes 27

5.2 Impact Point Computation 28

5.3 Visual-only Approaches 29

5.3.1 Passive Visual-only Shape
Completion 30

5.3.2 Active Visual-only Shape
Completion 31

6 Experiments and Results 33

6.1 Haptic Exploration with the 3D
Printed Finger 34

6.1.1 Simulation Experiments 37

6.1.2 Real World Experiments 40

6.2 Haptic Exploration with the
Gripper . 41

6.3 Grasping . 43

6.4 Visual-only Approaches
Experiments 45

6.5 Summary . 47

7 Discussion, Conclusion and Future
Work 51

Bibliography 55

Project Specification 61

v

Chapter 1

Introduction

Figure 1.1: Schematic operation of our active visuo-haptic shape completion method (Act-VH).
An initial depth image is used to construct an initial point cloud. Neural network (IGR)
generates several possible shape reconstructions, whose discrepancy is used to form a single
object reconstruction with uncertainty. The voxel with the highest uncertainty is selected for
haptic exploration, and a new points are added to the object representation. This process is
repeated, further refining the shape reconstruction. From Rustler et al. [1].

Shape completion is the task of reconstruction of an object using incomplete information.
The output object is usually a triangular mesh or a voxel grid. Shape completion is an
active research problem with potential in a wide range of applications and influences robotic
tasks, such as grasping. Nowadays, the information is often acquired by visual sensors,
which provide RGB images with or without depth data. However, using visual-only data
is complicated. For example, when only a stationary camera is available, the object self-
occludes, i.e., information from only one side of the object is available. One can collect more

1

1. Introduction ..
samples, but it requires more cameras, a movable camera, or a turntable under the object.
Additionally, even with current cameras, a lot of noise is present when capturing adversarial
objects such as transparent or dark items. A straightforward solution is to explore the
unseen parts by touch and reconstruct the shape with visuo-haptic data. However, current
visuo-haptic methods use a heuristic to choose where to touch [2] or require an impractical
number of touches with enormous computational time [3, 4].

We provide a solution to these issues with our Act-VH method. Act-VH is an active
visuo-haptic shape completion method, which iteratively refines the output shape. The
method is depicted in Fig. 1.1. Firstly, depth information of the scene is used to construct an
initial point cloud. Then, a state-of-the-art deep implicit surface neural network (Implicit
Geometric Regularization for Learning Shapes (IGR) [5]) is used to generate a set of
possible shapes, which is utilized to obtain a single shape with uncertainty. The segment of
the object with the highest uncertainty is selected for haptic exploration, providing new
information which is merged to the point cloud. The entire process is repeated, further
refining the reconstruction.

A manuscript based on the visuo-haptic shape completion part of this work is currently
under review for The IEEE International Conference on Robotics and Automation (ICRA)
2022 with Robotics and Automation Letters (RA-L) option [1]. Figures that were used
in this manuscript as well as here include a reference to [1] in their captions. An ac-
companying video is here: https://youtu.be/Ft1PUYRNFHw. The simulation environment and
the data from experiments pertaining to [1] are available at https://github.com/ctu-vras/

visuo-haptic-shape-completion. Additional internal code is available in the attachment of this
work. Data collected during the experiments (point clouds and ROSbags) can be downloaded
from https://drive.google.com/drive/folders/1Du8hVDbsFYqEvb-hwS6ISpnaE4RGJW8c?usp=sharing.

2

https://youtu.be/Ft1PUYRNFHw
https://github.com/ctu-vras/visuo-haptic-shape-completion
https://github.com/ctu-vras/visuo-haptic-shape-completion
https://drive.google.com/drive/folders/1Du8hVDbsFYqEvb-hwS6ISpnaE4RGJW8c?usp=sharing

Chapter 2

Related Work

Data for shape completion can be obtained from several inputs. The most obvious is purely
visual input from RGB or depth sensors. In combination with robotic arms and hands, the
data can be also collected by haptic exploration. In many recent works, these two inputs
are combined. The data can be collected only once or gathered actively—usually known as
active perception [6].

2.1 Visual-only Shape Completion
Visual-only approach to shape completion is the most common one. Usually sensors with
depth perception are used. This approach is beneficial because of the global nature of the
information gained—a single sample contains a lot of data. The first visual approaches were
geometry- or template-based. The geometry ones assume the objects are symmetric and
complete the reconstruction by mirroring it through its axis of symmetry, as done by Bohg
et al. [7]. Other work from Schnabel et al. [8] uses primitive shapes detected in the input
point cloud. Template-based methods just search in a database of known objects to find
the most similar one. Example of template-based method was proposed by Pauly et al. [9].
It is clear that these approaches will not work in the general case, e.g., the geometry-based
method will perform poorly for non-symmetric objects and the template-based will fail if
there is incorrect or no match in the database.

With progress in Machine Learning (ML), approaches based on ML were proposed
[2, 5, 10–15], using mainly Gaussian Processes (GPs). The early approach by Li et al.
trained a Gaussian Process Implicit Surface (GPIS) to reconstruct objects [10]. The
problem with GPIS is in its poor scaling over a lot of points in the input point cloud.
Thus, the input needs to be down-sampled which results in loss of information and details
of the reconstruction. More recent works utilize Deep Learning (DL) methods, mainly
Convolutional Neural Networks (CNNs) [2,11–13]. Using CNN, the objects are represented
as voxel grids. Using voxel grids is useful, for example, to represent probabilistic attributes
of the reconstruction. However, to preserve fine details, the grids would have to be sampled
with very high resolution. And it is, even with modern computers, very computationally
demanding because the requirements for memory grow cubically with the resolution.

However, in the world of shape reconstruction, new approaches based on implicit surfaces
were proposed [5, 14, 15]. These methods work directly with point clouds (with different
needs of point cloud preprocessing), returning triangle meshes. The methods produce
reconstructions with higher quality, while preserving better efficiency than voxel grid

3

2. Related Work..
methods. They are not originally meant for shape completion from incomplete input, but
can be also utilized that way.

Even though shape completion results of the mentioned methods are impressive, it will
probably never reach the quality of reconstruction created from a full point cloud. However,
to capture the complete point cloud, the camera or the object must be moveable. It can be
done by choosing the next-best-view [16–18], using a turntable under the objects [19–22] or
using a coordinate measuring machine with a laser scanner [23].

2.2 Haptic-Only Shape Completion
Current robots are already capable of haptic exploration and can be also used for shape
completion. With modern force and tactile sensors, haptic exploration can be more accurate
than the visual methods. Moreover, the robots are able to explore all parts of the object,
even from behind. Most recent haptic-only approaches use ML-based methods similar to
the ones used in visual-only approaches. Ottenhaus et al. [24] proposed a method based on
implicit shape potentials, Yi et al. [25] on GPs, Driess et al. [26] on GPIS’s and Dragiev
et al. [27] on Gaussian Process Implicit Shape Potentials (GPISPs). The advantage of
Gaussian-based methods is the ability to compute uncertainty and actively gather new
information to reduce it. Even though touch is usually more precise than visual sensors, it
also captures more local information—explores smaller regions. Consequently, haptic-only
completion requires a lot of touches (tens to hundreds), which is both impractical and
time-demanding.

2.3 Visuo-Haptic Shape Completion
Combining the previous approaches could theoretically preserve the advantages and address
the limitations at the same time. Again, methods based on GPIS’s [28, 29] and GPs [4] are
proposed. These methods require dense information all around the object. With a fixed
camera capturing only one side of the object, a lot of surface remains to be explored by
touch. CNN-based methods [3, 30] can be used with fewer touches, but suffer from low
resolution of the reconstruction. Smith et al. proposed approaches [31, 32] based on Graph
Neural Network (GNN). Reconstructions by these methods have a higher resolution, but
are nonsmooth and, for now, evaluated only in a simulation.

An important part of haptic exploration is the decision where to touch. One can touch
the object randomly as done by Smith et al. [31], or always select a position opposite of the
camera (from “behind”) as Watkins-Vall et al. [30]. These are, however, not so effective.
Uncertainty from Gaussian distribution can be used to explore more effectively [3, 4, 28, 29],
or it can be learned where to touch as in Smith et al. recent work [32].

The main contributions of the work presented in this thesis are: (i) a novel active
visuo-haptic shape completion method; (ii) a visuo-haptic simulation environment; (iii) real–
time visualizations suitable for benchmarking; (iv) an empirical evaluation of the proposed
method against state of the art, presenting, both in simulation and on real hardware,
improvements in terms of reconstruction accuracy and grasp success rates.

4

Chapter 3

Shape Completion Methods

This chapter gives an overview of state-of-the-art methods for shape reconstruction. Our
experiments to determine the most suitable one for this work are presented. Examples of
two groups of shape completion approaches are given, together with experimental results
and comparison.

3.1 Neural Network Types
Shape completion method is an essential part of the pipeline. We tested and compared
multiple state-of-the-art networks based on two principles: (i) voxel-based; and (ii) implicit
surface based.

For each network, a new dataset was created from the same training samples—in a format
needed by the given network. The tested networks are described below, and a table with
the properties of each network can be found in Section 3.2.

3.1.1 Voxel-based Networks

The network introduced by Lundell et al. [13] was selected as a representative of this type
of networks. The authors have already proved that the network can be used for shape
completion from an incomplete point cloud. However, as our experiments showed, the
method is impractical for iterative shape refining. The network is trained from multiple
incomplete views of the same object. To allow incorporation of tactile information, the
network would have to be trained evenly with simulated tactile information all around the
objects (a similar thing was done in [30]), which is unfeasible in the general case.

The network utilizes a voxel grid as input. The main disadvantage of this approach is
the cubically growing computation and memory requirements which result in low object
resolution. As such, fine object details are not preserved, which is important when, for
instance, sampling grasps.

3.1.2 Implicit surface networks
These networks, in contrast to voxel-based methods, can reconstruct visuo-haptic data
without explicit training. Firstly, we evaluated the DeepSDF [14] network, which learns

5

3. Shape Completion Methods
the Signed Distance Function (SDF) defined as:

SDF (x) = s, (3.1)

where x ∈ R3 is a three-dimensional position of a point in a point cloud and s ∈ R is a
signed distance to the surface. The signed distance is used to determine which points are
“inside” (negative) and “outside” (positive) of the surface. The desired triangle mesh can
be obtained with Marching Cubes algorithm [33] from an isosurface of SDF (·) = 0, i.e.,
from all points with zero distance to the surface. Implicit surface principle shown on a ball
can be seen in Fig. 3.1.

(a) : 2D depiction of the signed distance field.

(b) : Zoomed cross-section with implicit surface
SDF = 0 (black semicircle), red points “outside”
(SDF > 0) and blue point “inside” (SDF < 0).

(c) : Triangle mesh reconstructed from implicit
surface SDF = 0.

Figure 3.1: 2D signed distance field (a) with a cross-section showing “outside” and “inside”
points (b). Triangle mesh reconstructed from isosurface SDF = 0. Inspired by Park et al. [14].

The principle of SDF allows to train the network with the whole point cloud and then
use just part of it to reconstruct the mesh, which enables integration of tactile information.
However, DeepSDF is heavily dependent on preprocessing of the input. The network expects,
for both training and prediction, a point cloud with around 500 000 points randomly sampled
with Normal distribution around the surface. Each sample consists of a point location in
3D space and a signed distance to the surface. See Fig. 3.2a for an example.

Computation of signed distances to the surface is easily achievable when sampling the
whole mesh for training but more problematic when creating the input from incomplete
point cloud captured with a camera, as it is not clear what is “inside” and “outside”. For
this reason, we started to experiment with IGR [5]. This work uses the same network
structure as DeepSDF [14] but works with raw point clouds—only 3D position and 3D
normal for each point are needed. See Fig. 3.2 for comparison with DeepSDF.

6

..................................... 3.1. Neural Network Types

(a) : Preprocessed point cloud for DeepSDF. Only
points near the surface (blue) are shown, with
positive (green) and negative (red) distance to
the surface.

(b) : Preprocessed point cloud for IGR with the
points (blue) and normals (black).

Figure 3.2: Example of point clouds created for neural networks. Front and side view of
incomplete objects.

The network is a Multi-Layer Perceptron (MLP) modeled as a function f(x;θ). The
parameters θ are trained such that f is approximately the SDF to a plausible surfaceM.
The surfaceM is defined by the point cloud X = {xc}c∈C ⊂ R3 and, optionally, a set of
normals N = {nc}c∈C ⊂ R3, where c ∈ C is the number of points in the point cloud. The
loss function of the network is then defined as

`rec(θ) = `X (θ) + λEx (‖∇xf(x;θ)‖ − 1)2, (3.2)

where λ is parameter and λ > 0, and

`X (θ) = 1
|C|

∑
c∈C

(|f(xc;θ)|+ τ ‖∇xf(xc;θ)− nc‖) , (3.3)

where τ = 1 when normals are available.

The first term in Eq. (3.2) forces ∇xf to be close to the normals and f to vanish on
X , i.e., to make f = 0 on X . The second term is called Eikonal term and is used because
solution f (in the sense of [34]) to the Eikonal equation

‖∇xf(x;θ)‖ = 1, (3.4)

will be a SDF and also a global minimum of the loss in Eq. (3.2).

Even though the principle is valid for learning a single shape, using auto-decoder setup
from Park et al. [14] (see Section 3.1.2), the network can be used for learning multiple
shapes. One can introduce the so-called latent vector zj ∈ Rd, where d is usually 128 or
256, and j ∈ J corresponds to training samples. The function of MLP then changes to

7

3. Shape Completion Methods
f(x;θ, zj). Using latent codes also allows us to train the network from point clouds of
the whole objects and then supply only an incomplete point cloud to the prediction phase.
Using a partial point cloud will change the problem to finding a latent code ẑi, where
i ∈ I are test samples, which can be achieved with gradient descent optimization. The
optimization itself is initialized with a random latent code ẑi, 0 and fine-tuned with

ẑi,t = ẑi,t−1 − α∇ẑi,t−1`(θ, ẑi,t−1), (3.5)

where α is the step-size and ∇ẑi,t−1 is the gradient of the following loss function

`(θ, ẑi,t−1) = `rec(θ, ẑi,t−1) + γ ‖zi,t−1‖ , (3.6)

where γ = 0.01, and `rec(θ, ẑi,t−1) is the loss in Eq. (3.2).

The disadvantage of this method is a longer computation time resulting from the gradient
optimization.

Auto-decoder Architecture

Some other networks (including the one by Lundell et al. [13]) use Auto-encoder architecture,
which produces the latent vector during its operation from input data points. The Auto-
decoder architecture used in [14] accepts randomly generated latent vectors as input together
with data points—one latent vector for each data point. The vectors, together with decoder
weights, are then optimized using backpropagation—during interference, decoder weights
are fixed, and an optimal latent vector is estimated. This solution is more compact and
omits the necessity for training the encoder, which is not used in the prediction phase.
Schematics of both architectures can be seen in Fig. 3.3.

(a) : Auto-encoder. (b) : Auto-decoder.

Figure 3.3: Auto-encoder and Auto-decoder architectures. From Park et al. [14].

3.2 Networks Comparison
Comparison for the three tested networks can be found in Table 3.1. Even though the
information in the table are similar at first sight, our experiments showed that the difference
in input makes the most significant difference. This highly supports IGR, which uses a point
cloud with normals, over DeepSDF, which requires sampled points with signed distances to
the surface. IGR also outperforms the network from Lundell et al. because of the natural
integration of tactile information. For these reasons, we decided to use IGR for this work.

8

..................................... 3.3. Implementation Details

Network Lundell et al. [13] DeepSDF [14] IGR [5]
Type Voxel-based Implicit surface Implicit surface

Input Voxel grid
Samples with normal distribution
around the surface with signed

distances to it
Point cloud with normals

Architecture Auto-encoder Auto-decoder Auto-decoder
Allows integration of
tactile information No Yes Yes

Train samples Incomplete objects Whole objects Whole objects
Level of details Low High High
Computation time Under 1 second Seconds Seconds

Table 3.1: Properties of the tested networks. The run times of DeepSDF and IGR strongly
depend on the hardware.

3.3 Implementation Details
Our implementation is based on a publicly available GitHub [35] project from the authors
of IGR [5]. The original implementation was improved to better fit our problem, mainly by
adding a custom dataset preprocessing and the ability to provide reconstructions usable
for uncertainty computation (see Section 5.2). We named our implementation as Shape
Completing IGR (CIGR).

Figure 3.4: Structure of the network. All layers are fully connected and all connections, except
the last one, are followed by Softplus activation function. L stands for latent size (256 in our
implementation) and N stands for number of neurons (512 in our implementation).

The network itself was run in Python3 with the use of PyTorch 1.0.0. We kept the
structure of the network to be the same as in both IGR and DeepSDF (8 fully connected
layers with 512 neurons, with a skip connection in the 4th layer; see Fig. 3.4). We tested
some other parameters (on NVIDIA GeForce GTX 1080 Ti), eventually resulting in:

. batch size: 8;. note that this value is mostly influenced by the available memory on the graphics
card;. latent size: 256;

9

3. Shape Completion Methods
. learning rate: 0.005, decreasing by half every 500 iterations;. epochs: 3500.

3.4 Datasets
We used two publicly available mesh datasets, the YCB dataset [36] (available also in
physical version and used primarily for real interference) and the Grasp Database dataset [37]
(used primarily for neural network training). Both of the datasets include triangle meshes
with mainly household objects—examples of the objects can be seen in Fig. 4.2.

The meshes were used as ground truth for evaluation. However, the neural network takes
point cloud as input, so we created a new dataset from the meshes. The procedure of
point cloud creation is depicted in Algorithm 1. The procedure applies for both training
and validation datasets, with the difference in used point clouds—whole for training and
incomplete for validation. Each mesh needs to be normalized (lines 5-6) for correct training.
Then each mesh is sampled with 100000 points (lines 7). The number of points was chosen
experimentally to be high enough to densely cover the whole surface of the mesh but, on
the other hand, not too high to make the training unfeasibly long. Each of the sampled
meshes is then rotated to 16 different views (line 9). The rotations are always about x-,
y- or z-axis, with rotation angles being multiplies of 90◦. The reasoning behind selecting
exactly these rotations is that the training time is growing with the number of training
samples, so we wanted to limit it by selecting only an essential subset of different views.
And eventually, the resulting point clouds are saved to separate files.

Algorithm 1 Dataset creation for CIGR
1: Inputs: set of triangle meshes M, set of rotation matrices R;
2: Output: set of point clouds P;
3: P← empty set of point clouds;
4: for each m ∈M do
5: m← center m at the origin;
6: m← scale m so that its longest dimension is between -1 and 1;
7: s← sample m with 100000 points evenly distributed over its surface;
8: for each r ∈ R do
9: p← r · s; . Rotate s with r

10: P← P + p; . Add p to P
11: end for
12: end for
13: return P;

10

Chapter 4

Materials and Methods

This chapter gives an overview of the software and hardware used in this work. Basic
principles of the pipeline are given, and the reader is introduced to a detailed description
of the work done.

4.1 Software and Implementation

Figure 4.1: High-level schematic of pipeline interconnection.

The individual modules are interconnected using Robot Operating System (ROS) [38].
ROS allows us to freely connect different modules, written in different programming
languages (Python2, C++). Also, we designed the whole pipeline to be easily convertible
to other hardware (or simulated hardware) by just replacing the corresponding drivers. A

11

4. Materials and Methods
high-level schematic of the entire pipeline is shown in Fig. 4.1.

Even though ROS2 had already been available and Python2 had already reached the
end of its life, we decided to stick to the original ROS. The main reason is that we want
to, eventually, integrate this work in team-wide projects which use the same software
version. Also, drivers for our robotic arm were—at the time of the start of the project—only
available for ROS Melodic and older. The pipeline was therefore implemented and tested
with ROS Melodic on Ubuntu 18.04 (ROS Kinetic with Ubuntu 16.04 could work in theory,
but one would need to implement functions not yet available in this version of ROS) with
Python2.7. However, as has been stated in Section 3.3, the neural network uses Python3
(tested with version 3.6). To overcome this, the network is called using Python subprocess
library. The implementation can be found in the attachment of this work.

4.1.1 ROS Overview
To allow the reader better orientation in the upcoming text, we provide a list of basic ROS
terms.

. nodes - standalone programs; usually simple; used, for example, to read data from
sensors and publish it to topics;. topics - used for data transport between nodes; named “ports”; nodes can subscribe or
publish to it;. E.g., the robot controller reads data from joints and publish it to /joint_states

topic, which is subscribed by a node that detects collision from joint torques;. there can be more nodes subscribing or publishing to one topic;. each topic has a given message type;.messages - data types used to pass data to/from topics; ROS includes predefined
messages for basic types or users can create their own; can be nested;. E.g., sensor_msgs/JointState message is defined as:. std_msgs/Header header (std_msgs/Header is a nested message type). string[] name. float64[] position. float64[] velocity. float64[] effort. services - special type of node, which is idle most of the time and is activated by calling
from other nodes; request and reply system; similar to functions;. requests and replies are defined in .srv files similar to messages;. convenient, for example, when one needs to call a function written in C++ from

Python;. E.g., our pipeline includes service parametrize_cartesian_path, that can
parametrize the trajectory in such a way not possible in Python;

12

...................................... 4.2. Robot and Cameras

. subscribing - a way to listen to a given topic, i.e., a way to read data from a topic;
usually achieved by a class instance periodically running in the background, which
triggers a callback when new data are available;. can be synchronous or asynchronous;. data are received as a message;. publishing - a way to write data to a given topic; data are sent as messages;. ROSbag - a way to save data from ROS; whole topics are saved; rosbags can then
“replay” the experiments and can be used without hardware that collected the data;
can be replayed at arbitrary speed;. RVIZ - visualization tool from ROS; can visualize the robot or data from topics, e.g.,
with markers or arrows;. launch files - files written in XML; allow to run more nodes or even other launch files
at once; allow to set ROS parameters; accept arguments;. parameters - nodes can share parameters on the ROS parameter server; can be set
from launch files or from nodes.

4.2 Robot and Cameras
In this work, a 7 Degrees of Freedom (DoFs) robotic manipulator Kinova Gen3 with a
Robotiq 2F-85 gripper was used. The robot is equipped with a torque sensor in each joint,
which allows us to detect collisions without any external sensor. The arm also contains
a built-in camera Intel RealSense D410 on its wrist, which was used for to obtain point
clouds from behind the object in the accompanying experiments.

To control the robotic arm, an official ROS Kortex driver from Kinova Robotics was
used [39]. The driver provides access to controllers the robot (Cartesian and Joint space
control was used in this work) and to read internal variables of the robot, e.g., Cartesian
position or joint torques. The gripper was controlled with a custom utility using messages
and services definitions from ROS Kortex—the gripper was controlled in velocity mode.

The robot is mounted on a table, together with a second camera Intel RealSense D435.
The second camera is fixed to the table and serves to capture single-view information. The
setup can be seen in Fig. 4.2. Both of the cameras work on active Infrared (IR) stereoscopic
depth principle, allowing to easily capture point cloud of the scene. The stereoscopic
vision is based on the principle of having two sensors capturing the same scene with some
displacement, and estimating the depth from disparities between matching key-points in
both images. The disparities can be found by, for example, Sum of Squared Differences
block-matching algorithm [40]. With estimated disparities, the depth can be computed as

z = f ·B
disparity

, (4.1)

13

4. Materials and Methods
where f is a focal length and B is a baseline (distance between the two cameras). To
properly establish the key-points, the images should come from two exactly parallel views,
i.e., there should be only horizontal displacement between the sensors. If it is not the case,
the images should be rectified, i.e., reprojected to a common plane. Additionally, the active
IR technology adds new details to the scene outside the visible spectrum by projecting an
IR grid—with a secondary benefit of adding extra light when light conditions are poor.

Figure 4.2: Real world setup with the robot, camera and used dataset. The black ellipse
contains objects used for reconstruction accuracy experiments and the blue one includes objects
for grasping. From Rustler et al. [1].

Data from the camera were collected using ROS wrapper for Intel Real Sense Devices [41].
The wrapper provides comfortable access to the point cloud or to both RGB and depth
information individually. To work with the point clouds, the PCL library [42] (in both
Python and C++) and Open3D library [43] (in Python) were used.

14

.. 4.3. Simulation

4.3 Simulation
Even though we had the real hardware available from the start of the project, we decided
to test the principles in simulation before moving to the real world. For this purpose, a
simulation environment was created—with physics simulation using MuJoCo [44]. We based
the environment on Github repository of Jan Behrens [45]. The simulation includes the
same robot and gripper as in the real world. MuJoCo engine simulates all physical aspects
of the movements and collisions, including joint torques. In combination with OpenGL,
the environment also includes a virtual camera rendering an image with depth information
from the simulation. Graphical output is visualized using RVIZ—a screenshot can be seen
in Fig. 4.3.

Figure 4.3: Screenshot of RVIZ with simulation environment. Options of the environment (left,
movable model of the robot with object (middle) and virtual camera (right).

The simulation is implemented as a ROS package. Kortex driver [39] for the real Kinova
arm can be used to send commands to the simulation environment. This allowed us to
implement and test algorithms in the safety of the simulation and then directly transfer it
to the real arm by telling the driver to communicate with the physical hardware.

We also added multiple graphical real-time features selectable in the RVIZ environment,
making the simulation an ideal benchmarking tool. Moreover, the features can be also used
in the real world. Some examples are shown in Fig. 4.4 and all the features are listed below:

.MotionPlanning – basic ROS interface to move the robot by hand;. TF – basic ROS visualization of transformation frames;. Image – image from the virtual camera;

15

4. Materials and Methods
. Camera point cloud – point cloud from the camera;. Segmentation – segmented point cloud of the scene;.Movement – an arrow showing a direction of the linear movement towards the object;. Reconstruction – mesh showing the current reconstruction;. RobotModel – model of the robot;. Point cloud with new information – point cloud including also the haptic data.

(a) : Segmentation of the
point cloud (red).

(b) : Current reconstruc-
tion and direction arrow (both
red).

(c) : Point cloud with haptic
information.

Figure 4.4: Features of the simulation environment.

The most notable difference between the real world and the simulation is in the interpre-
tation of objects. In the simulation, the objects are modeled in MuJoCo as its convex hulls.
That caused a problem for collision detection because the arm was not able to go through
holes or to touch curved objects because the convex hull did not include the holes. The
problem was solved by convex decomposition of the object by V-HACD [46]. The object in
the simulation is then represented as a set of convex models with fixed transformations.
An example of convex decomposition of a triangle mesh can be seen in Fig. 4.5a. The
banana is divided to two convex objects—the connection is highlighted with red line to be
better visible. Convex hull of the same triangle mesh is in Fig. 4.5b. We can see that if
the decomposition was not used, the space under the curvature of the banana would be
inaccessible.

(a) : Convex decomposition of banana mesh.
The connection between two convex parts is high-
lighted with red line.

(b) : Convex hull of banana mesh.

Figure 4.5: Convex decomposition and convex hull of banana mesh.

16

... 4.4. Point Clouds

4.4 Point Clouds
From the real Intel RealSense cameras, the point cloud can be published directly from official
ROS Wrapper. Both intrinsic and extrinsic parameters of the camera were calibrated before
the experiments. Intrinsic parameters were calibrated by the official Intel RealSense D400
Series Dynamic Calibration Tool1. Extrinsic parameters were calibrated using easy_handeye
calibration tool [47] and fine-tuned by hand. In the case of the simulation, the point cloud
is computed directly when the image is rendered. Segmentation of the object from the
scene is done using Point cloud segmentation package [48]. The package is implemented
as a ROS node and includes classical segmentation methods, e.g., region growing or plane
segmentation. The nodes subscribe to a selected point cloud topic and publish segmented
point cloud on a new topic. Segmentation can be computationally demanding, so the node
works on demand, i.e., it works only when the output topic has at least one subscriber.
Output of the segmentation can be changed by user using arguments when launching the
node, or using services. The user can select which segmentation method to use, which part
of the scene to use for segmentation, what is the base frame of the output point cloud and
other parameters of the individual segmentation methods.

We experimented with all segmentation methods and the best results were obtained with
region growing and plane segmentation. The plane segmentation2 is based on the iterative
finding of the biggest plane (using RANSAC) of the current point cloud and removing all
points in the plane from the point cloud until the last plane is found or no more points
remain. The method fails in a situation when the desired object is planar, e.g., box or
block of wood. On the other hand, the region growing algorithm3 is based on “clustering”
of neighboring points based on a criterion (angle between normals in our case). The region
growing algorithm can remove the table and background the same as plane segmentation
but is more successful when the object is planar. Having that in mind, all experiments were
conducted with the region growing algorithm.

The point cloud from the segmentation node can miss some parts, be scattered, and
contain outliers. To overcome these issues, we firstly collect multiple samples (the point
cloud can slightly vary over time) and then apply the following filters:

. VoxelGrid filter – for downsampling of the point cloud; creates 3D voxel grid over the
point cloud and then points of a new point cloud are approximated as a centroid of
individual voxels;. leaf size parameter decides the size of boxes in the voxel grid;.Moving Least Squares (MLS) – used for smoothing of point cloud;. the smoothing is controlled by smoothing factor and polynomial order of the

fitted curve;
1https://www.intel.com/content/www/us/en/download/645988/intel-realsense-d400-series-dynamic-

calibration-tool.html
2https://pcl.readthedocs.io/projects/tutorials/en/latest/planar_segmentation.html
3https://pcl.readthedocs.io/projects/tutorials/en/latest/region_growing_segmentation.html

17

https://www.intel.com/content/www/us/en/download/645988/intel-realsense-d400-series-dynamic-calibration-tool.html
https://www.intel.com/content/www/us/en/download/645988/intel-realsense-d400-series-dynamic-calibration-tool.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/planar_segmentation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/region_growing_segmentation.html

4. Materials and Methods
. Statistical Outlier Removal (SOR) – used for removing outliers; assumes that the

distribution of points in the point cloud is Gaussian and removes all points with a
mean distance (from its neighbors) bigger than a threshold.

All the filters are implemented using PCL library [42]. The postprocessing itself is
implemented as a service and the user can set the leaf size parameter for VoxelGrid filter
and smoothing factor for MLS. Example of different stages of the postprocessing can be
seen in Fig. 4.6. Note that the “wobbly behavior” in Fig. 4.6a is most probably caused by
imperfect calibration of the intrinsic parameters of the camera. However, we were not able
to calibrate the parameters better and we decided to stick to it as the results are still less
noisy than with the default parameters.

(a) : Multiple outputs from
segmentation merged to one
point cloud.

(b) : Point cloud after MLS. (c) : Point cloud after SOR.

Figure 4.6: Point cloud postprocessing shown on output from segmentation.

4.5 Contact Detection
Neither the manipulator nor the gripper has any natural source of tactile sensing. Since the
robot is equipped with joint torque sensors, we decided to use them. There are works using
particle filters [49] or neural networks [50] for contact detection, however, these methods
are more focused on the precise localization of the collision. We were more focused on
a binary classification of the contacts, so the detection using Cumulative sum (CUSUM)
algorithm [51] was selected. This algorithm can detect changes in a signal (joint torque
values in our case) and is originally defined in Algorithm 2. The algorithm also utilizes drift
d to compensate natural changes in the signal, e.g., torque needed to make a movement.

However, the procedure in Algorithm 2 is used in offline detection in single-dimensional
signals. We want to detect changes in real-time and in any joint of the robot. So we
changed the definition to Algorithm 3. The difference is that signal and both changes are
now defined as multi-dimensional vectors. Also, the vectors contain values only from the
last time step, which removes computationally demanding addition of new data to the
vectors. In ROS, the functionality is achieved with Python class acting as a subscriber to a
topic containing external torques of the robot. The class contains the vectors as internal

18

....................................... 4.5. Contact Detection

Algorithm 2 Two-sided CUSUM Algorithm
1: Inputs: threshold t, drift d;
2: s0 ← signal at time zero;
3: g+

0 ← 0; . No positive change at time zero
4: g−0 ← 0; . No negative change at time zero
5: k ← 1; . Start detecting changes from time one
6: while g+

k < t and g−k < t do
7: sk ← signal at time k;
8: g+[k]← max(g+

k−1) + sk − d, 0);
9: g−[k]← max(g−k−1)− sk − d, 0);

10: end while

variables. After the threshold is exceeded, the class sends a stop command to the robot
and unsubscribes from the topic.

Algorithm 3 Online Multi-dimensional Two-sided CUSUM Algorithm
1: Inputs: threshold t, drift d;
2: slast ← signal at time zero;
3: g+

last ← 0; . Vector of zeros with length corresponding to DoFs
4: g−last ← 0;
5: while all(g+

last < t) and all(g−last < t) do . function all returns True if all values of the
vector meet the given condition

6: s← current;
7: g+ ← max(g+

last) + s− d, 0);
8: g− ← max(g−last)− s− d, 0);
9: end while

The problem with the real robot (the simulated robot can return external torques directly)
is that the torque values τ returned by the robot contain both internally generated and
external torques:

τ = τ dyn + τ ext = Hq̈ + h + g + τ ext, (4.2)

where τ is a vector of torques in each joint, H is inertia matrix, h is vector of Coriolis
and centrifugal forces, g is vector of gravity forces, q is vector of joint positions, τ ext is
vector of external torques in each joint and τ dyn is vector of torques resulting from the
robot dynamics. We are only interested in τ ext, which can be easily done as

τ ext = τ − τ dyn. (4.3)

However, there is no way how to obtain τ dyn directly from the robot. Therefore, we
decided to compute the values in real-time with a dynamics simulator implemented in
OpenRAVE [52]. These values are not precise, as torques in real world depends on properties
which are not—and probably can not be—simulated in OpenRAVE , e.g., temperature of
the joints. In some cases, the inaccuracies make the robot stop too early or too late, but
these are rare and it is still the best way to obtain the external torques.

19

4. Materials and Methods
4.6 Custom Finger

Initially, we wanted to exploit a closed gripper as a poking end-effector to keep the setup as
self-contained as possible. However, after some experiments we noticed that the gripper is
too wide and it requires a more complicated control of the movements to make it accurate
enough. As a solution to this problem, we designed a custom finger-like end-effector made
with a 3D printer. Visualization of the finger is shown in Fig. 4.7. Adding the finger helped
to get more accurate, point-like contacts. Yet, it is not an ideal solution as it brings new
sources of uncertainty, e.g., error in placement on the real arm, position errors coming
from insufficient stiffness of the 3D print, or collisions while grasping. However, overall,
introducing the finger was still beneficial as it helped to fine-tune the pipeline.

Figure 4.7: The custom made holder (green) and finger-like end-effector (blue) used for haptic
exploration.

4.7 Evaluation Methods
To evaluate the performance of our approach, evaluation methods need to be selected. How-
ever, we have our ground truth in the form of triangular meshes and it is not straightforward
to compare two meshes. In the literature, several comparison methods are used. Jaccard
similarity (JS) was used by Lundell et al. [13]. The same method together with Hausdorff
distance was used by Watkins-Vals et al. [30]. In Fan et al. [53], Chamfer distance (CD)
was proposed as a robust distance metric. We decided to proceed with JS and CD. Both of
the methods were used in ShapeNet challenge4, and detailed description can be seen below:

. Jaccard similarity (JS) - measure of similarity, in %;. Intersection over Union, defined as

J(S1,S2) = |S1 ∩ S2|
|S1 ∪ S2|

, (4.4)

where S1,S2 are two sets. In our case, S1 and S2 are voxel grids created from a
reconstructed mesh and ground truth mesh;

4https://shapenet.cs.stanford.edu/iccv17/

20

https://shapenet.cs.stanford.edu/iccv17/

... 4.8. Baselines

. Pros:. easy to compute;. level of detail can be tuned by the resolution of voxel grids;
. a resolution of 40× 40× 40 was used;. Cons:. in edge cases can be high even for non-similar objects;. Chamfer distance (CD) - measure of distance, in mm;. for two sets defined as

dCD(S1,S2) = 1
N

∑
x∈S1

min
y∈S2

‖x− y‖+ 1
M

∑
y∈S2

min
x∈S1

‖x− y‖, (4.5)

where N,M are number of elements in S1 and S2, respectively. In this case, S1
and S2 are point clouds created by sampling the reconstructed and ground truth
meshes;. vertices of the meshes can be also used, but the results are more robust when

using point clouds, as the vertices can come from different distributions;. Pros:. can be computed fast even for bigger point clouds
. fast K-nearest neighbor implementation can be used;. robust against a small number of outliers;. Cons:. for a higher number of outliers can be big even for similar objects;. for precise results, the number of sampled points from each mesh has to be

large.

4.8 Baselines
To compare with other works, we prepared baselines of two types: (i) reconstruction
baselines; (ii) haptic exploration policy baselines. The first group is intended for testing
how good our reconstruction is compared to existing methods and to see if the iterative
refining of shapes can also improve the reconstruction using these methods. The second
group should show how efficient is our method in terms of haptic exploration.

The reconstruction baselines can be further divided based on their ability to estimate
shape from incomplete point clouds:

. No estimation:. can only reconstruct parts of the objects with known information;. Poisson reconstruction (Poisson) [54]

21

4. Materials and Methods
. solves a regularized optimization problem to obtain a smooth surface over

given points;. efficient for whole point cloud;. Ball Pivoting Algorithm (BPA) [55]. rolls a “ball” with pre-defined radius over the points and if any 3 points are
inside the ball, it creates a triangle;. Partial estimation:. can partially estimate the whole shape, even though it is still limited by known

points;. Convex Hull (Hull) [56]. simple creation of convex hull over point cloud;. can not predict holes;. Alpha Shapes (Alpha) [55]. generalization of convex hull;. helps to smooth the surface;. Full estimation:. can predict the whole object;.Gaussian Process Implicit Surfaces (GPIS) [57]. uses Gaussian Processes (GP);. the reconstruction itself is created as an isosurface from mean µ and variance
σ2 of the GP;. our implementation is based on [58];. one can imagine it as a sheet of paper which is bent around the known points.

All baselines, except GPIS, were implemented using Open3D library for Python [43].

The second group of baselines geared to compare different haptic exploration policies
consists of:

.GPIS:. even though we also use it as a reconstruction baseline, Yi et al. [25] proposed a
method for tactile exploration using GP as a source of uncertainty;. for each point x, GPIS returns a Gaussian defined by mean µ(x) and variance
σ2(x);. the idea is to explore the location with the highest standard deviation σ(x), as it
can be seen as a measure of uncertainty;. Random touching:. the algorithm takes the first feasible random position;

22

... 4.9. Grasping

. the mesh is transformed to a voxel grid and all occupied voxels are taken as
possible locations for exploration;. note that the meshes were created using IGR;. the set of possible locations is shuffled and the locations are one by one tested for
feasibility;. shuffled with Numpy5 function based on pseudo-random number generator;

4.9 Grasping
To further evaluate the performance of our approach, we also tested the resulting recon-
structions in grasping experiments. GraspIt! [59] was used to sample the grasp proposals.
The Robotiq gripper was not available in the GraspIt! database, so we had to create a
model for it. We used its ROS model and set its joints in GraspIt! to act like in the real
world. An example of grasp proposal for a rectangular object from GraspIt! interface with
the gripper can be seen in Fig. 4.8.

Figure 4.8: An example from GraspIt! interface with the gripper holding a rectangular object.

The grasping procedure is written in Algorithm 4. We prepared GraspIt! world with the
gripper and a table with the same position as in the real world. The model of a table is
used for disallowing the planner to plan grasps at which the gripper would collide with the
table. The reconstructed mesh is then imported to this world (lines 2-4). To sample the
grasps, the Simulated Annealing planner is used and the grasps are then sorted by their
ε-quality [60] (line 5-6). The ε-quality is computed from Convex Hull of contact wrenches
and the closer the ε is to one, the more efficient the grasp should be. The Simulated
Annealing planner is from the family of Eigengrasp planners. The idea of these planners is
to reduce the dimensionality of search space by reducing the number of DoFs by using only
the “effective” ones [61]. For example, the human hand can be reduced to two Eigengrasps
and our gripper can be controlled by only one. The planner searches for the Eigengrasps
and a 6D pose of the gripper (position and orientation). We run the planner for 70000

5https://numpy.org/doc/stable/reference/random/generated/numpy.random.shuffle.html

23

https://numpy.org/doc/stable/reference/random/generated/numpy.random.shuffle.html

4. Materials and Methods
iterations using “Hand Contacts” search energy. The energy serves for guiding the gripper
towards the selected object through a given objective—the selected formulation tries to get
the gripper as close to the object as possible.

The sorted proposals are then one by one tested for feasibility. If a feasible grasp is found,
the robot is moved 10cm from the grasp position along a direction vector—z-axis of the
gripper. Then it is moved linearly to grasp position (lines 9-10). Closing of the gripper is
initialized until a predefined threshold of the current in its joints is exceeded (lines 11-13).
To evaluate quality of the grasp, the robot is moved 10 cm upwards and backwards. Finally,
the last joint of the arm is rotated by 90◦ in both directions (lines 14-15).

Algorithm 4 Grasping
1: Inputs: mesh m, current threshold t;
2: load GraspIt! interface;
3: load world with the gripper;
4: import m to the world;
5: G← results from Simulated Annealing;
6: G← sort G by ε-quality;
7: for each g in G do
8: if g is feasible then
9: go 10 cm from the grasp;

10: go to grasp;
11: while gripper current < t do
12: close the gripper;
13: end while
14: move 10 cm upwards and backwards;
15: rotate the last joint by ±90◦;
16: break
17: end if
18: end for

24

Chapter 5

Visuo-Haptic Uncertainty-Driven Object Shape
Completion

Using real world measurements S always comes with noise and uncertainty, even more when
our work combines visual and haptic data. The visual and haptic data are represented as v
and h, respectively. Visual data suffer from light conditions or error in calibration. Haptic
data can be influenced by inaccuracies in contact detection and joint position readings.
The goal is to complete a shape of an object O. The object can be modeled in several ways.
Throughout this work (as can be seen in Fig. 1.1), it can have a form of point cloud (input),
SDF (output from the neural network), mesh (grasping and comparison with ground truth)
and voxel grid (uncertainty computation). The object O can be probabilistically modeled
as

P(O|S), (5.1)

where O represents the occupancy of the object, which is modeled as a voxel grid O = {Ok}
where k is the index of a voxel such that P{Ok} is the probability that voxel k is part of
the object.

Our goal is to use haptic exploration in such a way that, at each time t, the new touch
improves the reconstruction as much as possible. Mathematically expressed as

argmin
ht∈H

Var(Ot|v, h1:t−1, ht), (5.2)

where Var is a variance defined in Eq. (5.3), h1:t−1 are the data from previously executed
haptic explorations and H is the set of all possible haptic explorations. Visual data v are
the same through all haptic explorations and are captured in time t = 0, when the Eq. (5.2)
does not include any haptic information.

Probabilistic model of the shape of a 3D object is difficult to express, mainly due to
the high dimensionality. Therefore, we rather decided to approximate the model with a
set of samples o1:S from an underlying generative shape distribution P(Ot|v, h1:t−1). The
sampling itself is described in more detail in Section 5.1.

Having the approximate model, one still needs to define the haptic exploration ht that is
solution of Eq. (5.2). The ht is, in fact, a position in the space where we want to explore
the object. To select ht, we chose to compute the variance of the shapes

Var(o1:S) =
∑S

i=1(xi − x)2

S − 1 . (5.3)

25

5. Visuo-Haptic Uncertainty-Driven Object Shape Completion......................
Assuming a set of samples are given in the form of voxel grids, we are looking for the

voxel k with the highest variance, formally expressed as

argmax
k∈K

Var(Ok), (5.4)
where K is number of voxels, k is a voxel that minimizes the Eq. (5.4) and Var(Ok) is

the variance of the shape samples os for that voxel. The voxel k is the desired position of
touch, i.e., the haptic exploration ht to maximize Eq. (5.2). However, generally there can
be more than one voxel k with the highest variance. The exact procedure of selecting the
final voxel can be found in Section 5.2.

In conclusion, we propose Algorithm 5 that combines the principles mentioned above.
Some steps are illustrated in the accompanying video at https://youtu.be/Ft1PUYRNFHw. The
algorithm mimics Fig. 1.1 and for a given number of haptic explorations, it firstly recon-
structs the object with current information (lines 8-14) and then finds the best position
for haptic exploration (lines 15-18)—collision box estimated from current shape is inserted
into the planner so that the robot can avoid the object. The latent code ẑ0 for the first
iteration is initialized randomly. In other cases, the optimization is started with ẑg from the
previous iteration. With the information after all touches, the final shape is reconstructed
(lines 19-23).
Algorithm 5 Visuo-Haptic Uncertainty-Driven Object Shape Completion
1: Inputs: point cloud P, number of haptic explorations M, number of gradient-descent

steps G, steps before storing latent shape L;
2: Output: Final shape completion O ;
3: H← empty set of haptic data;
4: P0 ← P;
5: ẑ0 ← Sample initial latent code;
6: for m← 1, . . . , M do
7: Z← empty set of latent codes;
8: for g ← 1, . . . , G do
9: ẑg ← Optimize ẑg−1 over Pm−1 using Eq. (3.5);

10: if g mod L == 0 then
11: Z← Z + ẑg;
12: end if
13: V← Reconstruct shapes from Z and calculate

their variance;
14: end for
15: hm ← Calculate next touch using Eq. (5.4) and V;
16: H← Execute hm and record the touch point;
17: Pm ← P + H;
18: ẑ0 ← ẑg;
19: end for
20: for g ← 1, . . . , G do
21: ẑg ← Optimize ẑg−1 over PI using Eq. (3.5);
22: end for
23: O ← Reconstruct shape using ẑg;
24: return O;

26

https://youtu.be/Ft1PUYRNFHw

...................................... 5.1. Sampling of Shapes

5.1 Sampling of Shapes
The sampling process os ∼ P(Ot|v, h1:t−1) to obtain samples o1:S using CIGR can be done
with two alternatives. The more obvious, having in mind that the output from CIGR is
stochastic, is to sample multiple latent codes ẑi,t (as described in Eq. (3.5)) and use them
to reconstruct the meshes, i.e., to run the network S times. The mean x in Eq. (5.3) is then
computed as an average shape from all samples. However, this approach is time consuming
as it requires multiple runs of CIGR and cannot be easily parallelized due to a high demand
on computational resources. Also, as shown in Fig. 5.1, when searching for the voxel with
the highest variance, there are fewer selected voxels than with the second method. At first
sight, that may not seem as a problem, but not all voxels are reachable by the robot and it
is more robust to have more options. The second issue is that the most uncertain voxels
tend to be on the front side of the object, where we already have information from vision.
The first issue could be fixed by not taking only the voxels with the highest variance, but
using an interval. However, that would conflict with the idea of employing only the most
beneficial haptic exploration.

Figure 5.1: Different uncertainty methods. First voxel grid in each pair corresponds to the
sampling from multiple latent codes and the second one is created by sampling single latent
code at different time steps. From Rustler et al. [1].

The second alternative is to compute just one latent code ẑi,t and take intermediate
samples at different time steps t of the later part of gradient optimization, i.e., run the
network only once, and save samples during the optimization. We took samples near the
end of the optimization, e.g., if we optimize for 800 iterations, we would take samples at
iterations 650, 700, 750 and 800 (iteration 800 is used as mean x in variance defined in
Eq. (5.3)). Although the first alternative has a stronger mathematical background, this one
performed better in empirical comparison. Looking at Fig. 5.1, one can see that this method
produces more uncertain voxels, and the voxels are also more concentrated on unseen parts
of the objects. The reason behind this behavior probably comes from the nature of gradient
descent. The optimizer will always go in the direction of the steepest descent, with bigger
steps in the beginning and smaller steps around the minimum. When optimizing the latent
code from an incomplete point cloud, we observed that there is not enough information for
the optimizer to find the exact solution, and it often oscillates around the minimum. We
assume that during the oscillation, the known parts are still slightly changing depending

27

5. Visuo-Haptic Uncertainty-Driven Object Shape Completion......................
on the current batch, but more changes should occur for unexplored areas, as they will
probably change almost randomly because the current latent code is not dependent on
them. The parts which change the most have the biggest variance and are recognized
as the most uncertain by the pipeline. This resembles Metropolis sampling [62] in that
samples are generated from a supposedly converged Markov chain, however, in our case we
do not use the Metropolis rejection rule in the optimization process. Yet, the stochasticity
is introduced through sampling mini-batches in the optimization.

For both methods, the final shape depends on the latent code at step zero (randomly
initialized or carried over from the previous iteration of shape refining) and the outputs may
slightly vary—both shape and uncertain voxels—every time the same input is reconstructed
and evaluated. However, for the second alternative, the uncertain areas are created more
consistently in the unexplored parts. An experiment comparing these two methods is
described later in Section 6.1.1, specifically in Fig. 6.6. Considering also the fact that the
second method is significantly faster (the difference is in tens of seconds), we ended up
using that alternative.

5.2 Impact Point Computation
The whole process of impact point selection is described in Algorithm 6. The first step
for uncertainty computation is the transfer from the triangle mesh space to the voxel grid
space and vice versa. In our implementation, transfer to voxel grids is achieved with Binvox
utility [63]—to read the voxel grids from file a Python library binvoxrw [64] was used. We
experimented with different resolutions of the grids and a resolution of 403 was selected,
as it has the best quality-speed ratio. With the mesh transformed to a voxel grid, we can
easily compute the variance from Eq. (5.4) over each voxel (lines 3-4)—only voxels that
are occupied in the voxel grid of the mean mesh are taken into account. The transfer back
to the triangle mesh space can be done easily, because we know the position of the mesh
in the world coordinates and we can compute the voxel to meter ratio from the bounding
boxes of the meshes and voxel grids.

In the general case, there are multiple voxels with maximal variance. To select only
one, the voxels are divided into clusters with MeanShift clustering [65]—implemented in
scikit-learn1 library for Python. For each cluster, a centroid is computed as the mean of all
voxels in the cluster and converted back to the world coordinates. We required the touches
to be as robust as possible. To accomplish that, the clusters are sorted by their “flatness”
(lines 5-6) to avoid, for example, sliding of the end-effector over the edge. We define flatness
as the sum of angles between the normals of the 10 nearest triangles on the mesh to the
computed impact position—if all normals have the same direction, the surface is flat. The
angle Φ between two vectors a and b is defined as

Φ(a, b) = atan2(|a× b|, a · b), (5.5)

where atan2 is the arctangent function that returns the correct sign by choosing the quadrant
correctly; × stands for cross product and · stands for the dot product of two vectors.

1https://scikit-learn.org

28

 https://scikit-learn.org

..................................... 5.3. Visual-only Approaches

We do not want the robot to plan a trajectory directly to the impact position. Instead, a
start position 10 cm away along a normal from the closest triangle is prepared. Robot is
moved to this position and then it starts a linear movement to the original impact point.
However, not all positions are feasible for the robot. Therefore, the start positions are one
by one (in order sorted by flatness) tested for feasibility until a feasible position is found or
no position is available (lines 7-13).

Algorithm 6 Impact Point Computation
1: Inputs: mesh m;
2: Outputs: impact position p, start position s;
3: V ← voxelization of m;
4: K← voxels with maximal variance using Eq. (5.4);
5: C← clusters from K using MeanShift clustering;
6: P← sorted impact points computed as centroids from C;
7: for each p ∈ P do
8: s← position 10 cm from p;
9: if s is feasible for the robot then

10: return p, s; . Return and end the function
11: end if
12: end for
13: return ∅,∅; . If no feasible position found, return empty sets

5.3 Visual-only Approaches

We decided to also develop a method for visual-only shape completion. It is not a novel
problem and it has been already studied. Our goal was not to develop something new, but
to have a comparison with our visuo-haptic approach, both in performance and complexity.
Our robotic manipulator is equipped with a built-in camera on its wrist, which is great
to be used to scan objects. The idea is to collect samples all around a object to get a
full point cloud. However, most of the depth sensors require a minimal distance from the
scanned objects (in tens of cm; 18 cm for our sensor). For that reason, it is difficult or even
unfeasible for small and middle-range robots to scan the whole object. For example, in [17],
KUKA KR16 with reach of 1612 mm was used—almost double the reach our manipulator
has (902 mm). Other authors [19,20] resolved this issue by adding a programmable rotor
which can turn the object. We did not want to include another mechanical part to our
setup, so we decided to combine the cameras on the table and on the robot instead, which
allowed us to scan the “front” side of the object even though the manipulator could not see
it.

We present two different approaches. One with fixed positions around the object (Passive
visual-only shape completion (Pas-VO)) and one which uses the uncertainty computed in
Algorithm 5 (Active visual-only shape completion (Act-VO)).

29

5. Visuo-Haptic Uncertainty-Driven Object Shape Completion......................
5.3.1 Passive Visual-only Shape Completion

The procedure is described in Algorithm 7. Firstly, a point cloud from the fixed camera on
the table is taken and the object is segmented from the scene (lines 3-5). The bounding
box of the object is computed and the center of the object is estimated by deducing 5 cm
in the x-axis (lines 6-7)—collision box around the estimated center is added to the planner
so that the robot can avoid the object. In [20], the object was scanned from four views on
a circle. We scan the object from a smaller distance, so we decided to use the view from
the table camera and five more views on a circle around the computed center. The views
are taken each 45◦ in the range from 90◦ to 270◦—angle 0◦ approximately corresponds to
the view from the camera on the table (line 8). The positions of the arm during scanning
can be seen in Fig. 5.2. At each position, the sample is taken, the object is segmented from
the scene and the resulting point cloud is saved to a file (lines 9-14).

Algorithm 7 Passive Visual-only Shape Completion
1: Inputs: radius r;
2: Outputs: final point cloud f ;
3: p← point cloud captured by the table camera;
4: o← segment the object from p;
5: save o to file;
6: b← bounding box of the captured point cloud;
7: c = b− [5 cm, 0 cm, 0 cm]; . Deduct 5 cm in the x-axis
8: A← set of positions on a circle with center in c and radius r;
9: for each a ∈ A do

10: move to a;
11: s← take a sample from the camera on the wrist;
12: o← segment the object from s;
13: save o to file;
14: end for
15: f ← combine the individual samples to one point cloud with ICP;
16: f ← apply postprocessing on f ;
17: return f ;

All individual samples are combined. In theory, one could transform the point clouds to
the world frame (using positions of the arm camera computed from forward kinematics)
and create a full point cloud. However, our robot is not meant for industrial usage and
thus its encoders are not perfectly precise. In addition, the two cameras are not calibrated
together perfectly. The errors are relatively small (in the range of millimeters), but it
is still too much for precise reconstruction. Thus, the samples need to be fitted. We
experimented with the basic Iterative Closest Point (ICP) algorithm [66], generalized and
plane ICP [67], colored ICP [68] or multiway reconstruction of indoor scenes [69]. However,
the experimental results showed that the samples are fitted the best when classic ICP with
a small number of iterations (1-5) is used—the same approach was used in [17]. And finally,
the same postprocessing as in Section 4.4 is applied on the output point cloud.

Note that the object is not lifted during scanning and thus the bottom part of the object
is not included in the final point cloud.

30

..................................... 5.3. Visual-only Approaches

Figure 5.2: Position of the static camera on the table and approximate positions of the robotic
arm during scanning (90◦ to 270◦ on a circle around the object).

5.3.2 Active Visual-only Shape Completion
The procedure is almost the same as in Algorithm 5 for visuo-haptic shape completion—
meshes and voxel grids are used to compute the uncertainty. The main difference is that
instead of haptically exploring the object (line 16), a point cloud from the camera on the
wrist of the robot is saved and added to the main point cloud. Unlike the approach with
fixed position described in Section 5.3.1, guiding the arm with uncertainty does not ensure
that there will be overlaps between individual samples. Because of that, the ICP (or other
fitting algorithms) cannot be used. That results in possible noise and errors. However, as
this method is used only for comparison and is not the main contribution of this work,
further improvements are left for future work.

We wanted to capture as big a part of the object as possible, but sometimes only views
from a lower distance to the object are feasible. The position of the end-effector is computed
the same as in Algorithm 6, only instead of testing a position 10 cm from the impact point
for feasibility, positions 20, 15 and 10 cm are tested. Note that in this case, the robot takes
the samples at those positions and does not continue to the impact point calculated in the
same way as during haptic exploration. The distances are expressed for the end-effector,
but the camera is another 15 cm further along the z-axis of the end-effector, so the possible
views are from 35, 30 or 25 cm. View from 35 cm usually cover bigger part of the object,
but view from 25 cm is still beneficial.

31

32

Chapter 6

Experiments and Results

This section describes the experiments and contains an analytical evaluation of the results.
Experiments in both real and simulated world will be presented, evaluating the reconstruc-
tion efficiency with various methods. The performance is also tested with grasping. In
Fig. 6.1 we provide examples of reconstructed objects from all baselines. Active visuo-haptic
shape completion (Act-VH), described in Fig. 1.1, includes our implementation of IGR
named Shape Completing IGR (CIGR). However, to avoid misunderstandings, we decided
to use the term Act-VH when talking about the whole pipeline. And CIGR is used when
referring only to the reconstruction method.

Figure 6.1: Reconstruction examples in simulation (Sim) and real world (Real) with all methods
on three objects: a basic rectangular object (upper row), the object for which Act-VH achieved
the worst grasp success rate (middle row), and an adversarial object (bottom row). There is no
reconstruction in simulation for the adversarial object as no correct ground truth importable to
the simulator is available. Touches are highlighted in the point clouds with green color. Act-VH
with 3D printed finger was used to collect the point clouds. From Rustler et al. [1].

The shape completion neural network was trained on a dataset created by the procedure
described in Section 3.4. In total, 87 unique objects were used for the training. Each object
was rotated into 16 different views, resulting in 1392 training samples. A set of objects
not used to create the training dataset were used to test the performance—the holdout
set. Throughout the Chapter, three datasets created from the holdout set are used for the
experiments:. simulation dataset:. created using the procedure from Section 3.4;

33

6. Experiments and Results.....................................
. 35 objects in total;. some nonsymmetric objects are included in the dataset twice, but with

different rotations;. real dataset - reconstruction:. 10 objects from YCB dataset with different properties;. selected to contain objects in the range from symmetric and flat (boxes) to
more complex (power drill);. can be seen in Fig. 4.2;. real dataset - grasping:. two of the objects from the reconstruction dataset had to be changed, because all

of their dimensions were bigger than the gripper;. we decided to do grasping after the reconstruction experiments were done, so
the two objects were changed instead of doing everything again.

Note that the objects were firmly attached to the table with double-sided tape during all
touch experiments. Allowing the objects to move would increase the complexity of the task.
The pose of the object is found from the visual input from the camera on the table and we
assume that it is not changing during the run of the pipeline.

6.1 Haptic Exploration with the 3D Printed Finger
This experiment should show how our method Act-VH performs in terms of reconstruction
accuracy, i.e., how good is the reconstruction from CIGR. We started with simulated
experiments. Each of the 35 holdout objects were inserted into the simulation and the
iterative shape completion with Act-VH was performed. Shape completion of each object
was performed three times, i.e., 105 runs of the pipeline were performed. Mean is computed
over the samples, as using, for example, median is not statistically stable when only three
samples are available. In addition, the same was performed with random and GPIS policy.
In total, 315 iterative shape completions were performed. All point clouds were also
reconstructed with the remaining reconstruction baselines (listed in Section 4.8). The
experiments were also conducted in the real world, now with 10 objects from YCB dataset—
30 runs of the pipeline were made. The real world experiments were performed only with
the best policy from the simulation experiments, i.e., our proposed method Act-VH. Five
touches were performed during each run of the pipeline. This number was selected because
it is high enough to see the trends, but it still takes a reasonable time—about five minutes
for one object. For selected objects, experiments with 50 touches were performed and the
results are described later. However, before showing the results in detail, the reasons behind
some choices in the pipeline will be explained.

An example of how the reconstructions are changing during the iterative refining for
an object with poor visual-only reconstruction can be seen in Fig. 6.2. Our method uses
random sampling of points for mini-batches (upper and middle rows). However, one can see
that the method struggles with fitting the input point cloud to meshes and often extends
the input. We think that the problem is in using random mini-batches for the gradient

34

...........................6.1. Haptic Exploration with the 3D Printed Finger

descent optimization, as the network does not have the complete information about the
object at any given time. Yet, the mini-batches are needed because using all points at once
is demanding for memory and computational resources. In addition, the mini-batches help
to introduce the stochasticity used for uncertainty computation. The answer for this may
be using Farthest Point Sampling (FPS) as, for example, in [70].

Figure 6.2: An example reconstruction of an object after each touch with Act-VH in the
simulation (upper row), in the real world with random sampling of mini-batches (middle row)
and in the real world with FPS of mini-batches (bottom-row). From Rustler et al. [1].

The mini-batches created with FPS give the network more comprehensive information.
Reconstructions in the bottom row of Fig. 6.2 show that using this sampling, the meshes
are more tightly fitted to the input point cloud. However, as can be seen in Fig. 6.3 where
reconstructions on the real world dataset are evaluated, the overall performance is worse
with FPS. We think, that the reason is that FPS is not leveraging the new information
added by haptic exploration well enough. The optimal approach is probably to combine
random sampling and FPS. However, we plan to explore that possibility in the future and
we used only the random one in this work.

0
1Random sampling Farthest point sampling

0 1 2 3 4 5

Touches [-]

40

45

50

55

60

J
a

c
c

a
rd

 s
im

il
a

ri
ty

 [
%

]

(a) : Jaccard similarity (JS). The higher, the
better.

0 1 2 3 4 5

Touches [-]

12

13

14

15

16

17

18

C
h

a
m

fe
r

d
is

ta
n

c
e
 [

m
m

]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.3: Reconstructions evaluation for experiments with the 3D printed finger in the real
world. Black lines correspond to random sampling of mini-batches and red lines correspond
to FPS. Each value is mean over 30 reconstructions (10 objects with three repetitions). From
Rustler et al. [1].

35

6. Experiments and Results.....................................
Even though this work is focused on the shape completion of incomplete point clouds,

it is beneficial to know how the particular methods for reconstruction perform on whole
ground truth meshes—one can see if the implementation of the method is correct and also
it gives a starting point for what values to expect. We evaluated the methods on objects
from both real and simulated datasets, and the results can be seen in Fig. 6.4. We can see
that the methods from no estimation group (BPA, Poisson) score almost 100% Jaccard
similarity (JS) and Chamfer distance (CD) in under 1 mm. It is not surprising because both
are state-of-the-art methods for reconstruction on complete point clouds. The methods
from the partial estimation group (Alpha, Hull) obtain about 90% of JS and circa 4 mm
CD. The drop in performance is caused by the objects with a lot of details (for example
power drill) for which the reconstruction is not precise. GPIS and CIGR score almost
the same in JS (about 85%), but GPIS is better in terms of CD (circa 1.5 mm difference).
However, both have smaller CD than Hull and Alpha methods. It is because the partial
estimation methods can not preserve details. The reason why CIGR performs worse than
other methods on complete point clouds is that all the objects are from the holdout set. In
the case of GPIS, the performance is highly affected by its parameters. We started with
values from [30] and ended up with: distance offset d = 0.01, noise parameter s = 0.001,
voxel grid resolution n = 40 and the point clouds are down sampled to size M = 300. The
performance can be boosted by down sampling to a higher number of points, but M = 300
was selected for its speed/quality ratio. For example, increasing M from 300 to 500 would
increase JS from 87% to 92% (for the simulation dataset), but the time for each object
would increase from 30-60 s (depending on object) to 300-600 s.

0Real dataset Simulation dataset

BPA

Poi
ss

on

Alp
ha H

ul
l

G
PIS

C
IG

R

Method [-]

0
10
20
30
40
50
60
70
80
90

100

J
a
c
c
a
rd

 S
im

il
a
ri

ty
 [

%
]

(a) : Jaccard similarity (JS). The higher, the
better.

BPA

Poi
ss

on

Alp
ha H

ul
l

G
PIS

C
IG

R

Method [-]

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

C
h

a
m

fe
r

D
is

ta
n

c
e

 [
m

m
]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.4: The performance of the methods for reconstruction evaluated on ground truth point
clouds. Values are mean over all 35 objects for the simulation dataset and 10 objects for the
real world dataset.

Two visual-only reconstructions with GPIS can be seen in Fig. 6.5, where you can see the
difference when only a front side is visible (Fig. 6.5a) and when the object is small and the
camera can see its top (Fig. 6.5b). We can see that GPIS is unable to reconstruct objects
with only the front view. The reconstruction is almost flat, just slightly bent around the
object. That leads to a situation when the uncertainty would propose to explore the object
from the already seen front side. In our case, it was solved by performing the first touch

36

...........................6.1. Haptic Exploration with the 3D Printed Finger

with a strict heuristic of touching the back of the object. That allowed the reconstruction
to wrap around the object and propose touches from different sides. For that reason, values
for experiments with policy from GPIS start at touch one in the upcoming graphs.

(a) : Front and side view of the captured point
cloud and GPIS reconstruction for a flat point
cloud.

(b) : Front and side view of the captured point
cloud and GPIS reconstruction for smaller object
with more information from visual input.

Figure 6.5: Example of reconstruction with GPIS from visual only input. Difference between
an object which has only a flat point cloud captured from the camera (a) and a smaller object
for which the top and side information can be obtained (b).

6.1.1 Simulation Experiments
The initial experiment shows the difference between the sampling methods described in
Section 5.1. As can be seen in Fig. 6.6 and have been already said, using only one latent
code and sampling intermediate samples from it performs better than sampling multiple
latent codes. The difference is visible mainly with increasing number of touches, as the
multiple-codes method becomes almost static, without a notable increase in performance.
This is mainly the result of the small number of uncertain voxels found. From 105 runs of
the pipeline (35 objects with three repetitions each), the method was unable to perform all
five touches in 29 cases, as there were no reachable uncertain voxels found. Note that in
cases of less than five touches, the last value was propagated, so a consistent mean of the
values can be computed. For example, Jaccard similarity for five touches (plus visual-only
evaluation) of [36.43, 50.50, 55.90, nan, nan, nan] is considered to be [36.43, 50.50, 55.90,
55.90, 55.90, 55.90].

01One latent code Multiple latent codes

0 1 2 3 4 5

Touches [-]

40

45

50

55

60

65

70

J
a
c
c
a
rd

 s
im

il
a
ri

ty
 [

%
]

(a) : Jaccard similarity (JS). The higher, the
better.

0 1 2 3 4 5

Touches [-]

13

14

15

16

17

18

19

20

21

22

23

24

C
h

a
m

fe
r

d
is

ta
n

c
e
 [

m
m

]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.6: Reconstructions evaluation for experiments with the 3D printed finger in the
simulation. Black lines correspond to uncertainty computation with samples from one latent
code (our selected method) and red lines are sampling of multiple latent codes. Each value is
mean over 105 reconstructions (35 objects with three repetitions). From Rustler et al. [1].

37

6. Experiments and Results.....................................
Results of runs with five touches can be seen in Fig. 6.7. The graphs include values for

all policies distinguished by the line type—solid line represents Act-VH policy, dotted line
is for random touches and dashed line shows GPIS policy results. The colors of the lines
mark which method was used to reconstruct the mesh. The Figures provide a lot of insight.
However, firstly, one needs to observe both JS (the higher, the better) and CD (the lower,
the better) as a whole. Because the methods have their pros and cons and can vary for
some approaches, e.g., point clouds from Act-VH reconstructed by Hull (solid green) score
almost similar CD as reconstruction from CIGR (solid black), but the difference in JS is
huge (about 15%).

01BPA Poisson Alpha Hull GPIS CIGR

0 1 2 3 4 5

Touches [-]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

J
a

c
c

a
rd

 s
im

il
a

ri
ty

 [
%

]

(a) : Jaccard similarity (JS). The higher, the
better.

0 1 2 3 4 5

Touches [-]

10

15

20

25

30

35

40

45

50

C
h

a
m

fe
r

d
is

ta
n

c
e

 [
m

m
]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.7: Reconstructions evaluation for experiments with the 3D printed finger in the
simulation. The legend says by which method the meshes were reconstructed and the type of
line marks which policy was used to guide the haptic exploration: solid is Act-VH, dotted is
random and dashed is GPIS. Each value is mean over 105 reconstructions (35 objects with
three repetitions). From Rustler et al. [1].

Nevertheless, Act-VH with CIGR (black) outperforms the other approaches in both
reconstruction accuracy and haptic exploration effectiveness. In terms of reconstruction
when Act-VH uncertainty policy is used, the Hull method (green) is the second best. The
difference in JS is big (65% for CIGR and 50% for Hull), but in terms of CD the results
are similar (13.2 mm for CIGR and 14.3 mm for Hull). The reason may be that Hull
creates more sharp objects, which influences the Chamfer distance. However, in the case
of using random policy (dotted) or GPIS policy (dashed), CIGR outperforms the other
reconstruction baselines by a larger margin. For the random policy, Hull is again the
second best. The difference in JS is now 12% (53% versus 41%) and difference in CD is
5 mm (18.7 mm versus 23.6 mm). The difference in CD shows that Hull is not efficient in
estimating the shape when the touches are poorly distributed over the surface. The method
creates “slopes” from one touch to another and when the touches are not distributed over
the whole surface, there may be a large part of the objects missing. Examples of the

38

...........................6.1. Haptic Exploration with the 3D Printed Finger

“slopes” can be found in Fig. 6.1. When using GPIS policy, the results are not that clear.
For JS, reconstruction from CIGR and GPIS (red) score almost the same—approximately
54% both. It shows that GPIS performs better when the touches are made based on its
policy. On the other hand, it also shows that CIGR can adjust well even to the situation
when haptic exploration is not done based on its uncertainty. In the case of CD, CIGR
performs the best with 20.8 mm followed by Hull with 25.7 mm. GPIS is the worst here
with 32.3 mm, even when using its own exploration policy. The reason behind that is the
behavior of creating unbound meshes—the same reason why we had to add the first touch
with a heuristic, as described earlier. The method can fit to the points well when they are
distributed evenly over the whole surface (as results on ground truth point clouds show in
Fig. 6.4), but when some area of the object is unexplored, it fails. As can be seen in Fig. 6.1
or Fig. 6.5b, the mesh is “opened” to a space. It has again almost negligible influence on JS,
but huge impact on CD. The same results can be seen in [30], even though the authors used
more than 20 touches. Overall, we can acknowledge that CIGR reconstructs the meshes
the best no matter what is the policy used to compute haptic exploration positions.

Comparing the exploration policies, the results are clearly in favor of Act-VH. This
policy scored—with the best reconstruction method—65% JS and 13.2 mm with CD. It
is a major difference for both random (53%, 18.7 mm) and GPIS (54%, 20.8 mm) policy.
A thing to notice is that for random and GPIS policy, the evaluation metrics with all
reconstruction methods are getting just slightly better with increasing number of touches,
or even getting worse. The reason is that the suggested positions to be explored are not
providing enough new information and are not robust enough to prevent errors coming
from robotic movement and collision detection, which cause the performance to decrease.
On the other hand, with Act-VH policy, the reconstructions are getting better with all
reconstruction methods with a visible margin. The only exception is JS for BPA and Hull,
when the probable reason is that the methods add surface of the mesh only on places with
any points (see Fig. 6.1 for examples). And if the touches are far from the captured point
cloud from the camera (which is usually the case for Act-VH, but not for the other policies),
the creation of voxel grids is error prone. Eventually, we can say that Act-VH uncertainty
policy provides positions for haptic exploration which can add useful information. The
positions are also more robust than for the other policies.

Even though we decided to perform only five touches, we also evaluated an experiment
with 50 touches. Three objects were randomly selected and evaluated—again with three
repetitions for each. The averaged values can be seen in Fig. 6.8. We can see that the
performance is getting better for about 15 touches. After that, new touches are not
providing enough information to improve the reconstruction. Eventually, both JS and CD
start to get worse. We assume that noise and errors—mainly in collision detection—are the
main causes here. Even in the simulation, the detection of contact using joint torques is
error prone. It sometimes stops too late, e.g., when the impact is not direct and the force
is distributed in multiple axes and joints. Or, on the contrary, the movement of the robot
may be jerky in some poses and cause false positive detection. With increasing number of
touches, these errors have a higher probability to happen and small errors get summed up.

39

6. Experiments and Results.....................................

0 10 20 30 40 50

Touches [-]

50

52

54

56

58

60

62

64

66

68

J
a
c
c
a
rd

 s
im

il
a
ri

ty
 [

%
]

10

12

14

16

18

20

22

C
h

a
m

fe
r

d
is

ta
n

c
e
 [

m
m

]

Figure 6.8: Average Jaccard similarity (JS) (blue) and Chamfer distance (CD) (red) for three
objects over three repetitions from Act-VH in the simulation. From Rustler et al. [1].

6.1.2 Real World Experiments
After the simulation experiments, we switched to the real world setup. The code is the same
as for the simulation. Only the collision detection threshold had to be changed. Before the
experiments, both intrinsic and extrinsic parameters of the camera were calibrated. The
number of touches (five) and the number of repetitions (three) were kept the same. As the
previous section showed, Act-VH is the best policy for haptic exploration. Therefore, the
other policies were not tested in the real world setup.

01BPA Poisson Alpha Hull GPIS CIGR

0 1 2 3 4 5

Touches [-]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

J
a
c
c
a
rd

 s
im

il
a
ri

ty
 [

%
]

(a) : Jaccard similarity (JS). The higher, the
better.

0 1 2 3 4 5

Touches [-]

10

15

20

25

30

35

40

45

50

C
h

a
m

fe
r

d
is

ta
n

c
e

 [
m

m
]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.9: Reconstructions evaluation for experiments with the 3D printed finger in the real
world. The legend says by which method the meshes were reconstructed. Each value is mean
over 30 reconstructions (10 objects with three repetitions). From Rustler et al. [1].

The results are in Fig. 6.9. The relative performances of each reconstruction method are
the same as for the simulation. The best is CIGR followed by Hull. The difference is in

40

............................... 6.2. Haptic Exploration with the Gripper

the achieved values for the evaluation metric. Our method scored 7% less JS compared
with the simulation (58% versus 65%) and 0.4 mm higher CD (13.6 mm versus 13.2 mm).
Furthermore, the increase in performance between touches is getting smaller with each
new touch and for CD the performance even decreases after the fifth touch. It is probably
caused by bigger noise in the real world. The point cloud from the camera is much more
noisy, e.g., it can contain holes or points reflected from a shiny surface. Other source
of noise is coming from collision detection, even more than in the simulation. There are
multiple reasons: the computation of dynamic torques is less precise because a dynamics
simulator is used for that; the objects are not as stiff as in the simulation; and the finger is
not as stiff as in the simulation, so it can bend a little and absorb some force. Last but
not least, the encoders of the real robot are not perfectly precise, so the impact position
computed from kinematics is noisy. Overall, the Act-VH works even in the real world, yet
it would need more measures to mitigate the effects of noise.

6.2 Haptic Exploration with the Gripper
We decided to test the pipeline also without the 3D printed finger. The upcoming experi-
ments have the same settings as in previous Section 6.1.2. The end-effector is now set to
the middle of the closed gripper. The closed gripper is much wider than the printed finger,
so there is a bigger probability to hit the object with other parts than the center, or to slide
over the edges without detecting collision. From the experiences gained in the previous
experiments, we decided to always collide with the gripper rotated horizontally to avoid
sliding over the object surface—as can be seen in Fig. 6.10.

Figure 6.10: Top view of the pose of the gripper used for touching. Pose rotated 180◦ about
the last joint was also allowed. The position of the end-effector is marked with the red circle.

The results are shown in Fig. 6.11. We can see that the experiments with the gripper
(dashed) almost copy the experiments with the finger (solid) when reconstructing using
CIGR. For the other methods, exploring with the gripper in the simulation performs
even better than with the finger. It is not the case in the real world, but the decrease in

41

6. Experiments and Results.....................................
performance is slight. Again, we assume that it is caused by the collision detection. Overall,
when comparing results for CIGR, which is again the best, exploring with the gripper is
slightly worse, but the difference is almost negligible (see Table 6.1 for exact values).

01BPA Poisson Alpha Hull GPIS CIGR

0 1 2 3 4 5

Touches [-]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

J
a
c
c
a
rd

 s
im

il
a
ri

ty
 [

%
]

0 1 2 3 4 5

Touches [-]

10

15

20

25

30

35

40

45

50

C
h

a
m

fe
r

d
is

ta
n

c
e
 [

m
m

]

(a) : Real world setup.

0 1 2 3 4 5

Touches [-]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

J
a

c
c

a
rd

 s
im

il
a

ri
ty

 [
%

]

0 1 2 3 4 5

Touches [-]

10

15

20

25

30

35

40

45

C
h

a
m

fe
r

d
is

ta
n

c
e
 [

m
m

]

(b) : Simulation.

Figure 6.11: Reconstruction evaluation for experiments with the gripper (dashed) and with
the finger (solid) for Jaccard similarity (JS) (left) and Chamfer distance (CD) (right) for both
real world setup (a) and simulation (b). The legend says by which method the meshes were
reconstructed. Each value is mean over 105 reconstructions (35 objects with three repetitions) for
the simulation experiments and mean over 30 reconstructions (10 objects with three repetitions)
for the real-world experiments.

Even after using a fixed rotation, exploration with the gripper is challenging because of
its width. However, there is lower noise from collision detection, as the gripper is closer to
the joints and is more stiff, so the force propagation to the joints is much more effective

42

... 6.3. Grasping

than in the case of the 3D printed finger. In conclusion, we can say that the results for
poking with the finger and with the gripper are almost the same and using the gripper is
the preferred possibility as it is much more compact and self-contained solution.

JS sim [%] JS real [%] CD sim [mm] CD real [mm]
Finger 65.57 58.04 13.24 13.66
Gripper 63.09 56.65 14.10 13.51

Table 6.1: Jaccard similarity (JS) and Chamfer distance (CD) after five touches for the
experiments when the 3D printed finger and the gripper were used as an end-effector. Each
value is mean over 105 reconstructions (35 objects with three repetitions) for the simulation
experiments and mean over 30 reconstructions (10 objects with three repetitions) for the
real-world experiments.

6.3 Grasping
In the previous sections, we discussed the results based on the evaluation metrics. These
metrics are helpful to discover whether the selected approach has the potential to be
successful in shape completion. However, one of the main possible uses of shape completion
is grasping. Grasp success rate was evaluated on 10 objects. The grasping was done
accordingly to Algorithm 4. For each object, the reconstruction pipeline was run once with
five touches and then the grasping was done three times. We wanted to use the same 10
objects as for the reconstruction experiments, but we realized that two of them have no
parts which could fit to the gripper, so we had to replace these. We marked the positions of
all objects in the workspace, so we were able to return them to the original position after
an unsuccessful grasp. The grasping experiments were done only in the real world. Grasp
success rates after zero, three, and five touches are provided.

Because Hull method achieved the second best result in the reconstruction accuracy in
the previous experiments, it was selected as a baseline in the grasping experiments. We
decided to use just one baseline, because the experiments were time consuming and we also
wanted to reduce the damage of paper items caused by grasping. Grasp success rate can be
seen in Fig. 6.12. The first grasps were done before the reconstruction experiments with
the gripper, so Hull is evaluated on point clouds collected with the finger. The intention
was to run the pipeline to gather point clouds and run the grasping while the finger was
still mounted on the robot. However, it appeared to be impossible with GraspIt!. When
the finger was not included in GraspIt! when sampling grasps, almost no grasp was feasible
for the robot because the finger would collide with the objects. However, when the finger
was added to the GraspIt! model, the planner considered it as part of the gripper and tried
to minimize the distance to it. That resulted in unusable grasps, e.g., the finger was close
the the object, but the gripper itself was rotated away from the object and closed empty.
Results from this experiments can be found in Fig. 6.12a. We can see that there is almost
no difference between CIGR and Hull as both performed poorly. The maximal success rate
was for CIGR after five touches scoring 30%, i.e., only 10 out of 30 grasps were successful.
To overcome this issue, the finger was unmounted from the robot and new grasps were
computed, still using the reconstructions from exploration with the finger. Success of the
experiments is depicted in Fig. 6.12b. We can see that now CIGR achieved success rate of

43

6. Experiments and Results.....................................
36% with zero touches, which is more than after five touches in the previous experiment.
On reconstructions after five touches CIGR got to 80%, which is more than double the
improvement over the visual-only reconstruction. Hull was able to get only 46% after five
touches, but it also improved from reconstruction without haptic exploration (20%). The
same graph includes results for grasping from exploration with the gripper. Note that this
experiments were done at different time with different light conditions, which could result
in different initial point clouds. However, the trend is similar to the finger experiments.
The grasp success rate increased from 40% after zero touches to 76% after five touches. In
absolute numbers, it is an increase from 12 to 23 successful grasps, which is analogous to
the increase from 11 to 24 for exploration with the finger.

0
1CIGR finger Hull finger CIGR gripper

0 3 5

Number of touches [-]

10

20

30

40

50

60

70

80

90

G
ra

s
p

 s
u

c
c

e
s

s
 r

a
te

 [
%

]

(a) : Mean grasp success rate over 30 grasps
(10 objects with three repetitions) with finger
mounted during the grasp phase.

0 3 5

Number of touches [-]

0

10

20

30

40

50

60

70

80

90

100

G
ra

s
p

 s
u

c
c

e
s

s
 r

a
te

 [
%

]

(b) : Mean grasp success rate over 30 grasps
(10 objects with three repetitions) with finger
unmounted during the grasp phase.

Figure 6.12: Grasp success rates for Hull (point clouds collected with Act-VH with 3D printed
finger) and CIGR (point clouds collected with both possibilities of Act-VH—with 3D printed
finger and with gripper). From Rustler et al. [1].

Fig. 6.13 provides evaluation over individual objects. We can see that CIGR for both
exploration possibilities grasped 9 out of 10 objects at least 2 times from 3. Exploration
with the gripper failed on a pitcher, where it is crucial to identify the handle to be able to
find a grasp. Exploration with the finger failed with a long and oval chip can. From what
we saw, the gripper was too far from the center of the can, so the can was “slipping out”
while grasping. On the other hand, Hull grasped for zero or one time on the majority of
objects. Rectangular objects seem to be troublesome for this method. It is probably coming
from the already mentioned “slopes” created by the method. Example of one rectangular
object can be seen in Fig. 6.1. Because of these slopes, the fingers of the gripper in the
estimated grasp are not parallel to the real surface of the objects, and thus the grasps are
unstable.

Overall, the policy based on uncertainty from Act-VH helps even the baseline to improve
with additional touches. However, reconstructing with CIGR is superior over the baseline
with a notable difference. It is an interesting revelation, because the methods performed
almost the same in mesh evaluation metrics.

44

............................... 6.4. Visual-only Approaches Experiments

0
1CIGR finger Hull finger CIGR gripper

1 2 3 4 5 6 7 8 9 10

Objects [-]

0

10

20

30

40

50

60

70

80

90

100

G
ra

s
p

 s
u

c
c

e
s

s
 r

a
te

 [
%

]

Figure 6.13: Mean grasp success rate over three grasps for each object for Hull (point clouds
collected with Act-VH with 3D printed finger) and CIGR (point clouds collected with both
possibilities of Act-VH—with 3D printed finger and with gripper). From Rustler et al. [1].

6.4 Visual-only Approaches Experiments
The last set of experiments are visual-only approaches (only camera is used; described in
Section 5.3). Again, three repetitions were made for each object. In the case of uncertainty-
driven approach, five views were used. Firstly, we compare the visual-only approaches and
then compare them with Act-VH with the gripper. Visual-only experiments were performed
only in the real world.

0
1 Act-VO Pas-VO Act-VH

BPA

Poi
ss

on

Alp
ha H

ul
l

G
PIS

C
IG

R

Method [-]

0
10
20
30
40
50
60
70
80

J
a

c
c

a
rd

 s
im

il
a

ri
ty

 [
%

]

(a) : Jaccard similarity (JS). The higher, the
better.

BPA

Poi
ss

on

Alp
ha H

ul
l

G
PIS

C
IG

R

Method [-]

0
5

10
15
20
25
30
35

C
h

a
m

fe
r

d
is

ta
n

c
e

 [
m

m
]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.14: Reconstruction evaluation for Act-VO (blue), Pas-VO (red) and Act-VH with
gripper (orange) in the real world. Each value is mean over 30 reconstructions (10 objects with
three repetitions). Method names on x-axis stand for the mesh reconstruction methods.

45

6. Experiments and Results.....................................
In Fig. 6.14 one can see JS and CD values for Passive visual-only shape completion

(Pas-VO) approach, fifth touch of Act-VH with gripper and fifth view of Active visual-only
shape completion (Act-VO). When comparing only the visual-only approaches, we can see
that in case of JS, Pas-VO performs slightly better, except for BPA and Poisson. The best
results are obtained by CIGR reconstruction, which scored 71% for Act-VO and 67% for
Pas-VO. For CD, the differences are much more notable. CIGR reconstruction achieved
CD 8.9 mm with Act-VO and 14.3 mm for the other one. This comparison clearly shows
that Act-VO is better. However, it also takes more time. Pas-VO can be done in less than
a minute and the uncertainty-driven one needs about three minutes for five views. Both of
the methods are better than Act-VH in case of JS for all reconstruction baselines. However,
interestingly, visuo-haptic approach for some reconstruction methods performs the same or
even better than the Pas-VO. We assume that may be caused by the high uncertainty of
Pas-VO. The method does not have any information about the object except the initial
point cloud from the table camera and so it may not see the whole object. Or, on the
contrary, it can see a lot of background (for smaller objects), which is more error prone to
depth image errors caused by, for example, reflections from the table.

01BPA Poisson Alpha Hull GPIS CIGR

0 1 2 3 4 5

Touches/Views [-]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

J
a
c
c
a
rd

 s
im

il
a
ri

ty
 [

%
]

(a) : Jaccard similarity (JS). The higher, the
better.

0 1 2 3 4 5

Touches/Views [-]

5

10

15

20

25

30

35

40

45

50

C
h

a
m

fe
r

d
is

ta
n

c
e

 [
m

m
]

(b) : Chamfer distance (CD). The lower, the
better.

Figure 6.15: Reconstruction evaluation for Act-VH with the gripper (solid) and Act-VO
(dashed). The legend says by which method the meshes were reconstructed. Each value is mean
over 30 reconstructions (10 objects with three repetitions).

Values for all five touches/views of the visuo-haptic approach and uncertainty-driven
visual-only completion can be seen in Fig. 6.15. It confirms the results from the previous
graph. Yet, it offers interesting information about the influence of additional views. We
can see that the biggest improvement is gained with the first two views and then the slopes
of the lines are almost flat. Overall, the visual-only approach is better in both JS (58% vs
71%) and CD (8.9 mm vs 13.5 mm). However, we have to keep in mind that the visual-only

46

... 6.5. Summary

approach can gain several times more information than the visuo-haptic one.

However, all objects tested were nontransparent and “friendly” for the camera. Fig. 6.16
shows an example of reconstruction of adversarial transparent object from Act-VH (recon-
structed with CIGR; reconstructions with other baselines can be seen in Fig. 6.1). We
can see that the visual-only methods fail to even coarsely estimate the object shape. The
main problem is with the thin “neck” of the bottle. The depth sensor sees through it and
estimates the depth when the sticker is seen. That creates a problem with inconsistent
normals, which are essential for most mesh reconstruction methods. On the other hand,
the haptic exploration can add new information properly and the resulting reconstruction
is better, even though still not perfect. Note that this object was not part of the analytical
evaluation, because no ground truth is available.

Figure 6.16: Reconstructions of an adversarial transparent object. All the meshes are from the
real setup and reconstructed with CIGR after five touches/views. Touches are highlighted in
the point clouds with green color.

6.5 Summary
To summarize the experiments, Table 6.2 and Table 6.3 with exact values are provided. The
Tables include absolute values after five touches/views and relative improvement from zero
to five touches—Pas-VO is not iterative, so no improvement can be computed. Columns are
divided by different reconstruction methods (CIGR and baselines described in Section 4.8).
Rows contain experiments with different policies for uncertainty computation (Act-VH,
random, GPIS), different worlds (simulation, real world) and different shape completion
methods (visual-only, visuo-haptic).

47

6. Experiments and Results.....................................
Jaccard similarity [%]

BPA Poisson Hull Alpha GPIS CIGR
Act-VH finger (real) 12.01 22.74 52.51 52.79 36.26 58.04
Act-VH finger (sim) 7.69 15.88 49.86 49.86 41.18 65.57
Act-VH gripper (real) 6.69 22.58 46.65 47.31 31.05 56.65
Act-VH gripper (sim) 18.97 31.84 57.08 57.25 42.42 63.09
GPIS (sim) 5.53 16.07 35.09 35.14 53.90 53.97
Random (sim) 16.49 27.48 41.33 41.34 41.29 53.32
Act-VO (real) 57.96 61.76 67.54 68.06 47.17 71.31
Pas-VO (real) 64.02 67.07 65.52 65.35 42.96 66.81

(a) : Absolute values after five touches/views.
Relative improvement [%]

BPA Poisson Hull Alpha GPIS CIGR
Act-VH finger (real) -33.19 -23.32 45.01 39.74 35.04 27.38
Act-VH finger (sim) -63.33 -31.13 75.52 68.19 43.97 52.90
Act-VH gripper (real) -55.10 -12.93 41.58 38.41 39.10 21.70
Act-VH gripper (sim) -0.54 52.62 147.78 143.15 64.36 48.64
GPIS (sim) -51.39 5.15 9.07 8.92 19.40 16.16
Random (sim) -15.56 32.17 71.19 66.43 37.98 21.42
Act-VO (real) 212.95 107.85 97.43 92.10 70.18 47.37
Pas-VO (real) 0.00 0.00 0.00 0.00 0.00 0.00
(b) : Relative improvement from zero to five touches. Pas-VO is not iterative, so no improvement can
be computed.

Table 6.2: Jaccard similarity (JS) (the higher, the better). Rows are different policies for
visuo-haptic or visual-only exploration (the last two rows). Columns are different reconstruction
methods. Each value is mean over 105 reconstructions (35 objects with three repetitions) for
the simulation experiments and mean over 30 reconstructions (10 objects with three repetitions)
for the real-world experiments. Visual-only approaches (Act-VO, Pas-VO) were performed only
in the real world.

The absolute values recapitulate what we have already seen. In terms of reconstruction
methods, CIGR achieves the best results on all point clouds. When comparing the efficiency
of visuo-haptic strategies, Act-VH is superior over both random and GPIS policies. Act-VH
scores over 10% higher JS and more than 5 mm lower CD. The benefits of Act-VH are
also visible from the relative improvements. For CD, the improvements using Act-VH (in
both worlds and with both poking end-effectors) are at least twice better than the other
two approaches. In case of JS, the improvements are 4-5 times better than improvements
with GPIS. The random policy have similar improvements as Act-VH. However, together
with improvements of CD, the Act-VH is preferable. As has been said, the Act-VH fails in
the improvements of BPA and Poisson for all visuo-haptic experiments. However, it is not
important as these are not preferable shape completion methods. The visual-only methods
confirm the previous statements in both absolute and relative cases. The uncertainty-driven
visual-only method is the overall best. It obtained about 15% higher JS and 5 mm lower
CD than Act-VH.

48

... 6.5. Summary

Chamfer distance [mm]
BPA Poisson Hull Alpha GPIS CIGR

Act-VH finger (real) 23.07 20.25 15.20 15.05 34.75 13.66
Act-VH finger (sim) 19.27 17.85 14.35 14.36 34.52 13.25
Act-VH gripper (real) 23.47 21.53 16.09 15.94 38.88 13.51
Act-VH gripper (sim) 20.80 21.26 18.94 18.87 37.26 14.10
GPIS (sim) 26.94 30.17 25.59 25.67 32.27 20.81
Random (sim) 23.07 22.74 23.64 23.53 47.64 18.72
Act-VO (real) 11.51 9.82 10.31 10.15 18.32 8.87
Pas-VO (real) 16.57 15.26 14.87 14.90 17,82 14.26

(a) : Absolute values after five touches/views.
Relative improvement [%]

BPA Poisson Hull Alpha GPIS CIGR
Act-VH finger (real) 17.24 21.46 37.56 37.97 25.64 22.70
Act-VH finger (sim) 23.02 26.45 48.27 48.66 15.87 44.46
Act-VH gripper (real) 19.87 15.86 34.99 35.07 19.96 23.08
Act-VH gripper (sim) 18.67 14.08 31.85 31.71 14.63 28.83
GPIS (sim) 11.70 -2.08 8.51 8.39 13.41 8.21
Random (sim) 10.96 8.73 17.34 17.15 -13.81 4.71
Act-VO (real) 60.55 60.79 59.73 60.83 58.99 48.91
Pas-VO (real) 0.00 0.00 0.00 0.00 0.00 0.00
(b) : Relative improvement from zero to five touches. Pas-VO is not iterative, so no improvement can
be computed.

Table 6.3: Chamfer distance (CD) (the lower, the better). Rows are different policies for
visuo-haptic or visual-only exploration (the last two rows). Columns are different reconstruction
methods. Each value is mean over 105 reconstructions (35 objects with three repetitions) for
the simulation experiments and mean over 30 reconstructions (10 objects with three repetitions)
for the real-world experiments. Visual-only approaches (Act-VO, Pas-VO) were performed only
in the real world.

49

50

Chapter 7

Discussion, Conclusion and Future Work

We presented Act-VH as a solution for uncertainty-driven visuo-haptic shape completion.
The haptic exploration itself was tested in simulation and real world with a robotic
manipulator using torque sensors to detect a collision. The method is based on state-of-the-
art implicit surface Deep Neural Network (DNN). From various possibilities [5, 14, 15], the
Implicit Geometric Regularization for Learning Shapes (IGR) was selected after a series of
experiments. We trained the network from a dataset we created. The dataset consists of
complete point clouds created from YCB [36] and Grasp Database [37]. For each training
object, a latent vector is created. Each vector is a parametrization of an object space and
the final object can be obtained from isosurface at level zero. The advantage is that only
partial point clouds can be supplied during interference phase and the network is able
to find a most suitable vector which parametrizes the current object space and obtains
a complete mesh from it. The other advantage is that the older methods needed to be
trained from a enormous number of views [2–4, 12, 13], which is not the case here. Also,
classical Convolutional Neural Network (CNN) needed to be trained with simulated haptic
data to be able to use it [30]. For IGR, one can just add the haptic data to the point cloud
without any retraining. However, as showed in Fig. 6.4, the method is outperformed with
state-of-the-art mesh reconstruction methods when the full point cloud is supplied. In
future work, a more diverse dataset should be created to combat this issue. A more diverse
dataset could fix also problems with visual-only reconstructions. The Fig. 6.2 shows that
without any haptic exploration, our method fails to give a reasonable estimate for unknown
objects when only one view is available. We showed that replacing random sampling of
mini-batches used in gradient descent with Farthest Point Sampling (FPS) can help to
better fit the point cloud. However, using only FPS is worse in overall and in the future we
would like to introduced some mixed sampling approach. In addition, we would also like to
take advantage of moving through free space. For voxel grid-based CNN [13], one could
easily set a voxel to unoccupied if there was nothing during the haptic exploration. It is
not possible in our method and we think it may improve the reconstruction a lot.

The main contribution of this work is a novel uncertainty-driven exploration policy.
Most of the state-of-the-art methods use random exploration or heuristic [2, 30, 31]. We
provided a solution based on variance computed from probabilistic voxel grids of multiple
samples. The uncertainty finds the most promising places to be explored to maximize the
information gained. To effectively implement and test the algorithm, we used a simulation
environment based on a physics-based simulator MuJoCo [44] and improved it for our case.
The simulation contains the robotic arm and also a virtual camera providing point clouds.
In addition, multiple benchmarking features were added to help the user with evaluating the

51

7. Discussion, Conclusion and Future Work..............................
algorithm. The features can be also used in the real world, providing a real-time overview of
the progress at any given time. In addition, we designed a custom 3D printed finger, which
helped with more precise touches in the initial experiments. In addition to the finger, the
gripper of the robot was also used for exploration. We were able to obtain similar results
with the gripper even when it is much wider than the finger. We would like to improve
the reconstruction with the gripper even more, because the 3D printed finger suffers from
insufficient stiffness and placement errors. Moreover, using the gripper already installed on
the robot is a more compact and self-contained solution. Thus, in the future, we want to
focus on improving the gripper manipulation.

We compared our approach with a random exploration and with the uncertainty gained
from Gaussian Process Implicit Surface (GPIS) [25]. The results on 10 objects (60 different
reconstructions for each baseline reconstruction method) in the real world and 35 objects
(over 400 different reconstructions for each baseline reconstruction method) in the simulation
were described in Section 6.1 and Section 6.2. Act-VH outperforms all other exploration
policies for visuo-haptic exploration with a notable margin. The same applies for visual-only
methods, where the uncertainty-driven approach is superior to the approach with fixed
positions. Additionally, reconstructions from point clouds collected with Act-VH are getting
better with each touch even for the other reconstruction baselines. However, the visual-only
approach is still better then Act-VH. Yet, one has to take into consideration that it is less
common for robots to have a built-in camera. Furthermore, haptic exploration gains much
less information every touch than the camera with a single view. Still, we were able to get
the results with only 5 touches, while state-of-the-art methods usually use tens of them.
However, our experiments also showed that with our method, the results may even get
worse with increasing number of touches because of noise. In the future, we would like
to try a different method for collision detection. Even though using torque sensors is a
self-contained solution, it is also very noisy and imprecise. We are sure that if we use more
sensitive contact detection sensors (tactile, for example), we would achieve even better
results. A more sensitive sensor would also help with the necessity to tape the objects to
the table. Moreover, as showed in Fig. 6.16, visual-only reconstruction can fail for some
objects (transparent, for example). And that is where haptic exploration can help a lot.

Finally, we evaluated reconstructions from Act-VH in grasping experiments. We compared
performance of our modified implementation of IGR (Shape Completing IGR (CIGR)) and
Hull reconstruction method on point clouds collected with Act-VH with both the finger and
the gripper on 30 grasps for each method—we performed 450 grasps in total. Both variants
of Act-VH showed superior performance over the baseline, when CIGR reconstructions
from Act-VH with the finger were grasped successfully in 80% of grasps (24 from 30) and
Hull reconstructions were grasped only in 46% (14 from 30). CIGR from Act-VH with the
gripper performed very similar with 76% (23 from 30) grasp success rate. In addition, the
success rate after zero and five touches was more than doubled for all methods. However,
when using the finger, it must have been unmounted for grasping. That is inconvenient
and using only the gripper is the preferred approach for the following research.

We proposed a visuo-haptic approach. However, the visual input is taken only once,
and new information is added with haptic exploration. As could be seen, the camera can
add more information, but it can fail in some cases, e.g., for transparent objects. In the

52

.............................. 7. Discussion, Conclusion and Future Work

future, an improvement could be to enable the pipeline to decide whether it is better to
add new information from touch or from the camera, e.g., based on the object’s material.
Additionally, we suppose there is only one object in the scene, which is not always the case
in real scenarios. Thus, other possible improvement would be to find all objects in the
scene and shape complete them separately.

An accompanying video is here: https://youtu.be/Ft1PUYRNFHw. The simulation environ-
ment and the data from experiments pertaining to [1] are available at https://github.com/

ctu-vras/visuo-haptic-shape-completion. Additional internal code is available in the attach-
ment of this work. Data collected during the experiments (point clouds and ROSbags) can be
downloaded from https://drive.google.com/drive/folders/1Du8hVDbsFYqEvb-hwS6ISpnaE4RGJW8c?

usp=sharing.

53

https://youtu.be/Ft1PUYRNFHw
https://github.com/ctu-vras/visuo-haptic-shape-completion
https://github.com/ctu-vras/visuo-haptic-shape-completion
https://drive.google.com/drive/folders/1Du8hVDbsFYqEvb-hwS6ISpnaE4RGJW8c?usp=sharing
https://drive.google.com/drive/folders/1Du8hVDbsFYqEvb-hwS6ISpnaE4RGJW8c?usp=sharing

54

Bibliography

[1] L. Rustler, J. Lundell, J. Behrens, V. Kyrki, and M. Hoffmann, “Active Visuo-Haptic
Object Shape Completion,” 2022, submitted.

[2] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen, “Shape Completion
Enabled Robotic Grasping,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 2442–2447.

[3] S. Wang, J. Wu, X. Sun, W. Yuan, W. T. Freeman, J. B. Tenenbaum, and E. H.
Adelson, “3D Shape Perception from Monocular Vision, Touch, and Shape Priors,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Oct. 2018, pp. 1606–1613.

[4] M. Björkman, Y. Bekiroglu, V. Högman, and D. Kragic, “Enhancing Visual Perception
of Shape through Tactile Glances,” in 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Nov. 2013, pp. 3180–3186.

[5] A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit Geometric
Regularization for Learning Shapes,” in International Conference on Machine Learning.
PMLR, Nov. 2020, pp. 3789–3799.

[6] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active perception,” Autonomous
Robots, vol. 42, no. 2, pp. 177–196, 2018.

[7] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal, N. Bergström, D. Kragic,
and A. Morales, “Mind the gap-robotic grasping under incomplete observation,” in
2011 IEEE International Conference on Robotics and Automation. IEEE, 2011, pp.
686–693.

[8] R. Schnabel, P. Degener, and R. Klein, “Completion and Reconstruction with Primitive
Shapes,” in Computer Graphics Forum, vol. 28, no. 2. Wiley Online Library, 2009,
pp. 503–512.

[9] M. Pauly, N. J. Mitra, J. Giesen, M. H. Gross, and L. J. Guibas, “Example-Based
3D Scan Completion,” in Symposium on Geometry Processing, no. CONF, 2005, pp.
23–32.

[10] M. Li, K. Hang, D. Kragic, and A. Billard, “Dexterous Grasping Under Shape
Uncertainty,” Robotics and Autonomous Systems, vol. 75, pp. 352–364, 2016.

55

7. Discussion, Conclusion and Future Work..............................
[11] A. Dai, C. R. Qi, and M. NieBner, “Shape Completion Using 3D-Encoder-Predictor

CNNs and Shape Synthesis,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, HI: IEEE, Jul. 2017, pp. 6545–6554.

[12] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu, “High-Resolution Shape Comple-
tion Using Deep Neural Networks for Global Structure and Local Geometry Inference,”
in 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE,
Oct. 2017, pp. 85–93.

[13] J. Lundell, F. Verdoja, and V. Kyrki, “Robust Grasp Planning Over Uncertain Shape
Completions,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Nov. 2019, pp. 1526–1532.

[14] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF:
Learning Continuous Signed Distance Functions for Shape Representation,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long
Beach, CA, USA: IEEE, Jun. 2019, pp. 165–174.

[15] M. Atzmon and Y. Lipman, “SAL: Sign Agnostic Learning of Shapes From Raw Data,”
in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Seattle, WA, USA: IEEE, Jun. 2020, pp. 2562–2571.

[16] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3D ShapeNets: A
deep representation for volumetric shapes,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1912–1920.

[17] S. Kriegel, C. Rink, T. Bodenmüller, and M. Suppa, “Efficient Next-Best-Scan Planning
for Autonomous 3D Surface Reconstruction of Unknown Objects,” Journal of Real-
Time Image Processing, vol. 10, 12 2013.

[18] R. Monica and J. Aleotti, “A Probabilistic Next Best View Planner for Depth Cameras
Based on Deep Learning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
3529–3536, 2021.

[19] Z. Fei, X. Zhou, X. Gao, and G. Zhang, “A flexible 3d laser scanning system using a
robotic arm,” 06 2017, p. 103294U.

[20] D. Banerjee, K. Yu, and G. Aggarwal, “Robotic Arm Based 3D Reconstruction Test
Automation,” IEEE Access, vol. 6, pp. 7206 – 7213, 03 2018.

[21] S. Larsson and J. Kjellander, “Path Planning for Laser Scanning with an Industrial
Robot,” Robotics and Autonomous Systems, vol. 56, pp. 615–624, 07 2008.

[22] R. Pito and R. K. Bajcsy, “Solution to the next best view problem for automated CAD
model acquisiton of free-form objects using range cameras,” in Modeling, Simulation,
and Control Technologies for Manufacturing, R. Lumia, Ed., vol. 2596, International
Society for Optics and Photonics. SPIE, 1995, pp. 78 – 89.

[23] V. H. Chan and M. Samaan, “Spherical/cylindrical laser scanner for geometric reverse
engineering,” in Proceedings of the Conference on Three-Dimensional Image Capture
and Applications VI, San Jose, CA, USA, January 18, 2004, ser. SPIE Proceedings,
vol. 5302. SPIE, 2004, pp. 33–40.

56

.............................. 7. Discussion, Conclusion and Future Work

[24] S. Ottenhaus, M. Miller, D. Schiebener, N. Vahrenkamp, and T. Asfour, “Local Implicit
Surface Estimation for Haptic Exploration,” in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), Nov. 2016, pp. 850–856.

[25] Z. Yi, R. Calandra, F. Veiga, H. van Hoof, T. Hermans, Y. Zhang, and J. Peters,
“Active Tactile Object Exploration with Gaussian Processes,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct. 2016, pp.
4925–4930.

[26] D. Driess, P. Englert, and M. Toussaint, “Active Learning with Query Paths for Tactile
Object Shape Exploration,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 65–72.

[27] S. Dragiev, M. Toussaint, and M. Gienger, “Uncertainty aware grasping and tactile
exploration,” in 2013 IEEE International Conference on Robotics and Automation,
2013, pp. 113–119.

[28] G. Z. Gandler, C. H. Ek, M. Björkman, R. Stolkin, and Y. Bekiroglu, “Object
Shape Estimation and Modeling, Based on Sparse Gaussian Process Implicit Surfaces,
Combining Visual Data and Tactile Exploration,” Robotics and Autonomous Systems,
vol. 126, p. 103433, Apr. 2020.

[29] S. Ottenhaus, D. Renninghoff, R. Grimm, F. Ferreira, and T. Asfour, “Visuo-Haptic
Grasping of Unknown Objects based on Gaussian Process Implicit Surfaces and Deep
Learning,” in 2019 IEEE-RAS 19th International Conference on Humanoid Robots
(Humanoids), Oct. 2019, pp. 402–409.

[30] D. Watkins-Valls, J. Varley, and P. Allen, “Multi-Modal Geometric Learning for
Grasping and Manipulation,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 7339–7345.

[31] E. Smith, R. Calandra, A. Romero, G. Gkioxari, D. Meger, J. Malik, and M. Drozdzal,
“3D Shape Reconstruction from Vision and Touch,” in Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp. 14 193–14 206.

[32] E. J. Smith, D. Meger, L. Pineda, R. Calandra, J. Malik, A. Romero, and M. Drozdzal,
“Active 3D Shape Reconstruction from Vision and Touch,” arXiv:2107.09584 [cs], Jul.
2021.

[33] W. Lorensen and H. Cline, “Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm,” ACM SIGGRAPH Computer Graphics, vol. 21, pp. 163–, 08
1987.

[34] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-Jacobi equations,”
Transactions of the American mathematical society, vol. 277, no. 1, pp. 1–42, 1983.

[35] A. Gropp, “IGR: Implicit Geometric Regualrization for Learning Shapes,” 2020,
accessed: 2021-10-14. [Online]. Available: https://github.com/amosgropp/IGR

[36] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar, “The YCB
object and Model set: Towards common benchmarks for manipulation research,” in
2015 International Conference on Advanced Robotics (ICAR), 2015, pp. 510–517.

57

https://github.com/amosgropp/IGR

7. Discussion, Conclusion and Future Work..............................
[37] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp planning,” in 2015

IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 4304–4311.

[38] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Ng,
“ROS: an open-source Robot Operating System,” vol. 3, 01 2009.

[39] K. Robotics, “ros_kortex,” 2021, accessed: 2021-10-14. [Online]. Available:
https://github.com/Kinovarobotics/ros_kortex

[40] M. Marghany, M. Tahar, and M. Hashim, “3d stereo reconstruction using sum square of
difference matching algorithm,” Scientific Research and Essays, vol. 6, pp. 6404–6423,
12 2011.

[41] Intel RealSense, “ROS Wrapper for Intel RealSense Devices,” 2021, accessed:
2021-10-14. [Online]. Available: https://github.com/IntelRealSense/realsense-ros

[42] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE
International Conference on Robotics and Automation (ICRA). Shanghai, China:
IEEE, May 9-13 2011.

[43] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data process-
ing,” arXiv:1801.09847, 2018.

[44] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”
in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012,
pp. 5026–5033.

[45] J. K. Behrens, “MuJoCo-ROS,” 2020, accessed: 2021-10-14. [Online]. Available:
https://github.com/JKBehrens/mujoco-ros

[46] K. Mammou, “Volumetric-Hierarchical Approximate Convex Decomposition,” 2015,
accessed: 2021-10-14. [Online]. Available: https://github.com/kmammou/v-hacd

[47] Interdisciplinary Research Laboratory at Computer Aided Medical Procedures,
“easy_handeye,” 2021, accessed: 2021-10-14. [Online]. Available: https://github.com/
IFL-CAMP/easy_handeye

[48] J. Lundell and F. Verdoja, “Point-Cloud Segmentation,” 2019. [Online]. Available:
https://github.com/aalto-intelligent-robotics/point_cloud_segmentation/

[49] J. Bimbo, C. Pacchierotti, N. G. Tsagarakis, and D. Prattichizzo, “Collision Detection
and Isolation on a Robot using Joint Torque Sensing,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 7604–7609.

[50] D. Popov, A. Klimchik, and N. Mavridis, “Collision detection, localization & classifica-
tion for industrial robots with joint torque sensors,” in 2017 26th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), 2017, pp.
838–843.

[51] M. Basseville, I. V. Nikiforov et al., Detection of abrupt changes: theory and application.
prentice Hall Englewood Cliffs, 1993, vol. 104.

58

https://github.com/Kinovarobotics/ros_kortex
https://github.com/IntelRealSense/realsense-ros
https://github.com/JKBehrens/mujoco-ros
https://github.com/kmammou/v-hacd
https://github.com/IFL-CAMP/easy_handeye
https://github.com/IFL-CAMP/easy_handeye
https://github.com/aalto-intelligent-robotics/point_cloud_segmentation/

.............................. 7. Discussion, Conclusion and Future Work

[52] R. Diankov and J. Kuffner, “Openrave: A Planning Architecture for Autonomous
Robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34, vol. 79,
2008.

[53] H. Fan, H. Su, and L. J. Guibas, “A Point Set Generation Network for 3D Object
Reconstruction from a Single Image,” 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2463–2471, 2017.

[54] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” in Pro-
ceedings of the fourth Eurographics symposium on Geometry processing, vol. 7, 2006.

[55] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The Ball-
Pivoting Algorithm for Surface Reconstruction,” IEEE Transactions on Visualization
and Computer Graphics, vol. 5, no. 4, pp. 349–359, Oct. 1999.

[56] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The Quickhull Algorithm for Convex
Hulls,” ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, vol. 22, no. 4,
pp. 469–483, 1996.

[57] O. Williams and A. Fitzgibbon, “Gaussian Process Implicit Surfaces,” Gaussian Proc.
in Practice, 2007.

[58] M. P. Gerardo-Castro, “GPIS,” 2014, accessed: 2021-10-14. [Online]. Available:
https://github.com/marcospaul/GPIS

[59] A. Miller and P. Allen, “Graspit! A Versatile Simulator for Robotic Grasping,” IEEE
Robotics Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.

[60] ——, “Examples of 3d grasp quality computations,” in Proceedings 1999 IEEE Inter-
national Conference on Robotics and Automation (Cat. No.99CH36288C), vol. 2, 1999,
pp. 1240–1246 vol.2.

[61] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction for hand-
independent dexterous robotic grasping,” in 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007, pp. 3270–3275.

[62] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their
applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 04 1970.

[63] P. Min, “binvox,” http://www.patrickmin.com/binvox, 2004 - 2019, accessed: 2021-10-
14.

[64] D. Maturana, “binvox_rw,” 2012, accessed: 2021-10-14. [Online]. Available:
https://github.com/dimatura/binvox-rw-py

[65] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach Toward Feature Space
Analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 5, pp. 603–619, 2002.

[66] P. Besl and N. D. McKay, “A Method for Registration of 3-D Shapes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256,
1992.

59

https://github.com/marcospaul/GPIS
http://www.patrickmin.com/binvox
https://github.com/dimatura/binvox-rw-py

7. Discussion, Conclusion and Future Work..............................
[67] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP Algorithm,” in Proceedings

Third International Conference on 3-D Digital Imaging and Modeling, 2001, pp. 145–
152.

[68] J. Park, Q.-Y. Zhou, and V. Koltun, “Colored Point Cloud Registration Revisited,” in
2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 143–152.

[69] S. Choi, Q.-Y. Zhou, and V. Koltun, “Robust Reconstruction of Indoor Scenes,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 5556–5565.

[70] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space,” arXiv preprint arXiv:1706.02413, 2017.

60

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465972Personal ID number:Rustler LukášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Visuo-Haptic Uncertainty-Driven Object Shape Completion

Master’s thesis title in Czech:

Visuo-haptické modelování tvaru objektu řízené nejistotou

Guidelines:
1) Research and evaluate state of the art object shape completion methods.
2) Develop a simulation environment (e.g., Gazebo, Mujoco).
3) Develop a visuo-haptic approach for shape completion.
a) Start from a depth image of the object under investigation and complete the object shape. Focus on methods that keep
track of the uncertainty of the estimated shape.
b) Use a robot manipulator to touch the object where the uncertainty would be reduced the most.
4) Experimentally evaluate the approach in both simulation and real setup (Kinova Gen3 manipulator).
5) Develop a visual only approach (use the RGB-D sensor in the robot wrist to look from different viewpoints) and compare
with visuo-haptic approach.
6) Discuss the results.

Bibliography / sources:
[1] Lundell, J.; Verdoja, F. & Kyrki, V. (2019), Robust Grasp Planning Over Uncertain Shape Completions, in '2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)', pp. 1526-1532.
[2] Park, J. J., Florence, P., Straub, J., Newcombe, R., & Lovegrove, S. (2019). DeepSDF: Learning continuous signed
distance functions for shape representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 165-174).
[3] Watkins-Valls, D., Varley, J., & Allen, P. (2019). Multi-modal geometric learning for grasping and manipulation. In 2019
International Conference on Robotics and Automation (ICRA) (pp. 7339-7345). IEEE.
[4] Dai, A., Ruizhongtai Qi, C., & Nießner, M. (2017). Shape completion using 3d-encoder-predictor cnns and shape
synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5868-5877).

Name and workplace of master’s thesis supervisor:

Mgr. Matěj Hoffmann, Ph.D., Vision for Robotics and Autonomous Systems, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Jens Lundell, Aalto University, Helsinki, Finland

Deadline for master's thesis submission: 04.01.2022Date of master’s thesis assignment: 07.09.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Matěj Hoffmann, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

	Introduction
	Related Work
	Visual-only Shape Completion
	Haptic-Only Shape Completion
	Visuo-Haptic Shape Completion

	Shape Completion Methods
	Neural Network Types
	Voxel-based Networks
	Implicit surface networks

	Networks Comparison
	Implementation Details
	Datasets

	Materials and Methods
	Software and Implementation
	ROS Overview

	Robot and Cameras
	Simulation
	Point Clouds
	Contact Detection
	Custom Finger
	Evaluation Methods
	Baselines
	Grasping

	Visuo-Haptic Uncertainty-Driven Object Shape Completion
	Sampling of Shapes
	Impact Point Computation
	Visual-only Approaches
	Passive Visual-only Shape Completion
	Active Visual-only Shape Completion

	Experiments and Results
	Haptic Exploration with the 3D Printed Finger
	Simulation Experiments
	Real World Experiments

	Haptic Exploration with the Gripper
	Grasping
	Visual-only Approaches Experiments
	Summary

	Discussion, Conclusion and Future Work
	Bibliography
	Project Specification

